Hypergeometric generating functions and series for $1 / \pi$

James G. Wan
Singapore University of Technology and Design
james_wan@sutd.edu.sg

Introduction

Some truly innovative series for $1 / \pi$, first discovered by Ramanujan and elucidated in [1], take the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(s)_{n}\left(\frac{1}{2}\right)_{n}(1-s)_{n}}{n!^{3}}(a+b n) z_{0}^{n}=\frac{1}{\pi} \tag{1}
\end{equation*}
$$

In other words, the constant $1 / \pi$ can be written as a suitable linear combination of a hypergeometric function (in this case a ${ }_{3} F_{2}$) and its derivative at some z_{0}. Such series have both theoretical and practical applications. In a recent preprint [3], some double sums are conjectured to also evaluate to $1 / \pi$; we aim to prove them using the theory behind (1). Examples of these sums include

$$
\begin{align*}
\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k}\binom{2 n-2 k}{n-k}\binom{2 k}{k}\binom{2 n}{n} \frac{140 n+19}{2^{6 k}}\left(\frac{2}{17}\right)^{2 n} & =\frac{289}{3 \pi} \tag{2}\\
\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{2 n-2 k}{n-k}\binom{2 k}{k}^{2}\binom{2 n}{n} \frac{12 n+1}{6^{2 k}}\left(\frac{3}{20}\right)^{2 n} & =\frac{75}{8 \pi} \tag{3}
\end{align*}
$$

Method

Instead of ${ }_{3} F_{2}$'s, these conjectural series in [3] all contain functions of the form

$$
G(x, z)=\sum_{n=0}^{\infty} \sum_{k=0}^{n} F(n, k) x^{n} z^{k},
$$

where F is a product of four or more binomial coefficients. It is routine to find a differential equation in x satisfied by G; however such ODEs have degrees ≥ 4 and current CAS struggle to find or rule out hypergeometric solutions implicitly required in (1). Our approach is to guess, based on numerical evidence, that x and z are connected by a simple algebraic relation r. For instance, we may guess that

$$
\begin{equation*}
G\left(x, r_{a, b}(x)\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{n} F(n, k) \frac{x^{k+n}}{(a+b x)^{2 n+1}} \text { or } \sum_{n=0}^{\infty} \sum_{k=0}^{n} F(n, k) \frac{(-1)^{n} x^{k+n}}{(a+b x)^{n+1 / 2}}, \tag{4}
\end{equation*}
$$

for some a and b. We compute sufficiently many coefficients in the x-expansion of (4), and attempt to find a, b such that they satisfy a three-term recurrence (with polynomials of bounded degrees as coefficients). Such a recurrence corresponds to a degree 3 ODE satisfied by G. The key step then comes down to an easy problem in linear algebra of checking if a certain determinant is zero for some a and b.

Once suitable a and b are found, we need to solve the 3rd order ODE satisfied by $G\left(x, r_{a, b}(x)\right)$; for this we have a more complete theory. E.g. in the case corresponding to (2), Maple 13 is able to give the solution which can be rearranged into a ${ }_{3} F_{2}$. In the case of (3), the ODE is of Heun type, and can be solved using [2, eqn. (3.5b)] followed by a transform due to E. Goursat; we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{2 n-2 k}{n-k}\binom{2 k}{k}^{2}\binom{2 n}{n} \frac{x^{k+n}}{(1+4 x)^{2 n+1}}=\sum_{n=0}^{\infty} \frac{\left(\frac{1}{3}\right)_{n}\left(\frac{1}{2}\right)_{n}\left(\frac{2}{3}\right)_{n}}{n!^{3}}\left(108 x^{2}(1-4 x)\right)^{n} \tag{5}
\end{equation*}
$$

In either case the ${ }_{3} F_{2}$ is of the type in (1), and the extensive theory for producing formulas of this type can be used to prove equations (2) and (3).

Some details

When we take the x-derivative of (5) (as is required in (1)), linear dependence on k appears on the left hand side, which is not found in (3). To cancel this k term, a vanishing, k-dependent identify (known as a 'satellite identity', coined in [4]) is required. For (5), the satellite identity is

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{2 n-2 k}{n-k}\binom{2 k}{k}^{2}\binom{2 n}{n} \frac{x^{k+n}}{(1+4 x)^{2 n}}(4 x+2 k(4 x+1)+n(4 x-1))=0 \tag{6}
\end{equation*}
$$

Identity (6) was guessed as follows: pick a small, irrational x and compute $a_{0}=\sum_{n, k} A(n, k, x), a_{1}=$ $\sum_{n, k} A(n, k, x) k$, and $a_{2}=\sum_{n, k} A(n, k, x) n$ (A being the summand), then use PSLQ to find a null integer linear combination among the elements of $\left\{a_{0}, a_{1}, a_{2}, a_{0} x, a_{1} x, a_{2} x, a_{0} x^{2}, a_{1} x^{2}, a_{2} x^{2}, \ldots\right\}$. Once found, the satellite identity can be proven by the multiple WZ algorithm. Similarly, (5) itself can be rigorously proven (as the 3rd order recursion was only a guess): write the coefficients of x on the LHS as a double sum, apply the multiple WZ algorithm to obtain a recursion, convert it to an ODE for the LHS, and finally check that the ODE annihilates the RHS. Many conjectures from [3] have been settled using our method, via the discovery of generating functions like (5).

Future work

Some conjectures in [3] do not fall into the type (4); perhaps more elaborate algebraic relations are needed this could also anticipate more exotic generating functions. It would be illuminating to be able to find suitable a and b in (4) analytically (without extensive computer searches), and also to prove the existence of satellite identities whenever F is a hypergeometric term.

References

[1] J. M. Borwein and P. B. Borwein, Pi and the AGM: A study in analytic number theory and computational complexity (Wiley, New York, 1987).
[2] R. Maier, Transforming the Heun equation to the hypergeometric equation: I. Polynomial transformations, preprint (2002).
[3] Z.-W. Sun, List of conjectural series for powers of π and other constants, preprint arXiv: 1102.5649 (Jan 2012).
[4] W. Zudilin, A generating function of the squares of Legendre polynomials, Bull. Austral. Math. Soc. to appear (2013).

