Gelfand-Kirillov dimensions of differential difference modules via Gröbner bases

Xiangui Zhao
Department of Mathematics, University of Manitoba
Winnipeg, Canada, R3T 2N2
umzha493@cc.umanitoba.ca

Introduction. Differential-difference algebras were defined by Mansfield and Szanto in [5], which arose from the calculation of symmetries of discrete systems (c.f., [2]). Mansfield and Szanto developed the Gröbner basis theory of differential difference algebras over a field by using a special kind of left admissible orderings (which they called differential difference orderings). We generalize the main results of [5] to any left admissible ordering, and apply the generalized results to compute the Gelfand-Kirillov dimensions of cyclic differential difference modules.

Definition of differential difference algebras. Let k be a field, R be a k-algebra and integers $m, n \geq 1$. Suppose that $R[D ; \mathrm{id}, \delta]=R\left[D_{1} ; \mathrm{id}, \delta_{1}\right] \cdots\left[D_{n} ; \mathrm{id}, \delta_{n}\right]$ and $R[S ; \sigma, 0]=R\left[S_{1} ; \sigma_{1}, 0\right] \cdots\left[S_{m} ; \sigma_{m}, 0\right]$ are two Ore algebras ([5]) such that $\sigma_{i} \circ \delta_{j}=\delta_{j} \circ \sigma_{i}$ for $1 \leq i \leq m, 1 \leq j \leq n$. Furthermore, suppose that each $\sigma_{i}: R \rightarrow R, 1 \leq i \leq m$, can be extended to a k-algebra automorphism $\sigma_{i}: R[D ; \mathrm{id}, \delta] \rightarrow R[D ; \mathrm{id}, \delta]$ such that $\sigma_{i}\left(D_{j}\right)=\sum_{l=1}^{n} a_{i j l} D_{l}, \quad a_{i j l} \in R$. Let F be the free R - R bi-module with basis $\left\{S_{1}, \ldots, S_{m}, D_{1}, \ldots, D_{n}\right\}$, T be the tensor algebra on F over R, and K be the two-sided ideal in T generated by the set of the following elements of T :
(1) $D_{i} r-r D_{i}-\delta_{i}(r), 1 \leq i \leq n, r \in R$;
(2) $S_{i} r-\sigma_{i}(r) S_{i}, 1 \leq i \leq m, r \in R$;
(3) $S_{i} S_{j}-S_{j} S_{i}, 1 \leq i, j \leq m$;
(4) $D_{i} D_{j}-D_{j} D_{i}, 1 \leq i, j \leq n$;
(5) $D_{i} S_{j}-S_{j} \sigma_{j}\left(D_{i}\right), 1 \leq i \leq n, 1 \leq j \leq m$.

Then the R-algebra T / K, denoted by $R[D ; \mathrm{id}, \delta][S ; \sigma, 0]$, is called a differential difference algebra of type (m, n), or DD-algebras for short.

DD-algebras are generalizations of commutative polynomial algebras, Ore extensions, skew polynomials of derivation (or automorphism) type, and quantum planes. Since elements in S do not commute with those in D in general, DD-algebras are different from difference-differential rings (see, e.g., [6]). The following example distinguishes DD-algebras from algebras of solvable type [3], or PBW extensions [1], or G-algebras [4].
Example. Let $A=k[D ; \mathrm{id}, 0][S ; \sigma, 0]$ be a DD-algebra of type $(1,2)$ with $\sigma_{1}\left(D_{1}\right)=D_{2}$ and $\sigma_{1}\left(D_{2}\right)=D_{1}$. Then $D_{1} S_{1}=S_{1} D_{2}$ and $D_{2} S_{1}=S_{1} D_{1}$. Hence A is not an algebra of solvable type (or a PBW extension, or a G -algebra).

Gröbner bases of DD-algebras. We only consider the special case when $R=k$. From now on, let $A=k[D ; \mathrm{id}, \delta][S ; \sigma, 0]$ be a DD-algebra. Then, it is easy to see that $\delta=0$ and $\left.\sigma\right|_{k}=\mathrm{id}$. Thus $A=k[D ; \mathrm{id}, 0][S ; \sigma, 0]$ and $\left.\sigma\right|_{k}=\mathrm{id}$. One can prove that the set $\mathcal{M}=\left\{S^{\alpha} D^{\beta}: \alpha \in \mathbb{N}^{m}, \beta \in \mathbb{N}^{n}\right\}$ is a k-basis of A. Let $u=S^{\alpha} D^{\beta} \in \mathcal{M}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{N}^{m}$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}$. Then the (total) degree of u is defined as $\operatorname{deg}(u)=\alpha_{1}+\cdots+\alpha_{m}+\beta_{1}+\cdots+\beta_{n}$, and the degree of u with respect to S_{i} (D_{j}, respectively) is defined as $\operatorname{deg}_{S_{i}}=\alpha_{i}\left(\operatorname{deg}_{D_{j}}=\beta_{j}\right.$, respectively).

For any given well ordering on \mathcal{M} and $f=c_{1} u_{1}+\cdots+c_{t} u_{t} \in A\left(0 \neq c_{i} \in k, u_{i} \in \mathcal{M}, 1 \leq i \leq t\right)$ with $u_{1}>\cdots>u_{t}$, the leading monomial of f is denoted by $\operatorname{lm}(f)=u_{1}$. A DD-monomial ordering on \mathcal{M} is a well ordering $>$ on \mathcal{M} such that if $S^{\alpha} D^{\beta}>S^{\alpha^{\prime}} D^{\beta^{\prime}}$ and $f \in A \backslash k$, then $\operatorname{lm}\left(f S^{\alpha} D^{\beta}\right)>\operatorname{lm}\left(f S^{\alpha^{\prime}} D^{\beta^{\prime}}\right)$. Note that DD-monomial orderings are more general than differential difference orderings defined in [5].

Let $f, g \in A$. If there exists $h \in A$ such that $f=h g$, we say that f is right divisible by g.
Let $>$ be a DD-monomial ordering on \mathcal{M} and I be a left ideal of A. A finite set $G \subseteq A$ is called a (finite) left Gröbner basis of I with respect to $>$ if G satisfies: (i) G generates I as a left ideal of A; and (ii) For any $0 \neq f \in I$, there exists $g \in G$ such that $\operatorname{lm}(f)$ is right divisible by $\operatorname{lm}(g)$.

Similarly as in [5], we can define reductions and S-polynomials. Then the reduction algorithm and the left Gröbner basis algorithm still work under a DD-monomial ordering. We have

Theorem 1 Let $G \subseteq A$ be a finite set and I be the left ideal of A generated by G. Then G is a left Gröbner basis of I if and only if $\operatorname{Spoly}\left(g_{1}, g_{2}\right) \rightarrow_{G} 0$ for any $g_{1}, g_{2} \in G$.

It can be proved that the Hilbert basis theorem is valid for DD-algebras: every left ideal of A is finitely generated. Thus we have

Theorem 2 Every left ideal of a DD-algebra $k[D ; i d, \delta][S ; \sigma, 0]$ has a (finite) left Gröbner basis.

Gelfand-Kirillov dimension of cyclic A-modules. For convenience, let $x_{i}=S_{i}, x_{m+j}=D_{j}$ for $1 \leq i \leq m, 1 \leq j \leq n$ and let $l=m+n$. Denote $X^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{l}^{\alpha_{l}}$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right) \in \mathbb{N}^{l}$. Then $\mathcal{M}=\left\{X^{\alpha}: \alpha \in \mathbb{N}^{l}\right\}$. For $u=X^{\alpha} \in \mathcal{M}$ and $p \in \mathbb{N}$, define $\operatorname{top}_{p}(u)=\left\{i: 1 \leq i \leq l, \alpha_{i} \geq p\right\}$ and $\operatorname{sh}_{p}(u)=X^{\beta}$, where $\beta_{i}=\min \left\{p, \alpha_{i}\right\}, 1 \leq i \leq l$.

Then we have the following theorem which computes the Gelfand-Kirillov dimension of a cyclic DDmodule.

Theorem 3 Let I be a left ideal of A and G be a left Gröbner basis of I with respect to a total degree $D D$-monomial ordering. Set $p=\max \left\{\operatorname{deg}_{x_{i}}(\operatorname{lm}(g)): g \in G, 1 \leq i \leq l\right\}$. Then

$$
\operatorname{GKdim}(M)=\max \left\{\left|\operatorname{top}_{p}(u)\right|: \operatorname{sh}_{p}(u)=u\right\}
$$

References

[1] A. D. Bell and K. R. Goodearl. Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions. Pacific J. Math, 131(1):13-37, 1988.
[2] P. E. Hydon. Symmetries and first integrals of ordinary difference equations. Proceedings of the Royal Society of London (series A), 456:2835-2855, 2000.
[3] A. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner bases in algebras of solvable type. Journal of Symbolic Computation, 9(1):1-26, 1990.
[4] V. Levandovskyy. Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation. PhD thesis, University of Kaiserslautern, 2005.
[5] E. L. Mansfield and A. Szanto. Elimination theory for differential difference polynomials. In Proceedings of the 2003 international symposium on symbolic and algebraic computation, pages 191-198. ACM, 2003.
[6] Meng Zhou and Franz Winkler. Gröbner bases in difference-differential modules. In Proceedings of the 2006 international symposium on Symbolic and algebraic computation, pages 353-360. ACM, 2006.

