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Blackbox algorithms for linear algebra problems start with one sided (Lanczos) or two sided (Wiede-
mann) projection of the sequence of powers of a matrix to a sequence of scalars or a sequence of smaller
matrices. Such algorithms usually require that the minimal polynomial of the resulting sequence should be
that of the given matrix. Exact formulas are given for the probability that this occurs based on the Jordan
structure of a matrix, and from these formulas sharp bounds follow. The bounds are valid for all finite
field sizes and show that a small blocking factor can give high probability of success for all cardinalities
and matrix dimensions.

Let K be a finite field with cardinality q. Given A ∈ Kn×n, and Ā be the linearly generated sequence
{I, A,A2, . . .}. Given U, V ∈ Kn×b whose elements are selected uniformly randomly from K, UT ĀV
is a linearly generated sequence of smaller matrices, and with high probability, the minimal generating
polynomial of UT ĀV = {UTV,UTAV,UTA2V, . . .} is the minimal polynomial of the matrix A. All square
matrices are similar to a generalized Jordan form matrix, A = PJP−1, where J, P ∈ Kn×n. If U and V
are selected uniformly randomly, then X = P TU and Y = P−1V are also uniformly random. UĀV =
XT J̄Y = {XTY,XTJY,XTJ2Y, . . .}, and XJ̄Y has the same probability as UĀV of having its minimal
generating polynomial match the minimal polynomial of A and J . We call this probability Probq,b(A).

Let Cf ∈ Kd×d represent the companion matrix for the polynomial f(x) = f0 + f1x+ . . .+ fd−1x
d−1 +

xd with coefficients in K. Let Jfe be the generalized Jordan block of an irreducible f occurring with
multiplicity e. Since Probq,b(Jf ⊕ Jg) = Probq,b(Jf )Probq,b(Jg) when gcd(f, g) = 1, unique irreducibles
can be treated separately, and for each irreducible only its highest multiplicity affects the probability that
the projection preserves the minimal polynomial. Furthermore we show Probq,b(Jf ) = Probq,b(Jfe) for
any e. Therefore, letting T = {(f1, e1, t1), (f2, e2, t2), . . .}, where the polynomials fi are the irreducibles
occuring in the invariant factors of A, ei is the highest multiplicity of fi, and ti is the number of occurrences
of fei

i , it follows that

Probq,b(J) =

|T |∏
k=1

Probq,b

(⊕
tk

Jfk

)
.

For an irreducible polynomial f of degree d, the probability that UT C̄fV has minimal polynomial f is
easy to determine. The minimal polynomial of the projection is always a factor of f , which for irreducible
f is 1 or f . It is 1 only if the sequence is a sequence of zero matrices, which is to say that one of U, V is
zero. Thus

Probq,b(Cf ) = (1− q−db)2.

If J =
⊕

tCf , then for U, V ∈ Kdt×b, with blocking conformal to the diagonal blocks of J , we have

UT J̄V =
t∑

k=1

UT
k C̄fVk. We show Probq,b(Cf ) ≤ Probq,b (

⊕
t J).
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field cardinality

block size 2 3 10007 231 − 1

1 0.000467 0.00112 0.0499 0.911

2 0.25 0.444 1− 2× 10−4 1− 4.3× 10−11

4 0.766 0.927 1− 2× 10−12 1− 9.4× 10−30

8 0.984 1− 9.1× 10−4 1− 2× 10−28 1− 4.4× 10−67

16 1− 6× 10−5 1− 1.4× 10−7 1− 2× 10−60 1− 9.8× 10−142

32 1− 9.3× 10−10 1− 3.2× 10−15 1− 2× 10−124 1− 4.8× 10−291

Table 1: Bounds for worst case probability of success to preserve minimum polynomial,
matrix size 108 × 108

It is evident that the probability of success increases with d as well as with b. The worst case is a matrix
whose minimal polynomial is a distinct product of the smallest possible irreducibles. This yields an exact
lower bound formula for the probability that a projection UT ĀV of A has the same minimal polynomial.
Let Lq(d, n) be the number of degree d irreducible factors over the finite field of cardinality q that fit in a
matrix of dimension n after all smaller degree irreducibles have been inserted. Then, for an n× n matrix
A,

Probq,b(A) ≥
∞∏
d=1

(
1− 2qdb − 1

q2db

)Lq(d,n)

We compare this bound to previously given lower bounds in the case when field cardinality and matrix
dimension are of similar size. For small primes, Wiedemann (proposition 3) treats the case b = 1 and he
fixes the projection on one side because he is interested in linear system solving and thus in the sequence
Āb [2] . For small q, his formula, 1/(6 logq(N)), computed with some approximation, is nonetheless quite
close to our exact formula. However as q approaches N the discrepancy with our exact formula increases.
At the large/small crossover, q = N , Kaltofen/Pan’s lower bound is 0, Wiedemann’s is 1/6, and ours is
1/e. The Kaltofen/Pan probability bound improves as q grows larger from N [1] . The Wiedemann bound
becomes more accurate as q goes down from N . But the area q ≈ N is of some practical importance.
In integer matrix algorithms where the finite field used is a choice of the algorithm, sometimes practical
considerations of efficient field arithmetic encourages the use of primes in the vicinity of N . For instance,
exact arithmetic in double precision and using BLAS works well with q ∈ 106..107. Sparse matrices of
order N in that range are tractable. Our bound may help justify the use of such primes.

But the primary value we see in our analysis here is the understanding it gives of the value of blocking,
b > 1. Table 1 shows the bounds for the worst case probability that a random projection will preserve the
minimal polynomial of a matrix A ∈ K108×108 for various fields and projection block sizes. It shows that
the probability of finding the minimal polynomial correctly under projection converges rapidly to 1 as the
projected block size increases. Even over GF (2), with block size b = 16 the probability is very good.

References

[1] Erich Kaltofen and B. David Saunders. On wiedemann’s method of solving sparse linear systems. In
Proceedings of the 9th International Symposium, on Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, AAECC-9, pages 29–38, London, UK, UK, 1991. Springer-Verlag.

[2] D. Wiedemann. Solving sparse linear equations over finite fields. Information Theory, IEEE Transac-
tions on, 32(1):54–62, 1986.

2


