Fast parallel GCD algorithm of many integers

Sidi M. SEDJELMACI
LIPN, CNRS UMR 7030
University of Paris-Nord
Av. J.-B. Clément, 93430 Villetaneuse, France
sms@lipn.univ-paris13.fr

Abstract

We present a new parallel algorithm which computes the GCD of n integers of $O(n)$ bits in $O(n / \log n)$ time with $O\left(n^{2+\epsilon}\right)$ processors, for any $\epsilon>0$ on CRCW PRAM model.

The computation of the GCD of two integers is not known to be in the NC parallel class, nor it is known to be P-complete [1]. The best parallel performance was first obtained by Chor and Goldreich [2], then by Sorenson [7] and Sedjelmaci [5] since they propose, with different approaches, parallel integer GCD algorithms which can be achieved in $O(n / \log n)$ time with $O\left(n^{1+\epsilon}\right)$ number of processors, for any $\epsilon>0$, in PRAM CRCW model. A naive approach, using a binary tree computation to compute the GCD of n integers of $O(n)$ bits would require $O(n)$ parallel time with $O\left(n^{2+\epsilon}\right)$ processors. One may also use the existing parallel GCD algorithms of two integers and try to adapt them to design a GCD for many integers. However, it is not obvious how to find a parallel GCD for n integers which conserve the same $O(n / \log n)$ time, with $O\left(n^{2+\epsilon}\right)$ processors, which is roughly the bit-size of all the n input integers. In this paper, we prove that we can compute the GCD of n integers of $O(n)$ bits, in only $O(n / \log n)$ parallel time with $O\left(n^{2+\epsilon}\right)$ processors, for any $\epsilon>0$ on CRCW PRAM model, in the worst case. Another probabilistic approach is given in [3]. To our knowledge, it is the first deterministic algorithm which computes the GCD of many integers with this parallel performance and polynomial work. Our algorithm, called Δ-GCD is the following:
Input: A set $A=\left\{a_{0}, a_{1}, \cdots, a_{n-1}\right\}$ of n distinct positive integers, $a_{i}<2^{n}$, with $n \geq 4$.
Output: $\operatorname{gcd}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$.
$\alpha:=a_{0} ; I:=0 ; p:=n ;$
While ($\alpha>1$) Do For $(i=0)$ to $(n-1)$ ParDo If $\left(0<a_{i} \leq 2^{n} / p\right)$ Then $\left\{\alpha:=a_{i} ; I:=i ;\right\}$

Endfor

If $\left(\alpha>2^{p} / n\right)$ Then $/ *$ Compute in parallel I, J and $\alpha^{*} /$ $\alpha:=\min \left\{\left|a_{i}-a_{j}\right|>0\right\}=a_{I}-a_{J} ; \quad a_{I}:=\alpha ;$

Endif

For $(i=0)$ to $(n-1)$ ParDo /* Reduce all the a_{i} 's */
If $(i \neq I)$ Then $a_{i}:=a_{i} \bmod \alpha$;
Endfor $/ * \forall i, 0 \leq a_{i} \leq \alpha^{*} /$ If $\left(\forall i \neq I, a_{i}=0\right)$ Then Return $\alpha ; / *$ Here $\alpha=\operatorname{gcd}\left(a_{0}, \cdots, a_{n-1}\right)^{* /}$ $p:=n p$;
Endwhile

Return α.

We use a weak version of the function min based the pigeonhole principle, where only the $O(\log n)$ leading bits of the integers are considered. The integer α is, at each while iteration, $O(\log n)$ bits less. More details for the computations of I, J and α are given in [6], as well as a first C program checking the correctness of the Δ-GCD algorithm.

Theorem : The $\Delta-G C D$ algorithm computes in parallel the GCD of n integers of $O(n)$ bits in length, in $O(n / \log n)$ time using $O\left(n^{2+\epsilon}\right)$ processors on CRCW PRAM model, with $\epsilon>0$.
Proof: (Sketch, see [6]). The algorithm terminates after $O(n / \log n)$ loop iterations. Let t_{i} be the time cost at iteration $i, 1 \leq i \leq N$, with $N=O(n / \log n)$. Let k_{i} be the maximum bit length of all the quotients $q_{j}=\left\lfloor a_{j} / \alpha\right\rfloor$, with $\sum_{i=1}^{N} k_{i} \leq n$. We prove that $t_{i}=O\left(\min \left\{\frac{k_{i}}{\log n}, \log n\right\}\right)$. The total number of processors is $n \times O\left(n^{1+\epsilon}\right)=O\left(n^{2+\epsilon}\right)$ and the parallel time is then $t(n)=\sum_{i=1}^{N} t_{i}=\sum_{i=1}^{N} \min \left(\left\{\frac{k_{i}}{\log n}, \log n\right\}\right)=$ $\sum_{k_{i}<\log n} 1+\sum_{\log n<k_{i}<\log ^{2} n} \frac{k_{i}}{\log n}+\sum_{k_{i}>\log ^{2} n} \log n=O(n / \log n)$.

A Blankinship-like algorithm can be easily designed to compute Extended GCD, and an upper bound of the multipliers [4] could be considered as well. A slightly modified Rosser's algorithm (pivoting with α) can be used to solve linear Diophantine equations. Moreover, a $O\left(n^{2} / \log n\right)$ sequential version of Δ-GCD should be considered with precomputed lookup tables for arithmetic operations on $O(\log n)$ bit integers.

References

[1] A. Borodin, J. von zur Gathen and J. Hopcroft, Fast parallel matrix and GCD computations, Information and Control, 52, 3, 1982, 241-256
[2] B. Chor and O. Goldreich, An improved parallel algorithm for integer GCD, Algorithmica, 5, 1990, 1-10
[3] G. Cooperman, S. Feisel, J. von zur Gathen and G. Havas, GCD of many integers, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1627 (1999), 310-317
[4] G. Havas, S. Majewski, Extended gcd calculation, Congressus Numerantium, 111, 1627 (1998), 104114
[5] S.M. Sedjelmaci, On A Parallel Lehmer-Euclid GCD Algorithm, in Proc. of the International Symposium on Symbolic and Algebraic Computation (ISSAC'2001), 2001, 303-308
[6] S.M. Sedjelmaci, Fast Parallel GCD algorithm of many integers, lipn.univ-paris13.fr/~sedjelmaci, Rapport interne, LIPN, April, 2013
[7] J. Sorenson, Two Fast GCD Algorithms, J. of Algorithms, 16, 1994, 110-144

