ON TURÁN'S INEQUALITY FOR LEGENDRE POLYNOMIALS

HORST ALZER ${ }^{a}$, STEFAN GERHOLD ${ }^{b 1}$, MANUEL KAUERS ${ }^{c}$, , ALEXANDRU LUPAŞ ${ }^{d}$

${ }^{a}$ Morsbacher Str. 10, 51545 Waldbröl, Germany
alzerhorst@freenet.de
${ }^{b}$ Christian Doppler Laboratory for Portfolio Risk Management, Vienna University of Technology, Vienna, Austria
sgerhold@fam.tuwien.ac.at
${ }^{c}$ Research Institute for Symbolic Computation, J. Kepler University, Linz, Austria
manuel.kauers@risc.uni-linz.ac.at
${ }^{d}$ Department of Mathematics, University of Sibiu, 2400 Sibiu, Romania
alexandru.lupas@ulsibiu.ro

Abstract. Let

$$
\Delta_{n}(x)=P_{n}(x)^{2}-P_{n-1}(x) P_{n+1}(x),
$$

where P_{n} is the Legendre polynomial of degree n. A classical result of Turán states that $\Delta_{n}(x) \geq 0$ for $x \in[-1,1]$ and $n=1,2,3, \ldots$. Recently, Constantinescu improved this result. He established

$$
\frac{h_{n}}{n(n+1)}\left(1-x^{2}\right) \leq \Delta_{n}(x) \quad(-1 \leq x \leq 1 ; n=1,2,3, \ldots)
$$

where h_{n} denotes the n-th harmonic number. We present the following refinement. Let $n \geq 1$ be an integer. Then we have for all $x \in[-1,1]$:

$$
\alpha_{n}\left(1-x^{2}\right) \leq \Delta_{n}(x)
$$

with the best possible factor

$$
\alpha_{n}=\mu_{[n / 2]} \mu_{[(n+1) / 2]}
$$

Here, $\mu_{n}=2^{-2 n}\binom{2 n}{n}$ is the normalized binomial mid-coefficient.

Keywords. Legendre polynomials, Turán's inequality, normalized binomial mid-coefficient.
2000 Mathematics Subject Classification. 26D07, 33C45.

[^0]
1. Introduction

The Legendre polynomial of degree n can be defined by

$$
P_{n}(x)=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} \quad(n=0,1,2, \ldots)
$$

which leads to the explicit representation

$$
P_{n}(x)=\frac{1}{2^{n}} \sum_{\nu=0}^{[n / 2]}(-1)^{\nu} \frac{(2 n-2 \nu)!}{\nu!(n-\nu)!(n-2 \nu)!} x^{n-2 \nu}
$$

(As usual, $[x]$ denotes the greatest integer not greater than x.) The most important properties of $P_{n}(x)$ are collected, for example, in [1] and [14]. Legendre polynomials belong to the class of Jacobi polynomials, which are studied in detail in [3] and [12]. These functions have various interesting applications. For instance, they play an important role in numerical integration; see [11].
The following beautiful inequality for Legendre polynomials is due to P. Turán [13]:

$$
\begin{equation*}
\Delta_{n}(x)=P_{n}(x)^{2}-P_{n-1}(x) P_{n+1}(x) \geq 0 \quad \text { for }-1 \leq x \leq 1 \text { and } n \geq 1 .^{3} \tag{1.1}
\end{equation*}
$$

This inequality has found much attention and several mathematicians provided new proofs, farreaching generalizations, and refinements of (1.1). We refer to [8], [10], and the references given therein.

In this paper we are concerned with a remarkable result published by E. Constantinescu [7] in 2005. He offered a new refinement and a converse of Turán's inequality. More precisely, he proved that the double-inequality

$$
\begin{equation*}
\frac{h_{n}}{n(n+1)}\left(1-x^{2}\right) \leq \Delta_{n}(x) \leq \frac{1}{2}\left(1-x^{2}\right) \tag{1.2}
\end{equation*}
$$

is valid for $x \in[-1,1]$ and $n \geq 1$. Here, $h_{n}=1+1 / 2+\cdots+1 / n$ denotes the n-th harmonic number.
It is natural to ask whether the bounds given in (1.2) can be improved. In the next section, we determine the largest number α_{n} and the smallest number β_{n} such that we have for all $x \in[-1,1]$:

$$
\alpha_{n}\left(1-x^{2}\right) \leq \Delta_{n}(x) \leq \beta_{n}\left(1-x^{2}\right)
$$

We show that the right-hand side of (1.2) is sharp, but the left-hand side can be improved. It turns out that the best possible factor α_{n} can be expressed in terms of the normalized binomial mid-coefficient

$$
\mu_{n}=2^{-2 n}\binom{2 n}{n}=\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot(2 n)} \quad(n=0,1,2, \ldots)
$$

We remark that μ_{n} has been the subject of recent number theoretic research; see [2] and [5].
In our proof we reduce the desired refinement of Turán's inequality to another inequality, which also depends polynomially on Legendre polynomials. This latter inequality is amenable to a recent computer algebra procedure $[9,10]$. The procedure sets up a formula that encodes the induction step of an inductive proof of the inequality and, replacing the quantities $P_{n}(x), P_{n+1}(x), \ldots$ by real variables Y_{1}, Y_{2}, \ldots, transforms the induction step formula into a polynomial formula in finitely many variables. The recurrence relation of the Legendre polynomials translates into polynomial equations in the Y_{k}, which are added to the induction step formula. The truth of the resulting formula for all real Y_{1}, Y_{2}, \ldots can be decided algorithmically and is a sufficient (in general not necessary!) condition for the truth of the initial inequality, if we assume that sufficiently many initial values have been checked.

[^1]
2. Main Result

The following refinement of (1.2) is valid.
Theorem. Let n be a natural number. For all real numbers $x \in[-1,1]$ we have

$$
\begin{equation*}
\alpha_{n}\left(1-x^{2}\right) \leq P_{n}(x)^{2}-P_{n-1}(x) P_{n+1}(x) \leq \beta_{n}\left(1-x^{2}\right) \tag{2.1}
\end{equation*}
$$

with the best possible factors

$$
\begin{equation*}
\alpha_{n}=\mu_{[n / 2]} \mu_{[(n+1) / 2]} \quad \text { and } \quad \beta_{n}=\frac{1}{2} . \tag{2.2}
\end{equation*}
$$

Proof. We define for $x \in(-1,1)$ and $n \geq 1$:

$$
f_{n}(x)=\frac{\Delta_{n}(x)}{1-x^{2}} .
$$

We have $f_{1}(x) \equiv \alpha_{1}=\beta_{1}=1 / 2$. First, we prove that f_{n} is strictly increasing on $(0,1)$ for $n \geq 2$. Differentiation yields

$$
f_{n}^{\prime}(x)=\frac{2 x \Delta_{n}(x)+\left(1-x^{2}\right) \Delta_{n}^{\prime}(x)}{\left(1-x^{2}\right)^{2}}
$$

Using the well-known formulas

$$
P_{n}^{\prime}(x)=\frac{n+1}{1-x^{2}}\left(x P_{n}(x)-P_{n+1}(x)\right)
$$

and

$$
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)
$$

we obtain the representation
(2.3) $n\left(1-x^{2}\right)^{2} f_{n}^{\prime}(x)=(n-1) x P_{n}(x)^{2}-\left(2 n x^{2}+x^{2}-1\right) P_{n}(x) P_{n+1}(x)+(n+1) x P_{n+1}(x)^{2}$.

We prove the positivity of the right-hand side of (2.3) on $(0,1)$ by typing $\ln [1]$:= << SumCracker.m

SumCracker Package by Manuel Kauers - © RISC Linz - V 0.3 2006-05-24
$\ln [2]:=$ ProveInequality[

```
\(\left((n-1) x\right.\) Legendre \([n, x]^{2}\)
    \(-\left(2 n x^{2}+x^{2}-1\right)\) Legendre \(P[n, x]\) Legendre \(P[n+1, x]\)
    \(+(n+1) x\) Legendre \(\left.\mathrm{P}[n+1, x]^{2}\right)>0\),
    From \(\rightarrow 2\), Using \(\rightarrow\{0<x<1\}\), Variable \(\rightarrow n\) ]
```

into Mathematica, obtaining, after a couple of seconds, the output
Out[2]=
True
It follows from this that f_{n} is strictly increasing on $(0,1)$ for $n \geq 2$. Since

$$
P_{n}(x)=(-1)^{n} P_{n}(-x),
$$

we conclude that f_{n} is even. Thus, we obtain

$$
\begin{equation*}
f_{n}(0)<f_{n}(x)<f_{n}(1) \text { for }-1<x<1, x \neq 0 . \tag{2.4}
\end{equation*}
$$

We have

$$
P_{n}(1)=1 \quad \text { and } \quad P_{n}^{\prime}(1)=\frac{1}{2} n(n+1) .
$$

Therefore,

$$
\Delta_{n}(1)=0 \quad \text { and } \quad \Delta_{n}^{\prime}(1)=-1 .
$$

Applying l'Hospital's rule gives

$$
\begin{equation*}
f_{n}(1)=\lim _{x \rightarrow 1} \frac{\Delta_{n}(x)}{1-x^{2}}=-\frac{1}{2} \Delta_{n}^{\prime}(1)=\frac{1}{2} \tag{2.5}
\end{equation*}
$$

Since

$$
P_{2 k-1}(0)=0 \quad \text { and } \quad P_{2 k}(0)=(-1)^{k} \mu_{k},
$$

we get

$$
\begin{equation*}
f_{2 k-1}(0)=\mu_{k-1} \mu_{k} \quad \text { and } \quad f_{2 k}(0)=\mu_{k}^{2} \tag{2.6}
\end{equation*}
$$

Combining (2.4)-(2.6) we conclude that (2.1) holds with the best possible factors α_{n} and β_{n} given in (2.2).

Remarks. (1) The proof of the Theorem reveals that for $n \geq 2$ the sign of equality holds on the left-hand side of (2.1) if and only if $x=-1,0,1$ and on the right-hand side if and only if $x=-1,1$.
(2) The numbers $\mu_{p} \mu_{q}(p, q=0,1,2, \ldots ; p \leq q)$ are the eigenvalues of Liouville's integral operator for the case of a planar circular disc of radius 1 lying in \mathbf{R}^{3}; see [6].
(3) The automated proving procedure can be applied to (2.1) directly. However, owing to the computational complexity of the method, we did not obtain any output after a reasonable amount of computation time.
(4) The Mathematica package SumCracker used in the proof of the Theorem contains an implementation of the proving procedure described in [9]. It is available online at

> http://www.risc.uni-linz.ac.at/research/combinat/software
(5) The normalized Jacobi polynomial of degree n is defined for $\alpha, \beta>-1$ by

$$
R_{n}^{(\alpha, \beta)}(x)={ }_{2} F_{1}(-n, n+\alpha+\beta+1 ; \alpha+1 ;(1-x) / 2)
$$

The special case $\alpha=\beta$ leads to the normalized ultraspherical polynomial

$$
R_{n}^{(\alpha, \alpha)}(x)={ }_{2} F_{1}(-n, n+2 \alpha+1 ; \alpha+1 ;(1-x) / 2)=\frac{(-1)^{n}}{2^{n}(\alpha+1)_{n}} \frac{1}{\left(1-x^{2}\right)^{\alpha}} \frac{d^{n}}{d x^{n}}\left(1-x^{2}\right)^{n+\alpha}
$$

where $(a)_{n}$ denotes the Pochhammer symbol. Obviously, we have $R_{n}^{(0,0)}(x)=P_{n}(x)$. We conjecture that the following extension of our Theorem holds.

Conjecture. Let $\alpha>-1 / 2$ and $n \geq 1$. For all $x \in[-1,1]$ we have

$$
a_{n}^{(\alpha)}\left(1-x^{2}\right) \leq R_{n}^{(\alpha, \alpha)}(x)^{2}-R_{n-1}^{(\alpha, \alpha)}(x) R_{n+1}^{(\alpha, \alpha)}(x) \leq b_{n}^{(\alpha)}\left(1-x^{2}\right)
$$

with the best possible factors

$$
a_{n}^{(\alpha)}=\mu_{[n / 2]}^{(\alpha)} \mu_{[(n+1) / 2]}^{(\alpha)} \quad \text { and } \quad b_{n}^{(\alpha)}=\frac{1}{2(\alpha+1)}
$$

Here, $\mu_{n}^{(\alpha)}=\mu_{n} /\binom{n+\alpha}{n}$.

References

[1] M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical Functions with Formulas and Mathematical Tables, Dover, New York, 1965.
[2] H. Alzer and B. Fuglede, Normalized binomial mid-coefficients and power means, J. Number Th. 115 (2005), 284-294.
[3] G.E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge Univ. Press, Cambridge, 1999.
[4] R. Askey, Remembering Paul Turán, J. Approx. Th. 86 (1996), 253-254.
[5] T. Bang and B. Fuglede, No two quotients of normalized binomial mid-coefficients are equal, J. Number Th. 35 (1990), 345-349.
[6] C. Berg and B. Fuglede, Liouville's operator for a disc in space, Manuscr. Math. 67 (1990), 165-185.
[7] E. Constantinescu, On the inequality of P. Turán for Legendre polynomials, J. Inequal. Pure Appl. Math. 6(2) (2005), Art. 28. [http://jipam.vu.edu.au/]
[8] D.K. Dimitrov, Higher order Turán inequalities, Proc. Amer. Math. Soc. 126 (1998), 2033-2037.
[9] S. Gerhold and M. Kauers, A procedure for proving special function inequalities involving a discrete parameter, Proceedings of ISSAC ' 05 , ACM Press (2005), 156-162.
[10] S. Gerhold and M. Kauers, A computer proof of Turán's inequality, J. Inequal. Pure Appl. Math. 7(2) (2006), Art. 42. [http://jipam.vu.edu.au/]
[11] Y.L. Luke, The Special Functions and Their Approximations, Vol. 2, Academic Press, New York, 1969.
[12] G. Szegö, Orthogonal Polynomials, 4th ed., Colloquium Publications, vol. 23, Amer. Math. Soc., Rhode Island, 1975.
[13] P. Turán, On the zeros of the polynomials of Legendre, Časopis Pest. Mat. Fys. 75 (1950), 113-122.
[14] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1952.

[^0]: ${ }^{1}$ S. Gerhold was supported by FWF grant SFB F1305, the Christian Doppler Association (CDG), the Austrian Federal Financing Agency and Bank Austria.
 ${ }^{2}$ M. Kauers was supported by FWF grant SFB F1305 and P16613-N12.

[^1]: ${ }^{3}$ A nice anecdote about Turán reveals that he used (1.1) as his 'visiting card'; see [4].

