Gelfand-Kirillov dimensions of differential difference modules via Gröbner bases

Xiangui Zhao Department of Mathematics, University of Manitoba Winnipeg, Canada, R3T 2N2 umzha493@cc.umanitoba.ca

Introduction. Differential-difference algebras were defined by Mansfield and Szanto in [5], which arose from the calculation of symmetries of discrete systems (c.f., [2]). Mansfield and Szanto developed the Gröbner basis theory of differential difference algebras over a field by using a special kind of left admissible orderings (which they called differential difference orderings). We generalize the main results of [5] to any left admissible ordering, and apply the generalized results to compute the Gelfand-Kirillov dimensions of cyclic differential difference modules.

Definition of differential difference algebras. Let k be a field, R be a k-algebra and integers $m, n \ge 1$. Suppose that $R[D; \mathrm{id}, \delta] = R[D_1; \mathrm{id}, \delta_1] \cdots [D_n; \mathrm{id}, \delta_n]$ and $R[S; \sigma, 0] = R[S_1; \sigma_1, 0] \cdots [S_m; \sigma_m, 0]$ are two Ore algebras ([5]) such that $\sigma_i \circ \delta_j = \delta_j \circ \sigma_i$ for $1 \le i \le m, 1 \le j \le n$. Furthermore, suppose that each $\sigma_i: R \to R, 1 \leq i \leq m$, can be extended to a k-algebra automorphism $\sigma_i: R[D; \mathrm{id}, \delta] \to R[D; \mathrm{id}, \delta]$ such that $\sigma_i(D_j) = \sum_{l=1}^{n} a_{ijl} D_l$, $a_{ijl} \in R$. Let F be the free R-R bi-module with basis $\{S_1, \ldots, S_m, D_1, \ldots, D_n\}$,

T be the tensor algebra on F over R, and K be the two-sided ideal in T generated by the set of the following elements of T:

(5) $D_i S_j - S_j \sigma_j (D_i), 1 \le i \le n, 1 \le j \le m.$

Then the R-algebra T/K, denoted by $R[D; id, \delta][S; \sigma, 0]$, is called a differential difference algebra of type (m, n), or DD-algebras for short.

DD-algebras are generalizations of commutative polynomial algebras, Ore extensions, skew polynomials of derivation (or automorphism) type, and quantum planes. Since elements in S do not commute with those in D in general, DD-algebras are different from difference-differential rings (see, e.g., [6]). The following example distinguishes DD-algebras from algebras of solvable type [3], or PBW extensions [1], or G-algebras [4].

Example. Let $A = k[D; id, 0][S; \sigma, 0]$ be a DD-algebra of type (1, 2) with $\sigma_1(D_1) = D_2$ and $\sigma_1(D_2) = D_1$. Then $D_1S_1 = S_1D_2$ and $D_2S_1 = S_1D_1$. Hence A is not an algebra of solvable type (or a PBW extension, or a G-algebra).

Gröbner bases of DD-algebras. We only consider the special case when R = k. From now on, let $A = k[D; id, \delta][S; \sigma, 0]$ be a DD-algebra. Then, it is easy to see that $\delta = 0$ and $\sigma|_k = id$. Thus $A = k[D; \mathrm{id}, 0][S; \sigma, 0]$ and $\sigma|_k = \mathrm{id}$. One can prove that the set $\mathcal{M} = \{S^{\alpha}D^{\beta} : \alpha \in \mathbb{N}^m, \beta \in \mathbb{N}^n\}$ is a k-basis of A. Let $u = S^{\alpha}D^{\beta} \in \mathcal{M}, \ \alpha = (\alpha_1, \dots, \alpha_m) \in \mathbb{N}^m$ and $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{N}^n$. Then the *(total)* degree of u is defined as $deg(u) = \alpha_1 + \cdots + \alpha_m + \beta_1 + \cdots + \beta_n$, and the degree of u with respect to S_i $(D_j, \text{ respectively})$ is defined as $\deg_{S_i} = \alpha_i \ (\deg_{D_j} = \beta_j, \text{ respectively}).$

For any given well ordering on \mathcal{M} and $f = c_1 u_1 + \cdots + c_t u_t \in A$ $(0 \neq c_i \in k, u_i \in \mathcal{M}, 1 \leq i \leq t)$ with $u_1 > \cdots > u_t$, the *leading monomial* of f is denoted by $\operatorname{lm}(f) = u_1$. A *DD-monomial ordering* on \mathcal{M} is a well ordering > on \mathcal{M} such that if $S^{\alpha}D^{\beta} > S^{\alpha'}D^{\beta'}$ and $f \in A \setminus k$, then $\operatorname{lm}(fS^{\alpha}D^{\beta}) > \operatorname{lm}(fS^{\alpha'}D^{\beta'})$. Note that DD-monomial orderings are more general than differential difference orderings defined in [5].

Let $f, g \in A$. If there exists $h \in A$ such that f = hg, we say that f is right divisible by g.

Let > be a DD-monomial ordering on \mathcal{M} and I be a left ideal of A. A finite set $G \subseteq A$ is called a (finite) *left Gröbner basis* of I with respect to > if G satisfies: (i) G generates I as a left ideal of A; and (ii) For any $0 \neq f \in I$, there exists $g \in G$ such that $\operatorname{Im}(f)$ is right divisible by $\operatorname{Im}(g)$.

Similarly as in [5], we can define reductions and S-polynomials. Then the reduction algorithm and the left Gröbner basis algorithm still work under a DD-monomial ordering. We have

Theorem 1 Let $G \subseteq A$ be a finite set and I be the left ideal of A generated by G. Then G is a left Gröbner basis of I if and only if $\operatorname{Spoly}(g_1, g_2) \to_G 0$ for any $g_1, g_2 \in G$.

It can be proved that the Hilbert basis theorem is valid for DD-algebras: every left ideal of A is finitely generated. Thus we have

Theorem 2 Every left ideal of a DD-algebra $k[D; id, \delta][S; \sigma, 0]$ has a (finite) left Gröbner basis.

Gelfand-Kirillov dimension of cyclic A-modules. For convenience, let $x_i = S_i, x_{m+j} = D_j$ for $1 \le i \le m, 1 \le j \le n$ and let l = m + n. Denote $X^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_l^{\alpha_l}$ for $\alpha = (\alpha_1, \ldots, \alpha_l) \in \mathbb{N}^l$. Then $\mathcal{M} = \{X^{\alpha} : \alpha \in \mathbb{N}^l\}$. For $u = X^{\alpha} \in \mathcal{M}$ and $p \in \mathbb{N}$, define $\operatorname{top}_p(u) = \{i : 1 \le i \le l, \alpha_i \ge p\}$ and $\operatorname{sh}_p(u) = X^{\beta}$, where $\beta_i = \min\{p, \alpha_i\}, 1 \le i \le l$.

Then we have the following theorem which computes the Gelfand-Kirillov dimension of a cyclic DD-module.

Theorem 3 Let I be a left ideal of A and G be a left Gröbner basis of I with respect to a total degree DD-monomial ordering. Set $p = \max\{\deg_{x_i}(\operatorname{Im}(g)) : g \in G, 1 \leq i \leq l\}$. Then

 $\operatorname{GKdim}(M) = \max\{|\operatorname{top}_p(u)| : \operatorname{sh}_p(u) = u\}.$

References

- A. D. Bell and K. R. Goodearl. Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions. *Pacific J. Math*, 131(1):13–37, 1988.
- [2] P. E. Hydon. Symmetries and first integrals of ordinary difference equations. Proceedings of the Royal Society of London (series A), 456:2835–2855, 2000.
- [3] A. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner bases in algebras of solvable type. Journal of Symbolic Computation, 9(1):1–26, 1990.
- [4] V. Levandovskyy. Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation. PhD thesis, University of Kaiserslautern, 2005.
- [5] E. L. Mansfield and A. Szanto. Elimination theory for differential difference polynomials. In *Proceedings* of the 2003 international symposium on symbolic and algebraic computation, pages 191–198. ACM, 2003.
- [6] Meng Zhou and Franz Winkler. Gröbner bases in difference-differential modules. In *Proceedings of the 2006 international symposium on Symbolic and algebraic computation*, pages 353–360. ACM, 2006.