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Input:

F(n) =
∑
k

(
n

k

)(
2n

2k

)

Questions:

• How much time does this computation take?

• How large can the output become?
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Input:

F(x) =

∫
Ω

√
(2x− 1)t+ 2 ext

2

dt

Output:

(256x6x6 − 256x5 + 64x3 − 16x2) FF ′′(x)

+ (512x5 + 256x2 − 32x) F ′(x)

+ (48x4 + 176x3 + 84x− 3) F(x) = 0

Questions:

• How much time does this computation take?

• How large can the output become?

2



Input:

F(x) =

∫
Ω

√
(2x− 1)t+ 2 ext

2

dt

Output:

(256x

degree

6x6 − 256x5 + 64x3 − 16x2) F

order

F ′′(x)

+ (

height

512x5 + 256x2 − 32x) F ′(x)

+ (48x4 + 176x3 + 84x− 3) F(x) = 0

Questions:

• How much time does this computation take?

• How large can the output become?

2



Summation/Integration algorithms: (general principle)

∑∫
-problem

LA-problem LA-solution

∑∫
-solution

translate

solve

translate

Analysis of the underlying linear algebra problem gives rise to

• existence results / bounds on the order

• bounds on degree and height / complexity estimates
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(
3x2+3x+10 7x2+3x+3 3x2+4x+6
9x2+9x+4 9x2 6x2+x+3

)
︸ ︷︷ ︸

= A ∈ Z[x]2×3

a1a2
a3

 !
= 0

• More variables than equations ⇒ there is a nonzero solution.

• There is a nonzero solution (a1, a2, a3) ∈ Z[x]3 with degree at
most 4 and height at most 100.

• There are fast algorithms (Storjohann-Villard 2005).

4



(
3x2+3x+10 7x2+3x+3 3x2+4x+6
9x2+9x+4 9x2 6x2+x+3

)
︸ ︷︷ ︸

= A ∈ Z[x]2×3

a1a2
a3

 !
= 0

• More variables than equations ⇒ there is a nonzero solution.

• There is a nonzero solution (a1, a2, a3) ∈ Z[x]3 with degree at
most 4 and height at most 100.

• There are fast algorithms (Storjohann-Villard 2005).

4



(
3x2+3x+10 7x2+3x+3 3x2+4x+6
9x2+9x+4 9x2 6x2+x+3

)
︸ ︷︷ ︸

= A ∈ Z[x]2×3

a1a2
a3

 !
= 0

• More variables than equations ⇒ there is a nonzero solution.

• There is a nonzero solution (a1, a2, a3) ∈ Z[x]3 with degree at
most 4 and height at most 100.

• There are fast algorithms (Storjohann-Villard 2005).

4



(
3x2+3x+10 7x2+3x+3 3x2+4x+6
9x2+9x+4 9x2 6x2+x+3

)
︸ ︷︷ ︸

= A ∈ Z[x]2×3

a1a2
a3

 !
= 0

• More variables than equations ⇒ there is a nonzero solution.

• There is a nonzero solution (a1, a2, a3) ∈ Z[x]3 with degree at
most 4 and height at most 100.

• There are fast algorithms (Storjohann-Villard 2005).

4



(
3x2+3x+10 7x2+3x+3 3x2+4x+6
9x2+9x+4 9x2 6x2+x+3

)
︸ ︷︷ ︸

= A ∈ Z[x]2×3

a1a2
a3

 !
= 0

• More variables than equations ⇒ there is a nonzero solution.

• There is a nonzero solution (a1, a2, a3) ∈ Z[x]3 with degree at
most 4 and height at most 100.

• There are fast algorithms (Storjohann-Villard 2005).

4



Indefinite summation: Given f(k), find g(k) such that

f(k) = g(k+ 1) − g(k).

Definite summation: Given f(n, k), find p0(n), . . . , pr(n) such
that there exists g(k) with

(
p0(n)+p1(n)Sn+ · · ·+pr(n)Srn

)
·f(n, k)

p0(n)f(n, k) + · · ·+ pr(n)f(n+ r, k)

P(n, Sn) · f(n, k)

= g(n, k+ 1) − g(n, k).

(Sk − 1) · g(n, k).(Sk−1)Q(n, k, Sn, Sk) ·f(n, k).
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Indefinite summation: Given f(k), find g(k) such that

f(k) = g(k+ 1) − g(k).

Definite summation: Given f(n, k), find p0(n), . . . , pr(n) such
that there exists g(k) with(
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P(n, Sn) − (Sk − 1) Q(n, k, Sn, Sk)
)
· f(n, k) = 0.
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Indefinite summation: Given f(k), find g(k) such that

f(k) = g(k+ 1) − g(k).

Definite summation: Given f(n, k), find p0(n), . . . , pr(n) such
that there exists g(k) with(

Telescoper

P(n, Sn) − (Sk − 1)

Certificate

Q(n, k, Sn, Sk)
)
· f(n, k) = 0.
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Example: For

f(n, k) =

(
n

k

)
we can take

P(n, Sn) = Sn − 2, Q(n, k, Sn, Sk) = −
k

n+ 1− k
.

Then

(Sn − 2) ·
∑
k

f(n, k)
∑
k

(Sn − 2) · f(n, k)(Sn − 2) · f(n, k)

=

(Sk − 1) ·
−k

n+ 1− k
f(n, k)

∑
k

(Sk − 1) ·
−k

n+ 1− k
f(n, k)

[
−k

n+ 1− k
f(n, k)

]k=n
k=0

0.

A telescoper for f(n, k) is an annihilator of
∑
k f(n, k).
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How to find P and Q?

−→ depends on the type of f(n, k).

• f(n, k) hypergeometric −→ Zeilberger’s algorithm

• f(x, t) hyperexponential −→ Almkvist-Zeilberger algorithm

• f(n, k) holonomic −→ Chyzak’s algorithm

Or: Apagodu-Zeilberger-style approach

• Easier to implement

• Easier to analyze
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order degree height

hypergeometric

hyperexponential

?

D-finite

? ?

8



order degree height

hypergeometric

hyperexponential

?

D-finite

? ?

8



order degree height

hypergeometric

hyperexponential ?

D-finite ? ?

8



order degree height

hypergeometric

hyperexponential ?

D-finite ? ?

8



f(n, k) is called proper hypergeometric if it can be written in the
form

f(n, k) = c(n, k)pnqk
m∏
i=1

Γ(ain+ a ′ik+ a
′′
i )Γ(bin− b ′ik+ b

′′
i )

Γ(uin+ u ′ik+ u
′′
i )Γ(vin− v ′ik+ v

′′
i )

for a certain polynomial c, certain constants p, q, a ′′i , b
′′
i , u

′′
i , v

′′
i and

certain fixed nonnegative integers ai, a
′
i, bi, b

′
i, ui, u

′
i, vi, v

′
i.

Example: f(n, k) = (n+ k)2n(−1)k
(n+ k)!(2n− k)!(2n− 2k)!

(n+ 2k)!2
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Theorem (Apagodu-Zeilberger) For every (non-rational) proper hy-
pergeometric term

f(n, k) = c(n, k)pnqk
m∏
i=1

Γ(ain+ a ′ik+ a
′′
i )Γ(bin− b ′ik+ b

′′
i )

Γ(uin+ u ′ik+ u
′′
i )Γ(vin− v ′ik+ v

′′
i )

there exists a telescoper P with

ord(P) ≤ max

{ m∑
i=1

(a ′i + v
′
i),

m∑
i=1

(u ′i + b
′
i)

}

Usually there is no telescoper of lower order.
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Example: f(n, k) = Γ(2n+k)
Γ(n+2k) .
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Theorem (Apagodu-Zeilberger)

; Chen-Kauers)

For every (non-rational) proper hypergeometric term

f(x, y) = c(x, y)pxqy
m∏
i=1

Γ(aix+ a
′
iy+ a ′′i )Γ(bix− b

′
iy+ b ′′i )

Γ(uix+ u
′
iy+ u ′′i )Γ(vix− v

′
iy+ v ′′i )

there exists a telescoper P with

ord(P) ≤ max

{ m∑
i=1

(a ′i + v
′
i),

m∑
i=1

(u ′i + b
′
i)

}

and
deg(P) ≤

⌈
1
2ν(2δ+ 2νϑ+ |µ|− ν|µ|)

⌉
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where

• δ = deg(c)

• ν = max

{ m∑
i=1

(a ′i + v
′
i),

m∑
i=1

(u ′i + b
′
i)

}

• ϑ = max

{ m∑
i=1

(ai + bi),

m∑
i=1

(ui + vi)

}

• µ =

m∑
i=1

(
(ai + bi) − (ui + vi)

)
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Theorem (Chen-Kauers)
For every (non-rational) proper hypergeometric term

f(n, k) = c(n, k)pnqk
m∏
i=1

Γ(ain+ a ′ik+ a
′′
i )Γ(bin− b ′ik+ b

′′
i )

Γ(uin+ u ′ik+ u
′′
i )Γ(vin− v ′ik+ v

′′
i )

there exist telescopers P with ord(P) ≤ r and deg(P) ≤ d for all
(r, d) ∈ N2 with

r ≥ ν and d >

(
ϑν− 1

)
r+ 1

2ν
(
2δ+ |µ|+ 3− (1+ |µ|)ν

)
− 1

r− ν+ 1
.
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Theorem (Kauers-Yen) Every (non-rational) proper hypergeometric
term f(n, k) with p, q, a ′′i , b

′′
i , u

′′
i , v

′′
i ∈ Z admits a telescoper P

with ord(P) ≤ ν and

ht(P) ≤ max
{
|p|ν, |q|+ 1

}
ht(c)ν+1(δ+ ϑν+ 1)!ν+1(ν+ 1)δ(ν+1)

× (|y|+ 1)δ+(ϑ−1)ν+1δ!2(ν+1)|x|ν
2

× (δ+ ϑν+ 1)δ+(ϑ+δ+2)ν+(ϑ−1)ν2

× (2(ν+ 2)Ω− 2)(δ+ϑ+1)ν+(2ϑ−1)ν2

exp(O(Ω3 log(Ω)))

where ν, ϑ, δ are as before, and

Ω =
m

max
i=1

{
|ai|, |a

′
i |, |a

′′
i |, |bi|, |b

′
i |, |b

′′
i |, |ui|, |u

′
i |, |u

′′
i |, |vi|, |v

′
i |, |v

′′
i |
}
.
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The previous theorem only bounds the height of the telescoper of
order ν.

How does trading order against degree influence the height?

Theorem (Kauers-Yen)
Every (non-rational) proper hypergeometric term f(n, k) with
p, q, a ′′i , b

′′
i , u

′′
i , v

′′
i ∈ Z admits a telescoper P with

ord(P) = O(Ω)

deg(P) = O(Ω2)

ht(P) = O(Ω5 log(Ω))
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Summary:

ord

deg

ord = ν, deg = O(Ω3), ht = O(Ω3 log(Ω))

ord = O(Ω), deg = O(Ω2), ht = O(Ω5 log(Ω))

minimal bitsize

minimal arithmetic size
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D-finite ? ?
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Hypergeometric summation exploits the fact that

f(n+ 1, k) = rat1(n, k) f(n, k)

f(n, k+ 1) = rat2(n, k) f(n, k)

for two rational functions rat1, rat2.

The one-dimensional Q(n, k)-vector space generated by f(n, k) is
closed under shifts in n and k.

Actually this is more restrictive than necessary.

It’s sufficient when f(n, k) lives in some finite-dimensional
Q(n, k)-vector space which is closed under shifts.
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Example. f(n, k) = 2n−k +
(
n
k

)
is not hypergeometric.

But the two-dimensional Q(n, k)-vector space generated by 2n−k

and
(
n
k

)
contains f(n, k) and is closed under shifts.

Indeed, we have

Sn ·
(
u(n, k)2n−k + v(n, k)

(
n
k

))
= 2u(n+ 1, k)2n−k + v(n+ 1, k) n+1

n−k+1

(
n
k

)
Sk ·

(
u(n, k)2n−k + v(n, k)

(
n
k

))
= 1

2u(n, k+ 1)2
n−k + v(n, k+ 1)n−kk+1

(
n
k

)
.
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Such functions are called D-finite.

f(n, k) f(n, k+ 1) f(n, k+ 2) f(n, k+ 3)

f(n+ 1, k) f(n+ 1, k+ 1) f(n+ 1, k+ 2) f(n+ 1, k+ 3)

f(n+ 2, k) f(n+ 2, k+ 1) f(n+ 2, k+ 2) f(n+ 2, k+ 3)

f(n+ 3, k) f(n+ 3, k+ 1) f(n+ 3, k+ 2) f(n+ 3, k+ 3)

f(n+ 4, k) f(n+ 4, k+ 1) f(n+ 4, k+ 2) f(n+ 4, k+ 3)

basis

Of course you are free to work with different bases, if you wish.
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Suppose you have chosen a basis B = {b1, . . . , bd}.

Then every function in the vector space can be written uniquely as

f(n, k) =

d∑
i=1

ui bi

∼= (u1, . . . , ud)

for some rational functions ui = ui(n, k).
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The shift actions with respect to n and k can be encoded by
matrices Mn,Mk ∈ Q(n, k)d×d such that for the function

f(n, k) ∼= (u1(n, k), . . . , ud(n, k) )

we have

f(n+ 1, k) ∼= (u1(n+ 1, k), . . . , ud(n+ 1, k) ) ·Mn

f(n, k+ 1) ∼= (u1(n, k+ 1), . . . , ud(n, k+ 1) ) ·Mk.

Example: For B =
{
2n−k,

(
n
k

)}
we have

Mn =

(
2 0

0 n+1
n+1−k

)
and Mk =

(
1
2 0

0 n−k
k+1

)
.
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Goal: A bound for the order of the telescoper of a D-finite function.

Problem: Not every D-finite function admits a telescoper.

Known: Not even every hypergeometric term admits a telescoper.

The usual bounds only apply to “proper” hypergeometric terms.

Question: What is a “proper” D-finite function?
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Hypergeometric means that

f(n+ 1, k) = rat1(n, k) f(n, k),

f(n, k+ 1) = rat2(n, k) f(n, k)

for two rational functions rat1, rat2.

Proper hypergeometric means (essentially) that the denominators
of these rational functions have only integer-linear factors.
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Definition (Chen-Kauers-Koutschan) A D-finite function f(n, k) is
called proper D-finite if it lives in a vector space which admits a
basis B such that

• the coordinates of f(n, k) with respect to B are polynomials.

• the shift matrices Mn,Mk with respect to B are such that the
common denominator of all their entries has only
integer-linear factors.
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Theorem (Chen-Kauers-Koutschan; simplified version) Let f(n, k)
be proper D-finite.

• Let B be a basis of the vector space and Mn,Mk be the shift
matrices with respect to B.

• Write Mk =
1
hH for a polynomial matrix H and a polynomial h

of the form h =
∏m
i=1(ain+ bik+ ci)

bi(a ′in− b ′ik+ c
′
i)
b ′
i for

nonnegative integers ai, bi, a
′
i, b
′
i. Let

r := max
{
degk(h) − 1, degk(H)

}
.

• Let d be the dimension of the Q(n)-subspace of all vectors v
with Sk · v = v.

Then there exists a telescoper P for f(n, k) with ord(P) ≤ |B|r+ d .
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