Computer Proofs for Polynomial Identities in Arbitrarily Many Variables

Manuel Kauers

RISC-Linz, Austria

▶ For every $n \in \mathbb{N}$, we have

$$\left(\sum_{k=1}^{n} x_k\right)^3 = \sum_{i=1}^{n} x_i^3 + 3\sum_{i=1}^{n} \sum_{j=1}^{i-1} (x_i^2 x_j + x_i x_j^2) + 6\sum_{i=1}^{n} \sum_{j=1}^{i-1} \sum_{k=1}^{j-1} x_i x_j x_k$$

▶ For every $n \in \mathbb{N}$, we have

$$\left(\sum_{k=1}^{n} x_k\right)^3 = \sum_{i=1}^{n} x_i^3 + 3\sum_{i=1}^{n} \sum_{j=1}^{i-1} (x_i^2 x_j + x_i x_j^2) + 6\sum_{i=1}^{n} \sum_{j=1}^{i-1} \sum_{k=1}^{j-1} x_i x_j x_k$$

For every given $n \in \mathbb{N}$, lhs and rhs are polynomials in n variables.

• For every $n \in \mathbb{N}$, we have

$$\left(\sum_{k=1}^{n} x_k\right)^3 = \sum_{i=1}^{n} x_i^3 + 3\sum_{i=1}^{n} \sum_{j=1}^{i-1} (x_i^2 x_j + x_i x_j^2) + 6\sum_{i=1}^{n} \sum_{j=1}^{i-1} \sum_{k=1}^{j-1} x_i x_j x_k$$

- For every given $n \in \mathbb{N}$, lhs and rhs are polynomials in n variables.
- Equality can be checked easily in this case.

• For every $n \in \mathbb{N}$, we have

$$\left(\sum_{k=1}^{n} x_k\right)^3 = \sum_{i=1}^{n} x_i^3 + 3\sum_{i=1}^{n} \sum_{j=1}^{i-1} (x_i^2 x_j + x_i x_j^2) + 6\sum_{i=1}^{n} \sum_{j=1}^{i-1} \sum_{k=1}^{j-1} x_i x_j x_k$$

- For every given $n \in \mathbb{N}$, lhs and rhs are polynomials in n variables.
- Equality can be checked easily in this case.
- But how to prove the identity for general n?

• For every $n \in \mathbb{N}$, we have

$$\left(\sum_{k=1}^{n} x_k\right)^3 = \sum_{i=1}^{n} x_i^3 + 3\sum_{i=1}^{n} \sum_{j=1}^{i-1} (x_i^2 x_j + x_i x_j^2) + 6\sum_{i=1}^{n} \sum_{j=1}^{i-1} \sum_{k=1}^{j-1} x_i x_j x_k$$

- For every given $n \in \mathbb{N}$, lhs and rhs are polynomials in n variables.
- Equality can be checked easily in this case.
- ▶ But how to prove the identity for *general* n?
- Can this been done algorithmically?

Overview

Admissible univariate sequences

Zero equivalence test for admissible sequences

Extension to arbitrarily many variables

Admissible univariate sequences

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $(f_1(n))_{n=1}^{\infty}$

 $f_1(1), f_1(2), f_1(3)$: initial values of f_1

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	$f_1(5)$	$f_1(6)$	$f_1(7)$	
$f_2(1)$	$f_2(2)$	$f_2(3)$	$f_{2}(4)$	$f_{2}(5)$	$f_2(6)$	$f_2(7)$	
$f_{3}(1)$	$f_{3}(2)$	$f_{3}(3)$	$f_{3}(4)$	$f_{3}(5)$	$f_{3}(6)$	$f_{3}(7)$	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $(f_1(n))_{n=1}^{\infty}$

$$f_1(4) = p(f_1(1), f_1(2), f_1(3))$$

 $p = poly or p = 1/poly fixed$

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	$f_1(5)$	$f_1(6)$	$f_1(7)$	
$f_2(1)$	$f_2(2)$	$f_2(3)$	$f_2(4)$	$f_{2}(5)$	$f_2(6)$	$f_2(7)$	
$f_{3}(1)$	$f_{3}(2)$	$f_{3}(3)$	$f_{3}(4)$	$f_{3}(5)$	$f_{3}(6)$	$f_{3}(7)$	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $(f_1(n))_{n=1}^{\infty}$

$$f_1(5) = p(f_1(2), f_1(3), f_1(4))$$

 $p = poly or p = 1/poly fixed$

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	$f_1(5)$	$f_1(6)$	$f_1(7)$	
$f_2(1)$	$f_2(2)$	$f_2(3)$	$f_{2}(4)$	$f_{2}(5)$	$f_2(6)$	$f_2(7)$	
$f_{3}(1)$	$f_{3}(2)$	$f_{3}(3)$	$f_{3}(4)$	$f_{3}(5)$	$f_{3}(6)$	$f_{3}(7)$	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $(f_1(n))_{n=1}^{\infty}$

$$f_1(6) = p(f_1(3), f_1(4), f_1(5))$$

 $p = poly or p = 1/poly fixed$

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	$f_1(5)$	$f_1(6)$	$f_1(7)$	
$f_2(1)$	$f_2(2)$	$f_2(3)$	$f_{2}(4)$	$f_{2}(5)$	$f_2(6)$	$f_2(7)$	
$f_{3}(1)$	$f_{3}(2)$	$f_{3}(3)$	$f_{3}(4)$	$f_{3}(5)$	$f_{3}(6)$	$f_{3}(7)$	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $(f_1(n))_{n=1}^{\infty}$

$$f_1(7) = p(f_1(4), f_1(5), f_1(6))$$

 $p = poly or p = 1/poly fixed$

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	$f_1(5)$	$f_1(6)$	$f_1(7)$	
$f_{2}(1)$	$f_2(2)$	$f_2(3)$	$f_2(4)$	$f_{2}(5)$	$f_2(6)$	$f_2(7)$	
$f_{3}(1)$	$f_{3}(2)$	$f_{3}(3)$	$f_{3}(4)$	$f_{3}(5)$	$f_{3}(6)$	$f_{3}(7)$	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $(f_2(n))_{n=1}^{\infty}$

 $f_2(1), f_2(2)$: initial values of f_2

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	$f_1(5)$	<i>f</i> ₁ (6)	$f_1(7)$	
$f_2(1)$	$f_2(2)$	$f_2(3)$	$f_{2}(4)$	$f_{2}(5)$	$f_2(6)$	$f_2(7)$	
$f_{3}(1)$	$f_{3}(2)$	$f_{3}(3)$	$f_{3}(4)$	$f_{3}(5)$	$f_{3}(6)$	$f_{3}(7)$	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $(f_2(n))_{n=1}^{\infty}$

 $f_2(3) = q(f_2(1), f_2(2), f_1(1), f_1(2), f_1(3))$ q = poly or q = 1/poly fixed

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	$f_1(5)$	<i>f</i> ₁ (6)	$f_1(7)$	
$f_2(1)$	<i>f</i> ₂ (2)	<i>f</i> ₂ (3)	$f_2(4)$	$f_{2}(5)$	$f_2(6)$	$f_2(7)$	
$f_{3}(1)$	$f_{3}(2)$	$f_{3}(3)$	$f_{3}(4)$	$f_{3}(5)$	$f_{3}(6)$	$f_{3}(7)$	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $(f_2(n))_{n=1}^{\infty}$

$$\begin{aligned} f_2(4) &= q(f_2(2), f_2(3), f_1(2), f_1(3), f_1(4)) \\ q &= \text{poly or } q = 1/\text{poly fixed} \end{aligned}$$

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	<i>f</i> ₁ (5)	<i>f</i> ₁ (6)	$f_1(7)$	
$f_2(1)$	$f_2(2)$	<i>f</i> ₂ (3)	<i>f</i> ₂ (4)	$f_2(5)$	$f_2(6)$	$f_2(7)$	
$f_{3}(1)$	$f_{3}(2)$	$f_{3}(3)$	$f_{3}(4)$	$f_{3}(5)$	$f_{3}(6)$	$f_{3}(7)$	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $(f_2(n))_{n=1}^{\infty}$

 $f_2(5) = q(f_2(3), f_2(4), f_1(3), f_1(4), f_1(5))$ q = poly or q = 1/poly fixed

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	<i>f</i> ₁ (5)	<i>f</i> ₁ (6)	$f_1(7)$	
$f_2(1)$	$f_2(2)$	<i>f</i> ₂ (3)	<i>f</i> ₂ (4)	<i>f</i> ₂ (5)	$f_2(6)$	$f_2(7)$	
$f_{3}(1)$	$f_{3}(2)$	$f_{3}(3)$	$f_{3}(4)$	$f_{3}(5)$	$f_{3}(6)$	$f_{3}(7)$	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $(f_2(n))_{n=1}^{\infty}$

$$f_2(6) = q(f_2(4), f_2(5), f_1(4), f_1(5), f_1(6))$$

 $q = poly \text{ or } q = 1/poly \text{ fixed}$

$f_1(1)$	<i>f</i> ₁ (2)	<i>f</i> ₁ (3)	<i>f</i> ₁ (4)	<i>f</i> ₁ (5)	<i>f</i> ₁ (6)	$f_1(7)$	
$f_{2}(1)$	$f_2(2)$	<i>f</i> ₂ (3)	<i>f</i> ₂ (4)	<i>f</i> ₂ (5)	<i>f</i> ₂ (6)	$f_2(7)$	
$f_{3}(1)$	$f_{3}(2)$	$f_{3}(3)$	$f_{3}(4)$	$f_{3}(5)$	$f_{3}(6)$	$f_{3}(7)$	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $(f_2(n))_{n=1}^{\infty}$

$$f_2(7) = q(f_2(5), f_2(6), f_1(5), f_1(6), f_1(7))$$

 q = poly or q = 1/poly fixed

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	$f_1(5)$	$f_1(6)$	$f_1(7)$	
$J_{2}(1)$	$J_2(2)$	$J_2(3)$	J ₂ (4)	J ₂ (5)	$J_2(0)$	$J_2(7)$	
J3(1)	J3(Z)]3(5)	J3(4)	J3(D)]3(0)]3(7)	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- Example: Definition of a sequence $(f_3(n))_{n=1}^{\infty}$

 $f_3(1), f_3(2), f_3(3), f_3(4)$: initial values of f_3

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	<i>f</i> ₁ (5)	<i>f</i> ₁ (6)	$f_1(7)$	
$f_2(1)$	$f_2(2)$	<i>f</i> ₂ (3)	<i>f</i> ₂ (4)	<i>f</i> ₂ (5)	<i>f</i> ₂ (6)	$f_2(7)$	
$f_{3}(1)$	<i>f</i> ₃ (2)	<i>f</i> ₃ (3)	<i>f</i> ₃ (4)	$f_{3}(5)$	$f_{3}(6)$	$f_{3}(7)$	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- ► Example: Definition of a sequence (f₃(n))[∞]_{n=1}

 $f_3(5) = r(f_3(1), \dots, f_3(4), f_2(1), \dots, f_2(5), f_1(1), \dots, f_1(5))$ r = poly or r = 1/poly fixed

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	$f_1(5)$	<i>f</i> ₁ (6)	$f_1(7)$	
$f_2(1)$	$f_2(2)$	<i>f</i> ₂ (3)	<i>f</i> ₂ (4)	<i>f</i> ₂ (5)	<i>f</i> ₂ (6)	$f_2(7)$	
$f_{3}(1)$	<i>f</i> ₃ (2)	<i>f</i> ₃ (3)	<i>f</i> ₃ (4)	<i>f</i> ₃ (5)	$f_{3}(6)$	$f_{3}(7)$	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- ► Example: Definition of a sequence (f₃(n))[∞]_{n=1}

 $f_3(6) = r(f_3(2), \dots, f_3(5), f_2(2), \dots, f_2(6), f_1(2), \dots, f_1(6))$ r = poly or r = 1/poly fixed

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	$f_1(5)$	<i>f</i> ₁ (6)	$f_1(7)$	
$f_{2}(1)$	$f_2(2)$	<i>f</i> ₂ (3)	<i>f</i> ₂ (4)	<i>f</i> ₂ (5)	<i>f</i> ₂ (6)	$f_2(7)$	
$f_{3}(1)$	<i>f</i> ₃ (2)	<i>f</i> ₃ (3)	<i>f</i> ₃ (4)	<i>f</i> ₃ (5)	<i>f</i> ₃ (6)	$f_{3}(7)$	

- A sequence is admissible if it satisfies a (nested) polynomial recurrence.
- ► Example: Definition of a sequence (f₃(n))[∞]_{n=1}

 $f_3(7) = r(f_3(3), \dots, f_3(6), f_2(3), \dots, f_2(7), f_1(3), \dots, f_1(7))$ r = poly or r = 1/poly fixed

$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	<i>f</i> ₁ (5)	$f_1(6)$	$f_1(7)$	
$f_2(1)$	$f_2(2)$	<i>f</i> ₂ (3)	<i>f</i> ₂ (4)	<i>f</i> ₂ (5)	<i>f</i> ₂ (6)	$f_2(7)$	
$f_{3}(1)$	<i>f</i> ₃ (2)	<i>f</i> ₃ (3)	<i>f</i> ₃ (4)	<i>f</i> ₃ (5)	<i>f</i> ₃ (6)	<i>f</i> ₃ (7)	

Many sequences are admissible. For instance:

 holonomic sequences (hypergeometric sequences, orthogonal polynomials, etc.)

- holonomic sequences (hypergeometric sequences, orthogonal polynomials, etc.)
- ▶ sequences like 2^{2ⁿ}

- holonomic sequences (hypergeometric sequences, orthogonal polynomials, etc.)
- ▶ sequences like 2^{2ⁿ}
- rational functions of other admissible sequences

- holonomic sequences (hypergeometric sequences, orthogonal polynomials, etc.)
- ▶ sequences like 2^{2ⁿ}
- rational functions of other admissible sequences
- indefinite sums and products of other admissible sequences

- holonomic sequences (hypergeometric sequences, orthogonal polynomials, etc.)
- ▶ sequences like 2^{2ⁿ}
- rational functions of other admissible sequences
- indefinite sums and products of other admissible sequences
- indefinite continued fractions of other admissible sequences

Zero equivalence test for admissible sequences

Model admissible sequences by *difference algebra* concepts

Model admissible sequences by *difference algebra* concepts

Example:

Model admissible sequences by *difference algebra* concepts

Example:

- Model admissible sequences by *difference algebra* concepts
- Example:

• Consider the $t_{i,j}$ as indeterminates of a polynomial ring

- Model admissible sequences by *difference algebra* concepts
- Example:

- Consider the t_{i,j} as indeterminates of a polynomial ring
- The recurrence relations give rise to polynomial relations among these indeterminates.

Proving Zero Equivalence of Admissible Sequences

• Goal: Show that $f_3(n) = 0$ for all $n \in \mathbb{N}$
- Goal: Show that $f_3(n) = 0$ for all $n \in \mathbb{N}$
- Idea: Use ideal arithmetic to construct an induction proof

- Goal: Show that $f_3(n) = 0$ for all $n \in \mathbb{N}$
- Idea: Use ideal arithmetic to construct an induction proof
- Observation: Every $t_{i,j}$ (j high enough) is "connected" with other indeterminates via a polynomial relation

$$\underbrace{t_{i,j} - \text{poly}}_{=:d(t_{i,j})} = 0 \quad \text{or} \quad \underbrace{\text{poly} \cdot t_{i,j} - 1}_{=:d(t_{i,j})} = 0$$

The polynomial $d(t_{i,j})$ is called the *defining relation* of $t_{i,j}$.

$t_{1,0}$	$t_{1,1}$	$t_{1,2}$	$d(t_{1,3})$	$d(t_{1,4})$	$t_{1,5}$	$t_{1,6}$
$t_{2,0}$	$t_{2,1}$	$d(t_{2,2})$	$d(t_{2,3})$	$d(t_{2,4})$	$t_{2,5}$	$t_{2,6}$
$t_{3,0}$	$t_{3,1}$	$t_{3,2}$	$t_{3,3}$	$d(t_{3,4})$	$t_{3,5}$	$t_{3,6}$

$t_{1,0}$	$t_{1,1}$	$t_{1,2}$	$d(t_{1,3})$	$d(t_{1,4})$	$t_{1,5}$	$t_{1,6}$
$t_{2,0}$	$t_{2,1}$	$d(t_{2,2})$	$d(t_{2,3})$	$d(t_{2,4})$	$t_{2,5}$	$t_{2,6}$
$t_{3,0}$	$t_{3,1}$	$t_{3,2}$	$t_{3,3}$	$d(t_{3,4})$	$t_{3,5}$	$t_{3,6}$
t _{3,0}	$t_{3,1}$	$t_{3,2}$	t _{3,3}			
	<u>!</u> 0	by IH				

• Goal: Show that $f_3(n) = 0$ for all $n \in \mathbb{N}$

► This can be decided by a radical membership test in K[t_{1,0},...,t_{3,4}]

• Goal: Show that $f_3(n) = 0$ for all $n \in \mathbb{N}$

$t_{1,0}$	$t_{1,1}$	$t_{1,2}$	$d(t_{1,3})$	$d(t_{1,4})$	$d(t_{1,5})$	
$t_{2,0}$	$t_{2,1}$	$d(t_{2,2})$	$d(t_{2,3})$	$d(t_{2,4})$	$d(t_{2,5})$	• • •
$t_{3,0}$	$t_{3,1}$	$t_{3,2}$	$t_{3,3}$	$d(t_{3,4})$	$d(t_{3,5})$	
t _{3,0}	$t_{3,1}$	$t_{3,2}$	$t_{3,3}$	$t_{3,4}$	$t_{3,5}$	

Finally, check sufficiently many initial values

• Goal: Show that $f_3(n) = 0$ for all $n \in \mathbb{N}$

$t_{1,0}$	$t_{1,1}$	$t_{1,2}$	$d(t_{1,3})$	$d(t_{1,4})$	$d(t_{1,5})$	
$t_{2,0}$	$t_{2,1}$	$d(t_{2,2})$	$d(t_{2,3})$	$d(t_{2,4})$	$d(t_{2,5})$	• • •
$t_{3,0}$	$t_{3,1}$	$t_{3,2}$	$t_{3,3}$	$d(t_{3,4})$	$d(t_{3,5})$	
t _{3,0}	$t_{3,1}$	$t_{3,2}$	$t_{3,3}$	$t_{3,4}$	$t_{3,5}$	

Finally, check sufficiently many initial values

Correctness: complete induction on n

• Goal: Show that $f_3(n) = 0$ for all $n \in \mathbb{N}$

$t_{1,0}$	$t_{1,1}$	$t_{1,2}$	$d(t_{1,3})$	$d(t_{1,4})$	$d(t_{1,5})$	
$t_{2,0}$	$t_{2,1}$	$d(t_{2,2})$	$d(t_{2,3})$	$d(t_{2,4})$	$d(t_{2,5})$	• • •
$t_{3,0}$	$t_{3,1}$	$t_{3,2}$	$t_{3,3}$	$d(t_{3,4})$	$d(t_{3,5})$	
t _{3,0}	$t_{3,1}$	$t_{3,2}$	$t_{3,3}$	$t_{3,4}$	$t_{3,5}$	

Finally, check sufficiently many initial values

- Correctness: complete induction on n
- Termination: see paper

Extension to arbitrarily many variables

► Goal: Handle identities with "arbitrarily many variables"

- Goal: Handle identities with "arbitrarily many variables"
- ► Requirement: Find algebraic representation of variable sequences (x_n)_{n=1}[∞]

- Goal: Handle identities with "arbitrarily many variables"
- ► Requirement: Find algebraic representation of variable sequences (x_n)_{n=1}[∞]
- ► Idea: Represent f₁(n + i) := x_{n+i} by indeterminates t_{1,i} without defining relation

- Goal: Handle identities with "arbitrarily many variables"
- ► Requirement: Find algebraic representation of variable sequences (x_n)_{n=1}[∞]
- ► Idea: Represent f₁(n + i) := x_{n+i} by indeterminates t_{1,i} without defining relation
- Consequences:

- Goal: Handle identities with "arbitrarily many variables"
- ► Requirement: Find algebraic representation of variable sequences (x_n)_{n=1}[∞]
- ► Idea: Represent f₁(n + i) := x_{n+i} by indeterminates t_{1,i} without defining relation
- Consequences:
 - 1. Expressions involving x_n can be represented

- Goal: Handle identities with "arbitrarily many variables"
- ► Requirement: Find algebraic representation of variable sequences (x_n)_{n=1}[∞]
- ► Idea: Represent f₁(n + i) := x_{n+i} by indeterminates t_{1,i} without defining relation
- Consequences:
 - 1. Expressions involving x_n can be represented
 - 2. The same algorithm is still applicable

- Goal: Handle identities with "arbitrarily many variables"
- ► Requirement: Find algebraic representation of variable sequences (x_n)_{n=1}[∞]
- ► Idea: Represent f₁(n + i) := x_{n+i} by indeterminates t_{1,i} without defining relation
- Consequences:
 - 1. Expressions involving x_n can be represented
 - 2. The same algorithm is still applicable
 - 3. But it will not terminate in general

- Goal: Handle identities with "arbitrarily many variables"
- ► Requirement: Find algebraic representation of variable sequences (x_n)_{n=1}[∞]
- ► Idea: Represent f₁(n + i) := x_{n+i} by indeterminates t_{1,i} without defining relation
- Consequences:
 - 1. Expressions involving x_n can be represented
 - 2. The same algorithm is still applicable
 - 3. But it will not terminate in general
- Fix: Put all $t_{i,j}$ without relations into the ground field

- Goal: Show that $f_3(n) = 0$ for all $n \in \mathbb{N}$
- Suppose $f_1(n) = x_n$ is free

- Goal: Show that $f_3(n) = 0$ for all $n \in \mathbb{N}$
- Suppose $f_1(n) = x_n$ is free

- Goal: Show that $f_3(n) = 0$ for all $n \in \mathbb{N}$
- Suppose $f_1(n) = x_n$ is free

▶ This can be decided by a radical membership test in $K(t_{1,0}, \ldots, t_{1,4})[t_{2,0}, \ldots, t_{3,4}]$

- Goal: Show that $f_3(n) = 0$ for all $n \in \mathbb{N}$
- Suppose $f_1(n) = x_n$ is free

- ▶ This can be decided by a radical membership test in $K(t_{1,0}, \ldots, t_{1,4})[t_{2,0}, \ldots, t_{3,4}]$
- Everything else carries over literally

Prove:
$$\sum_{k=0}^{n} \sum_{i=0}^{k} x_i = (n+1) \sum_{k=0}^{n} x_k - \sum_{k=0}^{n} k x_k.$$

Prove:
$$\sum_{k=0}^{n} \sum_{i=0}^{k} x_i = (n+1) \sum_{k=0}^{n} x_k - \sum_{k=0}^{n} k x_k.$$

Step 0 Describe f(n) := lhs - rhs in terms of recurrences.

Prove:
$$\sum_{k=0}^{n} \sum_{i=0}^{k} x_i = (n+1) \sum_{k=0}^{n} x_k - \sum_{k=0}^{n} k x_k.$$

Step 0 Describe f(n) := lhs - rhs in terms of recurrences.

 $f_0(n) = x_n$ no defining relation

Prove:
$$\sum_{k=0}^{n} \sum_{i=0}^{k} x_i = (n+1) \sum_{k=0}^{n} x_k - \sum_{k=0}^{n} k x_k.$$

Step 0 Describe f(n) := lhs - rhs in terms of recurrences.

 $\begin{aligned} f_0(n) &= x_n & \text{no defining relation} \\ f_1(n) &= n & f_1(0) = 0, \\ f_1(n+1) &= f_1(n) + 1 \end{aligned}$

Prove:
$$\sum_{k=0}^{n} \sum_{i=0}^{k} x_i = (n+1) \sum_{k=0}^{n} x_k - \sum_{k=0}^{n} k x_k.$$

Step 0 Describe f(n) := lhs - rhs in terms of recurrences.

 $f_0(n) = x_n mtext{ no defining relation} \\ f_1(n) = n mtext{ } f_1(0) = 0, f_1(n+1) = f_1(n) + 1 \\ f_2(n) = \sum_{k=0}^n x_k mtext{ } f_2(0) = x_0, f_2(n+1) = f_2(n) + f_0(n+1) \\ \end{cases}$

Prove:
$$\sum_{k=0}^{n} \sum_{i=0}^{k} x_i = (n+1) \sum_{k=0}^{n} x_k - \sum_{k=0}^{n} k x_k.$$

Step 0 Describe f(n) := lhs - rhs in terms of recurrences.

 $f_0(n) = x_n \qquad \text{no defining relation} \\ f_1(n) = n \qquad f_1(0) = 0, f_1(n+1) = f_1(n) + 1 \\ f_2(n) = \sum_{k=0}^n x_k \qquad f_2(0) = x_0, f_2(n+1) = f_2(n) + f_0(n+1) \\ f_3(n) = \sum_{k=0}^n kx_k \qquad f_3(0) = 0, f_3(n+1) = f_3(n) + f_0(n+1)f_1(n+1) \\ f_4(n) = \text{lhs} \qquad f_4(0) = x_0, f_4(n+1) = f_4(n) + f_2(n+1) \\ f(n) = \text{lhs} - \text{rhs} \qquad f(0) = 0, f(n) = f_4(n) - (f_1(n) + 1)f_2(n) - f_3(n) \\ \end{cases}$

Prove:
$$\sum_{k=0}^{n} \sum_{i=0}^{k} x_i = (n+1) \sum_{k=0}^{n} x_k - \sum_{k=0}^{n} k x_k.$$

Step 1 Translate recurrences to defining relations

$$\begin{aligned} f_0(n) &\sim t_{0,0} & \text{none} \\ f_1(n) &\sim t_{1,0} & t_{1,1} - t_{1,0} - 1 \\ f_2(n) &\sim t_{2,0} & t_{2,1} - t_{2,0} - t_{0,1} \\ f_3(n) &\sim t_{3,0} & t_{3,1} - t_{3,0} - t_{0,1} t_{1,1} \\ f_4(n) &\sim t_{4,0} & t_{4,1} - t_{4,0} - t_{2,1} \\ f(n) &\sim t_{5,0} & t_{5,0} - t_{4,0} + (t_{1,0} + 1) t_{2,0} + t_{3,0} \end{aligned}$$

Let D be the set of defining relations.

Prove:
$$\sum_{k=0}^{n} \sum_{i=0}^{k} x_i = (n+1) \sum_{k=0}^{n} x_k - \sum_{k=0}^{n} k x_k.$$

Step 2 Find the induction step

$$t_{5,1} \in \mathsf{Rad}(\langle \{t_{5,0}\} \cup D \rangle)$$

This means $\forall n \in \mathbb{N} : f(n) = 0 \Rightarrow f(n+1) = 0$. (No iteration necessary in this example.)

Prove:
$$\sum_{k=0}^{n} \sum_{i=0}^{k} x_i = (n+1) \sum_{k=0}^{n} x_k - \sum_{k=0}^{n} k x_k.$$

Step 3 Check initial conditions: f(0) = 0. \Box
Further Examples

► Christoffel-Darboux identity: For each (c_n)[∞]_{n=1}, (λ_n)[∞]_{n=1} the recurrence

$$P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x)$$

defines a family of orthogonal polynomials. We can prove

$$\sum_{k=0}^{n} \frac{P_k(x)P_k(u)}{\prod_{i=1}^{k+1} \lambda_i} = \frac{P_{n+1}(x)P_n(u) - P_n(x)P_{n+1}(u)}{(x-u)\prod_{i=1}^{n+1} \lambda_i}$$
$$\sum_{k=0}^{n} \frac{P_k(x)^2}{\prod_{i=1}^{k+1} \lambda_i} = \frac{P_n(x)P'_{n+1}(x) - P_{n+1}(x)P'_n(x)}{\prod_{i=1}^{n+1} \lambda_i}$$

for general $(c_n)_{n=1}^{\infty}$ and $(\lambda_n)_{n=1}^{\infty}$.

Further Examples

► A hypergeometric identity for general mFn Defining the multivariate sequences f(n,m) and g(n,m) by

$$f(n,m) = F\left(\begin{array}{c}a_1, a_1 + \frac{1}{2}, \dots, a_m, a_m + \frac{1}{2}\\b_1, b_1 + \frac{1}{2}, \dots, b_n, b_n + \frac{1}{2}, \frac{1}{2}\end{array} \middle| (2^{m-n-1}z)^2\right)$$
$$g(n,m) = \frac{1}{2} \left[F\left(\begin{array}{c}2a_1, \dots, 2a_m\\2b_1, \dots, 2b_n\end{array} \middle| z\right) + F\left(\begin{array}{c}2a_1, \dots, 2a_m\\2b_1, \dots, 2b_n\end{array} \middle| -z\right) \right],$$

we can prove

$$f(n,m) = g(n,m)$$

for general n and m (see paper).

 A large class of sequences can be represented by difference algebra tools

- A large class of sequences can be represented by difference algebra tools
- Free sequences can be represented as well

- A large class of sequences can be represented by difference algebra tools
- Free sequences can be represented as well
- An algorithm for deciding zero equivalence is known

- A large class of sequences can be represented by difference algebra tools
- Free sequences can be represented as well
- An algorithm for deciding zero equivalence is known
- This allows for proving certain polynomial identities in arbitrarily many variables by the computer

- A large class of sequences can be represented by difference algebra tools
- Free sequences can be represented as well
- An algorithm for deciding zero equivalence is known
- This allows for proving certain polynomial identities in arbitrarily many variables by the computer
- Latest Development: Some of these identities can not only be proven but also be found by the computer (↑ Schneider's talk)

- A large class of sequences can be represented by difference algebra tools
- Free sequences can be represented as well
- An algorithm for deciding zero equivalence is known
- This allows for proving certain polynomial identities in arbitrarily many variables by the computer
- Latest Development: Some of these identities can not only be proven but also be found by the computer (↑ Schneider's talk)
- ... but is there any use of all this?