Schützenberger's factorization on q-stuffle Hopf algebra

C. Bui ${ }^{b}$, G. H. E. Duchamp ${ }^{\sharp}$, Hoang Ngoc Minh ${ }^{\diamond, \sharp}$
${ }^{\text {b }}$ Hué University - College of sciences, 77 - Nguyen Hue street - Hué city, Viêt Nam
\#Institut Galilée, LIPN - UMR 7030, CNRS - Université Paris 13, F-93430 Villetaneuse, France, ${ }^{\diamond}$ Université Lille II, 1, Place Déliot, 59024 Lille, France

Schützenberger's monoidal factorization [9] has been introduced and plays a central role in the renormalization [7] of associators which are formal power series in non commutative variables ${ }^{1}$. The coefficients of these power series are polynomial at positive integral multi-indices of Riemann's zêta function ${ }^{2}$ [5, 10] and they satisfy quadratic relations [1] which can be explained through Lyndon words. These relations can be obtained by identification of the local coordinates on a bridge equation connecting the Cauchy and Hadamard algebras of polylogarithmic functions and use the factorizations of the non commutative generating series of polylogarithms [6] and of harmonic sums [7]. This equation is mainly a consequence of the double isomorphy between these structures to respectively the shuffle [6] and stuffle [3] algebras both admitting the Lyndon words as a transcendence basis.

Symbolic computation allows us to introduce a formal variable q in order to better understand the mechanisms of the shuffle and to obtain algorithms on stuffles. We will then examine the q-stuffle interpolating between the shuffle [9], stuffle [8] and minus-stuffle [3]. In particular, we will give an effective construction of pair of bases in duality. It uses essentially an adapted version of the Eulerian projector in order to obtain the primitive elements of the q-stuffle Hopf algebra and they are obtained thanks to the computation of the logarithm of the diagonal series. This study completes the treatment for the stuffle [7] and boils down to the shuffle [9].

More precisely, let $Y=\left\{y_{s}\right\}_{s \geq 1}$ be an alphabet with the total order $y_{1}>y_{2}>\cdots$. Let also \mathbf{k} be a unitary \mathbb{Q}-algebra containing q. One defines the q-stuffle, or its dual co-product, as follows, for any $y_{s}, y_{t} \in Y$ and $u, v \in Y^{*}$,

$$
\begin{gather*}
u \pm_{q} 1_{Y^{*}}=1_{Y^{*} \pm_{q}} u=u \quad \text { and } \quad y_{s} u \pm_{q} y_{t} v=y_{s}\left(u \pm_{q} y_{t} v\right)+y_{t}\left(y_{s} u \pm_{q} v\right)+q y_{s+t}\left(u \pm_{q} v\right), \tag{1}\\
\Delta_{ \pm_{q}}\left(1_{Y^{*}}\right)=1_{Y^{*}} \otimes 1_{Y^{*}} \quad \text { and } \quad \Delta_{ \pm_{q}}\left(y_{s}\right)=y_{s} \otimes 1_{Y^{*}}+1_{Y^{*}} \otimes y_{s}+q \sum_{s_{1}+s_{2}=s} y_{s_{1}} \otimes y_{s_{2}} . \tag{2}
\end{gather*}
$$

This product is commutative, associative and unital. With the co-unit defined by, $\epsilon(P)=\left\langle P \mid 1_{Y^{*}}\right\rangle$, for $P \in \mathbf{k}\langle Y\rangle$, one gets $\mathcal{H}_{ \pm_{q}}=\left(\mathbf{k}\langle Y\rangle\right.$, conc, $\left.1_{Y^{*}}, \Delta_{ \pm_{q}}, \epsilon\right)$ and $\mathcal{H}_{ \pm+_{q}}^{\vee}=\left(\mathbf{k}\langle Y\rangle, \pm_{q}, 1_{Y^{*}}, \Delta_{\text {conc }}, \epsilon\right)$ which are mutually dual bialgebras and, in fact, Hopf algebras because they are \mathbb{N}-graded by the weight.

Group-like elements, redefined below, form a group for which the log-exp correspondence is explained by as follows
Lemma 1 (q-extended Friedrichs criterium) Let $S \in \mathbf{k}\langle\langle Y\rangle\rangle$ (for 2., we suppose in addition that $\left\langle S \mid 1_{Y^{*}}\right\rangle=1$).

1. S is primitive, i.e. $\Delta_{ \pm_{q}} S=S \otimes 1_{Y^{*}}+1_{Y^{*}} \otimes S$, if and only if, for any $u, v \in Y^{+},\left\langle S \mid u \uplus_{q} v\right\rangle=0$.
2. S is group-like, i.e. $\Delta_{\uplus_{q}} S=S \otimes S$, if and only if, for any $u, v \in Y^{+},\left\langle S \mid u{ }_{ \pm{ }_{q}} v\right\rangle=\langle S \mid u\rangle\langle S \mid v\rangle$.
3. S is group-like if and only if $\log S$ is primitive.

Proposition 1 Let $\mathcal{D}_{Y}=\sum_{w \in Y^{*}} w \otimes w$ be the diagonal series over Y. Then

1. $\log \mathcal{D}_{Y}=\sum_{w \in Y^{+}} w \otimes \pi_{1}(w)$, where $\pi_{1}(w)=w+\sum_{k \geq 2} \frac{(-1)^{k-1}}{k} \sum_{u_{1}, \ldots, u_{k} \in Y^{+}}\left\langle w \mid u_{1}{ }^{\lfloor+}{ }_{q} \ldots \downarrow_{q} u_{k}\right\rangle u_{1} \ldots u_{k}$.
2. For any $w \in Y^{*}$, we have $w=\sum_{k \geq 0} \frac{1}{k!} \sum_{u_{1}, \ldots, u_{k} \in Y^{+}}\left\langle w \mid u_{1}{ }^{\leftrightarrow+}{ }_{q} \ldots{ }^{\star+}{ }_{q} u_{k}\right\rangle \pi_{1}\left(u_{1}\right) \ldots \pi_{1}\left(u_{k}\right)$.
[^0]Let $\mathcal{P}=\left\{P \in \mathbb{Q}\langle Y\rangle \mid \Delta_{ \pm_{q}} P=P \otimes 1+1 \otimes P\right\}$ be the set of primitive polynomials. Since, in virtue of $\Delta_{{ }_{+{ }_{q}}} \pi_{1}(w)=\pi_{1}(w) \otimes 1+1 \otimes \pi_{1}(w), \operatorname{Im}\left(\pi_{1}\right) \subseteq \mathcal{P}$, we can state the following
Theorem 1 ([2]) 1. Let $\left\{\Pi_{l}\right\}_{l \in \mathcal{L} y n Y}$ be defined by, for any $y_{k} \in Y, \Pi_{y_{k}}=\pi_{1}\left(y_{k}\right)$ and for any $l \in \mathcal{L} y n X$ of standard factorization $l=(s, r), \Pi_{l}=\left[\Pi_{s}, \Pi_{r}\right]$. Then $\left\{\Pi_{l}\right\}_{l \in \mathcal{L} y n Y}$ forms a basis of \mathcal{P}.
2. Let $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ be defined by, for any $w \in Y^{*}$ such that $w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, l_{1}>\ldots>l_{k}, l_{1} \ldots, l_{k} \in \mathcal{L} y n Y$, $\Pi_{w}=\Pi_{l_{1}}^{i_{1}} \ldots \Pi_{l_{k}}^{i_{k}}$. Then $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ forms a basis of $\mathbf{k}\langle Y\rangle$.
3. Let $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ be the family of the quasi-shuffle algebra obtained by duality with $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$. Then $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ generates freely the quasi-shuffle algebra.
4. The family $\left\{\Sigma_{l}\right\}_{l \in \mathcal{L} y n Y}$ forms a transcendence basis of $\left(\mathbf{k}\langle Y\rangle\right.$, $\left.\uplus_{q}\right)$.

We now give formulas which permit to compute the basis $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ without inverting a huge Gram matrix.
Theorem 2 (q-extended Schützenberger's factorization, [2])

1. For any $y \in Y, \Sigma_{y}=y$.
2. For any $y_{s_{1}} \ldots y_{s_{k}} \in \mathcal{L} y n X, \Sigma_{y_{s_{1}} \ldots y_{s_{k}}}=\sum_{\substack{\left\{s_{1}^{\prime}, \ldots, s_{i}^{\prime}\right\} \subset\left\{s_{1}, \cdots, s_{k}\right\}, l_{1} \geq \cdots \geq l_{n} \in \mathcal{L}_{n n} Y \\\left(y_{1} \cdots y_{s_{k}}\right) *\left(y_{s_{1}^{\prime}}, \cdots, y_{s_{n}^{\prime}}, l_{1}, \cdots, l_{n}\right)}} \frac{q^{i-1}}{i!} y_{s_{1}^{\prime}+\cdots+s_{i}^{\prime}} \Sigma_{l_{1} \cdots l_{n}}$.
3. For any $w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}$, with $l_{1}, \ldots, l_{k} \in \mathcal{L} y n Y$ and $l_{1}>\ldots>l_{k}, \Sigma_{w}=\frac{\Sigma_{l_{1}}^{\left\lfloor \pm{ }_{q} i_{1}\right.} \uplus_{q} \ldots \downarrow_{q} \Sigma_{l_{k}}^{\left\lfloor\oplus_{q} i_{k}\right.}}{i_{1}!\ldots i_{k} \text { ! }}$.
4. $\mathcal{D}_{Y}=\sum_{w \in Y^{*}} \Sigma_{w} \otimes \Pi_{w}=\prod_{l \in \mathcal{L} y n Y}^{\searrow} \exp \left(\Sigma_{l} \otimes \Pi_{l}\right)$.

Theorems 1.1 and 2.2 are based mainly on respectively the logarithm of the diagonal series \mathcal{D}_{Y} and the standard sequences $[9,2]$ and lead to simplified algorithms getting bases in duality as shown in the following

Example 1

$$
\begin{aligned}
& \begin{aligned}
\Pi_{y_{2}} & =y_{2}-\frac{q}{2} y_{1}^{2}, \\
\Pi_{y_{2} y_{1}} & ={ }_{y_{2} y_{1}-y_{1} y_{2},},
\end{aligned} \\
& \Pi_{y_{3} y_{1} y_{2}}=y_{3} y_{1} y_{2}-\frac{q}{2} y_{3} y_{1}^{3}-q y_{2} y_{1}^{2} y_{2}+\frac{q^{2}}{4} y_{2} y_{1}^{4}-y_{1} y_{3} y_{2}+\frac{q}{2} y_{1} y_{3} y_{1}^{2}+\frac{q}{2} y_{1}^{2} y_{2}^{2}-\frac{q^{2}}{2} y_{1}^{2} y_{2} y_{1}^{2}-y_{2} y_{3} y_{1} \\
& +\frac{q}{2} y_{2}^{2} y_{1}^{2}+y_{2} y_{1} y_{3}+\frac{q}{2} y_{1}^{2} y_{3} y_{1}-\frac{q}{2} y_{1}^{3} y_{3}+\frac{q^{2}}{4} y_{1}^{4} y_{2}, \\
& \Pi_{y_{3}} y_{1} y_{2} y_{1}=y_{3} y_{1} y_{2} y_{1}-y_{3} y_{1}^{2} y_{2}-\frac{q}{2} y_{2} y_{1}^{2} y_{2} y_{1}-y_{1} y_{3} y_{2} y_{1}+y_{1} y_{3} y_{1} y_{2}+\frac{q}{2} y_{1}^{2} y_{2}^{2} y_{1}-\frac{q}{2} y_{1}^{2} y_{2} y_{1} y_{2}-y_{2} y_{1} y_{3} y_{1} \\
& \frac{\alpha}{2} y_{2} y_{1} y_{2} y_{1}^{2}+y_{2} y_{1}^{2} y_{3}+y_{1} y_{2} y_{3} y_{1}-\frac{q}{2} y_{1} y_{2}^{2} y_{1}^{2}-y_{1} y_{2} y_{1} y_{3}+\frac{\frac{q}{2} y_{1} y_{2} y_{1}^{2} y_{2} .}{} \\
& \begin{aligned}
\Sigma_{y_{2}} & ={ }_{2}, \\
\Sigma_{y_{2}} y_{1} & =y_{2} y_{1}+\frac{q}{2} y_{3},
\end{aligned} \\
& \Sigma_{y_{3} y_{2} y_{1}}=y_{3} y_{1} y_{2}+y_{3} y_{2} y_{1}+q y_{3}^{2}+\frac{q}{2} y_{4} y_{2}+\frac{q^{2}}{3} y_{6}+\frac{q}{2} y_{5} y_{1} \text {, } \\
& \Sigma_{y_{3} y_{1} y_{2} y_{1}}={ }^{2} y_{3} y_{2} y_{1}^{2}+q y_{3} y_{2}^{2}+y_{3} y_{1} y_{2} y_{1}+\frac{3 q}{2} y_{3}^{2} y_{1}+\frac{q}{2} y_{3} y_{1} y_{3}+\frac{q^{2}}{2} y_{3} y_{4}+\frac{q}{2} y_{4} y_{2} y_{1}+\frac{q^{2}}{4} y_{4} y_{3}+q y_{5} y_{1}^{2}+\frac{q^{2}}{2} y_{5} y_{2}+\frac{q^{2}}{2} y_{6} y_{1}+\frac{q^{3}}{8} y_{7} .
\end{aligned}
$$

In conclusion, since the pioneering works of Schützenberger and Reutenauer [9], the question of computing bases in duality (maybe at the cost of a more involved procedure, but without inverting a Gram matrix) remained open in the case of cocommutative deformations of the shuffle product. We have given such a procedure allowing a great simplification for an interpolation between shuffle and stuffle. In the next framework, this product will be continuously deformed, in the most general way while remaining commutative [4].

References

[1] P. Cartier.- Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents, Sém BOURBAKI, 53ème 2000-2001, $n^{\circ} 885$.
[2] C. Bui, G. H. E. Duchamp, V. Hoang Ngoc Minh.- Schützenberger's factorization on the (completed) Hopf algebra of $q-$ stuffle product. arXiv:1305.4450
[3] C. Costermans and Hoang Ngoc Minh.- Noncommutative algebra, multiple harmonic sums and applications in discrete probability, J. of Sym. Comp. (2009), pp. 801-817.
[4] J-Y. Enjalbert, Hoang Ngoc Minh.- Combinatorial study of Hurwitz colored polyzêtas, Discrete Mathematics, 1. 24 no. 312 (2012), p. $3489-3497$.
[5] T.Q.T. Lê and J. Murakami.- Kontsevich's integral for Kauffman polynomial, Nagoya Math., pp 39-65, 1996.
[6] Hoang Ngoc Minh, M. Petitot and J. Van der Hoeven.- Computation of the monodromy of generalized polylogarithms, ISSAC'98, Rostock, Allemagne, Aug. 1998.
7] Hoang Ngoc Minh.- On a conjecture by Pierre Cartier about a group of associators, to appear (2013).
8] M. Hoffman.- Quasi-shuffle products, J. of Alg. Cominatorics, 11 (2000), pages 49-68.
[9] C. Reutenauer.- Free Lie Algebras, Lon. Math. Soc. Mono, New Series-7, Oxford Sc. Pub., 1993.
[10] D. Zagier.- Values of zeta functions and their applications, in "First European Congress of Mathematics", vol. 2, Birkhäuser (1994), pp. 497-512.

[^0]: ${ }^{1}$ These associators were introduced in quantum field theory by Drinfel'd and the universal associator, i.e. $\Phi_{K Z}$, was obtained with explicit coefficients which are polyzêtas and regularized polyzêtas [5].
 ${ }^{2}$ These values are usually abbreviated MZV's by Zagier [10] and are also called polyzêtas by Cartier [1].

