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1. Introduction. A vector m = (m1, . . . ,mn) ∈ Zn \ {0} is called an integer relation for x =
(x1, . . . , xn) ∈ Rn if

∑n
i=1mixi = 0. In literature, the HJLS algorithm [3, Sec. 3] and the PSLQ al-

gorithm [2] solve the problem of finding integer relation polynomially. Although it has been theoretically
proved that PSLQ is to some extent equivalent to HJLS, under the exact real arithmetic computational
model (see, e.g., [7, 1]), the PSLQ algorithm seems more practical.

The problem of finding the minimal polynomial from an approximation α of a d0 degree algebraic
number α, equivalent to finding an integer relation for the vector (1, α, . . . , αd0), was first solved in [5] by
using the celebrated LLL algorithm [6]. This routine has been recently improved in [4]. Naturally, the
PSLQ algorithm applies to the algebraic number reconstruction problem as well [8].

Given an approximation to an unknown algebraic number α, a degree bound d and an upper bound
M on its height, if the exact degree d0 of α is also unknown, then no matter whether one uses PSLQ or
LLL, one has to search an integer relation for the vector (1, α, . . . , αi) from i = 2, 3, . . . until d0 (≤ d).
Hence, if the complexity of a polynomial algorithm for finding an integer relation is O(P (n,M)) for an
n-dimensional vector, then the complexity of the minimal polynomial algorithm, based on the integer
relation finding algorithm, is O(d0 · P (d0,M)). Our main contribution in the present work is to give an
incremental version of PSLQ, which leads to an efficient algebraic number reconstruction algorithm with
complexity only O(P (d0,M)), even though the exact degree of the algebraic number is unknown.

Algorithm 1 (IPSLQ).

Input: A vector x = (x1, · · · , xn) ∈ Rn with xi 6= 0 for i = 1, . . . , n and a positive number M .
Output: Either return an integer relation for x, or return “no relation with length smaller than M”.

1. Construct Hx ∈ Rn×(n−1). Set H := Hx, A := In and B := In. Size-reduce H and update A and B.
2. For k from n− 1 to 1 do

(a) While hn−1,n−1 6= 0 do
i. Choose r such that γr |hr,r| = maxj∈{k,··· ,n−1}

{
γj |hj,j |

}
.

ii. Swap the r-th and the (r + 1)-th rows of H and update A and B.
iii. If r < n− 1 then update H to L-factor of H.
iv. Size-reduce H and update A and B.
v. If maxj∈{k,··· ,n−1} |hj,j | < 1/M then do the following: If k > 1 then go to Step 2; Else return “no relation with length

smaller than M”.
(b) Return the last column of B.

2. The Incremental PSLQ Algorithm. The main difference between IPSLQ (Algorithm 1) and PSLQ
is that PSLQ considers x1, . . . , xn directly, while IPSLQ considers xi, . . . , xn gradually, i.e., if the vector
(xi, . . . , xn) has no relation with 2-norm less than M then add xi−1 to the left; see Step 2(a)v.

The application of IPSLQ to efficient reconstructing minimal polynomial depends on the following two
key points: (1) We use (x1, . . . , xn) = (αn−1, . . . , α, 1), which is the reverse order of the traditional version,
to construct the matrix Hx (see [2, Def. 2] for the construction). (2) The important observation is that
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the matrix Hx for (xi, . . . , xn) is exactly the right-bottom most submatrix of Hx for (xi−1, xi, . . . , xn).
Thus, the results produced by the previous iterations are still valid for the new matrix H. However, the
traditional methods can not reuse those previous information. Therefore, the complexity of IPSLQ for
minimal polynomial without knowing degree is only O(P (d0,M)), which is the same as PSLQ for minimal
polynomial with knowing degree.

3. Experiments. The following experiments are preliminary and to compare the performance between
traditional PSLQ and IPSLQ for minimal polynomial reconstruction. Consider approximations of α =
31/s + 21/t with 500 decimal digits. Running these experiments in Maple 15 with Digits :=500 gives a
preliminary experimental results in Table 1. Note that here Digits :=500 may not be necessary (see [8]
for the a detailed error control). In Table 1, the input degree bound and height bound in these tests are d
and M + 1; the exact degree and height of α are d− 1 and M , respectively. All these experimental results
are obtained by using a Windows 7 (32 bits mode) PC with AMD Athlon II X4 645 processor (3.10 GHz)
and 4 GB memory. Note that there exists a built-in function IntegerRelations:-PSLQ in Maple 15, but
for the comparison in Table 1, we implement the PSLQ algorithm by ourselves. The reasons we do not
use the built-in function is that there does not exist a height parameter in the built-in function. This may
cause that the built-in function will go on the iterations even if the height has been greater than M . In our
implementations of PSLQ and IPSLQ, the same function uses the same technique for fairness. According
to Table 1, the IPSLQ algorithm is faster than the PSLQ algorithm. Meanwhile the ratio between TPSLQ
and TIPSLQ seems to get larger and larger with increasing d, but always smaller than d.

No. s t d M TIPSLQ TPSLQ
TPSLQ

TIPSLQ

1 2 2 5 10 0.08 0.16 2.00
2 2 3 7 36 0.16 0.64 4.00
3 3 3 10 125 0.89 5.34 6.00
4 3 4 13 540 3.14 21.34 6.79
5 2 7 15 5103 6.91 45.91 6.64
6 3 6 19 10278 23.37 144.11 6.17
7 4 5 21 11160 32.73 249.54 7.62
8 5 5 26 57500 78.95 838.99 10.63
9 5 6 31 538380 186.28 2089.87 11.22
10 6 6 37 4281690 421.94 4313.99 10.22

Table 1: IPSLQ VS PSLQ for minimal polynomial
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