# Computer Proofs for Polynomial Identities in Arbitrarily Many Variables 

Manuel Kauers

RISC-Linz, Austria

## Motivation

- For every $n \in \mathbb{N}$, we have

$$
\left(\sum_{k=1}^{n} x_{k}\right)^{3}=\sum_{i=1}^{n} x_{i}^{3}+3 \sum_{i=1}^{n} \sum_{j=1}^{i-1}\left(x_{i}^{2} x_{j}+x_{i} x_{j}^{2}\right)+6 \sum_{i=1}^{n} \sum_{j=1}^{i-1} \sum_{k=1}^{j-1} x_{i} x_{j} x_{k}
$$

## Motivation

- For every $n \in \mathbb{N}$, we have

$$
\left(\sum_{k=1}^{n} x_{k}\right)^{3}=\sum_{i=1}^{n} x_{i}^{3}+3 \sum_{i=1}^{n} \sum_{j=1}^{i-1}\left(x_{i}^{2} x_{j}+x_{i} x_{j}^{2}\right)+6 \sum_{i=1}^{n} \sum_{j=1}^{i-1} \sum_{k=1}^{j-1} x_{i} x_{j} x_{k}
$$

- For every given $n \in \mathbb{N}$, lhs and rhs are polynomials in $n$ variables.


## Motivation

- For every $n \in \mathbb{N}$, we have

$$
\left(\sum_{k=1}^{n} x_{k}\right)^{3}=\sum_{i=1}^{n} x_{i}^{3}+3 \sum_{i=1}^{n} \sum_{j=1}^{i-1}\left(x_{i}^{2} x_{j}+x_{i} x_{j}^{2}\right)+6 \sum_{i=1}^{n} \sum_{j=1}^{i-1} \sum_{k=1}^{j-1} x_{i} x_{j} x_{k}
$$

- For every given $n \in \mathbb{N}$, Ihs and rhs are polynomials in $n$ variables.
- Equality can be checked easily in this case.


## Motivation

- For every $n \in \mathbb{N}$, we have

$$
\left(\sum_{k=1}^{n} x_{k}\right)^{3}=\sum_{i=1}^{n} x_{i}^{3}+3 \sum_{i=1}^{n} \sum_{j=1}^{i-1}\left(x_{i}^{2} x_{j}+x_{i} x_{j}^{2}\right)+6 \sum_{i=1}^{n} \sum_{j=1}^{i-1} \sum_{k=1}^{j-1} x_{i} x_{j} x_{k}
$$

- For every given $n \in \mathbb{N}$, Ihs and rhs are polynomials in $n$ variables.
- Equality can be checked easily in this case.
- But how to prove the identity for general $n$ ?


## Motivation

- For every $n \in \mathbb{N}$, we have

$$
\left(\sum_{k=1}^{n} x_{k}\right)^{3}=\sum_{i=1}^{n} x_{i}^{3}+3 \sum_{i=1}^{n} \sum_{j=1}^{i-1}\left(x_{i}^{2} x_{j}+x_{i} x_{j}^{2}\right)+6 \sum_{i=1}^{n} \sum_{j=1}^{i-1} \sum_{k=1}^{j-1} x_{i} x_{j} x_{k}
$$

- For every given $n \in \mathbb{N}$, Ihs and rhs are polynomials in $n$ variables.
- Equality can be checked easily in this case.
- But how to prove the identity for general $n$ ?
- Can this been done algorithmically?


## Overview

## Admissible univariate sequences

Zero equivalence test for admissible sequences

Extension to arbitrarily many variables

## Admissible univariate sequences

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{1}(n)\right)_{n=1}^{\infty}$

$$
f_{1}(1), f_{1}(2), f_{1}(3) \text { : initial values of } f_{1}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{1}(n)\right)_{n=1}^{\infty}$

$$
\begin{gathered}
f_{1}(4)=p\left(f_{1}(1), f_{1}(2), f_{1}(3)\right) \\
p=\text { poly or } p=1 / \text { poly fixed }
\end{gathered}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{1}(n)\right)_{n=1}^{\infty}$

$$
\begin{gathered}
f_{1}(5)=p\left(f_{1}(2), f_{1}(3), f_{1}(4)\right) \\
p=\text { poly or } p=1 / \text { poly fixed }
\end{gathered}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{1}(n)\right)_{n=1}^{\infty}$

$$
\begin{gathered}
f_{1}(6)=p\left(f_{1}(3), f_{1}(4), f_{1}(5)\right) \\
p=\text { poly or } p=1 / \text { poly fixed }
\end{gathered}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{1}(n)\right)_{n=1}^{\infty}$

$$
\begin{gathered}
f_{1}(7)=p\left(f_{1}(4), f_{1}(5), f_{1}(6)\right) \\
p=\text { poly or } p=1 / \text { poly fixed }
\end{gathered}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{2}(n)\right)_{n=1}^{\infty}$

$$
f_{2}(1), f_{2}(2) \text { : initial values of } f_{2}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{2}(n)\right)_{n=1}^{\infty}$

$$
\begin{gathered}
f_{2}(3)=q\left(f_{2}(1), f_{2}(2), f_{1}(1), f_{1}(2), f_{1}(3)\right) \\
q=\text { poly or } q=1 / \text { poly fixed }
\end{gathered}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{2}(n)\right)_{n=1}^{\infty}$

$$
\begin{gathered}
f_{2}(4)=q\left(f_{2}(2), f_{2}(3), f_{1}(2), f_{1}(3), f_{1}(4)\right) \\
q=\text { poly or } q=1 / \text { poly fixed }
\end{gathered}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{2}(n)\right)_{n=1}^{\infty}$

$$
\begin{gathered}
f_{2}(5)=q\left(f_{2}(3), f_{2}(4), f_{1}(3), f_{1}(4), f_{1}(5)\right) \\
q=\text { poly or } q=1 / \text { poly fixed }
\end{gathered}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{2}(n)\right)_{n=1}^{\infty}$

$$
\begin{gathered}
f_{2}(6)=q\left(f_{2}(4), f_{2}(5), f_{1}(4), f_{1}(5), f_{1}(6)\right) \\
q=\text { poly or } q=1 / \text { poly fixed }
\end{gathered}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{2}(n)\right)_{n=1}^{\infty}$

$$
\begin{gathered}
f_{2}(7)=q\left(f_{2}(5), f_{2}(6), f_{1}(5), f_{1}(6), f_{1}(7)\right) \\
q=\text { poly or } q=1 / \text { poly fixed }
\end{gathered}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{3}(n)\right)_{n=1}^{\infty}$

$$
f_{3}(1), f_{3}(2), f_{3}(3), f_{3}(4) \text { : initial values of } f_{3}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{3}(n)\right)_{n=1}^{\infty}$

$$
\begin{gathered}
f_{3}(5)=r\left(f_{3}(1), \ldots, f_{3}(4), f_{2}(1), \ldots, f_{2}(5), f_{1}(1), \ldots, f_{1}(5)\right) \\
r=\text { poly or } r=1 / \text { poly fixed }
\end{gathered}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{3}(n)\right)_{n=1}^{\infty}$

$$
\begin{gathered}
f_{3}(6)=r\left(f_{3}(2), \ldots, f_{3}(5), f_{2}(2), \ldots, f_{2}(6), f_{1}(2), \ldots, f_{1}(6)\right) \\
r=\text { poly or } r=1 / \text { poly fixed }
\end{gathered}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Nested Polynomial Recurrences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $\left(f_{3}(n)\right)_{n=1}^{\infty}$

$$
\begin{gathered}
f_{3}(7)=r\left(f_{3}(3), \ldots, f_{3}(6), f_{2}(3), \ldots, f_{2}(7), f_{1}(3), \ldots, f_{1}(7)\right) \\
r=\text { poly or } r=1 / \text { poly fixed }
\end{gathered}
$$

| $f_{1}(1)$ | $f_{1}(2)$ | $f_{1}(3)$ | $f_{1}(4)$ | $f_{1}(5)$ | $f_{1}(6)$ | $f_{1}(7)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f_{2}(1)$ | $f_{2}(2)$ | $f_{2}(3)$ | $f_{2}(4)$ | $f_{2}(5)$ | $f_{2}(6)$ | $f_{2}(7)$ |
| $f_{3}(1)$ | $f_{3}(2)$ | $f_{3}(3)$ | $f_{3}(4)$ | $f_{3}(5)$ | $f_{3}(6)$ | $f_{3}(7)$ |

## Some admissible Sequences

Many sequences are admissible. For instance:

## Some admissible Sequences

Many sequences are admissible. For instance:

- holonomic sequences (hypergeometric sequences, orthogonal polynomials, etc.)


## Some admissible Sequences

Many sequences are admissible. For instance:

- holonomic sequences (hypergeometric sequences, orthogonal polynomials, etc.)
- sequences like $2^{2^{n}}$


## Some admissible Sequences

Many sequences are admissible. For instance:

- holonomic sequences (hypergeometric sequences, orthogonal polynomials, etc.)
- sequences like $2^{2^{n}}$
- rational functions of other admissible sequences


## Some admissible Sequences

Many sequences are admissible. For instance:

- holonomic sequences (hypergeometric sequences, orthogonal polynomials, etc.)
- sequences like $2^{2^{n}}$
- rational functions of other admissible sequences
- indefinite sums and products of other admissible sequences


## Some admissible Sequences

Many sequences are admissible. For instance:

- holonomic sequences (hypergeometric sequences, orthogonal polynomials, etc.)
- sequences like $2^{2^{n}}$
- rational functions of other admissible sequences
- indefinite sums and products of other admissible sequences
- indefinite continued fractions of other admissible sequences


## Zero equivalence test for admissible sequences

## Algebraic Representation of admissible Sequences

- Model admissible sequences by difference algebra concepts


## Algebraic Representation of admissible Sequences

- Model admissible sequences by difference algebra concepts
- Example:

| $f_{1}(n)$ | $f_{1}(n+1)$ | $f_{1}(n+2)$ | $\cdots$ |
| :--- | :--- | :--- | :--- |
| $f_{2}(n)$ | $f_{2}(n+1)$ | $f_{2}(n+2)$ | $\cdots$ |
| $f_{3}(n)$ | $f_{3}(n+1)$ | $f_{3}(n+2)$ | $\cdots$ |

## Algebraic Representation of admissible Sequences

- Model admissible sequences by difference algebra concepts
- Example:

| $f_{1}(n)$ | $f_{1}(n+1)$ | $f_{1}(n+2)$ | $\cdots$ |
| :--- | :--- | :--- | :--- |
| $f_{2}(n)$ | $f_{2}(n+1)$ | $f_{2}(n+2)$ | $\cdots$ |
| $f_{3}(n)$ | $f_{3}(n+1)$ | $f_{3}(n+2)$ | $\cdots$ |


| $t_{1,0}$ | $t_{1,1}$ | $t_{1,2}$ | $\cdots$ |
| :--- | :--- | :--- | :--- |
| $t_{2,0}$ | $t_{2,1}$ | $t_{2,2}$ | $\cdots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $\cdots$ |

## Algebraic Representation of admissible Sequences

- Model admissible sequences by difference algebra concepts
- Example:

| $f_{1}(n)$ | $f_{1}(n+1)$ | $f_{1}(n+2)$ | $\cdots$ |
| :--- | :--- | :--- | :--- |
| $f_{2}(n)$ | $f_{2}(n+1)$ | $f_{2}(n+2)$ | $\cdots$ |
| $f_{3}(n)$ | $f_{3}(n+1)$ | $f_{3}(n+2)$ | $\cdots$ |$. \rightsquigarrow$| $t_{1,0}$ | $t_{1,1}$ | $t_{1,2}$ | $\cdots$ |
| :--- | :--- | :--- | :--- |
| $t_{2,0}$ | $t_{2,1}$ | $t_{2,2}$ | $\cdots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $\cdots$ |

- Consider the $t_{i, j}$ as indeterminates of a polynomial ring


## Algebraic Representation of admissible Sequences

- Model admissible sequences by difference algebra concepts
- Example:

| $f_{1}(n)$ | $f_{1}(n+1)$ | $f_{1}(n+2)$ | $\cdots$ |
| :--- | :--- | :--- | :--- |
| $f_{2}(n)$ | $f_{2}(n+1)$ | $f_{2}(n+2)$ | $\cdots$ |
| $f_{3}(n)$ | $f_{3}(n+1)$ | $f_{3}(n+2)$ | $\cdots$ |

- Consider the $t_{i, j}$ as indeterminates of a polynomial ring
- The recurrence relations give rise to polynomial relations among these indeterminates.


## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$


## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$
- Idea: Use ideal arithmetic to construct an induction proof


## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$
- Idea: Use ideal arithmetic to construct an induction proof
- Observation: Every $t_{i, j}$ ( $j$ high enough) is "connected" with other indeterminates via a polynomial relation

$$
\underbrace{t_{i, j}-\text { poly }}_{=: d\left(t_{i, j}\right)}=0 \quad \text { or } \quad \underbrace{\text { poly } \cdot t_{i, j}-1}_{=: d\left(t_{i, j}\right)}=0
$$

The polynomial $d\left(t_{i, j}\right)$ is called the defining relation of $t_{i, j}$.

## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$

| $t_{1,0}$ | $t_{1,1}$ | $t_{1,2}$ | $d\left(t_{1,3}\right)$ | $d\left(t_{1,4}\right)$ | $t_{1,5}$ | $t_{1,6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{2,0}$ | $t_{2,1}$ | $d\left(t_{2,2}\right)$ | $d\left(t_{2,3}\right)$ | $d\left(t_{2,4}\right)$ | $t_{2,5}$ | $t_{2,6}$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $d\left(t_{3,4}\right)$ | $t_{3,5}$ | $t_{3,6}$ |

## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$

| $t_{1,0}$ | $t_{1,1}$ | $t_{1,2}$ | $d\left(t_{1,3}\right)$ | $d\left(t_{1,4}\right)$ | $t_{1,5}$ | $t_{1,6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{2,0}$ | $t_{2,1}$ | $d\left(t_{2,2}\right)$ | $d\left(t_{2,3}\right)$ | $d\left(t_{2,4}\right)$ | $t_{2,5}$ | $t_{2,6}$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $d\left(t_{3,4}\right)$ | $t_{3,5}$ | $t_{3,6}$ |
| $\underbrace{t_{3,0}}_{\stackrel{!}{=} 0 \text { by IH }}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$

| $t_{1,0}$ | $t_{1,1}$ | $t_{1,2}$ | $d\left(t_{1,3}\right)$ | $d\left(t_{1,4}\right)$ | $t_{1.5}$ | $t_{1,6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{2,0}$ | $t_{2,1}$ | $d\left(t_{2,2}\right)$ | $d\left(t_{2,3}\right)$ | $d\left(t_{2,4}\right)$ | $t_{2,5}$ | $t_{2,6}$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $d\left(t_{3,4}\right)$ | $t_{3,5}$ | $t_{3,6}$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ |  |  |  |

## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$

- This can be decided by a radical membership test in $K\left[t_{1,0}, \ldots, t_{3,4}\right]$


## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$



## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$



## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$



## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$

| $t_{1,0}$ | $t_{1,1}$ | $t_{1,2}$ | $d\left(t_{1,3}\right)$ | $d\left(t_{1,4}\right)$ | $d\left(t_{1,5}\right)$ | $d\left(t_{1,6}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{2,0}$ | $t_{2,1}$ | $d\left(t_{2,2}\right)$ | $d\left(t_{2,3}\right)$ | $d\left(t_{2,4}\right)$ | $d\left(t_{2,5}\right)$ | $d\left(t_{2,6}\right)$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $d\left(t_{3,4}\right)$ | $d\left(t_{3,5}\right)$ | $d\left(t_{3,6}\right)$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $t_{3,4}$ | $t_{3,5}$ | $?$ |

## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$

| $t_{1,0}$ | $t_{1,1}$ | $t_{1,2}$ | $d\left(t_{1,3}\right)$ | $d\left(t_{1,4}\right)$ | $d\left(t_{1,5}\right)$ | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{2,0}$ | $t_{2,1}$ | $d\left(t_{2,2}\right)$ | $d\left(t_{2,3}\right)$ | $d\left(t_{2,4}\right)$ | $d\left(t_{2,5}\right)$ | $\cdots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $d\left(t_{3,4}\right)$ | $d\left(t_{3,5}\right)$ | $\cdots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $t_{3,4}$ | $t_{3,5}$ | $\cdots$ |

- Finally, check sufficiently many initial values


## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$

| $t_{1,0}$ | $t_{1,1}$ | $t_{1,2}$ | $d\left(t_{1,3}\right)$ | $d\left(t_{1,4}\right)$ | $d\left(t_{1,5}\right)$ | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $t_{2,0}$ | $t_{2,1}$ | $d\left(t_{2,2}\right)$ | $d\left(t_{2,3}\right)$ | $d\left(t_{2,4}\right)$ | $d\left(t_{2,5}\right)$ | $\cdots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $d\left(t_{3,4}\right)$ | $d\left(t_{3,5}\right)$ | $\cdots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $t_{3,4}$ | $t_{3,5}$ | $\cdots$ |

- Finally, check sufficiently many initial values
- Correctness: complete induction on $n$


## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$

| $t_{1,0}$ | $t_{1,1}$ | $t_{1,2}$ | $d\left(t_{1,3}\right)$ | $d\left(t_{1,4}\right)$ | $d\left(t_{1,5}\right)$ | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{2,0}$ | $t_{2,1}$ | $d\left(t_{2,2}\right)$ | $d\left(t_{2,3}\right)$ | $d\left(t_{2,4}\right)$ | $d\left(t_{2,5}\right)$ | $\cdots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $d\left(t_{3,4}\right)$ | $d\left(t_{3,5}\right)$ | $\cdots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $t_{3,4}$ | $t_{3,5}$ | $\cdots$ |

- Finally, check sufficiently many initial values
- Correctness: complete induction on $n$
- Termination: see paper


## Extension to arbitrarily many variables

## Arbitrarily many Variables

- Goal: Handle identities with "arbitrarily many variables"


## Arbitrarily many Variables

- Goal: Handle identities with "arbitrarily many variables"
- Requirement: Find algebraic representation of variable sequences $\left(x_{n}\right)_{n=1}^{\infty}$


## Arbitrarily many Variables

- Goal: Handle identities with "arbitrarily many variables"
- Requirement: Find algebraic representation of variable sequences $\left(x_{n}\right)_{n=1}^{\infty}$
- Idea: Represent $f_{1}(n+i):=x_{n+i}$ by indeterminates $t_{1, i}$ without defining relation


## Arbitrarily many Variables

- Goal: Handle identities with "arbitrarily many variables"
- Requirement: Find algebraic representation of variable sequences $\left(x_{n}\right)_{n=1}^{\infty}$
- Idea: Represent $f_{1}(n+i):=x_{n+i}$ by indeterminates $t_{1, i}$ without defining relation
- Consequences:


## Arbitrarily many Variables

- Goal: Handle identities with "arbitrarily many variables"
- Requirement: Find algebraic representation of variable sequences $\left(x_{n}\right)_{n=1}^{\infty}$
- Idea: Represent $f_{1}(n+i):=x_{n+i}$ by indeterminates $t_{1, i}$ without defining relation
- Consequences:

1. Expressions involving $x_{n}$ can be represented

## Arbitrarily many Variables

- Goal: Handle identities with "arbitrarily many variables"
- Requirement: Find algebraic representation of variable sequences $\left(x_{n}\right)_{n=1}^{\infty}$
- Idea: Represent $f_{1}(n+i):=x_{n+i}$ by indeterminates $t_{1, i}$ without defining relation
- Consequences:

1. Expressions involving $x_{n}$ can be represented
2. The same algorithm is still applicable

## Arbitrarily many Variables

- Goal: Handle identities with "arbitrarily many variables"
- Requirement: Find algebraic representation of variable sequences $\left(x_{n}\right)_{n=1}^{\infty}$
- Idea: Represent $f_{1}(n+i):=x_{n+i}$ by indeterminates $t_{1, i}$ without defining relation
- Consequences:

1. Expressions involving $x_{n}$ can be represented
2. The same algorithm is still applicable
3. But it will not terminate in general

## Arbitrarily many Variables

- Goal: Handle identities with "arbitrarily many variables"
- Requirement: Find algebraic representation of variable sequences $\left(x_{n}\right)_{n=1}^{\infty}$
- Idea: Represent $f_{1}(n+i):=x_{n+i}$ by indeterminates $t_{1, i}$ without defining relation
- Consequences:

1. Expressions involving $x_{n}$ can be represented
2. The same algorithm is still applicable
3. But it will not terminate in general

- Fix: Put all $t_{i, j}$ without relations into the ground field


## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$


## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$
- Suppose $f_{1}(n)=x_{n}$ is free


## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$
- Suppose $f_{1}(n)=x_{n}$ is free

| $t_{1,0}$ | $t_{1,1}$ | $t_{1,2}$ | $t_{1,3}$ | $t_{1,4}$ | $t_{1,5}$ | ... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{2,0}$ | $t_{2,1}$ | $d\left(t_{2,2}\right)$ | $d\left(t_{2,3}\right)$ | $d\left(t_{2,4}\right)$ | $t_{2,5}$ | $\ldots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $d\left(t_{3,4}\right)$ | $t_{3,5}$ | $\ldots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ |  |  |  |

## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$
- Suppose $f_{1}(n)=x_{n}$ is free

| $t_{1,0}$ | $t_{1,1}$ | $t_{1,2}$ | $t_{1,3}$ | $t_{1,4}$ | $t_{1,5}$ | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{2,0}$ | $t_{2,1}$ | $d\left(t_{2,2}\right)$ | $d\left(t_{2,3}\right)$ | $d\left(t_{2,4}\right)$ | $t_{2,5}$ | $\ldots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $d\left(t_{3,4}\right)$ | $t_{3,5}$ | $\ldots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ |  |  |  |

- This can be decided by a radical membership test in $K\left(t_{1,0}, \ldots, t_{1,4}\right)\left[t_{2,0}, \ldots, t_{3,4}\right]$


## Proving Zero Equivalence of Admissible Sequences

- Goal: Show that $f_{3}(n)=0$ for all $n \in \mathbb{N}$
- Suppose $f_{1}(n)=x_{n}$ is free

| $t_{1,0}$ | $t_{1,1}$ | $t_{1,2}$ | $t_{1,3}$ | $t_{1,4}$ | $t_{1,5}$ | ... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{2,0}$ | $t_{2,1}$ | $d\left(t_{2,2}\right)$ | $d\left(t_{2,3}\right)$ | $d\left(t_{2,4}\right)$ | $t_{2,5}$ | $\ldots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ | $d\left(t_{3,4}\right)$ | $t_{3,5}$ | $\ldots$ |
| $t_{3,0}$ | $t_{3,1}$ | $t_{3,2}$ | $t_{3,3}$ |  |  |  |

- This can be decided by a radical membership test in $K\left(t_{1,0}, \ldots, t_{1,4}\right)\left[t_{2,0}, \ldots, t_{3,4}\right]$
- Everything else carries over literally


## Simple Example

Prove: $\sum_{k=0}^{n} \sum_{i=0}^{k} x_{i}=(n+1) \sum_{k=0}^{n} x_{k}-\sum_{k=0}^{n} k x_{k}$.

## Simple Example

Prove: $\sum_{k=0}^{n} \sum_{i=0}^{k} x_{i}=(n+1) \sum_{k=0}^{n} x_{k}-\sum_{k=0}^{n} k x_{k}$.
Step 0 Describe $f(n):=\mathrm{lhs}$ - rhs in terms of recurrences.

## Simple Example

Prove: $\sum_{k=0}^{n} \sum_{i=0}^{k} x_{i}=(n+1) \sum_{k=0}^{n} x_{k}-\sum_{k=0}^{n} k x_{k}$.
Step 0 Describe $f(n):=$ lhs - rhs in terms of recurrences.
$f_{0}(n)=x_{n} \quad$ no defining relation

## Simple Example

Prove: $\sum_{k=0}^{n} \sum_{i=0}^{k} x_{i}=(n+1) \sum_{k=0}^{n} x_{k}-\sum_{k=0}^{n} k x_{k}$.
Step 0 Describe $f(n):=$ lhs - rhs in terms of recurrences.
$f_{0}(n)=x_{n} \quad$ no defining relation
$f_{1}(n)=n \quad f_{1}(0)=0, f_{1}(n+1)=f_{1}(n)+1$

## Simple Example

Prove: $\sum_{k=0}^{n} \sum_{i=0}^{k} x_{i}=(n+1) \sum_{k=0}^{n} x_{k}-\sum_{k=0}^{n} k x_{k}$.
Step 0 Describe $f(n):=$ lhs - rhs in terms of recurrences.
$f_{0}(n)=x_{n} \quad$ no defining relation
$f_{1}(n)=n$
$f_{1}(0)=0, f_{1}(n+1)=f_{1}(n)+1$
$f_{2}(n)=\sum_{k=0}^{n} x_{k} \quad f_{2}(0)=x_{0}, f_{2}(n+1)=f_{2}(n)+f_{0}(n+1)$

## Simple Example

Prove: $\sum_{k=0}^{n} \sum_{i=0}^{k} x_{i}=(n+1) \sum_{k=0}^{n} x_{k}-\sum_{k=0}^{n} k x_{k}$.
Step 0 Describe $f(n):=$ lhs - rhs in terms of recurrences.
$f_{0}(n)=x_{n} \quad$ no defining relation
$f_{1}(n)=n$
$f_{1}(0)=0, f_{1}(n+1)=f_{1}(n)+1$
$f_{2}(n)=\sum_{k=0}^{n} x_{k} \quad f_{2}(0)=x_{0}, f_{2}(n+1)=f_{2}(n)+f_{0}(n+1)$
$f_{3}(n)=\sum_{k=0}^{n} k x_{k} \quad f_{3}(0)=0, f_{3}(n+1)=f_{3}(n)+f_{0}(n+1) f_{1}(n+1)$
$f_{4}(n)=$ lhs $\quad f_{4}(0)=x_{0}, f_{4}(n+1)=f_{4}(n)+f_{2}(n+1)$
$f(n)=$ Ihs - rhs $\quad f(0)=0, f(n)=f_{4}(n)-\left(f_{1}(n)+1\right) f_{2}(n)-f_{3}(n)$

## Simple Example

Prove: $\sum_{k=0}^{n} \sum_{i=0}^{k} x_{i}=(n+1) \sum_{k=0}^{n} x_{k}-\sum_{k=0}^{n} k x_{k}$.
Step 1 Translate recurrences to defining relations

$$
\begin{aligned}
f_{0}(n) \sim t_{0,0} & \text { none } \\
f_{1}(n) \sim t_{1,0} & t_{1,1}-t_{1,0}-1 \\
f_{2}(n) \sim t_{2,0} & t_{2,1}-t_{2,0}-t_{0,1} \\
f_{3}(n) \sim t_{3,0} & t_{3,1}-t_{3,0}-t_{0,1} t_{1,1} \\
f_{4}(n) \sim t_{4,0} & t_{4,1}-t_{4,0}-t_{2,1} \\
f(n) \sim t_{5,0} & t_{5,0}-t_{4,0}+\left(t_{1,0}+1\right) t_{2,0}+t_{3,0}
\end{aligned}
$$

Let $D$ be the set of defining relations.

## Simple Example

Prove: $\sum_{k=0}^{n} \sum_{i=0}^{k} x_{i}=(n+1) \sum_{k=0}^{n} x_{k}-\sum_{k=0}^{n} k x_{k}$.
Step 2 Find the induction step

$$
t_{5,1} \in \operatorname{Rad}\left(\left\langle\left\{t_{5,0}\right\} \cup D\right\rangle\right)
$$

This means $\forall n \in \mathbb{N}: f(n)=0 \Rightarrow f(n+1)=0$.
(No iteration necessary in this example.)

## Simple Example

Prove: $\sum_{k=0}^{n} \sum_{i=0}^{k} x_{i}=(n+1) \sum_{k=0}^{n} x_{k}-\sum_{k=0}^{n} k x_{k}$.
Step 3 Check initial conditions: $f(0)=0 . \square$

## Further Examples

- Christoffel-Darboux identity: For each $\left(c_{n}\right)_{n=1}^{\infty},\left(\lambda_{n}\right)_{n=1}^{\infty}$ the recurrence

$$
P_{n}(x)=\left(x-c_{n}\right) P_{n-1}(x)-\lambda_{n} P_{n-2}(x)
$$

defines a family of orthogonal polynomials. We can prove

$$
\begin{aligned}
\sum_{k=0}^{n} \frac{P_{k}(x) P_{k}(u)}{\prod_{i=1}^{k+1} \lambda_{i}} & =\frac{P_{n+1}(x) P_{n}(u)-P_{n}(x) P_{n+1}(u)}{(x-u) \prod_{i=1}^{n+1} \lambda_{i}} \\
\sum_{k=0}^{n} \frac{P_{k}(x)^{2}}{\prod_{i=1}^{k+1} \lambda_{i}} & =\frac{P_{n}(x) P_{n+1}^{\prime}(x)-P_{n+1}(x) P_{n}^{\prime}(x)}{\prod_{i=1}^{n+1} \lambda_{i}}
\end{aligned}
$$

for general $\left(c_{n}\right)_{n=1}^{\infty}$ and $\left(\lambda_{n}\right)_{n=1}^{\infty}$.

## Further Examples

- A hypergeometric identity for general ${ }_{m} F_{n}$ Defining the multivariate sequences $f(n, m)$ and $g(n, m)$ by
$f(n, m)=F\left(\left.\begin{array}{c}a_{1}, a_{1}+\frac{1}{2}, \ldots, a_{m}, a_{m}+\frac{1}{2} \\ b_{1}, b_{1}+\frac{1}{2}, \ldots, b_{n}, b_{n}+\frac{1}{2}, \frac{1}{2}\end{array} \right\rvert\,\left(2^{m-n-1} z\right)^{2}\right)$
$g(n, m)=\frac{1}{2}\left[F\left(\left.\begin{array}{c}2 a_{1}, \ldots, 2 a_{m} \\ 2 b_{1}, \ldots, 2 b_{n}\end{array} \right\rvert\, z\right)+F\left(\left.\begin{array}{c}2 a_{1}, \ldots, 2 a_{m} \mid \\ 2 b_{1}, \ldots, 2 b_{n}\end{array} \right\rvert\,-z\right)\right]$,
we can prove

$$
f(n, m)=g(n, m)
$$

for general $n$ and $m$ (see paper).

## Conclusion

## Conclusion

- A large class of sequences can be represented by difference algebra tools


## Conclusion

- A large class of sequences can be represented by difference algebra tools
- Free sequences can be represented as well


## Conclusion

- A large class of sequences can be represented by difference algebra tools
- Free sequences can be represented as well
- An algorithm for deciding zero equivalence is known


## Conclusion

- A large class of sequences can be represented by difference algebra tools
- Free sequences can be represented as well
- An algorithm for deciding zero equivalence is known
- This allows for proving certain polynomial identities in arbitrarily many variables by the computer


## Conclusion

- A large class of sequences can be represented by difference algebra tools
- Free sequences can be represented as well
- An algorithm for deciding zero equivalence is known
- This allows for proving certain polynomial identities in arbitrarily many variables by the computer
- Latest Development: Some of these identities can not only be proven but also be found by the computer ( $\uparrow$ Schneider's talk)


## Conclusion

- A large class of sequences can be represented by difference algebra tools
- Free sequences can be represented as well
- An algorithm for deciding zero equivalence is known
- This allows for proving certain polynomial identities in arbitrarily many variables by the computer
- Latest Development: Some of these identities can not only be proven but also be found by the computer ( $\uparrow$ Schneider's talk)
- ... but is there any use of all this?

