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ABSTRACT
We extend Zeilberger’s approach to special function identi-
ties to cases that are not holonomic. The method of creative
telescoping is thus applied to definite sums or integrals in-
volving Stirling or Bernoulli numbers, incomplete Gamma
function or polylogs, which are not covered by the holo-
nomic framework. The basic idea is to take into account the
dimension of appropriate ideals in Ore algebras. This unifies
several extensions that have been presented earlier and pro-
vides algorithms for summation and integration in classes
that had not been accessible to computer algebra before.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Symbolic Summation and Integration, D-Finite Functions

1. INTRODUCTION
In a classical article entitled “A holonomic systems ap-

proach to special functions identities” [16], Doron Zeilberger
has shown that the theory of holonomic D-modules leads to
algorithms for proving identities in large classes of special
functions. In this setting, a function f(x1, . . . , xn) is repre-
sented by a system of linear differential equations with poly-
nomial coefficients that annihilate it. The function is “holo-
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nomic” when it possesses two important properties: (i) be-
sides its defining system, f can be specified by a finite num-
ber of initial conditions; (ii) the number of linearly indepen-

dent functions among all xm1

1 · · ·xmn
n

∂k1

∂x
k1
1

· · · ∂kn

∂x
kn
n

(f) with

m1 + · · · + mn + k1 + · · · + kn ≤ N grows like O(Nn). The
first property has the consequence that many operations on
holonomic functions reduce to linear algebra. It leads to clo-
sure properties under sum, product, and specialization. The
second one is related to the notion of holonomic D-modules
and opens the way to algorithms for definite integration and
summation. For this, Zeilberger developed a general method
called creative telescoping, for which he gave two algorithms:
one for the general holonomic case and a faster one in the
hypergeometric case.

Originally, the notion of a holonomic system is only de-
fined for differential systems, but there are several ways of
extending it to systems of difference (or q-difference) equa-
tions. Among those, we prefer the use of Ore algebras [6].
There, the first property above corresponds to zero-dimen-
sional ideals, which are called ∂-finite. The same closure
properties (sum, product, specialization) hold and can be
performed by Gröbner bases computation. Chyzak [5] ex-
tended Zeilberger’s fast hypergeometric creative telescoping
to all ∂-finite ideals, termination being guaranteed inside
Zeilberger’s holonomic class.

Another direction of extension concerns functions or se-
quences that cannot be defined by a holonomic system or
even a ∂-finite ideal. Majewicz [12] gives an algorithm that
is able to produce Abel’s summation identity
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i(k + i)k−1(n − k + j)n−k = (n + i + j)n

automatically and to find similar new identities. Kauers [9]
gives a summation algorithm applicable to sums involving
Stirling numbers and similar sequences defined by triangular
recurrence equations. This algorithm finds, for instance,
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S2(n + 1, k + 1) = E1(n, m),

where S2 and E1 refer to the Stirling numbers of second kind
and the Eulerian numbers of first kind, respectively. A sum-
mation algorithm of Chen and Sun [4] is able to discover cer-
tain summation identities involving Bernoulli numbers Bn



Operator ∂ · f(x) x · f(x)

Differentiation d
dx

f ′(x) xf(x)
Shift S f(x + 1) xf(x)
Difference ∆ f(x + 1) − f(x) xf(x)
q-Dilation Q f(qx) xf(x)
Continuous q-difference f(qx) − f(x) xf(x)

q-Differentiation δ(q) f(qx)−f(x)
(q−1)x

xf(x)

q-Shift S(q) f(x + 1) qxf(x)
Discrete q-difference ∆(q) f(x + 1) − f(x) qxf(x)
Eulerian operator Θ xf ′(x) xf(x)
Mahlerian operator M f(xb) xf(x)

Divided differences
f(x)−f(a)

x−a
xf(x)

Table 1: Some common Ore operators

or similar quantities, for example
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Bm+k.

None of the quantities covered by these algorithms admits
a definition via a ∂-finite ideal, but all three algorithms are
based on principles that resemble those employed for holo-
nomic systems and ∂-finite ideals. In each case, it turns out
that the differential/difference equations defining the inte-
grand/summand are of a form that permits to prove the
existence of at least one non-trivial differential/difference
equation for the integral/sum by means of a counting argu-
ment.

In this article, we give algorithms dealing with ideals of
Ore algebras that are not ∂-finite. They generalize the algo-
rithms known for the ∂-finite case and cover the extensions
to non-holonomic functions discussed so far. Holonomy be-
ing lost, it is not always the case that creative telescoping
can succeed. However, holonomy is only a sufficient con-
dition. We show that by considering more generally the
dimension of the ideals and another quantity that we call
polynomial growth, it is possible to predict termination of a
generalization of Chyzak’s generalization of Zeilberger’s fast
algorithm. As special cases, we recover holonomic systems
(dimension 0, polynomial growth 1), but also the special
purpose algorithms mentioned above for Abel-type sums (di-
mension 2, polynomial growth 1), Stirling-number identities
and summation identities about Bernoulli numbers (dimen-
sion 1, polynomial growth 1). In addition, we get for free
a summation/integration algorithm that can deal with non-
holonomic special functions such as the incomplete Gamma
function Γ(n, z), the Hurwitz zeta function ζ(n, z), polylog-
arithms Lin(x), . . . Examples are given in Section 4.4.

2. ORE ALGEBRAS AND THEIR IDEALS
Our motivation for using Ore algebras is the convenient

polynomial representation of linear operators that they offer.
Classical notions of commutative polynomial rings generalize
to this setting. In this section, we recall without proof the
basic definitions and facts we use (see [6, 8, 11] and their
references for proofs, details, and history).

2.1 Ore Algebras

σ-derivations
Let A be a commutative algebra over a field k, and σ an
injective algebra endomorphism of A that induces the iden-

Operator σ δ ∂x

Differentiation Id d
dx

x∂ + 1
Shift S S 0 (x + 1)∂
Difference S ∆ (x + 1)∂ + 1
q-Dilation Q 0 qx∂
Cont. q-difference Q Q − Id qx∂ + (q − 1)x
q-Differentiation Q 1

(q−1)x
(Q − Id) qx∂ + 1

q-Shift Q 0 qx∂
Discr. q-difference Q Q − Id qx∂ + (q − 1)x

Eulerian operator Id x d
dx

x∂ + x

Mahlerian operator M 0 xb∂

Divided differences f 7→ f(a) x 7→
f(x)−f(a)

x−a
a∂ + 1

Table 2: Corresponding skew-polynomial rings and

their commutation rules

tity on k. A k-linear endomorphism δ of A is called a
σ-derivation if it satisfies the skew Leibniz rule δ(uv) =
σ(u)δ(v) + δ(u)v for all u and v in A.

Skew-polynomial rings
The associative ring generated over A by a new indetermi-
nate ∂ and the relations ∂u = σ(u)∂ + δ(u) for all u ∈ A
is called a (left) skew-polynomial ring. It is denoted by
A[∂; σ, δ]. It does not have any zero-divisors. It is called an
extension of the skew-polynomial ring B[∂; σ′, δ′] when B ⊂
A, σ′ = σ|B and δ′ = δ|B . In examples, we allow ourselves
in the interest of increased readability to use different sym-
bols in place of ∂. In particular, we will use Sn, Sk, etc. for
denoting both the indeterminate ∂ and the corresponding σ
in shift algebras.

Ore operators
A skew polynomial L ∈ A[∂; σ, δ] acts on left A[∂; σ, δ]-
modules—in most of our applications, these are modules
of functions, power series, or sequences. Solving then means
finding an element h in such a module such that L·h = 0. In
this perspective, skew polynomials are called Ore operators.

For any λ ∈ A, the action ∂ : a 7→ ∂·a = λσ(a)+δ(a) turns
the algebra A itself into a left A[∂; σ, δ]-module. For any u, v
in A, one has the product rule ∂ · uv = σ(u)∂ · v + δ(u)v.

Tables 1 and 2 illustrate some common types of Ore op-
erators when A = k[x], together with the values of σ and δ
that define the associated skew-polynomial ring.

In all these examples, σ and δ can be written as A-linear
combinations of ∂ and the identity. We call linear a skew-
polynomial ring with this property.

Ore algebras
Ore algebras are a generalization of skew-polynomial rings
well suited to the manipulation of multivariate special func-
tions. Let C(x) = C(x1, . . . , xm) be a field of character-
istic 0 of rational functions, (σ1, . . . , σn) be n C-algebra
morphisms of C(x) commuting pairwise, and for each i, let
δi be a σi-derivation, such that the δi’s commute pairwise
and commute with the σj ’s when j 6= i. The Ore alge-
bra Ox = C(x)〈∂〉 is the associative C(x)-algebra generated
by indeterminates ∂ = {∂1, . . . , ∂n} modulo the relations

∂ia = σi(a)∂i + δi(a) (a ∈ C(x)), ∂i∂j = ∂j∂i. (1)

An Ore algebra O or an extension A⊗C(x) O of it is called
linear when for each i, both σi and δi can be expressed as
C(x)-linear combinations of ∂i and the identity.



Given two Ore algebras Ox and Ot , we write Ox,t or with
an abuse of notation C(x, t)〈∂x, ∂t〉 for Ox ⊗C Ot .

2.2 Ideals
We write I � R to denote that I is a left ideal in the

ring R, and I = 〈p1, . . . , pk〉 to denote that I is generated by
p1, . . . , pk. The study of a function or sequence f translates
algebraically into the study of its annihilating ideal annA f ,
i.e., the left ideal of operators in an appropriate algebra A
that annihilate f . (We also write ann f when no ambiguity
on A can arise.) Computations concern finding generators
of this ideal or, at least, of a sufficiently large subideal of it.
This is in particular the case for creative telescoping that we
study here. It computes an ideal annihilating the definite
integral or sum of interest starting from a description of an
ideal annihilating the summand or integrand.

2.3 Gröbner Bases

Terms
If f =

P

cα∂α is a polynomial, each cα∂α for which cα 6= 0
is called a term of f , cα is its coefficient, ∂α its monomial,
and α its exponent. The total degree of f is the maxi-
mum |α| over its terms, where we use the notation
|α| = |(α1, . . . , αn)| = α1 + · · · + αn.

Monomial orders
A monomial order is a total order on the monomials that
is compatible with the product and does not have infinite
descending chains. A graded order is a monomial order such
that ∂α > ∂β whenever |α| > |β|.

Gröbner bases
For a given monomial order, the leading term of a polyno-
mial f is the term with largest monomial for that order.
We write E(f) for its exponent in Nn. The crucial property
that lets the theory parallel that of the commutative case
is that E(fg) = E(f) + E(g). The set SI := {E(f), f ∈ I}
thus has the property SI = SI + Nn. The complement of SI

is a finite union of translates of coordinate subspaces. A
Gröbner basis G of I is a set of generators I such that SI is
the sum of E(g) + Nn over g ∈ G.

2.4 Hilbert Dimension
We write R(s) for the set of polynomials of an Ore al-

gebra R of total degree at most s. Then I(s) := I ∩ R(s)

is a vector space over C(x). As in the commutative case,
the Hilbert function of the ideal I is defined by HFI(s) :=

dim(R(s)/I(s)) = dim R(s) − dim I(s); for s large enough
this function is equal to a polynomial whose degree is called
the (Hilbert) dimension of the ideal. We denote this inte-
ger dim I , or dimR I when we want to make the ambient ring
explicit. A reference for the results of this section is [10].

Example 1 (∂-finite ideals). An ideal is ∂-finite if
its dimension is 0. This special class of ideals has been stud-
ied a lot from the computational point of view: in this case,
the quotient R/I is a finite-dimensional vector space, so that
many techniques of linear algebra apply.

Example 2 (Hypergeometric terms). An n-variate
sequence um1,...,mn is a hypergeometric term if

um1,...,mi−1,mi+1,mi+1,...,mn

um1,...,mn

∈ Q(m1, . . . , mn)

for i = 1, . . . , n. If S = (S1, . . . , Sn), Si representing the
shift operator, the annihilating ideal of such a sequence in
the algebra Q(m)〈S〉 contains operators S1−r1(m), . . . , Sn−
rn(m). It is therefore ∂-finite and moreover, the dimension
of the quotient as a vector space is 1.

Example 3 (Stirling numbers). Stirling numbers of
the second kind, S2(n, k), satisfy the linear recurrence

S2(n, k) = S2(n − 1, k − 1) + kS2(n − 1, k).

The ideal generated by this relation in Q(n, k)〈Sn, Sk〉 has
dimension 1. Properties of the generating series imply that
this is not a ∂-finite sequence, so that 1 is the lowest possible
dimension to work with.

The dimension of an ideal can be computed from a Gröb-
ner basis for a graded order: it is the largest dimension of
coordinate subspaces of Nn that belong to the complement
of the set of exponents of the leading terms [3, p. 449].

We note the following inequalities that also hold in this
non-commutative context:

I ⊂ J ⇒ dim J ≤ dim I,

I � C(x, t)〈∂x, ∂t〉 ⇒ dimC(x,t)〈∂x〉(I ∩ C(x, t)〈∂x〉)

≤ dimC(x,t)〈∂x,∂t〉 I.

The first one follows from the inclusion of the vector spaces
I(s) ⊂ J(s). The second inequality involves dimensions rel-
ative to two different ambient rings. It can be seen by con-
sidering the following vector spaces: F = C(x, t)〈∂x, ∂t〉

(s)

contains G = C(x, t)〈∂x〉
(s) and H = I(s). Then the in-

equality follows from G/(G ∩ H) ⊂ F/H .
We also make use of the following properties of dimension.

Lemma 1. Let I � Ox = C(x)〈∂x〉 with dim I = d.

1. For any ∂t ⊂ ∂x , |∂t | ≥ d+1 =⇒ I∩C(x)〈∂t〉 6= {0}.

2. There exists ∂t ⊂ ∂x of cardinality d such that
I ∩ C(x)〈∂t〉 = {0}.

Proof. We sketch the proof which shows how the no-
tions presented so far interact (exactly as in the commuta-
tive case). By definition of the Hilbert function,

dim I(s) + dimC(x)〈∂t〉
(s)

= dim O
(s)
x + dim C(x)〈∂t〉

(s) − HFI(s)

= dim O
(s)
x +

 

|∂t | + s

s

!

− HFI(s).

The binomial is a polynomial in s of degree |∂t | ≥ d+1 with
positive leading coefficient, so that for large enough s, it is
larger than HFI(s). The sum of the dimensions of the vector
subspaces on the left-hand side is therefore larger than the

dimension of O
(s)
x and thus they intersect nontrivially.

The second part follows by considering the exponents of
leading terms. Now the combinatorial theory is exactly as
in [7, Ch. 9]. There exists a coordinate subspace of Nn of
dimension d in the complement set. This means that there
exists a subset ∂t ⊂ ∂x such that no monomial in ∂t is a
leading term of an element of I . Thus there cannot be an
element of I in those variables only, as was to be proved.



3. CLOSURE PROPERTIES
Our main result, Thm. 3 in the next section, generalizes

the fact that holonomy is preserved under definite integra-
tion. First, we show how addition, multiplication, and ac-
tion by ∂ behave with respect to dimension, generalizing the
corresponding closure properties for ∂-finite ideals.

Theorem 1 (Closure Properties). Let I1, I2 � Ox

and let f1, f2 be annihilated by I1, I2, respectively. Then:

1. dim ann(∂ · f1) ≤ dim I1 for all ∂ in {∂x}.

2. dim ann(f1 + f2) ≤ max(dim I1, dim I2).

3. If f1, f2 belong to the coefficient ring of a linear exten-
sion of Ox , then dim ann(f1f2) ≤ dim I1 + dim I2.

Proof. We show part 3. The arguments for parts 1 and 2
are similar and simpler.

Setting k := dim I1 + dim I2 + 1, it suffices to show that
any k elements ∂1, . . . , ∂k among ∂ are dependent mod-
ulo ann(f1f2).

Given a Gröbner basis for I1 with respect to a graded or-
der, each polynomial P ∈ Ox can be reduced to a normal
form P such that P · f1 = P · f1 and deg P ≤ deg P . More-
over, by definition of the dimension, the set of all monomials
in {P | P ∈ R(s)} has cardinality growing like O(sdim I1).
The same considerations hold for f2.

By induction on the degree of P , the condition of a linear
extension implies that P · (f1f2) rewrites as a linear combi-
nation of monomials (∂β ·f1)(∂

γ ·f2), with |β +γ| ≤ deg P .
Moreover, we can assume that the monomials have been re-
duced to their normal forms and the inequalities still hold.

Let s ≥ 0 and consider the following identities

∂α1

1 · · · ∂αk

k · f1f2 =
X

|β|≤s

X

|γ |≤s

uα;β,γ (x)
`

∂
β · f1

´`

∂
γ · f2

´

,

(2)
(|α| ≤ s), where the sums on the right are constructed as
above. Then the first sum actually ranges over a subset
{β, |β| ≤ s} of cardinality O(sdim I1) and the second one
ranges over a subset {γ, |γ | ≤ s} of cardinality O(sdim I2).
Thus there is a generating set of O(sdim I1sdim I2) = O(sk−1)
monomials for all the summands. This implies that for s
large enough, there exists a nontrivial linear combination of
the O(sk) polynomials in (2) of the form

X

|α|≤s

wα(x)∂α1

1 · · · ∂αk
k · (f1f2) = 0,

as we wanted to show.

Algorithm
The proof gives an algorithm that computes generators of
a subideal of the desired annihilating ideal, with a dimen-
sion that obeys the inequality. For increasing s, compute
the normal forms of all monomials in ∂ of degree at most s,
compute linear combinations between them (the kernel of
the matrix (uα;β,γ )), and return these relations if they are
sufficiently many to obtain the dimension of the theorem.
For ∂-finite ideals, this returns the same result as the algo-
rithms in [6]. Various optimizations are possible. The other
closure operations are similar.

Example 4. The sequence

fn,m,k,l =

 

n

k

!

S2(k, l)S2(n − k, m),

is annihilated by an ideal of dimension at most 2. This fol-
lows from Thm. 1 by observing: (i) that

`

n

k

´

is hypergeo-
metric, thus ∂-finite, and thus annihilated by an ideal of
dimension 0; (ii) that S2(k, l) and S2(n− k,m) are Stirling-
like (see Section 4.4) and thus annihilated by certain ideals
of dimension 1. More specifically, the factors

`

n

k

´

, S2(k, l),
and S2(n − k, m) are annihilated by the ideals

〈(k − n − 1)Sn + n + 1, (k + 1)Sk + k − n, Sm − 1, Sl − 1〉,

〈Sn − 1, SkSl − (l + 1)Sl − 1, Sm − 1〉,

〈SnSk − 1, (m + 1)SmSk + Sk − Sm, Sl − 1〉,

respectively. The algorithm sketched above yields

I := 〈1 + n + (1 + m)(1 + n)Sm − (1 − k + n)SnSm,

(k − n)Sm + (1 + k)SkSl + (1 + k)(1 + m)SkSlSm

+ (1 + l)(k − n)SlSm, 1 + n + (1 + l)(1 + n)Sl

− (1 + k)SkSlSn〉 � C(n, m, k, l)〈Sn, Sm, Sk, Sl〉

as an ideal of annihilators of fn,m,k,l. It has dimension 2.

4. CREATIVE TELESCOPING
Creative telescoping is basically a combination of differ-

entiation under the integral sign and integration by parts,
or analogues for other operators. We now give it an alge-
braic interpretation. Our main theorem can be viewed as
predicting cases when identities are bound to exist.

4.1 Telescoping of an Ideal
The heart of the method of creative telescoping translates

algebraically into the notion of the telescoping of an ideal.

Definition 1. Let I � Ox,t = C(x, t)〈∂x, ∂t〉 be a left
ideal. Assume |t| = |∂t |. We define the telescoping of I
with respect to t = (t1, . . . , tk) as the left ideal of C(x)〈∂x〉

Tt(I) := (I + ∂t1Ox,t + · · · + ∂tk
Ox,t) ∩ C(x)〈∂x〉.

Definition 2. The variables ∂t = (∂t1 , . . . , ∂tk
) of the

Ore algebra Ox,t are telescopable if there exist elements
a1, . . . , ak in C(x, t) such that

δti
(ai) ∈ C(x) \ {0} and σti

(ai)∂tj
= ∂tj

σti
(ai) (j 6= i).

Note that this is a condition on the algebra, and does not
depend on any specific ideal. In view of Table 1, this is not
a strong restriction for our applications. For example, the
differential operator d/dt and the difference operator ∆t are
telescopable, with a = t, but the shift operator is not. This
notion lets us generalize an idea of Wegschaider [14] used at
the end of the proof of Thm. 3 below.

4.2 Polynomial Growth
In Thm. 3 below we give an upper bound for the dimen-

sion of Tt(I), thus providing a termination criterion for the
algorithms in Section 5. Our bound depends on the dimen-
sion of I and on its “polynomial growth”, defined as follows.

Definition 3. The left ideal I � Ox,t has polynomial
growth p with respect to a given graded order if there ex-
ists a sequence of polynomials Ps(x, t), s ∈ N, such that for



any α with |α| ≤ s, the normal form of Ps(x, t)∂α with re-
spect to a Gröbner basis of I for the order has coefficients in
C(x)[t] whose degrees with respect to t are O(sp). We say
that I has polynomial growth p when there is a graded order
with respect to which it does.

If all the σ’s are automorphisms, the polynomial growth is
bounded by the dimension of the Ore algebra, |x|+ |t|. But
the interesting cases are those where the polynomial growth
is smaller than that. For certain ideals of dimension 0, we
get a better estimate in Thm. 2 below. For an arbitrary
ideal in an arbitrary Ore algebra, we do not know how to
determine its polynomial growth algorithmically yet.

Example 5. The basis at the end of Example 4 is a Gröb-
ner basis with respect to a graded order. Inspection of its
leading coefficients shows that the sequence

Ps(n, m, k) :=
Y

|j|≤s

(1 + n − k + j)(1 + k + j)2

satisfies the conditions of Definition 3. Since deg Ps = O(s),
it follows that I has polynomial growth 1.

Just before stating our result, we now give notation and
a definition for algebras amenable to it.

Definition 4. Let R be C(x)[t] and R≤n the set of ele-
ments A ∈ R such that degt A ≤ n. A difference-differential
algebra is an Ore algebra Ox,t such that for any i, either

• δi = 0 and, for any u ∈ R, degt σi(u) = degt u;

• or σi = Id and δi is a derivation such that, for any
u ∈ R, degt δi(u) ≤ ν + degt u,

ν ∈ N being fixed. We set S and D to be the sets of i of,
resp., first and second types.

Theorem 2. Let Ox,t be a difference-differential algebra
endowed with a graded ordering. Let I � Ox,t have dimen-
sion 0. Call φ the map sending any A ∈ Ox,t to its normal
form modulo I w.r.t. the given graded ordering, and Γ the
(finite) set of monomials in normal form. Then, there exist
m, ℓ ∈ N and L ∈ R≤ℓ such that, for any i and any β ∈ Γ,

φ(∂i∂
β) ∈

1

L

X

γ∈Γ

R≤m∂
γ . (3)

Define a sequence (Ps)s∈N by P0 = 1 and

Ps+1 :=

(

lcm(Ps, lcm(Lσi(Ps)), Ps lcm(L, Qs)), if D 6= ∅,

lcm(Ps, lcm(Lσi(Ps))), if D = ∅,

where Qs denotes the squarefree part of Ps and the lcm in σi

is over all i.
If degt Ps = Θ(sp) for some integer p > 0, then I has

polynomial growth p.

Before the proof, note that, by the definition of φ, the sum
in (3) is limited to |γ | ≤ |β|+ 1. Moreover, the existence of
a uniform (L, m) is easily obtained in the zero-dimensional
case, as the set of (i, β) is then finite.

Proof. Introduce the sets Fs = {∂α , |α| ≤ s} for s ∈ N.
For n ∈ N, define R≤n[Γ] as

P

γ∈Γ R≤n∂γ . For a fixed s,
suppose there exists P ∈ R and an integer D for which

φ(Fs) ⊂ P−1R≤D[Γ].

We look for homologues P ′ and D′ for Fs+1. As φ satisfies

φ(Fs+1) = φ
“

Fs ∪
[

i

∂iFs

”

⊂ φ(Fs) ∪
[

i

φ
`

∂iφ(Fs)
´

,

we study φ(∂iA) for A = P−1U∂β when U ∈ R≤D, β ∈ Γ,
and |β| ≤ s. If i ∈ S , then from δi = 0 follows ∂iA =
σi(P )−1σi(U)∂i∂β ; therefore,

φ(∂iA) ∈
`

Lσi(P )
´−1

R≤D+m[Γ].

Else, i ∈ D and from σi being the identity follows ∂iA =
P−1U∂i∂β +P−1δi(U)∂β + δi(P

−1)U∂β ; thus, φ(∂iA) is in

1

LP
R≤D+m[Γ] +

1

LP
R≤D+ℓ+ν∂

β +
1

PQ
R≤D+D0

∂
β

where Q is the square-free part of P and D0 = degt Q.
Defining P ′ as the lcm of P , P lcm(L, Q) if D 6= ∅, and
the σi(P )L’s for i ∈ S yields A, φ(∂iA) ∈ (P ′)−1R[Γ]. Next,
setting D1 = degt(P

′/PQ) and D2 = degt(P
′/LP ), then

∆ as the maximum of max{m, ℓ} + D2 and max{ℓ + ν +
D2, D0 + D1} if D 6= ∅, finally D′ = D + ∆ yields

φ(Fs+1) ⊂ (P ′)−1R≤D′ [Γ].

Therefore, introducing the sequence (Ps) defined in the the-
orem, we get by a first induction on s that φ(Fs) ⊂ P−1

s R[Γ].
Next, under the additional assumption that degt Ps = Θ(sp)
for some integer p > 0, P and P ′ in the proof above can be
taken as Ps and Ps+1, so that all of D0, D1, and D2 are
bounded by deg Ps+1 − deg Ps, thus by O(sp−1). Therefore,
by another induction

φ(Fs) ⊂ P−1
s R≤O(sp)[Γ],

proving a polynomial growth p for I .

In the uses of creative telescoping for summation, the iden-
tities (or ideals) are often stated in terms of shifts, while the
operation of interest is a finite difference. However, it is
possible to compute the polynomial growth in a difference-
differential algebra with shifts, and it will be the same when
considered in an algebra with difference operators. This is
the meaning of the following theorem, whose proof based on
transporting graded orderings we omit.

Proposition 1. For a given difference-differential alge-
bra Ox,t and indeterminates u = (u1, . . . , uk), consider

Ox,(t,u) = Ox,t ⊗C C(u)[∂u1
; Su1

, 0] . . . [∂uk
; Suk

, 0] and

O
′
x,(t,u) = Ox,t ⊗C C(u)[∂u1

; Su1
, ∆ui

] . . . [∂uk
; Suk

, ∆uk
],

where ∆ui
= Sui

− Id (i = 1, . . . , k). Let µ be the (bijective)
left-C(x, t, u)-linear map sending each ∂ui

to ∂ui
+ 1 and

all the ∂x , ∂t to themselves. Then an ideal I � Ox,(t,u) and
µ(I) � O′

x,(t,u) have the same polynomial growth.

4.3 Main Result
Our main result is the following sufficient condition for

creative telescoping. For simplicity, we state it for |t| = |∂t |.

Theorem 3 (Creative Telescoping). Let I�Ox,t =
C(x, t)〈∂x, ∂t〉 be an ideal of dimension d and polynomial
growth p. If |t| = |∂t | and the ∂t’s are telescopable then

dimOx
Tt(I) ≤ d + (p − 1)|t|,

whenever this bound is nonnegative. In particular, when the
bound is smaller than |x|, the ideal Tt(I) is non-trivial.



Proof. If d + (p − 1)|t| ≥ |x|, there is nothing to show.
Otherwise, by Lemma 1, it is sufficient to show that any k :=
d + (p− 1)|t|+ 1 elements ∂1, . . . , ∂k in {∂x} are dependent
modulo Tt(I).

Let s ≥ 0 and consider the following set of members of I
from the definition of the polynomial growth of I :

Ps(x, t)∂α1

1 · · · ∂αk

k ∂
αt

t −
X

|β|≤s

cα,β(x, t)∂β , |α| ≤ s. (4)

The coefficients cα,β(x, t) can be viewed as C(x)-linear com-
binations of monomials in t of degree O(sp). The ideal I hav-
ing dimension d, these sums in (4) for all α such that |α| ≤ s
actually range over a common subset of {β, |β| ≤ s} of car-

dinality O(sd). Thus, there is a generating set of O(sd+p|t|)
monomials in t, ∂ for all the summands. This implies that
for s large enough, there exists a nontrivial linear combina-
tion of the O(sk+|t|) polynomials in (4) of the form

Ps(x, t)
X

|α|≤s

Cα(x)∂α1

1 · · · ∂αk

k ∂t
αt =: P (s)Q ∈ I.

Multiplying by 1/Ps(x, t) shows that Q ∈ I ∩C(x)〈∂x, ∂t〉.
Now the operators ∂ti

’s commute with the coefficients of Q.
Thus, Q can be rewritten

Q = R + ∂t1Q1 + · · · + ∂t|t|Q|t|, (5)

with R ∈ C(x)〈∂1, . . . , ∂k〉 ∈ Tt(I). If R 6= 0, we have
found the element of Tt(I) we were looking for. Otherwise,
since Q 6= 0, there exists a Qi 6= 0. Since ∂ti

is telescopable,
there is an element ai ∈ C(x, t) such that

σti
(ai)∂ti

= bi + ∂ti
ai, σti

(ai)∂tj
= ∂tj

σti
(ai)

for some bi ∈ C(x) \ {0}. Multiplying (5) by σti
(ai) yields

I ∋ σti
(ai)Q = biQi + ∂ti

Q̃i + · · · + ∂t|t|Q̃|t|.

Now, Qi 6= 0 can be rewritten as in (5). Repeating this
process if necessary, we eventually reach a non-zero element
of Tt(I), as was to be proved.

4.4 Examples

Proper hypergeometric sequences
These are sequences with two indices that are hypergeomet-
ric as in Example 2 with the further constraint that they
can be written

um,k = Q(m,k)

Qu

i=1 (aim + bik + ci)!
Qv

i=1 (uim + vik + wi)!
ξk, (6)

where ξ ∈ C, Q is a polynomial and the ai’s, bi’s, ui’s, vi’s
are integers. A typical example is the binomial coefficient
`

m

k

´

. Since such a sequence is hypergeometric, a Gröbner
basis of annum,k for any order is formed by the relations

Sm − um+1,k/um,k and Sk − um,k+1/um,k.

The normal form of Ss1
m Ss2

k with respect to this basis is
simply the rational function um+s1,k+s2

/um,k. Since the
ai, bi, ui, vi’s are all integers, the common denominator of
all these rational functions for s1 + s2 ≤ s has a degree that

grows only linearly with s [13], as it is bounded by

Ps(m, k) = Q(m, k)
Y

|j|≤(|ui|+|vi|)s

Y

i

(uim + vik + wi + j)

×
Y

|j|≤(|ai|+|bi|)s

Y

i

(aim + bik + ci + j).

In our terminology, the corresponding annihilating ideal has
polynomial growth 1, by Thm. 2 and Prop. 1. Further gener-
alizations to the multivariate and q-cases can also be consid-
ered. Thm. 3 (with d = 0, p = 1, |t| = 1, n = 2) generalizes
the result that creative telescoping applies to proper hyper-
geometric sequences.

General hypergeometric sequences
Not every hypergeometric sequence is proper. For example,

um,k =
1

mk + 1

 

2m − 2k − 1

m − 1

!

is not. By a criterion of Abramov [1], creative telescoping
fails on this example, i.e., Tt(I) = {0}. This phenomenon is
well consistent with our theorem, because the nonlinear fac-
tor in the denominator implies that the annihilating ideal I
has polynomial growth 2: a possible choice for Ps is

Ps(m,k) =
Y

i+j≤s

((m + i)(k + j) + 1) ×
Y

|i|≤3s

(m − 2k + i),

whose degree is quadratic in s, hence the polynomial growth
by Thm. 2 and Prop. 1. Thm. 3 (with d = 0, p = 2, |t| =
1, n = 2) implies the trivial bound dimTt(I) ≤ 1, which is
reached in this example.

Holonomic Functions
This notion was popularized for special functions in [16].
The technical definition is related to holonomic D-modules.
It turns out to be sufficient to consider ∂-finite ideals.

Proposition 2. Let I � Ox,t = C(x, t)〈∂x,t〉 be a left
ideal of dimension 0 of the differential Ore algebra (σi = Id,
δi = d/dxi). Then I has polynomial growth 1.

Proof. The crucial property is that in the differential
setting, the leading coefficient of an element does not change
upon multiplication by some ∂i (see Table 2). The result
is a corollary of Thm. 2, which is applicable since I has
dimension 0. The polynomials Ps defined in the theorem
here take the form Ps = Ls, having degree O(s1) and thereby
proving a polynomial growth 1.

Put together, Prop. 2 and Thm. 3 imply dim Tt(I) = 0,
and thus recover the celebrated closure of holonomic func-
tions under definite integration as a special case.

Stirling-like sequences
This notion was introduced in [9]. A sequence is called
Stirling-like if it is annihilated by an ideal of operators

〈u + vSα
k Sβ

m1
+ wSγ

k Sδ
m1

, s2 + t2Sm2
, . . . , sn + tnSmn〉,

where u, v, w, s2, . . . , sn, t2, . . . , tn are polynomials that split
into integer-linear factors, and α, β, γ, δ are integers subject
to a certain nondegeneracy condition. A typical example
is
`

m

k

´

S2(k, m), where S2 refers to the Stirling numbers of
the second kind. It was shown in [9] that such ideals lead



to non-trivial creative telescoping relations whenever n ≥ 2.
These ideals have dimension 1 and polynomial growth 1, so
our theorem (with d = 1, p = 1, |t| = 1, n ≥ 3) includes this
result as a special case.

Abel-type sequences
This notion was introduced in [12]. A sequence is called
Abel-type if it can be written in the form

um,k(k + r)k(m − k + s)m−k r

k + r

for some proper hypergeometric term um,k. The annihilat-
ing ideals of such sequences can be written

〈aSmSk − bSr, cSm − dSs〉

for certain polynomials a, b, c, d. It was shown in [12] that
such ideals lead to non-trivial creative telescoping relations.
These ideals have dimension 2, and if um,k is as in (6), then

Ps(m,r, s, k) = P̃s(m,k) ×
Y

|j|≤s

(k + r + j)(m − k + j),

with P̃s(m,k) being the polynomial sequence stated above
for proper hypergeometric terms, justifies that their polyno-
mial growth is 1, so our theorem (with d = 2, p = 1, |t| = 1,
n = 4) includes this result as a special case, too.

Bernoulli examples
Chen and Sun [4] do not give a formal description of the class
of summands to which their algorithm is applicable. Most
of their examples concern sums with summands of the form
hk,m1,m2

Bak+bm1+cm2
where h is a hypergeometric term,

B refers to Bernoulli numbers, Bernoulli polynomials, Eu-
ler numbers, or Euler polynomials, and a, b, c are specific
integers. The annihilating ideals of such objects have di-
mension 1, and, if h is proper hypergeometric, polynomial
growth 1. In this case, our theorem guarantees the success
of creative telescoping.

Further examples
Our theorem also extends to sequences and functions for
which no special purpose summation or integration algo-
rithm has been formulated so far. For instance, the sequence
fn,m,k,l considered in Examples 4 and 5 is not Stirling-like,
but only annihilated by an ideal of dimension 2 and poly-
nomial growth 1. Our Theorem predicts the existence of
creative telescoping relations (cf. also Examples 6 and 7 be-
low). We list some further identities from the literature that
were previously considered inaccessible to computer alge-
bra, but that can be proven with creative telescoping. In
all the following identities, the integrand is not holonomic,
but annihilated by an ideal of dimension 1 and polynomial
growth 1, so our theorem predicts a priori that relations for
the integral must exist.
Z ∞

0

xk−1ζ(n, α + βx) dx = β−kB(k, n − k)ζ(n − k, α),

Z ∞

0

xα−1 Lin(−xy)dx =
π(−α)ny−α

sin(απ)
,

Z ∞

0

xk−1 exp(xy)Γ(n, xy) dx =
πy−k

sin((n + k)π)

Γ(k)

Γ(1 − n)
,

Z ∞

0

x

(x2 + y2) sin(xz)
dx =

π

2 sinh(yz)
.

In these identities, B refers to the Beta-function, ζ to the
Hurwitz zeta function, Lin refers to the nth polylogarithm,
and Γ to the incomplete Gamma function. Greek letters re-
fer to parameters, n, m, k are discrete variables, x, y, z are
continuous ones. Note that the polylogarithm, while holo-
nomic for each specific n, is not even ∂-finite when n is
“symbolic”. Note also that the integrand of the last integral,
despite being elementary, is not holonomic.

All these identities are proven by computing operators an-
nihilating both sides, by making use of closure properties for
sums, products or ∂ (Section 3) and by creative telescoping
in the case of definite sums and integrals (Section 5 below).
If the operators found in this way generate an ideal of di-
mension 0, then proving the identity reduces to verifying a
finite number of initial values. For higher dimensional ideals,
the number of initial values to be checked may be infinite.
For example, for completing the proof of the first integral
identity above, it remains to check the identity for k = 1
and all n ≥ 0:

Z ∞

0

ζ(n, α + βx)dx =
1

β(n − 1)
ζ(n − 1, α),

an identity not much easier than the original one. In many
instances, however, the identities to be verified as initial
conditions are trivial.

5. ALGORITHMS FOR SUMMATION AND
INTEGRATION

5.1 A Fasenmyer-Style Algorithm
The first algorithmic approach to symbolic summation

goes back to Fasenmyer and was formulated for the sum-
mation of hypergeometric terms [13]. The following gener-
alized version of her algorithm is applicable to any given
annihilating ideal in an Ore algebra.

The algorithm follows from the proof of Thm. 3. Given an
ideal I�C(x, t)〈∂x , ∂t〉, the algorithm searches for elements
of I ∩ C(x)〈∂x, ∂t〉 (called t-free operators). Proceeding by
increasing total degree, it makes an ansatz with undeter-
mined coefficients for such an operator, reduces it to normal
form with respect to a Gröbner basis for I , brings the nor-
mal form to a common denominator, and then compares the
coefficients with respect to the t’s of the numerator to zero.
This gives a linear system of equations over C(x) for the
undetermined coefficients, which is then solved. If the sys-
tem has no solution, the procedure is repeated with a larger
total degree. If a solution is found, it leads to an operator
that can be written in the form (5)

A + ∂t1B1 + · · · + ∂t|t|B|t| ∈ I

where 0 6= A ∈ Tt(I), by following the steps at the end of
the proof that ensure A 6= 0.

The procedure can be repeated to search for further op-
erators in Tt(I) until all operators found generate an ideal
of the dimension predicted by Thm. 3.

Example 6. For the ideal I from Example 4, with k as
summation variable, this algorithm discovers a first operator
for total degree 4 that may be written in the form

Sm + Sl + (2 + l + m)SlSm − SlSmSn

+ (Sk − 1)((m + 1)SmSl − SmSnSl + Sl).



As a consequence, we find

A := Sm + Sl + (2 + l + m)SlSm − SlSmSn ∈ Tk(I).

Therefore A belongs to the annihilating ideal of the sum

X

k

 

n

k

!

S2(k, l)S2(n − k, m).

This proves that the sum is equal to
`

l+m

l

´

S2(n, l + m): A
also belongs to the annihilating ideal of that quantity, and it
is easily seen to agree with the sum for n = 0 and arbitrary
l and m.

5.2 A Zeilberger-Style Algorithm
Zeilberger’s “fast algorithm” was originally formulated for

summation of proper hypergeometric terms only [15], then a
differential analog was given for hyperexponential functions
by Almkvist and Zeilberger [2]. This was later extended
by Chyzak [5] to an integration/summation algorithm for
arbitrary ∂-finite functions, with termination guaranteed in
the holonomic case. We extend this algorithm further to
the case of integrands or summands defined by arbitrary
annihilating ideals.

The fast approach is applicable only for single sums or
integrals, i.e., if |t| = 1. (Refer however to [5, Sec. 3.3] for an
iterated treatment of summations and integrations.) Let I �

C(x, t)〈∂x, ∂t〉 be given by a Gröbner basis G with respect
to a graded order. The algorithm searches for operators

A + ∂tB ∈ I

with A ∈ C(x)〈∂x〉 and B ∈ C(x, t)〈∂x, ∂t〉. Proceeding by
increasing total degree, it makes an ansatz for both A and B
and computes the normal form of Q := A+∂tB with respect
to G. Without loss of generality, only irreducible terms need
to be included in the ansatz for B. In order for Q to belong
to I , it is necessary and sufficient that all the coefficients
in the normal form of Q be zero. Comparing them to zero
leads to a system of first order linear functional equations
(a “coupled system”), which is then solved. While in the
∂-finite case this system is always square, in the case of pos-
itive dimension it may be rectangular, owing to extraneous
equations potentially being introduced by irreducible terms
in ∂tB of degree d + 1. However, it is always possible to
separate the equations into a square coupled system (that
can be solved in a first step as in Chyzak’s algorithm) and
a system with additional linear algebraic constraints (that
can be accommodated in a second step by computing suit-
able linear combinations of the solutions obtained in the first
step). Any solution A+∂tB ∈ I found in this way gives rise
to an element A ∈ Tt(I). The procedure may be repeated
until the elements of Tt(I) found in this way generate an
ideal in C(x)〈∂x〉 whose dimension matches the dimension
predicted by Thm. 3.

Example 7. Applying the algorithm to the ideal I of Ex-
ample 4 with respect to k, we obtain a coupled system of size
5 × 14 when A and B are assumed to have total degree 2
and 1, respectively. This system has no solution. For total
degrees 3 and 2, respectively, the obtained system is of size
14 × 28 and has the nontrivial solution

A = Sm + Sl + (2 + l + m)SlSm − SlSmSn,

B =
k(k + 1)

k2 − 1 − n − kn
Sl +

(m + 1)k

k − n − 1
SmSl,

hence A + (Sk − 1)B ∈ I, and A ∈ Tk(I).

6. FINAL COMMENTS
We have seen that algorithms for special functions doing

computations in Ore algebras are not restricted to special
functions with ∂-finite annihilating ideals. Instead, both
closure properties algorithms and algorithms for definite in-
tegration and summation can be formulated for arbitrary
ideals. The treatment could be extended further by includ-
ing, for instance, ideals of Laurent Ore algebras.

Our generalized algorithms rely on the notion of ideal di-
mension as well as on the notion of polynomial growth we
introduced in Definition 3. According to this definition, the
polynomial growth depends on the monomial order imposed
on the underlying algebra. Future research will focus on re-
ducing the notion of polynomial growth to an intrinsic prop-
erty of the ideal at hand, as well as to devising an algorithm
for computing the polynomial growth.
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