ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013 ISSAC poster abstracts

Schiitzenberger’s factorization on g—stuffle Hopf algebra

C. Bui’, G. H. E. Duchamp!, Hoang Ngoc Minh®#
"Hué University - College of sciences, 77 - Nguyen Hue street - Hué city, Viét Nam
“Institut Galilée, LIPN - UMR 7030, CNRS - Université Paris 13, F-93430 Villetaneuse, France,
OUniversité Lille II, 1, Place Déliot, 59024 Lille, France

Schiitzenberger’s monoidal factorization [9] has been introduced and plays a central role in the renormalization [7]
of associators which are formal power series in non commutative variables'. The coefficients of these power series are
polynomial at positive integral multi-indices of Riemann’s zéta function? [5, 10] and they satisfy quadratic relations
[1] which can be explained through Lyndon words. These relations can be obtained by identification of the local
coordinates on a bridge equation connecting the Cauchy and Hadamard algebras of polylogarithmic functions and
use the factorizations of the non commutative generating series of polylogarithms [6] and of harmonic sums [7]. This
equation is mainly a consequence of the double isomorphy between these structures to respectively the shuffle [6] and
stuffle [3] algebras both admitting the Lyndon words as a transcendence basis.

Symbolic computation allows us to introduce a formal variable ¢ in order to better understand the mechanisms of
the shuffle and to obtain algorithms on stuffles. We will then examine the g-stuffle interpolating between the shuffle
[9], stuffle [8] and minus-stuffle [3]. In particular, we will give an effective construction of pair of bases in duality. It
uses essentially an adapted version of the Eulerian projector in order to obtain the primitive elements of the g-stuffle
Hopf algebra and they are obtained thanks to the computation of the logarithm of the diagonal series. This study
completes the treatment for the stuffle [7] and boils down to the shuffle [9].

More precisely, let Y = {ys}s>1 be an alphabet with the total order y1 > y» > ---. Let also k be a unitary
Q-algebra containing q. One defines the ¢-stuffle, or its dual co-product, as follows, for any ys,y; € Y and u,v € Y*,

wissglys = lyswgu =1 and  yous g = gy (u i o) + po(ysu s o) + gysso(uw ), (1)
Atﬂq(lY*):lY*(@lY* and Atﬂq(ys):ys®1Y*+1Y*®ys+q Z Ysy ®y32- (2)
S1+S82=s

This product is commutative, associative and unital. With the co-unit defined by, e(P) = (P | 1y«), for P € k(Y'), one
gets M, = (k(Y),conc, ly«, A, €) and vaq = (k(Y), = ¢, Ly~, Aconc, €) which are mutually dual bialgebras
and, in fact, Hopf algebras because they are N-graded by the weight.

Group-like elements, redefined below, form a group for which the log-exp correspondence is explained by as follows

Lemma 1 (¢-extended Friedrichs criterium) Let S € k(YY) (for 2., we suppose in addition that (S | 1ly~) = 1).
1. S is primitive, i.e. Ay S =S® 1y 4+ 1y- ® S, if and only if, for any u,v € YT, (S | uw qv) = 0.
2. S is group-like, i.e. Ay S =5S®S, if and only if, for any u,v € YT, (S |uw qv) = (S| u)(S | v).
3. S is group-like if and only if log S is primitive.

Proposition 1 Let Dy =} y.w ®w be the diagonal series over Y. Then

-1 k—1
1. logDy = Z w® m(w), wherem(w):w—l—z% Z (W] g @ g. .. qug)ug .. U,
weY+ k>2 Up,.. up €Y T

1
2. For any w € Y*, we havewzzﬂ Z (W] wg. .. wqug)m(ur)...m(ug).
k>0 wp,.,up €Y

1These associators were introduced in quantum field theory by Drinfel’d and the universal associator, i.e. ® 7, was obtained with
explicit coeflicients which are polyzétas and regularized polyzétas [5].
2These values are usually abbreviated MZV’s by Zagier [10] and are also called polyzétas by Cartier [1].
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Let P = {P € QYY) | Aw,P = P®1+41® P} be the set of primitive polynomials. Since, in virtue of
Aw,m(w) =7 (w) ®14+1® 7 (w), Im(mry) € P, we can state the following

Theorem 1 ([2]) 1. Let {Il;}icryny be defined by, for any yr € Y,II,, = mi(yx) and for any | € LynX of
standard factorization | = (s,r),1I; = [l IL.]. Then {II;}iccyny forms a basis of P.

2. Let {11, }wey~ be defined by, for any w € Y* such that w = lil ...lfc’“,ll > ... > ..y € LynY,
I, =10} ... IG*. Then {11, }yey« forms a basis of k(Y').

3. Let {Xy bwey+ be the family of the quasi-shuffle algebra obtained by duality with {IL,}wey+. Then {E,}wey~
generates freely the quasi-shuffle algebra.

4. The family {3 }iecyny forms a transcendence basis of (k(Y), w1 ,).
We now give formulas which permit to compute the basis {3, },cy+ without inverting a huge Gram matrix.

Theorem 2 (g-extended Schiitzenberger’s factorization, [2]) 1. ForanyyeY, ¥, =vy.

i—1
q'l
2. For any ys, ...ys, € LynX, Xy, 4, = g Ty3’1+"'+52251"'ln'
(] 8)}C st s hl1 > 2Un€LynY
(ysy '*»ysk)<*=(ysll st 1 sln)
tthil " " [E 2
; ; ; l g gy
3. For any w =17" ... I;F, with ly,...,l € LynY and l; > ... >, ¥,y = — P k
14 ket
\
4 Dy=> Sy®l,= [] exp(Z ®I).
weEY * leLynY

Theorems 1.1 and 2.2 are based mainly on respectively the logarithm of the diagonal series Dy and the standard
sequences [9, 2] and lead to simplified algorithms getting bases in duality as shown in the following

Example 1
_ q,2
Tlyy = Y2 — 3Y71,
Oygsy; =  Y2¥1 — ¥1¥2, ) .
Mygy1ys = w3vivz — $vsv? — avavive + Yvavt — vivsve + vivsed + vfvd — L vivav? — vavsn
+ %ygy%+y2y1y3+%y§y3y1 - %y{’y3+%yi‘y2,
Mysyiyoyr =  Y3Y1Y2V1 — ¥3¥2v2 — Sy2uivoyl — vivsvayl +v1vzvive + 2v5vdvr — Sudvavive — vovivsvr
+  Zvovivav? +vavivs + vivavsvr — Svivdvi — vivovivs + Lvivaviva.
Syp = v2, .
Zygyy = Y2yl T 3vs, )
Syzysur = vsvivz +y3voyl + avd + Svave + Lve + Susua,
2 2 3q,2 q q q P 2 P a2 a3
Sygyiyoyr =  2U3¥2¥7 + qU3ys + ¥3vi1v2vyl + S U3Y1 T 3U3Y1VY3 + 5 Y3v4 + FVav2vl + “Fvavs + qusyl + F¥sv2 + F Y6Vl + g YT

In conclusion, since the pioneering works of Schiitzenberger and Reutenauer [9], the question of computing bases
in duality (maybe at the cost of a more involved procedure, but without inverting a Gram matrix) remained open
in the case of cocommutative deformations of the shuffle product. We have given such a procedure allowing a
great simplification for an interpolation between shuffle and stuffle. In the next framework, this product will be
continuously deformed, in the most general way while remaining commutative [4].
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