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ABSTRACT
We define a class of special function inequalities that con-
tains many classical examples, such as the Cauchy-Schwarz
inequality, and introduce a proving procedure based on in-
duction and Cylindrical Algebraic Decomposition. We pre-
sent an array of non-trivial examples that can be done by
our method and have not been proven automatically before.
Some difficult well-known inequalities such as the Askey-
Gasper inequality and Vietoris’s inequality lie in our class
as well, but we do not know if our proving procedure termi-
nates for them.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Inequalities, Special functions, Computer Proofs, CAD

1. INTRODUCTION
While there is a panoply of algorithms for proving combi-
natorial and special function identities, not much is known
concerning the algorithmic treatment of inequalities. The
importance of studying inequalities hardly needs to be em-
phasized. For instance, virtually any proof in analysis con-
tains an estimation of some sort. There are classical text-
books [12, 15, 16, 22] on this broad subject, but, of course,
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the possibility of proving a given inequality automatically
has some obvious advantages in comparison to table lookup.

For some classical inequalities there is an underlying identity
that makes the truth of the inequality obvious. For instance,
Lagrange’s identity

n�
k=1

x2
k

n�
k=1

y2
k − � n�

k=1

xkyk � 2

=
�

1≤k<i≤n

(xkyi − xiyk)2

immediately implies the Cauchy-Schwarz inequality

� n�
k=1

xkyk � 2

≤
n�

k=1

x2
k

n�
k=1

y2
k (n ≥ 0). (1)

Askey and Gasper [2] found an identity that establishes the
inequality

n�
k=0

P
(α,0)
k (x) > 0 (α > −1,−1 < x ≤ 1) (2)

for a sum of Jacobi polynomials, which was applied in the
first proof of the Bieberbach conjecture [9]. Regardless of
whether such an identity is algorithmically provable [14, 10],
finding a suitable one by human insight is indispensable for
this line of attack.

The inequality

∞�
k=n

1

k2 � n+k
k � <

2

n � 2n
n � (n ≥ 1) (3)

arose in work by Knopp and Schur [21]. Paule’s proof [18]
of (3) contains an application of the extended Gosper algo-
rithm [20]. Also, Paule [17] has applied several computer
algebra tools in a proof of another inequality, which implies
a conjecture of Knuth. Although computer algebra assisted,
both proofs are altogether by no means mechanical.

The present paper is a first attempt at proving inequalities
entirely automatically. All inequalities under consideration
must depend on a discrete parameter, such as n in (1), (2)
and (3). Our method is based on using CAD for construct-
ing an induction proof for the conjectured inequality, given
recurrence relations defining the involved quantities as spec-
ified in Section 2. The proving procedure, presented in Sec-
tion 3, is not backed by a termination theorem, but it works
surprisingly well on concrete examples. Section 4 is devoted

1



to a collection of nontrivial examples that we were able to
tacle with our method, and in Section 5 we show how our
procedure can be applied to the problem of analyzing the
sign pattern of oscillating sequences.

2. PRELIMINARIES

2.1 Difference Fields and Sequences
A commutative ring (resp. a field) K together with a dis-
tinguished endomorphism s : K → K is called a difference

ring (resp. a difference field). The theory of difference rings
and difference fields [6] allows an algebraic treatment of dif-
ference equations and sequences, quite in analogy to the
treatment of differential equations and analytic functions
by differential algebra.

If K = (K, s) is a difference field, then for any r ∈ � and
any rat ∈ K′ := K(t, st , . . . , sr−1t), we can turn K ′ into a
difference field by extending s to s′ : K′ → K′ via

s′(sit) := si+1t i = 0, . . . , r − 2,

s′(sr−1t) := rat(t, st , . . . , sr−1t).

The objects t, st , . . . , sr−1t are understood as algebraically
independent indeterminates over K. We say that K ′ is ob-
tained from K by adjoining a difference variable t to K. The
number r is called the order of t. We write K ′ := K{t} and
use the same symbol, s, for s and s′. Difference fields can
be constructed by starting with a field C of constants (i.e.,
s(c) = c for all c ∈ C) and successively adjoining difference
variables t1, t2, . . . , tm as above. The resulting difference
field is denoted by C{t1, . . . , tm}. More general construc-
tions are possible [6], but not of interest in this paper.

A difference variable may serve as an algebraic formaliza-
tion of a sequence. Let K = C{t1, . . . , tm} be a difference
field and r1, . . . , rm be the respective orders of t1, . . . , tm.

Then K uniquely defines sequences (f
(1)
n )n≥1, . . . , (f

(m)
n )n≥1

over C as soon as initial values f
(i)
1 , . . . , f

(i)
ri

∈ C are chosen
for each i. For bad choices of initial values, the sequences
may not be well-defined, because iterated application of the
recurrence may eventually lead to a division by zero.

For the connection of difference fields with sequences, we in-
troduce the following notation. Suppose K = C{t1, . . . , tm}
defines the sequences (f

(1)
n )n≥1, . . . , (f

(m)
n )n≥1 and let k ∈

K. Then we write [k] for the sequence represented by the
rational function k and [k]n for its nth element. If, for ex-

ample, k = t1+s3t2
t2
3
−5

, then

[k] =

�
f

(1)
n + f

(2)
n+3

(f
(3)
n )2 − 5 �

n≥1

and [k]7 =
f

(1)
7 + f

(2)
10

(f
(3)
7 )2 − 5

∈ C.

It is possible to define quite a number of interesting se-
quences by means of difference fields, including, e.g., all
holonomic sequences. Many examples and useful closure
properties for the class of expressible sequences are given
in [13, 14].

2.2 Inequalities and Formulas

We consider formulas involving inequalities for sequences
over � . Reasonable computability assumptions on the ac-
tually occurring real numbers are tacitly made throughout.

Let m sequences (f
(1)
n )n≥1, . . . , (f

(m)
n )n≥1 be given by a dif-

ference field K = � {t1, . . . , tm} and initial values. An
atomic formula over K is of the form k1 ♦ k2 with k1, k2 ∈
K and ♦ ∈ {=, 6=,≤,≥, <,>}. A formula over K is a
boolean combination of true, false, and atomic formulas
over K. For example,

φ = t1 > 0 ∧ ¬(s2t1 < 1 ∨ (st2 + 1)3 ≤ t2)

is a formula over � {t1, t2}. The definition of s is extended
to formulas in the obvious way.

Formulas over K give rise to formulas for sequences. The
meaning of square brackets introduced in the previous sec-
tion is extended to formulas. Continuing the example, we
have

[φ] = f (1)
n > 0 ∧ ¬(f

(1)
n+2 < 1 ∨ (f

(2)
n+1 + 1)3 ≤ f (2)

n ).

By [φ]1, [φ]2, . . . we denote the truth value of [φ] for setting
n = 1, 2, . . . . The truth of [φ]1, [φ]2, . . . can be easily checked
by inspection. The formula [φ] is said to be valid, if it is true
for all n ∈ � , i.e., if [φ]1, [φ]2, . . . all are true.

3. THE PROVING PROCEDURE
Similarly to algorithms for proving identities, which reduce
questions about recurrences to questions about algebraic
sets that can be answered by Gröbner basis techniques, we
will reduce the question whether a formula [φ] is valid to
questions about semi-algebraic sets which can be answered
by Cylindrical Algebraic Decomposition [7, 5].

As a subroutine for the proving procedure given below, we
will use a function Reduce which transforms a formula φ over� {t1, . . . , tm} into an equivalent formula φ′ := Reduce(φ)
such that φ′ = false whenever φ is unsatisfiable. Here we
regard � {t1, . . . , tm} just as a field of rational functions
over � , ignoring its difference field structure, and equiva-
lence and satisfiability are meant in this sense: the formula
φ′ ⇐⇒ φ is true if it is true for any choice of real numbers
in place of the sitj , and φ is called unsatisfiable if it is not
true for any choice of real numbers in place of the sitj . For
sets of formulas, we define

Reduce({φ1, . . . , φn}) := Reduce(φ1 ∧ · · · ∧ φn).

Evidently, a function Reduce can be implemented by a stan-
dard application of CAD.

The basic idea of our procedure for proving a formula φ for
sequences defined by difference fields is as follows: Like in
the algorithm introduced in [13, 14] for identities, we want
to construct a proof by complete induction on n. To this
end, we first choose a number r0 and try to refute

φ ∧ · · · ∧ sr0−1(φ) ∧ ¬sr0(φ) (4)

by Reduce. If (4) is indeed inconsistent, we have obtained
the induction step for proving the desired inequality. If the
refutation does not succeed, we augment (4) in an appro-
priate way, try to refute this new formula, and, if necessary,
iterate. The input of the procedure may include a knowledge
base Φ of known valid formulas.
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INPUT:
– sequences (f

(i)
n )n≥0 (i = 1, . . . , m) defined by a difference

field � {t1, . . . , tm} and initial values.
– a formula φ over � {t1, . . . , tm} to be proven
– a set Φ of formulas over � {t1, . . . , tm} s.t. [ψ] is valid for
all ψ ∈ Φ (Φ = ∅ allowed)

OUTPUT:
– true if [φ] is valid, false otherwise.

1. i := 0

2. Choose a number r0 ∈ �
3. If [φ]n is false for some n < r0, return false

4. Θ := Φ ∪ {φ, . . . , sr0−1(φ)}
ψ0 := Reduce(Θ ∪ {¬sr0 (φ)})

5. While ψi 6= false repeat

Choose a number ri ∈ �
If [ψi]n is true for some n < ri, return false
Θ := Θ ∪ {¬ψi, . . . ,¬sri−1(ψi)}
ψi+1 := Reduce(Θ ∪ {sri (ψi)})
i := i+ 1

6. Return true

Correctness of the procedure is ensured by the following the-
orem.

Theorem 1. If the procedure above returns true, then [φ]
is valid. If it returns false, then [φ] is violated for at least

one n ∈ � 0.

Proof. Suppose the procedure returns true after ` it-
erations of the while loop, i.e., ψ` = false. We show by
induction on n that [φ]n is true for all n ≥ 0 and that [ψk]n
is false for all n ≥ 0 (k = 0, . . . , `− 1).

W.l.o.g. we may assume Φ = ∅. For convenience of nota-
tion define χ0 := φ and χk := ¬ψk−1 for k = 1, . . . , ` + 1.
Step 3 and line 2 of step 5 assert that [χk]n is true for
n = 0, . . . , rk − 1. This serves as induction base. As for
the induction step, we show that

`�

i=0

ri−1�

j=0

sj(χi) =⇒
`�

i=0

sri(χi). (5)

According to the specification of Reduce we have

χk ⇐⇒ � k−1�

i=0

ri−1�

j=0

sj(χi) =⇒ srk−1(χk−1) � (6)

for k = 1, . . . , `+ 1. If the left hand side of (5) is true, then
in particular each χk and each

k−1�

i=0

ri−1�

j=0

sj(χi)

is true (k = 1, . . . , `), so by (6) each srk−1(χk−1) is true (k =
1, . . . , `). Furthermore, χ`+1 = ¬false, hence, again by (6)
and the left hand side of (5), also sr`(χ`) is true. Altogether

we have shown that the right hand side of (5) is true. This
establishes correctness if the procedure returns true.

Now consider the case where the procedure returns false.
Then [χk]n is false for some k and some n. Repeated usage
of (6) shows that then [χ0]r0+r1+···+rk

is false, and hence
[φ] is not valid.

Of course the method can be easily adapted to prove the
validity of formulas [φ] for n > n0 instead of n > 0 for
any given n0 ∈ � . Furthermore, it is also possible to allow
continuous parameters x in the formulas, and constraints
can also be specified for those parameters.

Unfortunately there is no guarantee that the procedure will
terminate. In fact, there are examples where it does not.
The simplest example where nontermination occurs might
be the inequality 3n > 2n: Define s(t1) = 2t1, s(t2) = 3t2
and consider φ := t1 < t2. Then an easy induction shows

ψi ⇐⇒ t1 < 0 ∧ ( 2
3
)r0+···+ri−1t1 < t2 ≤ ( 2

3
)r0+···+rit1,

and this is consistent for any choice of i and r0, . . . , ri.

In order to get a proof for 3n > 2n, it is necessary to sup-
ply additional information. For example, termination can
be obtained by adding 2n > 0 or 3n > 0 to the knowledge
base Φ. This is typical: for most of the examples given
in Section 4.1 below, we had to supply additional informa-
tion as well. However, it is usually sufficient to supply only
trivial constraints such as n > 0 etc. to make the proof go
through. It is also worth noting that additional informa-
tion, which was supplied for a proof, often can itself well be
proven correct by the same procedure, if desired.

4. EXAMPLES
This section contains a collection of examples. We begin
with a detailed execution of the proving procedure for prov-
ing the simple inequality

n!
n�

k=0

(−1)k

k!
> 0 (n ≥ 2),

which asserts the positivity of the derangement numbers. A
suitable difference field can be constructed from the subex-
pressions of the formula. Take � {t1, t2, t3, t4} with

s(t1) = t1 + 1 ( t1 ∼ n )

s(t2) = (t1 + 1)t2 ( t2 ∼ n! )

s(t3) = −t3 ( t3 ∼ (−1)n )

s(t4) = t4 − t3
(t1 + 1)t2

( t4 ∼ Σ )

The construction of these recurrences is the same as in [14].
Let us assume Φ = {t1 > 0} is the set of known facts. We
have to apply the procedure to φ = t2t4 > 0.

We choose r0 := 1. [φ]2 is true: 2(1 − 1 + 1
2
) = 1 > 0. We

set

ψ0 := Reduce(Φ ∪ {t2t4 > 0, s(t2t4) ≤ 0}).
A suitable choice for Reduce is Mathematica’s command
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CylindricalDecomposition [23], which returns

ψ0 = t1 > 0 ∧ � t2 < 0 ∧ t3 < 0 ∧ t3
1 + t1

≤ t4 < 0

∨ t2 > 0 ∧ t3 > 0 ∧ 0 < t4 ≤ t3
1 + t1 � .

This is not “false”, so we have to continue the while loop.
[ψ0]2 gives false. We choose r1 = 1 and compute

ψ1 := Reduce(Φ ∪ {t4 > 0,¬ψ0, s(ψ0)}).
Again using Mathematica’s CylindricalDecomposition, we
now obtain ψ1 = false, hence the proof is complete.

The choice of the values ri in the procedure is arbitrary.
Different choices lead to the same result, but may differ
with respect to efficiency. If we had chosen r0 = 2 instead
of r0 = 1, we would have found ψ0 = false and an iteration
would not have been necessary.

4.1 Example Gallery
Our method can be successfully applied to a number of non-
trivial problems from textbooks on inequalities like [12, 15,
16]. We were able to prove, among others, the following ex-
amples by our method, using only trivial facts like n > 0 as
additional knowledge.

To our knowledge, none of these inequalities can been proven
by any other known symbolic computation method.

• 3.27 in [15]:

1

4n
<

1

16n

�
2n

n � 2

<
1

3n + 1
(n ≥ 2)

• Levin’s inequality (3.2.12 in [16]):

1 ≤ 1 + nxn+1

(1 + n)xn
≤ 1 +

1

2
n(1 − x)2x−n

(0 < x ≤ 1, n ≥ 0)

• 3.3.38 in [16]: If Fn(x) denotes the nth Fibonacci poly-
nomial, defined by

Fn+2(x) = xFn+1(x) + Fn(x), F1(x) = 1, F2(x) = x,

then

Fn(x)2 ≤ (x2 − 1)2(x2 + 2)n−3 (n ≥ 3, x ∈ � )

There is no need to restrict the defining recurrences to ra-
tional functions. Inequalities involving algebraic functions
can be treated as well, provided that the algebraic functions
are simple enough that the CAD implementation can deal
with them. This makes it possible to automatize the proofs
for the following inequalities:

• 4.15 in [15]: ���� n�
k=1

k2 ≥ 3

���� n�
k=1

k3 (n ≥ 1)

(ignoring the closed forms for the sums) and also its
more interesting “converse”

� n�
k=1

√
k � 2

≤ � n�
k=1

3
√
k � 3

(n ≥ 1)

• 11.1 in [15]:����
n + � (n − 1) + � · · · + � 2 +

√
1 <

√
n+ 1

(n ≥ 1)

Another bunch of interesting examples makes use of the
idea that was introduced in [14], by which it is possible to
bring sequences of variables (xn)n≥1 into the scope of our
approach. The idea is to regard xn, xn+1, xn+2, . . . as a se-
quence without defining recurrence, and to introduce a fresh
variable upon each shift. See [14] for details. Using this idea,
it is possible to prove the Cauchy-Schwarz inequality entirely
automatically without resorting to an underlying identity as
outlined in the introduction. The following inequalities be-
come completely routine, too.

• Thm. 6 on p. 112 in [16]:

n�
k=1

(−1)k−1a2
k ≥ � n�

k=1

(−1)k−1ak � 2

if (ak)k≥1 is is positive and decreasing

• Variations of 7.31 and 7.32 from [15]:

n�
k=2

k�
i=1

xi

k−1�
i=1

xi

>
n2

n− 1
,

n�
k=2

xk

k−1�
i=1

xi

>
n

n− 1
,

where xk > 0, x2 > 4x1, and n ≥ 2.

• The Weierstraß inequalities (3.2.37 in [16]):

1

1 −
n�

k=1

ak

>
n�

k=1

(1 + ak) > 1 +
n�

k=1

ak,

1

1 +
n�

k=1

ak

>

n�
k=1

(1 − ak) > 1 −
n�

k=1

ak

(n ≥ 1) for 0 < ak < 1 with
� n

k=1 ak < 1.

• An inequality of Beesack [3],

n�
k=1

� k�
i=1

xi � β

xα
i ≤ � n�

k=1

xk � α+β

(n ≥ 1)

for xk > 0 and α ≥ 1, α + β ≥ 1, can be done for
specific values α ∈ � , β ∈ � , e.g., for α = 2, β = −1.

We are also able to prove inequality 5.16 from [15],

n�
k=1

sin(kx) ≥ 1

2
sin(nx) (0 ≤ x ≤ π, n ≥ 1),
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using

sin((n+ 2)x) = 2 cosx sin((n+ 1)x) − sin(nx)

as defining recurrence and the identity

(cos2 x− 1) − sin2(nx) − 2 cos x sin(nx) sin((n+ 1)x)

− sin2((n+ 1)x) = 1 (n ∈ � )

as well as the facts −1 ≤ cos x ≤ 1 and −1 ≤ sin(nx) ≤ 1 as
additional knowledge. The figure below shows the graph of

fn(x) :=
n�

k=1

sin(kx) − 1

2
sin(nx)

on 0 ≤ x ≤ π for n = 2, 3, 4, 5, suggesting the validity of the
inequality for those special values of n.

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

Inequalities which are not amenable to our proving proce-
dure can sometimes be rewritten such as to make the prov-
ing procedure applicable. As an example, consider inequal-
ity (3) of Knopp and Schur. We have the relation

∞�
k=1

1

k2 � k+n
n � = ψ′(n + 1) =

π2

6
− H(2)

n

where the first identity was provided by Mathematica, and

the second follows from Thm. 1.2.7 in [1]. H
(2)
n =

� n
k=1 1/k2

denotes the harmonic number of second order and ψ the
digamma function [1]. Zeilberger’s algorithm [19, 20] deliv-
ers

n−1�
k=1

1

k2 � k+n
n � =

n−1�
k=1

3k2 + 3k + 1

2(k + 1)(2k + 1)k2 � 2k−1
k−1 � − 1

(k + 1)2

by which (3) simplifies to

π2

6
− 1 −

n−1�
k=1

3k2 + 3k + 1

k2(k + 1)(2k + 1) � 2k
k � <

2

n � 2n
n � ,

and this is indeed in the scope of our method. A minor
obstacle is the fact that π is not algebraic and might cause
difficulties in the CAD computations, but these are easily
circumvented by regarding π as a parameter with the re-
striction 3 < π < 4. In this setup the proof is successful.

The examples presented in this section are only a small se-
lection of a large number of inequalities, mainly from [15,
16], that we were able to verify by means of our method.
A collection of further examples is provided in form of a
Mathematica notebook which is available on the world wide
web [11]. Also details about the automated proofs for all the
inequalities mentioned in this paper can be found in this file.

4.2 Difficult Examples
There are some prominent examples of quite difficult in-
equalities that also fit well into the class of inequalities we
consider. One example is the Askey-Gasper inequality men-
tioned in the introduction. This inequality reduces for α = 0
to Fejér’s inequality [1]. Another example is the inequality
of Vietoris [15, § 0.8]: if (an)n≥1 is positive, decreasing, and
satisfies

a2k ≤ 2k − 1

2k
a2k−1 (1 ≤ k ≤ n/2)

then
n�

k=1

ak sin(kx) > 0 (0 < x < π).

Choosing ak = 1/k gives the Fejér-Jackson inequality [15]

n�
k=1

sin(kx)

k
≥ 0 (0 < x < π,n ≥ 1).

As opposed to the examples of Section 4.1, which could all
be completed with a negligible amount of CPU time, we did
not succeed in proving any of these outstanding inequalities.
Already in the second iteration of the proving procedure, the
CAD computations exceed our memory capacity (1Gb). We
have tried both Mathematica’s CAD implementation [23]
and the QEPCAD system [8]. It is not clear whether the
procedure terminates on any of these examples.

5. APPLICATION: SIGN PATTERNS OF C-
FINITE SEQUENCES

The procedure of Section 3 can be modified slightly in order
to analyze the sign patterns of oscillating sequences. Con-
sider C-finite sequences (fn)n≥0 defined by linear homoge-
neous recurrences with constant coefficients, for example

f0 = 2 +
√

2, f1 = 2 +
√

10, f2 = −2 + 5
√

2

fn = (4 +
√

5)fn−1 − (5 + 4
√

5)fn−2 + 5
√

5fn−3 (n > 3).

The initial values and recurrence coefficients are chosen such
that (fn)n≥1 has the closed form

fn =
√

2 5n/2(1 − 2 sin(nθ − π
4
)) (n ≥ 0)

with θ = arctan 1
2
. It is well known [4] that the numbers

(nθ − π
4
) mod 2π lie dense in the interval [0, 2π], hence fn

clearly has infinitely many positive and infinitely many neg-
ative values. Our goal is to obtain finer information on the
sign of fn.

As additional knowledge, we use the identity

25f2
n − 10

11
(14 + 13

√
5)fnfn+1 − 20

11
(2 − 6

√
5)fnfn+2

+ (6 + 4
√

5)f2
n+1 + f2

n+2 − 2
11

(14 − 13
√

5)fn+1fn+2 = 0

which was found by undetermined ansatz and verified by the
algorithm proposed in [13].

In order to study the sign pattern of (fn)n≥1, we use the
procedure of Section 3 to prove that a certain sequence of
sign changes determines the sign of the next value. Indeed,
if � {t} is a difference ring where t represents the sequence
(fn)n≥1, then

Reduce({id}, {t ≥ 0, s(t) < 0}, {s2(t) ≥ 0}) = false,
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where id is the identity above and Mathematica’s Cylindri-
calDecomposition is again used for Reduce. Hence, if fn ≥ 0
and fn+1 < 0, then also fn+2 < 0. Let us write this as
(+|0) − ⇒ −. In the same way, we can show that

(+|0) −− ⇒ −,
(+|0) −−− ⇒ −,
+ + + + + (+|0) −−−− ∗ ⇒ +,

(+|0) −−−− ∗ + ⇒ +,

(+|0) −−−− ∗ + + ⇒ +,

(+|0) −−−− ∗ + + + ⇒ +,

(+|0) −−−− ∗ + + + + ⇒ +,

(+|0) −−−− ∗ + + + + + ⇒ +,

(+|0) −−−− ∗ + + + + + + ⇒ +,

(+|0) −−−− ∗ + + + + + + + ⇒ +,

(+|0) −−−−(−|0) + + + + + + + + ⇒ +,

(+|0) −−−− ∗ + + + + + + + + ∗ ⇒ −
where ∗ may be +, 0, or −. Putting all these rules together,
we find that the sign pattern of (fn)n≥1 may be written in
the form

+9[+ | 0] −4 [− | 0],

i.e., there are alternating runs of nine positive and four neg-
ative values, but each run may be prolonged by one, or there
might be a zero between two runs. (Following standard no-
tation, we write [a] for “a or nothing,” a | b for “a or b,”
and an for n repetitions of a.)

In fact, the first values of the sequence have the signs

+3 −5 +9 −4 +9 −5 +9 −4 +10 −4 +9 −5 +9 −4 +9 · · ·
which is in accordance with the predicted pattern.

What can be said about the optional prolongations [+ | 0]
and [− | 0] in the pattern? When do they occur? By a more
careful application of the same technique, we obtained the
following refined description of the sign pattern:

(0 | +) +9 P 5 −5 +9P 4 −4 � − +9 P 4 � P (−5 +9 P 4)2 � −4 �

where P stands for the subpattern −4 +9 −5+9. This gives
much more detail compared to the first pattern, even though
it also doesn’t describe the pattern entirely. In this pattern,
there are only two uncertain signs per 674 values left.

The computations we did for the sign pattern analysis can
also be found in the Mathematica notebook [11].

6. CONCLUSION
Though inequalities are considered much harder than identi-
ties from a computer algebra viewpoint, inequalities are not
entirely out of the scope of symbolic methods. In this paper,
we have contributed a simple but powerful method for prov-
ing special function inequalities, based on a connection of
CAD with difference algebra. The method is strong enough
to succeed on a wide range of interesting examples using only
little – if any – support by the user. However, termination
is not guaranteed in general, and it would be interesting to
have a description of the class of inequalities where the pro-
cedure terminates. There might be manageable conditions

on the input recurrences that ensure termination, and the
class might enjoy some useful closure properties.
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[20] M. Petkovšek, H. Wilf, and D. Zeilberger. A = B. AK
Peters, Ltd., 1997.

[21] I. Schur and K. Knopp. Über die Herleitung der
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