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Abstract

We describe a new software package, named SumCracker, for proving and finding
identities involving symbolic sums and related objects. SumCracker is applicable
to a wide range of expressions for many of which there has not been any software
available up to now. The purpose of this paper is to illustrate how to solve problems
using that package.
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1 Introduction

In this paper, we shall introduce a new Mathematica package for symbolic
summation. Several packages for this purpose have already been presented in
the past. Most prominently, several implementations of the classical hypergeo-
metric and q-hypergeometric summation algorithms [26] are available [24,28,1].
Also for more sophisticated summation problems, there are some software
packages available, for instance Schneider’s [29] implementation of Karr’s al-
gorithm [16,17] in Mathematica. There are some more specialized software
packages, too, for instance for identities of Rogers-Ramanujan type [32].

The philosophy of our package is somewhat into the other direction. Rather
than a package providing powerful algorithms, restricted to a small domain,
SumCracker contains implementations of more general algorithms, which ap-
ply to a class of sequences that is very broad. For summation problems to
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which they are applicable, all the implementations mentioned above are su-
perior to ours with respect to strength and efficiency. The advantage of the
SumCracker package lies in its ability to treat also very peculiar summation
problems, which are out of the scope of all other summation packages that
have appeared up to now. Therefore, our package should be activated [only]
when the problem at hand does not fit into any of them.

SumCracker can simplify symbolic sums, but not only that. In fact it can
simplify any expression that it understands (Section 5.2). It supports conver-
sion operations (“express this in terms of this”, Section 5.3), and it is able to
find solutions of certain nonlinear difference equations (Section 5.4). All these
features rely on a general procedure for discovering algebraic dependencies of
given sequences. This procedure is at the heart of the SumCracker package
(Section 6). In addition, the package contains a tool for proving identities and
inequalities about sequences (Section 4).

The goal of this article is to describe what SumCracker can do and to explain
how to get it do something, but we do not comment on how it obtains its
results. The paper is intended as a guide for potential users of the package.
The underlying algorithms are described elsewhere [18,19,13,21,20].

The algorithms implemented in the package operate on a class of univariate se-
quences

� → k, which we call admissible. A sequence is admissible if it can be
viewed as a solution of a certain type of systems of difference equations, which
we call admissible systems. The commands provided by the package allow to
input admissible sequences by means of a defining admissible system, but the
construction of an admissible system is often a cumbersome and errorprone
task. Therefore, some effort was put into routines that automatically transform
a description of a sequence in terms of a natural expression into a correspond-
ing admissible system. This routines apply to a lot of expressions, and these
expressions we also call admissible. Such admissible expressions include ex-
pressions for special sequences such as Fibonacci[n] or JacobiP[n, a, b, x], and
new admissible expressions can be obtained from atomic ones by arithmetic
operations, by applying product, summation, or continued fraction operators,
and by applying affine transformations to the argument. A precise description
of the admissible expressions is given in Section 3.

SumCracker was implemented in Mathematica. It is available free of charge
for any non-commercial user and can be obtained from http://www.risc.uni-
linz.ac.at/research/combinat/software/ or upon request from the author. If
the package file resides at a location where Mathematica finds it, the package
can be loaded as follows.

In[1]:= << SumCracker.m
SumCracker Package by Manuel Kauers – c© RISC Linz – V 0.2 2005-12-14

Example input and output is typeset as above. The syntax used in the input
lines should be precise enough that the examples can be reproduced. Only
minor simplifications (such as writing ab instead of aˆb) have been employed

2



in input lines to improve readability. With respect to the output, we have
decided not to stick to Mathematica’s syntax too closely, but to use standard
mathematical notation. It should also be noticed that the precise form of the
output might be different in future versions of the package.

Unless the runtime of a particular command line is explicitly mentioned, the
results are obtained in less than two seconds. Timings are taken with respect
to Mathematica 5.2 on a Debian Linux machine with a 2.5GHz CPU and
2GB of memory. An asterix at a timing indicates that internal Gröbner basis
computations were not carried out by Mathematica’s built-in command, but
by the special purpose software Singular [15].

2 Motivating Examples

The most simple sequence which is not hypergeometric is probably the se-
quences of Fibonacci numbers Fn, defined via

Fn+2 = Fn + Fn+1 (n ≥ 0), F0 = 0, F1 = 1.

This sequence arises in numerous combinatorial contexts, and there are a lot of
identities for this sequence. A nontrivial identity involving Fibonacci numbers
concerns the summation problem

∑n
k=0 1/F2k [14, Ex. 6.61].

With our package, we can easily find a closed form for this sum for n ≥ 1, as
follows.

In[2]:= Crack[SUM[1/Fibonacci[2 � ], {k, 0, n}], From → 1]

Out[2]=
4F2n − F2n+1

F2n

As a direct consequence, we obtain Mellin’s series [23]

∞
∑

k=0

1

F2k

= 1
2
(7 −

√
5),

because limn→∞ Fn+1/Fn = φ = 1
2
(1 +

√
5). Let us postpone the detailed

explanation of the Crack command to Section 5 and instead investigate now
variations of this summation problem.

We requested above that the closed form be valid for n ≥ 1, and the closed
form we obtained is indeed violated for n = 0. But there is also a closed form
which is valid from n = 0 on:

In[3]:= Crack[SUM[1/Fibonacci[2 � ], {k, 0, n}], From → 0]

Out[3]=
3F2nF2n+1 − 1 − F 2

2n

F2nF2n+1
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Both this and the former identity can be generalized to Fibonacci polynomials
Fn(z), defined via

Fn+2(z) = zFn+1(z) + Fn(z) (n ≥ 0), F0(z) = 0, F1(z) = 1.

Note that Fn = Fn(1).

In[4]:= Crack[SUM[1/Fibonacci[2 � , z], {k, 0, n}], From → 1]

Out[4]=
2

z
+ 1 + z − F2n+1(z)

F2n(z)

In[5]:= Crack[SUM[1/Fibonacci[2 � , z], {k, 0, n}], From → 0]

Out[5]= (24.61s)1 +
2

z
− 1

F2n(z)F2n+1(z)
− F2n(z)

F2n+1(z)

Even further generalization is possible. Already Lucas [22] pointed out the
general identity

n
∑

k=0

qa2k

u(a2k+1)
= q

(

u(a2n+1 − 1)

u(a2n+1)
− u(n− 1)

u(n)

)

(a, n ≥ 1), (1)

which holds for every sequence u(n) satisfying

u(n+ 2) = pu(n+ 1) − qu(n), u(0) = 0, u(1) = 1.

SumCracker is not able to find this identity in full generality—it returns the
sum unevaluated.

In[6]:= Crack[SUM[q
��� 2

�

/u[a · 2 � +1], {k, 0, n}], From → 1,
Where → {u[n+2] == p·u[n+1]−q·u[n], u[0] == 0, u[1] == 1}]

Out[6]=

n
∑

k=0

qa2k

u(a2k+1)

However, it does find a closed form representation of this sum for each specific
value of a.

In[7]:= Crack[SUM[q2
�

/u[2 � +1], {k, 0, n}], From → 1,
Where → {u[n+2] == p·u[n+1]−q·u[n], u[0] == 0, u[1] == 1}]

Out[7]= p − u(2n + 1)

u(2n)

In[8]:= Crack[SUM[q3 � 2
�

/u[3 · 2 � +1], {k, 0, n}], From → 1,
Where → {u[n+2] == p·u[n+1]−q·u[n], u[0] == 0, u[1] == 1}]

Out[8]=
p(p2 − 2q)

p2 − q
− u(3 · 2n+1 + 1)

u(3 · 2n+1)
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In[9]:= Crack[SUM[q4 � 2
�

/u[4 · 2 � +1], {k, 0, n}], From → 1,
Where → {u[n+2] == p·u[n+1]−q·u[n], u[0] == 0, u[1] == 1}]

Out[9]= (2.57s)
p4 − 3p2q + q2

p(p2 − 2q)
− u(4 · 2n + 1)

u(4 · 2n)

In[10]:= Crack[SUM[q5 � 2
�

/u[5 · 2 � +1], {k, 0, n}], From → 1,
Where → {u[n+2] == p·u[n+1]−q·u[n], u[0] == 0, u[1] == 1}]

Out[10]= (3.31s)
p(p4 − 4p2q + 3q2)

p4 − 3p2q + q2
− u(5 · 2n + 1)

u(5 · 2n)

When we became aware of the above identities involving F2k , we were won-
dering whether there are similar summation identities which are not related
to formula (1). Using our package, we have found the identities

n
∑

k=0

F3k − 2F3k+1

F3k + iF2·3k

=
(2 + i)F3n − (1 + i)F3n+1 − iF2·3n − F2·3n+1

F3n − F3n+1 + iF2·3n+1

n
∑

k=0

P3k − P3k+1

P3k + P2·3k+1

=
2P2·3n+1 + P3n+1 − P2·3n

2(P3n + P2·3n+1)
n

∑

k=0

ψFFk+1
− 2iFFk

i
√

3ψ + 6i(−1)Fk + 3
2
iψ2(−1)Fk+1

=
ψFFn+1

i
√

3ψ + 6i(−1)Fn + 3
2
iψ2(−1)Fn+1

where i =
√
−1, ψ = −i +

√
3 and Pn denotes the nth Pell number, defined

via

Pn+2 = 2Pn+1 + Pn, P0 = 0, P1 = 1.

We believe that these identities have not been published before. Quite in con-
trast to the case of hypergeometric sums, sum identities involving recurrent
sequences of exponential arguments turn out to be extremely rare. In fact, we
did not find the above identities by trial and error applications of the Crack
command, but by computing algebraic dependencies of the quantities in ques-
tion and then doing an exhaustive search for telescoping rational functions
in the ideal of algebraic dependencies. A similar technique in a simpler situ-
ation is described in Section 6.2 below. Besides the mentioned identities we
have only found a few more nontrivial ones, but they had quite an unpeasent
appearance.

In this introductory section, we have only made use of the Crack command
for breaking an expression into an equivalent but “simpler” expression. Sum-
Cracker provides in addition commands for proving identities and inequalities
and for discovering algebraic dependencies. These commands, along with ex-
amples, are introduced in the subsequent sections.
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3 Admissible Sequences and Admissible Expressions

Before we turn to a more detailed description of the SumCracker facilities,
let us clarify the domain of sequences which SumCracker can handle. The al-
gorithms implemented in the package operate on a certain class of sequences
which we call admissible. In order to be admissible, a sequence must be a
solution of a system of difference equations of a certain type, the admissible
systems. A precise definition is given below. In order to refer to a certain ad-
missible sequence, the user can directly specify the defining admissible system,
but often this is not necessary. SumCracker has got routines that are able to
transform a lot of standard expressions into suitable defining admissible sys-
tems. The user can therefore input many admissible sequences by expressions
in a natural style. An expression which SumCracker is able to recognize as an
admissible sequence is called an admissible expression. We now state precise
definitions for sequences and expressions to be admissible.

Definition 1 Let S = {diffeq1, . . . , diffeqm} be a system of difference equa-
tions with the function symbols f1, . . . , fm, where each diffeq i has the form

fi(n+ ri) = rati

(

f1(n), f1(n+ 1), . . . , f1(n+ ri − 1), f1(n+ ri),

...
...

fi−1(n), fi−1(n+ 1), . . . , fi−1(n+ ri − 1), fi−1(n+ ri),

fi(n), fi(n + 1), . . . , fi(n + ri − 1),
...

...

fm(n), fm(n+ 1), . . . , fm(n+ ri − 1)
)

with some explicit rational function rati. Then the system S is called an ad-
missible system (for f1, . . . , fm).

A sequence f :
� → k is called admissible if there exists an admissible system S

with solutions f1, . . . , fm :
� → k such that f = fi for some i = 1, . . . , m.

SumCracker internally represents admissible sequences by using defining ad-
missible systems and a suitable number of initial values. Note that this data
uniquely defines the admissible sequence, because the difference equations in
an admissible system allow to determine the values fi(n) if the values fi(j)
(j < n) are known. (A problem arises only if the iterated application of a
recurrence leads to a division by zero, in which case the sequences are not well
defined. We assume that this does not happen in admissible systems which
the user specifies.)

The class of admissible sequences is closed under a number of important op-
erations, and for many operations it is easy to get automatically from an
admissible system of the operands to an admissible system of the sequence
resulting from the operation. Roughly speaking, an admissible expression is
an expression that can be obtained from some standard expressions by means
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of such operations.

Definition 2 An expression 〈expr〉 is called admissible (with respect to the
variable n), if it is constructed according to the following rules.

(1) (built-in) Every expression free of n (constants), the expression n itself
(identity), every expression of the form an (exponential) with a free of n,
and the expression n! (factorial) is admissible.

The following expressions are admissible:
BesselI[n, x], BesselJ[n, x], BesselK[n, x], BesselY[n, x],
Binomial[αn+ β, γn+ δ], ChebyshevT[n, x], ChebyshevU[n, x]
Fibonacci[n], Fibonacci[n, x], Gamma[n], GegenbauerC[n, a, x],
HarmonicNumber[n], HarmonicNumber[n, r], HermiteH[n, x],
JacobiP[n, a, b, x], LaguerreL[n, a, x], LegendreP[n, x], Lucas[n],
Lucas[n, x], Pell[n], Pell[n, x], PellLucas[n], PellLucas[n, x],
RaisingFactorial[n, d], FallingFactorial[n, d]

(a, b, x, γ, δ free of n; d, r ∈ �
; α, β ∈ �

).
(2) (user-defined) The expression f [n], where f is declared using the Where

option (see below) is admissible.
(3) (arithmetic) If 〈expr〉1, 〈expr〉2 are admissible with respect to n, then so

are

〈expr〉1 + 〈expr〉2, 〈expr〉1 − 〈expr〉2, 〈expr〉1 · 〈expr〉2, 〈expr〉1/〈expr〉2.

In the latter case, it is assumed implicitly that the sequence corresponding
to 〈expr〉2 does not vanish in the domain of definition.

For a ∈ �
, 〈expr〉1a is admissible.

(4) (quantifiers) If 〈expr〉 is admissible with respect to i and free of n, then the
expressions SUM[〈expr〉, {i, a, n}] and PRODUCT[〈expr〉, {i, a, n}] are
admissible in n for any a ∈ �

.
If 〈expr〉1, 〈expr〉2 are admissible with respect to i and free of n, then

the expressions

CFRAC[〈expr〉1, {i, a, n}] and CFRAC[〈expr〉2, 〈expr〉1, {i, a, n}]

are admissible with respect to n for any a ∈ �
. These expressions corre-

spond to the sequences of (partial) continued fractions

n

K
i=a

(g(i), f(i)) := f(a) +
g(a+ 1)

f(a+ 1) +
g(a+ 2)

· · · + g(n)

f(n)

where f(n) and g(n) are the sequences corresponding to 〈expr〉1, 〈expr〉2,
respectively. If 〈expr〉2 is not specified, it is assumed that g(n) = 1 for
all n.

(5) (affine transforms) If 〈expr〉 is admissible with respect to n and 〈expr〉′
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is obtained from 〈expr〉 by replacing each n with an + b for some fixed
a, b ∈ �

0, then 〈expr〉′ is admissible.
If 〈expr〉′ is obtained from 〈expr〉 by replacing each n with Floor[pn+q]

for some fixed p, q ∈ � , p, q ≥ 0, then 〈expr〉′ is admissible.
This rule may not be applied twice in a row, i.e., nested floor expres-

sions like bqbun + vc + qc are currently not allowed.
(6) (C-finite nesting) Expressions of the form f [〈expr〉] are admissible if f

is specified by a linear homogeneous recurrence with constant coefficients
(also called a C-finite recurrence), and if 〈expr〉 is an expression that
corresponds to a sequence which satisfies a linear homogeneous recurrence
with integer coefficients.

The inner expression 〈expr〉 must belong to the closure of constants, n,
exponentials an (a free of n), and expressions g[an+ b] (a, b ∈ �

, g user-
defined or built-in) under addition, multiplication, exponentiation with a
positive integer, and indefinite summation.

Sums and products are represented by the symbols SUM and PRODUCT
in order to avoid conflicts with the symbols Sum and Product that have a
predefined meaning in Mathematica.

For some admissible expressions, it is necessary to specify additional informa-
tion in order to clarify which admissible sequence they are supposed to mean.
Such supplementary information can be specified via options. In particular,
using the Where option, sequences can be specified by an explicit admissible
system given as a list of equations as specified in Definition 1 and equations
of the form f [i] == y with i ∈ �

for specifying initial values. The right hand
side of the recurrence equation may well involve other admissible expressions
as coefficients of the rational functions.

The variable in an admissible expression need not be n, it can be any Math-
ematica expression which is atomic with respect to the rules of Definition 2.
SumCracker tries to automatically detect what the variable is, but it may fail
if there are several plausible choices. In this case, the option Variable can be
used for clarification.

We have introduced sequences as functions f :
� → k. More generally, we

regard any function f : {n0, n0 + 1, n0 + 2, . . . } → k for some fixed startpoint
n0 ∈ �

as a sequence. Given an admissible expression, SumCracker assumes
as startpoint the least number n0 for which all sequences in the admissible
system are defined (according to the specified initial values). If it is impossible
to determine a startpoint from the initial values, then the default startpoint 0
is chosen. This may happen if the expression at hand only consists of built-
in expressions like Fibonacci[n], which are defined for all integers n ∈ �

.
The automatic detection of the startpoint can be bypassed by specifying the
startpoint directly using the option From.
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4 Proving Identities and Inequalities

4.1 Identities: ZeroSequenceQ

The proving command ZeroSequenceQ decides for an admissible expression
whether it represents the zero sequence. In order to prove an identity A = B,
this command is applied to the difference A − B. The identity holds if and
only if the command returns True upon this input.

For instance, the q-Cassini identity

dnen+1 − dn+1en = (−1)nq(
n

2) (n ≥ 0)

due to Andrews et. al. [5], where

dn+2 = dn+1 + qndn, d0 = 1, d1 = 0,

en+2 = en+1 + qnen, e0 = 0, e1 = 1,

is easily established as follows:

In[11]:= ZeroSequenceQ[d[n]e[n + 1] − d[n + 1]e[n] − (−1) � qBinomial[ � � 2],
Where → {d[n + 2] == d[n + 1] + q � d[n],

d[0] == 1, d[1] == 0,
e[n + 2] == e[n + 1] + q � e[n],
e[0] == 0, e[1] == 1}]

Out[11]= True

Also identities involving “arbitrary sequences” can be proven. An example
for this kind of identities is the Christoffel-Darboux identity for orthogonal
polynomials [6, Thm. 4.5]. For arbitrary sequences cn and λn, let the sequence
pn(x) be defined via

pn(x) = (x− cn)pn−1(x) − λnpn−2(x) (n ≥ 0), p−1(x) = 0, p0(x) = 1.

Then:
n

∑

k=0

pk(x)pk(u)
∏k+1

i=1 λi

=
pn+1(x)pn(u) − pn(x)pn+1(u)

(x− u)
∏n+1

k=1 λn

,

and we can prove this identity automatically for arbitrary cn and λn. The Free
option is used for specifying that the function symbols c and λ should denote
free sequences.

In[12]:= ZeroSequenceQ[
SUM[px[k]pu[k]/PRODUCT[λ[i], {i, 1, k + 1}], {k, 0, n}]

−
px[n + 1]pu[n] − px[n]pu[n + 1]

(x − u)PRODUCT[λ[i], {i, 1, n + 1}]
,

Where → {px[n +2] == (x − c[n +2])px[n+ 1] − λ[n +2]px[n],
px[−1] == 0, px[0] == 1,
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pu[n+2] == (u − c[n+2])pu[n+1]− λ[n+2]pu[n],
pu[−1] == 0, pu[0] == 1},

Free → {c, λ}]

Out[12]= True

A more difficult example is the continued fraction identity

(a0 − x) +
xa0

(a1 − x) +
xa1

· · · + xan−1

an − x

=
1

n
∑

k=0
(−x)k/

k
∏

i=0
ai

− x,

which holds for any sequence a in
�

(x) \ {0, x} [7]. Also this identity can be
proven automatically in full generality:

In[13]:= ZeroSequenceQ[CFRAC[a[k − 1]x, a[k] − x, {k, 0, n}] + x
− 1/SUM[(−x) � /PRODUCT[a[i], {i, 0, k}], {k, 0, n}],
Free → {a}]

Out[13]= (∗5.56s)True

For this example, the built-in Gröbner basis facilities of Mathematica are not
efficient enough. In order to obtain the result, we have outsourced all Gröbner
basis computations to the special purpose system Singular.

4.2 Inequalities: ProveInequality

There is also a command by which some combinatorial inequalities can be
proven. The command ProveInequality accepts an inequality of the form A♦B
with ♦ ∈ {=, 6=, ≥, ≤, >, <} and returns True or False depending on whether
the formula A♦B holds or not. Unlike ZeroSequenceQ, the inequality prover
might not terminate.

As an example, consider the inequality

n
∑

k=1

L2
k

Fk

≥ (Ln+2 − 3)2

Fn+2 − 1
(n ≥ 2),

proposed by Diaz and Egozcue [10], where Fk is the k-th Fibonacci number
and Lk denotes the k-th Lucas number, defined by

Lk+2 = Lk + Lk+1 (k ≥ 0), L0 = 2, L1 = 1.

In[14]:= ProveInequality[SUM[Lucas[k]2/Fibonacci[k], {k, 1, n}]
≥ (Lucas[n + 2] − 3)2/(Fibonacci[n + 2] − 1),
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From → 2]

This runs longer than the patience of the user permits. Probably it does not
terminate at all. In such situations, termination can often be obtained by
specifying some additional knowledge using the Using option. In this examples,
it suffices to supply the fact Fn ≥ 1 for all n ∈ �

. If desired, such additional
information can afterwards be proven by the same procedure.

Out[14]= (> 10h)$Aborted

In[15]:= ProveInequality[SUM[Lucas[k]2/Fibonacci[k], {k, 1, n}]
≥ (Lucas[n + 2] − 3)2/(Fibonacci[n + 2] − 1),
From → 2, Using → {Fibonacci[n] ≥ 1}]

Out[15]= True

In[16]:= ProveInequality[Fibonacci[n] ≥ 1, From → 2]

Out[16]= True

A lot of classical inequalities can be proven by this procedure. One example
is Bernoulli’s inequality.

In[17]:= ProveInequality[(1 + x) � ≥ 1 + n x, Using → {x ≥ −1}]
SumCracker::general : Unable to detect variable. There are several equally reasonable possibilities.

Out[17]= $Failed

In[18]:= ProveInequality[(1 + x) � ≥ 1 + n x,
Variable → n, Using → {x ≥ −1}]

Out[18]= True

Observe here that the Variable option has to be used to prevent SumCracker
from choosing x as the discrete variable. Also observe that the Using option
was used here to specify the domain of the parameter x. Most textbook authors
overlook that Bernoulli’s inequality already holds from x = −2 on:

In[19]:= ProveInequality[(1 + x) � ≥ 1 + n x,
Variable → n, Using → {x ≥ −2}]

Out[19]= True

ProveInequality also supports the Free option for specifying “arbitrary se-
quences.” For example, the Cauchy-Schwarz inequality can be proved auto-
matically this way.

According to our experience, the ProveInequality command does not terminate
for inequalities of outstanding difficulty such as the inequalities of Vietoris or
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Askey-Gasper [4, Chapter 7], and for those it is also not possible to obtain
termination by adding some trivial additional knowledge. However, the pro-
cedure successfully applies to many elementary inequalities which are easy
but perhaps cumbersome to prove by hand. It might be useful for proving
inequalities which are not of interest in their own right, but which appear as
subproblems in the proof of more sophisticated theorems.

The most nontrivial inequality we know on which ProveInequality succeeds is
Turan’s inequality

Pn+1(x)
2 − Pn(x)Pn+2(x) ≥ 0 (−1 ≤ x ≤ 1)

for Legendre polynomials [35,12]:

In[20]:= ProveInequality[
LegendreP[n + 1, x]2 − LegendreP[n, x]LegendreP[n + 2, x] ≥ 0,
Using → {−1 ≤ x ≤ 1}, Variable → n]

Out[20]= (3.74s)True

Analogous inequalities also hold (and can be proven) for other families of
polynomials, such has Hermite polynomials, Laguerre polynomials, etc.

5 “Cracking” Expressions: Crack

The Crack command has already been introduced in Section 2. It takes an
admissible expression f(n) as input and attempts to find an expression which
is simpler than the original one. To be more precise, Crack searches for a
multivariate rational function r such that

f(n) = r(f1(n), . . . , fm(n)),

where f1(n), . . . , fm(n) are automatically determined from the subexpressions
of f(n). Alternatively, the user can also specify f1(n), . . . , fm(n) explicitly by
using the Into option.

5.1 Indefinite Summation

In indefinite summation, the goal is to eliminate the outermost summation
quantifier from an expression of the form F (n) :=

∑n
k=1 f(k). Typical examples

include identities for orthogonal polynomials such as [4, Chapter 6]

n
∑

k=0

(k + λ)Cλ
k (x) =

(n + 2λ)Cλ
n(x) − (n+ 1)Cλ

n+1(x)

2(1 − x)
.

In[21]:= Crack[SUM[(k + λ)GegenbauerC[k, λ, x], {k, 0, n}]]
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Out[21]=

(n + 2λ)Cλ
n(x) − (n + 1)Cλ

n+1(x)

2(1 − x)

Section 2 above contains further examples. In general, it might not be possible
to simplify a given sum. If this is the case, then the original expression is
returned:

In[22]:= Crack[SUM[1/Lucas[2 � ], {k, 0, n}, From → 1]

Out[22]=

n
∑

k=0

1

L2k

This output means that SumCracker was not able to find a simpler represen-
tation for the sum

∑n
k=0 1/L2k . This does not mean, however, that no closed

form for the sum exists at all, it only means that there is no closed form in
the search space that SumCracker has investigated. If Crack exceeds a cer-
tain heuristically chosen total degree bound for numerator and denominator
of the rational function r on the right hand side, then it gives up and returns
the sum unsimplified. The degree bound can be specified explicitly using the
Degree option. By choosing a degree bound, beware that the runtime of the
underlying algorithm is exponential in the degree and the number of subex-
pressions of the sum in the worst case. For the sum

∑n
k=0 1/L2k , this worst

case complexity is not attained, so we can raise the degree quite far:

In[23]:= Crack[SUM[1/Lucas[2 � ], {k, 0, n}, From → 1, Degree → 10]

Out[23]=

n
∑

k=0

1

L2k

In[24]:= Crack[SUM[1/Lucas[2 � ], {k, 0, n}, From → 1, Degree → 250]

Out[24]= (5.6h)

n
∑

k=0

1

L2k

Now we can be sure that if there does exist closed form of
∑n

k=0 1/L2k in terms
of a rational function in L2k and L2k+1 then this rational function must have
a numerator or a denominator with total degree more than 250.

5.2 Simplification

The Crack command is not restricted to indefinite sums. It can be applied
to any admissible expression, and thus can also be used as a simplifier for
admissible expressions.

As a simple example, consider the Perrin sequence pn [33, A001608], defined

13



via
pn+3 = pn + pn+1, p0 = 3, p1 = 0, p2 = 2.

This sequence give rise to a simple pseudo primarity test [3]. Expressions like

pn+2p
3
n+1 − p4

n+1 − p3
n+2pn+1 + 23pn+1

p2
n + 2pn+1pn + p2

n+1 − p2
n+2 − 3pn+1pn+2

involving pn can be simplified by Crack:

In[25]:= Crack[(p[n+2]p[n+1]3 − p[n+1]4 − p[n+2]3p[n+1]+23p[n+1])/
(p[n]2 +2p[n+1]p[n]+p[n+1]2 − p[n+2]2 − 3p[n+1]p[n+2]),
Where → {p[n + 3] == p[n] + p[n + 1],

p[0] == 3, p[1] == 0, p[2] == 2}]

Out[25]= pnpn+1

5.3 Conversion

By default, the Crack command determines the expressions f1(n), . . . , fm(n)
which might appear in the output from the subexpressions of the input. The
choice of the fi(n) can also be done explicitly by the user, using the Into
option. In connection with this option, the Crack command resembles the
convert function of Maple.

As a simple example, we might want to eliminate the shift in a from the Jacobi
polynomial P (a+1,b)

n (x). We can do this by typing the following command line:

In[26]:= Crack[JacobiP[n, a + 1, b, x], Into → {n, JacobiP[n, a, b, x]}]

Out[26]= (21.20s)
2(n + 1)P

(a,b)
n+1 (x) − 2(1 + a + n)P

(a,b)
n (x)

(2n + a + b + 2)(x − 1)

This result coincides with (22.7.15) of [2]. The embarrassingly long runtime
in this example is caused by the presents of the three parameters a, b, x. For
a quicker example, let d(n) be the number of paths in an n× n grid from the
south-west corner to the north-east corner, using only single steps north, east,
north-east [33, A001850, Delannoy numbers], and let s(n) be the number of
paths of the same type, which do not touch any point above the diagonal from
south-west to north-east [33, A006318, Schröder numbers]. It can be shown
[8] that these numbers satisfy the recurrences

d(n+ 2) =
3(2n+ 3)d(n+ 1) − (n+ 1)d(n)

n + 2
, d(1) = 3, d(2) = 13,

s(n+ 2) =
3(2n+ 3)s(n+ 1) − ns(n)

n + 3
, s(1) = 2, s(2) = 6.

If we want to express, say, n2s(n) + s(n + 1)/n in terms of the Delannoy
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numbers, we can type the following.

In[27]:= Crack[n2s[n] + s[n + 1]/n, Into → {n, d[n]},

Where → {d[n + 2] ==
3(2n + 3)d[n + 1] − (n + 1)d[n]

2 + n
,

d[1] == 3, d[2] == 13,

s[n + 2] ==
3(2n + 3)s[n + 1] − n s[n]

3 + n
,

s[1] == 2, s[2] == 6}]

Out[27]= (3.89s)
(n3 + 2n2 + 3)d(n + 1) − (3n3 + 6n2 + 1)d(n)

2n(n + 2)

5.4 Solving Nonlinear Difference Equations

Crack is also useful for solving certain nonlinear difference equations. As a
simple example, the difference equation

u(n+ 1) =
3u(n) + 1

5u(n) + 3
(n ≥ 1), u(1) = 1

has been posed by Rabinowitz [27]. A solution in terms of Fibonacci numbers
is requested.

We can solve this problem by regarding the difference equation as a definition
for the unknown function u and applying Crack to express this u in terms of
the expressions that we expect in the solution.

In[28]:= Crack[u[n], Into → {Fibonacci[n]},
Where → {u[n + 1] == (3u[n] + 1)/(5u[n] + 3), u[1] == 1}]

Out[28]=

−2F 2
n + 2FnFn+1 − F 2

n+1

4F 2
n − 6FnFn+1 + F 2

n+1

In Section 6.3 below, we will show how SumCracker can be used to automat-
ically generate problems of this kind.

6 Discovering Algebraic Dependencies: ApproximateAnnihilator

The Crack command described in the previous section is a specialized form
of the more general command ApproximateAnnihilator. This command can
be used for discovering algebraic dependencies among admissible sequences.
An algebraic dependency among sequences f1, . . . , fm :

� → k is a polynomial
p ∈ k[x1, . . . , xm] such that

p(f1(n), . . . , fm(n)) = 0 (n ∈ �
).
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The set of all algebraic dependencies forms an ideal in k[x1, . . . , xm], which we
call the annihilator of f1, . . . , fm. (This ideal must, however, not be confused
with an ideal of annihilating linear difference operators, as used, e.g., in the
work of Zeilberger [37]).

Observe that the results of a call Crack[〈f1〉, Into → {〈f2〉, . . . , 〈fm〉}] are
nothing else but algebraic dependencies of the special shape

p(f2(n), . . . , fm(n))f1(n) − q(f2(n), . . . , fm(n)) = 0 (n ≥ 0).

In fact, the same algorithm is used for Crack and ApproximateAnnihilator.
The only difference in the implementation is that in Crack the search is re-
stricted to dependencies of the above form, so that this command runs usually
faster than the general command.

The general command ApproximateAnnihilator takes a list {f1(n), . . . , fm(n)}
of admissible expressions and a symbol x as input and returns a (Gröbner)
basis of the ideal generated by all algebraic dependencies p ∈ k[x1, . . . , xm] of
a prescribed total degree. The default degree bound 10 can be overruled by
the option Degree.

Some situations where this command is helpful are described in order.

6.1 q-Cassini’s Identity

In Section 4 we have shown how the q-analogue

dnen+1 − dn+1en = (−1)nq(
n

2)

of Cassini’s identity can be proven automatically. If we want to find such an
identity, the Crack command is of little help.

Of course, we could find the identity via

In[29]:= def = {d[n + 2] == d[n + 1] + q � d[n], d[0] == 1, d[1] == 0,
e[n + 2] == e[n + 1] + q � e[n], e[0] == 0, e[1] == 1};

In[30]:= Crack[d[n]e[n + 1] − d[n + 1]e[n], Into → {(−1) � , qBinomial[ � � 2]},
Where → def, Variable → n]

Out[30]= (−1)nq(
n

2),

but this requires knowing that we have to crack the left hand side into (−1)n

and q(
n

2). If we do not know this, we can blindly search for algebraic depen-
dencies between the entities dn, dn+1, en, en+1, (−1)n and qn.

In[31]:= ApproximateAnnihilator[{d[n], d[n + 1], e[n], e[n + 1], (−1) � , q � }, x,
Where → def, Degree → 5]

Out[31]= (32.01s){x2
5 − 1}
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This gives just the dependency
(

(−1)n
)2

= 1. Next we might include qn2

into
the search.

In[32]:= ApproximateAnnihilator[

{d[n], d[n + 1], e[n], e[n + 1], (−1) � , q � , q �
2

}, x,
Where → def, Degree → 5, Variable → n]

Out[32]= (135.46s){x2
5 − 1, x2

2x
2
3x6 − 2x1x2x3x4x6 + x2

1x
2
4x6 − x7}

The second dependency gives corresponds to the identity

(dnen+1 − dn+1en)2qn = qn2

,

hence
|dnen+1 − dn+1en| = q(n2−n)/2 = q(

n

2).

Now by considering initial values, it is easily seen that

(dnen+1 − dn+1en)/q(
n

2) = (−1)n,

from which the desired identity follows.

In[33]:= Clear[def ];

6.2 Somos Sequences

A Somos sequence [34,11] of order r is a sequence Cn which satisfies a recur-
rence equation of the form

Cn+rCn = Cn+r−1Cn+1 + Cn+r−2Cn+2 + · · · + Cn+r−br/2cCn+br/2c. (2)

It can be shown that when C0, C1, . . . , Cr−1 are nonzero integral initial values,
then Cn is a nonzero integer for every n ∈ �

, which in particular means that
the sequence Cn is well defined by initial values and the difference equation
above. Upon division by Cn it becomes apparent that Cn is an admissible
sequences.

It is of interest [36] to know whether a given Somos sequence of order r is also a
Somos sequence of some different order r′. SumCracker supports investigations
of this kind. To be specific, let Cn be defined by

Cn+4 = (Cn+3Cn+1 + C2
n+2)/Cn (n ≥ 4), C0 = C1 = C2 = C3 = 1.

In order to find out whether this sequence also satisfies equations of the
form (2) for r 6= 4, we will search for corresponding polynomials in the ideal
of algebraic dependencies.

In[34]:= vars = {C[n], C[n + 1], C[n + 2], C[n + 3], C[n + 4], C[n + 5],
C[n + 6], C[n + 7]};
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In[35]:= id = ApproximateAnnihilator[vars,
Where → {C[n + 4] == (C[n + 3]C[n + 1] + C[n + 2]2)/C[n],

C[0] == 1, C[1] == 1, C[2] == 1, C[3] == 1},
Degree → 2]; (20.30s)

In[36]:= id = GroebnerBasis[id, vars];

We search for the desired polynomials by reducing an ansatz polynomial mod-
ulo the ideal id and comparing the coefficients of the obtained normal form
to zero. The solutions of the resulting linear system are precisely the required
polynomials. (Note that the restriction Degree → 2 is well justified for our
purpose.)

In[37]:= ansatz[r ] :=
Sum[a[i]C[n + r − i]C[n + i], {i, 0, Floor[r/2]}] /. a[0] → 1;

In[38]:= FindSomos[r ] := ansatz[r] /.
First[

Solve[
Thread[

CoefficientList[
Last[

PolynomialReduce[ansatz[r], id, vars]
], vars] == 0]]];

In[39]:= FindSomos[4]

Out[39]= Cn+4Cn − Cn+3Cn+1 − C2
n+2

In[40]:= FindSomos[5]

Out[40]= Cn+5Cn + Cn+4Cn+1 − 5Cn+3Cn+2

In[41]:= FindSomos[6]
Solve::svars : Equations may not give solutions for all ”solve” variables.

Out[41]= Cn+6Cn − (a3 + 5)Cn+5Cn+1 + (a3 + 4)Cn+4Cn+2 + a3C
2
n+3

In[42]:= % /. {{a[3] → 0}, {a[3] → 1}}

Out[42]= {Cn+6Cn − 5Cn+5Cn+1 + 4Cn+4Cn+2,

Cn+6Cn − 6Cn+5Cn+1 + 5Cn+4Cn+2 + C2
n+3}

In[43]:= FindSomos[7] /. {{a[3] → 0}, {a[3] → 1}}
Solve::svars : Equations may not give solutions for all ”solve” variables.

Out[43]= {Cn+7Cn − 4
5Cn+6Cn+1 − 29

5 Cn+5Cn+2,

Cn+7Cn − Cn+6Cn+1 − 6Cn+5Cn+2 + Cn+4Cn+3}

This list is exhaustive in the sense that every other Somos-like relation of
Cn of order at most 7 is a linear combination of those which appear above
as output. By leaving the coefficients in the recurrence and the initial values
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symbolic, we found that that every sequence Cn satisfying

Cn+4 = (αCn+3Cn+1 + βC2
n+2)/Cn

also satisfies

Cn+5Cn =
β (βC2

1 + αC0C2)C
2
2 + βC2

0C
2
3 + αC1 (βC2

1 + αC0C2)C3

C0C1C2C3

Cn+3Cn+2

− βCn+4Cn+1,

Cn+6Cn =
(

β3 − α4

β
− (αC3C

3
1 + βC2

2C
2
1 + C0 (αC3

2 + C0C
2
3))α

2

C0C1C2C3

)

Cn+4Cn+2

+
(

(βC2
1 + αC0C2)α

2

βC0C2
+
C0C3α

C1C2
+
αβC2C

2
1 + α2C0C

2
2

C0C1C3

)

Cn+5Cn+1,

Cn+7Cn =
(

βC0C3α
2

C1C2
+
βC2 (βC2

1 + αC0C2)α
2

C0C1C3

+
C0C2α

4 + βC2
1α

3 − β3C0C2

C0C2

)

Cn+4Cn+3

+
(

C0C3β
2

C1C2
+
C2 (βC2

1 + αC0C2) β
2

C0C1C3

+
α (βC2

1 + αC0C2)β

C0C2

)

Cn+5Cn+2,

etc.

In[44]:= ClearAll[vars, id, ansatz, F indSomos];

6.3 Automatically Posing Quarterly Problems

Many relationships which can be found in the problem sections of contem-
porary mathematical journals are consequences of algebraic dependencies. In
the previous section, we have found with the Crack command a sequence u(n)
satisfying the recurrence

u(n+ 1) =
3u(n) + 1

5u(n) + 3
, u(1) = 1.

Conversely, we may use ApproximateAnnihilator to design equations like this
for prescribed solutions, for instance the solution u(n) = F3n/L3n:

In[45]:= ApproximateAnnihilator[{
Fibonacci[3n]

Lucas[3n]
,
Fibonacci[3(n + 1)]

Lucas[3(n + 1)]
}, u,

Degree → 2]

Out[45]= {−1 − 2u[1] + 2u[2] + 5u[1]u[2]}
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It follows that the desired equation reads

u(n+ 1) =
2u(n) + 1

5u(n) + 2
, u(1) = 1.

More generally, for any u(n) = a(n)/b(n) where both a(n) and b(n) satisfy
the same recurrence of order two with constant coefficients, such an equation
can be found.

In[46]:= ApproximateAnnihilator[{a[n]/b[n], a[n + 1]/b[n + 1]}, u,
Where → {a[n + 2] == x · a[n + 1] + y · a[n],

b[n + 2] == x · b[n + 1] + y · b[n]},
Degree → 2]

Out[46]= {ya2
1 + xa2a1 − yb1u[1]a1 − yb1u[2]a1 − xb2u[2]a1 − a2

2 − xa2b1

u[1] + a2b2u[1] + a2b2u(2) + yb2
1u[1]u[2] − b2

2u[1]u[2] + xb1b2u[1]u[2]}

Cleaning up this output leads to the equation

u(n+ 1) =
(a2b2 − ya1b1 − xa2b1) u(n) + ya2

1 + xa2a1 − a2
2

(b22 − yb21 − xb2b1)u(n) + ya1b1 + xa1b2 − a2b2
, u(1) =

a1

b1
.

These relationships can also be obtained easily from the theory of continued
fractions [25]. The point here is that no knowledge of this theory is required
if the SumCracker package is used.

In[47]:= Quit

7 Conclusion

SumCracker is a software package for dealing with nonstandard expressions
involving symbolic sums and, more generally, recursively defined sequences. It
provides tools for proving identities and inequalities, and for finding identities
of a prescribed form. A collection of example problems was given which at
present cannot be solved by any other software package.

Some examples, however, could well be done by hand, at least by people who
have some experience in the manipulation of special sequences. The choice
of these examples was forced by the extreme runtime complexity that pre-
vented harder examples from going through. Improving the efficiency of the
package is thus a major objective for the development of future versions. For
instance, the general procedures currently implemented in the package could
be combined with classical “special purpose” summation algorithms, which
are usually much faster and thus should be used whenever possible.

It would of course also be interesting to develop more powerful algorithms
which apply to the whole class of admissible sequences. For instance, some
of the work that Schneider [30,31, e.g.] has undertaken for the case of ΠΣ-
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fields might be transferable to some extend. Currently under development is
an extension to definite summation problems, i.e., to sums

∑n
k=0 f(n, k) where

the summand and summation bound need not be independent. At the moment,
SumCracker does not support this kind of sums.

Finally, we would like to point out that the algorithms underlying the Sum-
Cracker package admit differential analogues (except for the inequality prover).
In the definition of admissibility, the ith shift f(n+i) just has to be exchanged
by the ith derivative f (i)(z). For instance, the Lambert W function [9], defined
as the solution W (z) of the equation z = w exp(w) satisfies

W ′(z) =
W (z)

1 +W (z)

and hence is admissible in this sense. An implementation of these algorithms
could be of interest as well.
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