
ACM Communications in Computer Algebra, Vol 47, No. 3, Issue 185, September 2013 ISSAC poster abstracts

Fast parallel GCD algorithm of many integers

Sidi M. SEDJELMACI
LIPN, CNRS UMR 7030
University of Paris-Nord

Av. J.-B. Clément, 93430 Villetaneuse, France
sms@lipn.univ-paris13.fr

Abstract: We present a new parallel algorithm which computes the GCD of n integers of O(n) bits in
O(n/ log n) time with O(n2+ε) processors, for any ε > 0 on CRCW PRAM model.

The computation of the GCD of two integers is not known to be in the NC parallel class, nor it is known
to be P-complete [1]. The best parallel performance was first obtained by Chor and Goldreich [2], then
by Sorenson [7] and Sedjelmaci [5] since they propose, with different approaches, parallel integer GCD
algorithms which can be achieved in O(n/ log n) time with O(n1+ε) number of processors, for any ε > 0,
in PRAM CRCW model. A naive approach, using a binary tree computation to compute the GCD of
n integers of O(n) bits would require O(n) parallel time with O(n2+ε) processors. One may also use the
existing parallel GCD algorithms of two integers and try to adapt them to design a GCD for many integers.
However, it is not obvious how to find a parallel GCD for n integers which conserve the same O(n/ log n)
time, with O(n2+ε) processors, which is roughly the bit-size of all the n input integers. In this paper, we
prove that we can compute the GCD of n integers of O(n) bits, in only O(n/ log n) parallel time with
O(n2+ε) processors, for any ε > 0 on CRCW PRAM model, in the worst case. Another probabilistic
approach is given in [3]. To our knowledge, it is the first deterministic algorithm which computes the GCD
of many integers with this parallel performance and polynomial work. Our algorithm, called ∆-GCD is
the following:

Input: A set A = { a0, a1, · · · , an−1 } of n distinct positive integers, ai < 2n, with n ≥ 4.
Output: gcd(a0, a1, · · · , an−1).

α := a0 ; I := 0 ; p := n ;
While (α > 1) Do

For (i = 0) to (n− 1) ParDo
If (0 < ai ≤ 2n/p) Then { α := ai ; I := i ; }

Endfor
If (α > 2p/n) Then /* Compute in parallel I, J and α */
α := min { | ai − aj | > 0 } = aI − aJ ; aI := α ;

Endif
For (i = 0) to (n− 1) ParDo /* Reduce all the ai’s */

If (i 6= I) Then ai := ai mod α ;
Endfor /* ∀ i , 0 ≤ ai ≤ α */
If (∀ i 6= I , ai = 0) Then Return α ; /* Here α = gcd(a0, · · · , an−1) */
p := np ;

Endwhile

Return α.

1

Fast parallel GCD algorithm of many integers ISSAC poster abstracts

We use a weak version of the function min based the pigeonhole principle, where only the O(log n) leading
bits of the integers are considered. The integer α is, at each while iteration, O(log n) bits less. More details
for the computations of I, J and α are given in [6], as well as a first C program checking the correctness of
the ∆-GCD algorithm.

Theorem : The ∆−GCD algorithm computes in parallel the GCD of n integers of O(n) bits in length,
in O(n/ log n) time using O(n2+ε) processors on CRCW PRAM model, with ε > 0.

Proof: (Sketch, see [6]). The algorithm terminates after O(n/ log n) loop iterations. Let ti be the time
cost at iteration i, 1 ≤ i ≤ N , with N = O(n/ log n). Let ki be the maximum bit length of all the quotients
qj = baj/αc, with

∑N
i=1 ki ≤ n. We prove that ti = O(min { ki

logn , log n }). The total number of proces-

sors is n× O(n1+ε) = O(n2+ε) and the parallel time is then t(n) =
∑N

i=1 ti =
∑N

i=1 min ({ ki
logn , log n}) =∑

ki<logn 1 +
∑

logn<ki<log2 n
ki

logn +
∑

ki>log2 n log n = O(n/ log n). 2

A Blankinship-like algorithm can be easily designed to compute Extended GCD, and an upper bound of
the multipliers [4] could be considered as well. A slightly modified Rosser’s algorithm (pivoting with α)
can be used to solve linear Diophantine equations. Moreover, a O(n2/ log n) sequential version of ∆-GCD
should be considered with precomputed lookup tables for arithmetic operations on O(log n) bit integers.

References

[1] A. Borodin, J. von zur Gathen and J. Hopcroft, Fast parallel matrix and GCD computations, Infor-
mation and Control, 52, 3, 1982, 241–256

[2] B. Chor and O. Goldreich, An improved parallel algorithm for integer GCD, Algorithmica, 5, 1990,
1-10

[3] G. Cooperman, S. Feisel, J. von zur Gathen and G. Havas, GCD of many integers, Lect. Notes in
Comp. Sci., Springer-Verlag, Berlin, 1627 (1999), 310–317

[4] G. Havas, S. Majewski, Extended gcd calculation, Congressus Numerantium, 111, 1627 (1998), 104-
114

[5] S.M. Sedjelmaci, On A Parallel Lehmer-Euclid GCD Algorithm, in Proc. of the International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC’2001), 2001, 303-308

[6] S.M. Sedjelmaci, Fast Parallel GCD algorithm of many integers, lipn.univ-paris13.fr/∼sedjelmaci,
Rapport interne, LIPN, April, 2013

[7] J. Sorenson, Two Fast GCD Algorithms, J. of Algorithms, 16, 1994, 110-144

2

