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Classifying Discrete Objects with Orbiter

Anton Betten

Abstract

Orbiter is a software package to classify discrete objects such as designs, graphs, codes, and
objects from finite geometry. It employs the method of breaking the symmetry to attack difficult
problem instances by means of subobjects that serve as a stepping stone. The algorithms
combine techniques from Group Theory and from Combinatorics. Orbiter is a library of C++
functions that provide functionality for Discrete Mathematics. In order to be applied to a
specific problem, code has to be written taylored to the specific application.

The Experimental Approach

Research in Mathematics often benefits from examples. There are many areas where the existing
theory does not suffice to explain all the examples that are known. Therefore, studying examples
is often the first step in finding new constructions or new theory. This new theory helps to explain
where the known examples come from, and often predicts more examples for larger instances of the
parameter set. In some cases, infinite families of objects can be constructed. In order to help with
this process, knowing examples and their automorphism groups is crucial. In Discrete Mathematics
and Combinatorics, we are able to examine (at least for small cases) complete lists of objects up
to isomorphism. This kind of data is very valuable to researchers. Orbiter is intended to assist
with these classification problems. One could call this the experimental approach to mathematics.
Designs, graphs and codes are related topics, and all are well-suited to computer investigation. The
various links between these areas are stressed in [7].

Classifying all orbits of a permutation group means listing a set of representatives for the orbits,
together with their respective stabilizer subgroups. Also, if an object is given, we can compute a
group element that maps the given object to its representative in the classification. These kinds
of problems are notoriously difficult, since they involve the isomorphism problem as a subproblem
and isomorphism is usually NP-hard.

Breaking The Symmetry

While group theoretic algorithms to classify orbits are available, experience shows that many prob-
lems require a combination of methods to be solved efficiently. The method of breaking the symmetry
allows to classify objects using subobjects that serve as a stepping stone. The subobjects are easier
to classify, and it is possible to lift the classification of subobjects to the classification of the original
objects. The method combines group theory with traditional “solvers.” Here, we understand solvers

1



Classifying Discrete Objects with Orbiter ISSAC 2013 Software Presentation

as any kind of computational primitive to solve the problem of finding all objects that arise from a
given starter object. Once these objects have been found, an additional isomorph rejection step is
performed to solve the classification problem. The theory behind this is explained in [2], where the
method is applied to the classification of packings in PG(3, 3). It is important to realize that the
method is very general, and can be applied to broad classes of problems.

The use of subobjects is well-known. In [11], homomorphisms of group actions are discussed.
In [5] and [6], the technique of “breaking the symmetry” is developed. In [16], an algebraic algorithm
to compute the orbit decomposition is presented. In Orbiter, many of these algorithms are combined,
and an isomorph classification module based on the theory described in [2] is present. Orbiter offers
some algorithms to solve these systems of equations but also allows to interface with third party
software. The communication between Orbiter and the outside solvers can happen through files.
Once the data from the solver is received, the isomorph classification module starts its job and
computes the final list of isomorphism types together with the stabilizer groups. Data from the
classification is stored in files to allow identifying objects of the givem type at a later point in time.
This means that given an object, a group element can be computed that maps the object to one of
the representatives from the classification. An implementation of Knuth’s dancing links (DLX) [10]
is available. Wassermann’s algorithm [17] or any other suitable piece of software can be used as an
external solver.

The underlying idea behind Orbiter is to provide isomorph classification for a variety of types
of objects. To be able to handle things uniformly, we rely on the use of C++ function pointers
to realize permutation group algorithms for arbitrary objects. The only requirement is that the
object can be represented as a set (or set of sets). The entries of the set are integers that represent
the components of the object. For instance, when classifying sets of points in a finite projective
space subject to certain conditions, the components are projective points, and they are represented
numerically. When classifying combinatorial designs, the objects consist of sets of subsets of a set
X. These subsets are known as blocks, and they form the components of the object. We can use the
lexicographic ordering of subsets of X to identify blocks with integers. The process of converting
components into integers and integers into components is called ranking and unranking. Sometimes,
the terms indexing or enumerating are used also. Basically, the possible components are mapped
bijectively to an interval of integers. We require that rank and unrank functions to encode the object
under consideration are available. For may types of combinatorial objects, such functions exist or
can be devised easily. Using this kind of methodology, Orbiter is able to realize permutation groups
acting on objects. The permutation group algorithms and the functionality for the specific object
are completely separate. The group does not know what objects it is acting on, and the objects
does not know what group is acting on them. This methodology makes the code easily adaptable to
different actions. The most basic group actions are that of the symmetric group acting on a set, and
the projective linear group acting on projective space (as well as the affine group acting on a vector
space). From these basic actions, one can define induced actions in various ways. For instance, the
symmetric group induces an action on the k-subsets. The projective linear group induces an action
on the Grassmannian of subspaces. Many other induced actions are available.

Orbiter’s predecessor is DISCRETA [4], which is specialized to t-designs with prescribed groups
of automorphisms, and comes with a graphical user interface. Since Orbiter applies to a much more
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general class of problems, there was no longer the possibility for a graphical user interface. Instead,
the user of Orbiter will have to write code to facilitate the algorithms that are provided. Orbiter is
available from the website [15].

Applications

Recently, Orbiter has been used to classify packings [2], unitals [1] and BLT-sets [3]. Other appli-
cations exist. Some are described in the Orbiter Manual.

Other Work

A general reference for the problem of classifying designs and codes is [9]. This book emphasizes the
use of canonical forms, facilitated for instance via the software package nauty [14], or the partition
backtrack approach [12]. Both of these algorithms are available through the computer algebra
system MAGMA [13]. Nauty is also available through Orbiter. A different computer algebra
system with an emphasis on Group Theory is GAP [8].
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