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Solving a linear system with large sparse matrices is a computational kernel used in a wide range of applications,
e.g. cryptography, Gröbner basis . . . Classical methods such as Gaussian elimination are not well suited because they
tend to fill the matrix. In [7] Wiedemann proposed a blackbox algorithm which takes advantage of the sparsity to
reduce the complexity. The main operations of this approach are sparse matrix vector products and the computation
of the minimal generator of a scalar sequence. Despite a better complexity than classical methods, this algorithm
is not efficient in the context of parallel computation as it needs a good repartition of the non-zero elements in the
matrix. The block version of Wiedemann’s algorithm proposed in [2] avoids this problem by using blocks instead of
vectors. Therefore it offers parallelism outside the scope of the matrix.

Let K be a field, A ∈ Mn×n(K), U, V ∈ Mn×k(K) random matrices with k ≤ n. We denote by γ the number of
non-zero elements in A and we assume that γ = O(n log n). Block Wiedemann algorithm follows three steps:

1. Compute the first O( 2n
k ) elements of S = [UTAiV ]i∈N using O(nγ + n2kω−2) operations in K.

2. Find the minimal matrix polynomial generator of the sequence S using O (̃kω−1n) operations in K.

3. Compute the solution using the polynomial found in step 2 using O(nγ + n2) operations in K.

In practice the cost of the first step is dominant, therefore its parallelization is crucial. The capacity to parallelize
the first step heavily relies on the dimension k of the blocks.

A classical approach is to take a block size equal to the number of cores. The parallel complexity of the first step
becomes O(nγk + n2) operations in K. We notice that the O(n2) part does not benefit from parallelism. In order to
take advantage of parallelism everywhere in step 1, we must proceed otherwise.

Our approach We naturally extend the use of sparse blocks proposed by Eberly et al. in [3] to our context of
block Wiedemann algorithm. Hence, instead of using random dense block for U , we use blocks of the form

U =
[
δ1Ik · · · δsIk δs+1I

′]T ∈Mn×k(K)

where s = bn/kc, δ1, · · · , δs+1 ∈ K chosen at random, Ik the identity matrix of size k, and I ′ = Diag(1, · · · , 1) ∈
Mk×r(K) the matrix with only ones on the diagonal with r = n mod k. Using these new block projections, the
sequential complexity of step 1 drops down to O(nγ + n2) operations in K, eliminating the influence of the block
size. In this work we study how these new block projections perform in practice and we show that they improve the
performance of the first step of block Wiedemann algorithm.

Implementation and Benchmarks For the benchmarks, we have in mind matrices arising from NFS algorithm
[6], which are very sparse. As γ is cheaper, the part of step 1 of complexity O(n2) has more importance. Therefore
the block size has more influence on the sequence computation as γ is cheaper. In this case, we use a sparse matrix
of size 105 × 105 over F65537 with ∼ 15 non-zero elements per row uniformly dispatched.

The parallel complexity of step 1 using sparse blocks with k cores becomes O(nγ+n
2

k ), hence offering perfect
parallelism. So we want to see the influence of the block size on the computation of step 1.

First, we determine the most efficient block size depending on the number of cores. Let c be the number of
cores, we benchmark the computation of the sequence starting with blocks of size c to 128c on 12 cores. As expected
by the complexity analysis, a block size of c offers better performance for dense blocks. For sparse projections the
theoretical study shows no influence of the blocks size. In practice we observe that a block size of ' 32c is better,
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which could be caused by memory management issues. However, this sparse block size is related to the number
of non-zero elements of the matrix, so these values stand just for our test matrix. Despite their good complexity,
sparse blocks have two flaws impacting the performance. The choice of matrix representation is important: first we
choose to store blocks in column major representation to avoid concurrent writing, as suggested in [1]. Secondly,
sparse blocks induce cache defaults as their size increase with the number of cores. To circumvent this problem, we
permute block elements to obtain a cache friendly sparse blocks following ideas from [5]. For our tests we use an
NUMA with four intel XEON E4620 with 8 cores at 2.2Ghz and 384GB of RAM. To obtain good performance on
an NUMA, we design an hybrid MPI/tbb implementation that create one MPI process by node which use tbb to
compute a part of the sequence. Each nodes own a copy of the sparse matrix and the block is split by column over
the nodes, the results are gather at the end of the computation. All the libraries used are in the latest version from
their svn directory. In table 1 we compare dense block which used LinBox’s dense blocks implementation and our
implementation using sparse blocks. For computing of dense block, LinBox relies on a BLAS library, in this case we
use OpenBLAS wich is well optimized for intel XEON. The timings are in seconds and in parenthesis we indicate
the block size used.

Dense blocks (LinBox) Sparse blocks
time in s speed-up time in s speed-up

1 core 2205(1) 1 2165(32) 1
8 cores 540(8) 4 308(256) 7
16 cores 623(16) 3,5 154(512) 14
24 cores 798(24) 2,7 102(768) 21,2
32 cores 960(32) 2,2 77(1024) 28,1

Table 1: Times of sequence computation.

The time for dense blocks on one core is just for benchmark purposes. As predicted, sparse blocks perform better
than dense blocks. However, the reasons that LinBox implementation does not perform well are that LinBox use an
external library to compute dense block which as to create and destroy is own pool of threads for each computed
element. Secondly, the LinBox implementation is not designed for a NUMA architecture as all the data is store in
the first node memory.

This is a first step in an efficient implementation of block Wiedemann algorithm on multicore architectures. The
next step will be an efficient implementation of σ−basis [4].
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