
NAClab: A Matlab Toolbox for Numerical Algebraic Computation

(extended abstract)

Zhonggang Zeng∗ Tien-Yien Li†

June 6, 2013

1 Introduction

We present a Matlab toolbox NAClab for numerical algebraic computation. This toolbox includes
Matlab implementations of the basic numerical algorithms in algebraic computations and utility
functions. Those functions can be used either directly in applications or as building blocks for
implementing advanced computing methods. NAClab is a result of collective effort and its con-
tributors include Liping Chen, Tianran Chen, Wenrui Hao, Tsung-Lin Lee, Andrew Sommese and
Wenyuan Wu.

Numerical algebraic computation, particularly numerical polynomial algebra, emerges as a grow-
ing area of study in recent years with a solid foundation in place for building numerical and hybrid
computing methods [8, 9]. Many robust numerical and numeric-symbolic algorithms have been
developed for solving polynomial systems, polynomial factorizations, polynomial GCD, computing
dual bases and multiplicity structures of polynomial ideals, etc, with implementations such as in
[1, 2, 3, 5, 6, 10] Those algorithms have a broad spectrum of applications in scientific computing
such as robotics, control, image processing, computational biology and chemistry, and so on.

One of the main difficulties for numerical algebraic computation is the ill-posedness that fre-
quently occurs when the solution of a problem does not possess Lipschitz continuity with respect
to data. Those ill-posed problems are not directly suitable for floating point arithmetic since the
solutions are infinitely sensitive to rounding errors. However, it has been shown in recent studies
that such a difficulty can be overcome by seeking a regularized numerical solution with a proper
formulation. Algorithms implemented in NAClab are designed to regularize the problem for remov-
ing ill-posedness rather than extending machine precision for accurate computation. The package
also includes generic routines for matrix building and Gauss-Newton iteration that are the main
engines for handling ill-posed algebraic computaiton.

NAClab is an on-going project as a major upgrade and expansion from its predecessor ApaTools
[13]. At this stage, the main objective is to provide researchers in numerical algebra with generic
and versatile tools that simplify and accelerate algorithm development, experimentation, and imple-
mentation. We emphasize on achieving the highest possible accuracy and robustness in algorithm
design and implementation.

NAClab is maintained at its permanent website1 and freely accessible to academic researchers
and educators for the foreseeable future.

∗Department of Mathematics, Northeastern Illinois University, Chicago, IL 60625, USA, email: zzeng@neiu.edu.
†Department of Mathematics, Michigan State University, E. Lansing, MI 48824, USA, email: li@math.msu.edu
1http://www.neiu.edu/∼naclab

1



ISSAC ’13 Software Presentation 2

2 Differences between symbolic and numerical algebra

Conventional symbolic computation assumes both data and arithmetic to be exact. In practical
applications, however, problem data are likely to be empirical. As a result, exact solutions of those
inexact problems may not serve the practical purposes. Using the polynomial

p = 81x4 + 16 y4 − 648.001 z4 + 72x2y2 + .002x2z2 + .001y2z2 − 648x2 − 288y2 − .007z2 + 1296 (1)

in [7] as an example, Kaltofen proposed the Open Problem 1 in challenges of symbolic computation:
Is there factorable polynomial nearby? While polynomial p in (1) is not factorable in conventional
sense, it is a perturbed data representation of a factorable polynomial p̃. The objective of
numerical factorization is to calculate the factorization of the hidden underlying polynomial p̃

using the imperfect data p. The function PolynomialFactor in NAClab is built to carry out
this computation as follows. First of all, NAClab allows polynomials to be entered intuitively into
Matlab as strings:

>> p = ’81*x^4+16*y^4-648.001*z^4+72*x^2*y^2+.002*x^2*z^2+.001*y^2*z^2-648*x^2-288*y^2-.007*z^2+1296’;

Then the numerical factorization can be obtained using the known relateve data error bound 10−5

as the error tolerance:

>> F = PolynomialFactor(p,1e-5,’row’) % factor p within error tolerance 1e-5, showing result in a row

F =

1296 * (1-0.25000013640167*x^2-0.111111232357041*y^2+0.707104626181296*z^2) * (1-0.249999863598339*x^2-0.111110989865191*y^2-0.707110027415863*z^2)

This result is an accurate approximation to the factorization of the hidden polynomial p̃ and
reveals the graph of p = 0 is the union of an ellipsoid and a hyperboloid of one sheet.

In contrast to symbolic computation, another subtle issue in numerical algebraic computation
is that the given empirical data may have different underlying solutions depending on the error
tolerance. This phenominon can be further illustrated in polynomial factorization on

f = 0.47619031y + 0.5714288y2 + 0.55555493x+ 1.3809278yx+ 0.8571143y2x+ 0.8333328x2 + yx2

Two numerical factorizations within different error tolerances can be computed by NAClab

function PolynomialFactor:

>> PolynomialFactor(f,1e-4,’row’) % within tolerance 1e-4

ans =

0.999996404282881 * (0.833329772039985 + y) * (0.666677452701414 + x) * (0.85712030479082*y + x)

>> PolynomialFactor(f,1e-6,’row’) % within tolerance 1e-6

ans =

1.00000001100681 * (0.833332777619492 + y) * (0.571428774473131*y + 0.666666352807009*x + 0.857114290319387*y*x + x^2)

They are accurate approximations to the factorizations of two nearby polynomials from the same
data.

Many other algebraic computations follow a similar pattern: An accurate solution of an alge-
braic problem is to be computed but the problem data are imperfect so that the exact solution is
meaningless since the solution is infinitely sensitive to data perturbations. The objective of the
numerical algebraic computation is to solve the problem using the slightly perturbed data within
an error tolerance similar to the factorization example above. NAClab is built for this purpose.

Algebraic problems are often ill-posed because the set of problems whose solutions possessing
a distinct structure form a manifold of positive codimension, and perturbations generically pushes



ISSAC ’13 Software Presentation 3

a given problem away from the manifold. Our strategy starts with formulating the numerical so-

lution of an ill-posed algebraic problem following a “three strikes” principle consisting of backward
nearness, maximum codimension and minimum distance [13] for removing the ill-posedness. Based
on those formulation principles, computing the numerical solution can be carried out in two opti-
mization processes: maximizing the codimension of manifolds followed by minimizing the distance
to the manifold, leading to a two-staged strategy for designing robust algorithms.

The main mechanism at Stage I is matrix rank-revealing, while Stage II relies on solving non-
linear least squares problems. In NAClab, we provide matrix building/computation tools for Stage
I and nonlinear least squares tools for Stage II.

3 NAClab overview

NAClab originated from its predecessor ApaTools [13]. Among many improvement areas, we im-
plemented a user-friendly mechanism for direct polynomial manipulations and included a major
package in numerical solution of polynomial systems by homotopy continuation method. For
example, solving the polynomial system

x5 − y5 + 3y + 1 = 5y4 − 3 = 20x− y + z = 0

can now be carried out in a simple call:

>> P = {’x^5-y^5+3*y+1’,’5*y^4-3’,’20*x-y+z’}; % enter the polynomial system directly and intuitively

>> [Solutions, variables] = psolve(P) % call the polynomial system solver and obtain all the isolated solutions

Solutions =

Column 1

0.778497746685646 + 0.893453081179308i

-0.000000000000000 + 0.880111736793394i

-15.569954933712914 -16.988949886792764i

... ...

Column 20

0.778497746685646 - 0.893453081179308i

0.000000000000000 - 0.880111736793393i

-15.569954933712925 +16.988949886792767i

variables =

’x’ ’y’ ’z’

Compared to Maple and Mathematica, Matlab has an advantage in efficient numerical matrix
computations with an disadvantage in user interface. Cumbersome representations are required
for carrying out polynomial and other algebraic computations. Using NAClab, polynomials can be
entered and displayed as character strings in Matlab in a way similar to Maple.

>> f = ’3*x^2 - (2-5i)*x^3*y^4 - 1e-3*z^5-6.8’

>> g = ’-2*y^3 - 5*x^2*z + 8.2’

Using such an intuitive polynomial representation, users can now perform common polynomial
operations such as addition, multiplication, power, evaluation, differentiation, factorization, ex-
tracting coefficients, finding greatest common divison (GCD), etc, by calling NAClab functions,
such as

>> p = pplus(’2*x^5-3*y’,’4+x*y’) % add any number of polynomials

>> q = ptimes(f,g,h) % multiply any number of polynomials

>> v = PolynomialEvaluate(f,{’x’,’z’},[3,4]) % evaluate f(x,y,z) for x=3, z=4

>> % and a lot more. For example, to compute a greatest common divisor:

>> f = ’10 - 5*x^2*y + 6*x*y^2 - 3*x^3*y^3’;

>> g = ’30 + 10*y + 18*x*y^2 + 6*x*y^3’

>> u = PolynomialGCD(f,g)

u =

33.5410196624968 + 20.1246117974981*x*y^2



ISSAC ’13 Software Presentation 4

In summary, NAClab is developed for numerical algebraic computations in Matlab including
solving polynomial systems, polynomial factorizations, polynomial greatest common divisors, mul-
tiplicity and dual spaces of nonlinear systems at isolated zeros, numerical Jordan Canonical Forms,
and numerical rank revealing. The package also contains a comprehensive library of programming
utilities for building further algorithms for numerical algebraic computations.

NAClab is an on-going project. While continuing to refine the existing functions, we shall expand
the package by developing more algorithms and their implementations for numerical algebraic
computations.

References

[1] D.J. Bates, C. Peterson and A.J. Sommese, A numerical-symbolic algorithm for computing the

multiplicity of a component of an algebraic set, IEEE Trans. Signal Processing, 52 (2003), pp. 3394–
3402.

[2] D.J. Bates, J.D. Hauenstein, A.J. Sommese and C.W. Wampler II, Software for numerical

algebraic geometry: A paradigm and progress towards its implementation, in Software for Algebraic
Geometry, IMA Volume 148, M. Stillman, N. Takayama, and J. Verschelde, eds., Springer, 2008, pp. 1–
14.

[3] R. M. Corless, S. M. Watt, and L. Zhi, QR factoring to compute the GCD of univariate approximate

polynomials, IEEE Trans. Signal Processing, 52 (2003), pp. 3394–3402.

[4] B. Dayton, T.Y. Li and Z. Zeng, Multiple zeros of nonlinear systems Mathematics of Computation,
Vol. 80, pp. 2143-2168, 2011

[5] S. Gao, E. Kaltofen, J. May, Z. Yang, and L. Zhi, Approximate factorization of multivariate

polynomials via differential equations. Proc. ISSAC ’04, ACM Press, pp 167-174, 2004.

[6] C.-P. Jeannerod and G. Labahn, The SNAP package for arithemetic with numeric polynomials. In
International Congress of Mathematical Software, World Scientific, pages 61-71, 2002.

[7] E. Kaltofen, Challenges of symbolic computation: My favorite open problems, J. Symb. Comput., 29,
pp.161-168, 2000.

[8] A.J. Sommese and C.W. Wampler II, The Numerical Solution of Systems of Polynomials, World
Scientific Pub., Hackensack, NJ. 2005

[9] H. J. Stetter, Numerical Polynomial Algebra, SIAM, 2004.

[10] J. Verschelde, Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by ho-

motopy continuation, ACM Trans. on Math. Software, 25(1999), pp. 251–276.

[11] Z. Zeng, A polynomial elimination method for symbolic and numerical computation. 409(2008) pp.
318-331.

[12] Z. Zeng, Computing multiple roots of inexact polynomials, Math. Comp., 74 (2005), pp. 869–903.

[13] Z. Zeng, ApaTools: A Maple and Matlab toolbox for approximate polynomial algebra, in Software for
Algebraic Geometry, IMA Volume 148, M. Stillman, N. Takayama, and J. Verschelde, eds., Springer,
2008, pp. 149–167.

[14] Z. Zeng and B. Dayton, The approximate GCD of inexact polynomials. II: A multivariate algorithm.
Proceedings of ISSAC’04, ACM Press, pp 320-327. (2006).


