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ABSTRACT
We consider symbolic sums which contain subexpressions
that represent unspecified sequences. Existing symbolic sum-
mation technology is extended to sums of this kind. We show
how this can be applied in the systematic search for general
summation identities. Both, results about the non-existence
of identities of a certain form, and examples of general fami-
lies of identities which we have discovered automatically are
included in the paper.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; G.2.1 [Discrete Mathe-
matics]: Combinatorics—Recurrences and difference equa-

tions

General Terms
Algorithms

Keywords
Symbolic Summation, Difference Fields

1. INTRODUCTION
The focus of this paper is on summation identities involv-
ing expressions like Xk that stand for unspecified sequences.

Such summation identities remain true for every particular
sequence fk in place of the symbol Xk. A simple example
for such an identity is

n�
k=0

(Xk+1 − 1)
k�

i=0

Xi =
n+1�
k=0

Xk − X0. (1)

∗Both authors were supported by the Austrian science foun-
dation FWF, grants P16613-N12 and F1305.

If particular rational functions are substituted for Xk in
this identity, we obtain precisely the indefinite hypergeomet-
ric summation identities that are found by Gosper’s algo-
rithm [5, 12]. We may say that Gosper’s algorithm precisely
solves the task of writing a given hypergeometric term in
the form (Xk+1−1) � k

i=0 Xi for a specific rational function,
or it proves that this is impossible.

In the present paper, we mainly study definite summation
identities involving unspecified sequences. A sum is called
definite if the summand depends not only on the summation
index k but also on the summation bound n. A simple
example is

n�
k=0

Xn+k = X0 +

n−1�
k=0

(X2k+1 + X2k+2 − Xk)

Again, the identity holds for every sequence in place of the
symbol Xk. The interest in identities of this type was not
so much raised by examples arising from practice. The con-
sideration of summation identities involving unspecified se-
quences Xk is rather motivated because the presence of Xk

in summation identities reveals some structural information
about summation in general and summation algorithms in
particular. Usage of unspecified sequences makes it possible
to search for (families of) “nice” summation identities in a
more systematic way. For instance, criteria can be automat-
ically derived which a sequence fk in place of Xk must fulfill
such that a closed form can be found (Section 4).

An earlier paper of ours [8] contains an algorithm for indef-
inite summation with unspecified sequences. In Section 2
we discuss how this algorithm can be extended to definite
summation via the creative telescoping method [22]. This al-
gorithm was implemented and incorporated into the second
author’s summation package Sigma [17]. With this imple-
mentation, we then searched for general definite summation
identities involving unspecified sequences. It turned out that
only very few general identities exist. An explanation for
this phenomenon is provided in Section 3, where we show
that a certain class of definite sums does not admit creative
telescoping recurrences at all.

This negative result suggests that the search for nontriv-
ial general summation identities has to be focused on more
complicated expressions, such as nested sum expressions.
Even in this enlarged domain, general definite sums which
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admit simplification are rare. Some which we have found by
experimenting are presented in Section 4.

2. SUMMATION IN DIFFERENCE FIELDS
2.1 PLDEs and Summation
A fundamental role in summation algorithms is played by
parameterized linear difference equations (PLDEs): Given
certain sequences a0, . . . , am and f0, . . . , fr : � → � , where

� is a field, the goal is to find a sequence g and constants
c0, . . . , cr such that

a0g + a1Eg + · · · + amEmg = c0f0 + · · · + crfr, (2)

where E denotes the shift operator (Ef)k := fk+1.

Indefinite summation provides the most special situation.
Here, we seek a closed form expression for a sum � n

k=0 fk

with fk independent of n. If g is a solution of (2) with
a0 = −1, a1 = 1, f0 = f (telescoping equation), then we
have � n

k=0 fk = gn+1 − g0.

Less straightforward are definite sums. These are sums of
the form Sn = � n

k=0 fn,k, where fn,k may depend on both,
the summation index k and the bound n. For such sums,
telescoping normally fails. Therefore, we proceed in two
steps: First, we compute a recurrence equation for the sum
by means of creative telescoping [22], and in a second step we
solve that recurrence. In creative telescoping, we consider k
as the independent variable and n as constant, and we solve

Eg − g = c0f0 + c1f1 + · · · + crfr (3)

with fi = fn+i,k (another special case of (2)). Once a solu-
tion (c0, . . . , cr, g) is known, we can derive a recurrence for
the original sum Sn by summing the equation over k. This
recurrence is of the form

a0g + a1Eg + · · · + arE
rg = f

(another special case of (2)) for certain a0, . . . , ar, f which
originate from c0, . . . , cr, and g. Now n is considered as
independent variable, and k is no longer present. Solving
this equation for g delivers a closed form for the definite
sum Sn.

This general summation strategy is explained in detail for
hypergeometric summation in [14]. The same technique is
applicable for more general expressions.

Example 1. Consider the definite sum Sn = � n

k=0 fn,k

with fn,k = kXn+k. Applying creative telescoping for r = 2,
we have to find constants c0, c1, c2 and some gn,k such that

gn,k+1 − gn,k = c0fn,k + c1fn+1,k + c2fn+2,k

= c0kXn+k + c1kXn+k+1 + c2kXn+k+2.

It is easily checked that a solution is given by (c0, c1, c2) =
(1,−2, 1, (k − 1)Xn+k+1 − kXn+k). Summing the equation
over k from 0 to n and compensating missing terms gives
the recurrence

Sn − 2Sn+1 + Sn+2 = fn

with

fn = −Xn+1 + (n + 1)X2n+1

+ (n + 2)X2n+2 − (n + 1)X2n+3 − (n + 2)X2n+4.

Next, we have to solve this recurrence. The homogeneous
equation obviously has the solutions 1 and n, and it turns
out that the inhomogeneous equation has the particular so-
lution − � n

k=0 � k

i=0 fi−2. Comparison of two initial values
reveals the representation

Sn = −

n�
k=0

k�
i=0

fi−2. (4)

This can be simplified further, as we will see below (Exam-
ple 3).

This summation process can be carried out computationally
in the general setting of difference fields [17]. A difference
field is a pair ( � , σ) where σ : � → � is a field automor-
phism. The elements of a difference field are understood as
formalizations of sequences, and the automorphism σ should
act on the field elements like the shift operator (Ef)k = fk+1

acts on the corresponding sequences. The elements c ∈ �
with σ(c) = c form a subfield � of � , called the field of

constants. In the language of difference fields, the problem
of solving parameterized linear difference equation reads as
follows:

GIVEN: A difference field ( � , σ) with constant field � and
elements a0, . . . , am ∈ � and f0, . . . , fr ∈ �

FIND: All tuples (c0, . . . , cr, g) ∈ � r+1 × � such that

a0g + a1σ(g) + · · · + amσm(g) = c0f0 + · · · + crfr. (5)

It is easy to check that all the solutions (c0, . . . , cr, g) of a
parameterized linear difference equation form a vector space
over � , and we want to compute a basis of this vector space.
Of course, it might be that there do not exist solutions in
the given field � . In this case, it is of interest to construct a
bigger field where there exists a “nice” solution. This will be
used in Section 4 for deriving criteria on the Xk that make
a given sum summable in closed form.

Algorithms for solving PLDEs are available for several types
of difference fields ( � , σ). For the simplest case of a constant
field, i.e., � = � , the solution of a PLDE is immediate by
linear algebra. In the remainder of this section, we will
outline solution algorithms for free difference fields and ΠΣ-
extensions. Difference fields constructed from free difference
fields by ΠΣ-extensions are the appropriate fields for the
summation problems we want to consider later in this paper.

2.2 Solving PLDEs in free difference fields
All difference fields which we consider in this paper are con-
structed as (iterated) difference field extensions over some
constant field � . A difference field extension of some dif-
ference field ( � , σ) is a difference field which is obtained by
adjoining one or more transcendental elements t, t′, t′′, . . .
to � and extending the definition of the shift σ to this ex-
tended field � (t, t′, t′′, . . . ).

As the free difference field extension of a difference field
( � , σ) (by a difference variable x), we define the field

� 〈x〉 := � (. . . , x−2, x−1, x0, x1, x2, . . . ).
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The shift σ is extended from � to � 〈x〉 by the definition
σ(xi) := xi+1 (i ∈ � ). We understand here that the set {xi :
i ∈ � } is algebraically independent over � . A difference
variable x is an appropriate algebraic representation of an
unspecified sequence [7].

Difference fields which are constructed by iterated free ex-
tensions of the constant field � , e.g., � = � 〈x〉〈y〉, are
called free difference fields. Free difference fields are very
easy to deal with computationally, because for each f ∈

� 〈x〉 \ � , the forward and backward shift σ(f) and σ−1(f)
both must contain some variable xi which does not appear
in f itself. This makes it possible to devise a solving algo-
rithm based on simple cancellation considerations. We have
already described such an algorithm in an earlier paper [8],
and abstain here from repeating its details.

2.3 Solving PLDEs in ΠΣ∗-Extensions
In his seminal paper, Karr [6] has introduced the notion of
ΠΣ-fields for representing nested sum and product expres-
sions in difference fields. A simplified version of these fields
are the ΠΣ∗-fields [15]. These are difference fields which
are obtained from a constant field � by adjoining formal
sums or products. To be precise, ( � (t), σ) is called a ΠΣ∗-
extension of a difference field ( � , σ), if both difference fields
share the same field of constants, t is transcendental over � ,
and σ(t) = t+r for some r ∈ � (then t represents a sum) or
σ(t) = r · t for some r ∈ � (then t represents a product). A
ΠΣ∗-field is a difference field ( � (t1, . . . , te), σ) which is ob-
tained from a constant field � by repeated ΠΣ∗-extensions.
In short, we say that ( � (t1, . . . , te), σ) is a (nested) ΠΣ∗-
extension of ( � , σ) if all the ti are ΠΣ∗-extensions.

It is known how to solve PLDEs in ΠΣ∗-fields [20]. Here,
we are interested in difference fields which are obtained by
building a tower of ΠΣ∗-extensions on top of a free difference
field.

Example 2. For representing the sum from Example 1
above, we choose the difference field ( � 〈x〉(k), σ), where
( � 〈x〉, σ) is a free difference field and σ(k) = k + 1. In this
field, fn+i,k+j (i, j ∈ � ) is represented by (k + j)xi+j . The
creative telescoping equation admits a solution in the same
field (compare Example 1). The recurrence obtained for the
whole sum, however, requires besides n and Xn the represen-
tation of X2n and X2n+1. We take ( � 〈x〉〈y〉〈z〉(n), σ) with
x, y, z free (representing Xn, X2n, and X2n+1, respectively)
and σ(n) = n + 1. The solutions 1 and n of the homoge-
neous equation can be represented in the same field, but for
representing the particular solution, we have to change to
the bigger field ( � 〈x〉〈y〉〈z〉(n)(t1)(t2), σ), which is a ΠΣ∗-
extension of the original one [1, 15]. Here σ(t1) = t1+σ−1(f)
and σ(t2) = t2 + σ(t1), where

f = −(−x1 + (n + 1)z0 + (n + 2)y1 − (n + 1)z1 − (n + 2)y2).

The particular solution is then t2 (compare again Exam-
ple 1).

Subsequently, let � be a field of constants, � be obtained
from � by extension of zero or more free difference variables,
and � be obtained from � by zero or more ΠΣ∗-extensions,

say � = � (t1, . . . , te). In such a field, PLDEs can be solved
very much as in ΠΣ∗ fields. Let � (t) be a ΠΣ∗-extension
of � . We outline a method which reduces the problem of
solving a PLDE in � (t) to solving several PLDEs in � . Only
a rough overview is given, some remarks on technical details
and pointers to literature are given in the end of the section.

Reduction I (denominator bounding). Compute a polyno-
mial d ∈ � [t]∗ such that for all ci ∈ � and g ∈ � (t) with (5)
we have dg ∈ � [t]. Then it follows that

a0

d
g′ + · · · +

am

σm(d)
σm(g′) = c0f0 + · · · + crfr (6)

for g′ ∈ � [t] if and only if (5) with g = g′/d.

Reduction II (degree bounding). Given such a denomina-
tor bound, it suffices to look only for ci ∈ � and polynomial
solutions g ∈ � [t] with (5). Next, we compute a degree
bound b ∈ � 0 for these polynomial solutions.

Reduction III (polynomial degree reduction). Given such
a degree bound one looks for ci ∈ � and gi ∈ � such that (5)

holds for g = � b

i=0 git
i. This can be achieved as follows.

First derive the possible leading coefficients gb by solving a
specific PLDE in ( � , σ), then plug its solutions into (5) and

recursively look for the remaining solutions g = � b−1
i=0 git

i.
Thus one can derive the solutions of a PLDE over ( � (t), σ)
by solving several PLDEs in ( � , σ).

As already worked out in [8], this reduction leads us to a
complete algorithm that solves PLDEs for m = 1. Moreover,
using results from [2, 16, 18, 20, 8] this reduction delivers a
method that eventually produces all solutions for the higher
order case m ≥ 2.

Finally, we mention a refined version of parameterized tele-
scoping (5) (m = 1, a0 = −1, a1 = 1). If no solution exists
in � , we can decide if there exists a solution in a ΠΣ∗-
extension of � where the sums and products are not more
deeply nested than the original expressions in the fi. If �
is a ΠΣ-field, this problem has been solved in [19]. Also
this algorithm carried over if � contains free variables; see
Remark 4 for details.

Example 3. Applying our refined telescoping algorithm to
the sum (4) gives the closed form

n�
k=0

kXn+k = (n + 1)

n�
k=1

Xk−1 −

n�
k=1

kXk−1

− (n + 2)

n�
k=1

X2k−2 + 2

n�
k=1

kX2k−2

− (n + 1)
n�

k=1

X2k−1 + 2
n�

k=1

kX2k−1 + nX2n.

Despite being more lengthy, this representation is preferred,
because it only contains indefinite single sums.

Remark 1. (Denominator bounding) In [8] we have shown
that a denominator bound d can be computed if m = 1. For
the case m ≥ 2 this problem is not completely solved: For
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Σ∗-extensions we still can compute a denominator bound,
but if t is a Π-extension, we find the denominator bound
only up to a power of t. The corresponding algorithms can
be found in [16, Algorithm 1] by combining certain subprob-
lems solved in [8, Corollary 1, Theorem 2, Theorem 4].

Remark 2. (Degree bounding) A degree bound can be
computed if m = 1. For the case m ≥ 2 we have algorithms
only for various special cases [18].

Remark 3. (Degree reduction) Following the reduction re-
cursively, one can solve PLDEs in � (t) if one can com-
pute all the needed denominators (Reduction I) in � [t] and

� (t1) . . . (ti−1)[ti], the degree bounds (Reduction II) in � [t]
and � (t1) . . . (ti−1)[ti], and all the resulting PLDEs in �
obtained by recursive application of Reduction III. Here the
following remarks are in place.
(1) If � is the constant field, solving PLDEs in � reduces
to linear algebra [20, page 805]. Also if � is a free difference
field, PLDEs can be solved; see Section 2.2.
(2) If m = 1, degree and denominator bounds can be com-
puted in � [t] and � (t1) . . . (ti−1)[ti]; see Remarks 1 and 2.
Hence we get a complete algorithm for solving PLDEs.
(3) If m ≥ 2, denominator and degree bounds can be com-
puted only partially so far. But, as worked out in [20, The-
orem 5.3], the reduction leads to a method that eventually
will produce all solutions of a given PLDE in � (t).

Remark 4. (Refined telescoping) We obtain the algorithm
for this problem by combining results from [16, 18, 19, 8].
Namely, there are algorithms for computing denominator
and degree bounds which have the additional property that
they are extension-stable; this follows by [16, Thm. 10], [18,
Thm. 17], and the fact that one can handle certain sub-
problems in � ; see [8, Theorems 1,3,4]. Using this fact,
we obtain an algorithm that solves the refined telescoping
problem; see [19, Thms. 6,8].

3. DEMOTIVATING RESULTS
With an implementation of the algorithm described in the
previous section, we have searched for variations of the def-
inite sum � n

k=0 kXn+k of Example 1. These experiments
have lead us to the following theorem, which gives an explicit
a priori criterion for which sequences fn,k a linear recurrence
for the general definite sum � n

k=0 fn,kXn+k is found.

Theorem 1. Let ( � , σ) be a difference field with constant

field � , and let f0, . . . , fr ∈ � . Then there exist c0, . . . , cr ∈
� and g ∈ � 〈x〉 with

σ(g)− g = c0f0x0 + c1f1x1 + · · · + crfrxr

if and only if there exist b0, . . . , br ∈ � with

b0σ
r(f0) + b1σ

r−1(f1) + · · · + brfr = 0.

Proof. Suppose first that f0, . . . , fr are such that there
exist b0, . . . , br ∈ � with

b0σ
r(f0) + b1σ

r−1(f1) + · · · + brfr = 0. (7)

Then ck := bk (k = 0, . . . , r) and

g := a0x0 + a1x1 + · · · + ar−1xr−1,

where ak = − � k

i=0 biσ
k−i(fi) are as required: We have

σ(g) − g = −a0x0 +

r−1�
k=1

(σ(ak−1) − ak)xk + σ(ar−1)xr

= b0f0x0 + · · · + brfrxr,

because

−a0 = b0f0

σ(ak−1) − ak = −
k−1�
i=0

biσ
(k−1)−i+1(fi) +

k�
i=0

biσ
k−i(fi)

= bkfk (k = 1, . . . , r − 1)

σ(ar−1) = −

r−1�
i=0

biσ
r−i(fi)

(7)
= brfr.

This proves the first implication. Now, assume that there
exist c0, . . . , cr ∈ � and g ∈ � 〈x〉 such that

σ(g)− g = c0f0x0 + c1f1x1 + · · · + crfrxr. (8)

The element g is a rational function in xi (i ∈ � ) with
coefficients in � . However, g can neither have a nontrivial
denominator nor a nonlinear term, because then σ(g) − g
would have nontrivial denominator or a nonlinear term as
well. Furthermore, g must be free of all xi with i < 0 or
i ≥ r, for otherwise σ(g) − g would contain some xi with
i < 0 or i > r in mismatch with the right hand side of (8).
Thus g can only have the form

g = a0x0 + a1x1 + · · · + ar−1xr−1

for certain ai ∈ � . Now

σ(g) − g = −a0x0 +

r−1�
k=1

(σ(ak−1) − ak)xk + σ(ar−1)xr,

and comparing coefficients of xk (k = 0, . . . , r − 1) with the
right hand side of (8) gives

a0 = −c0f0

a1 = σ(a0) − c1f1 = −(c0σ(f0) + c1f1)

...

an−1 = σ(ar−2) − cr−1fr−1 = −
r−1�
i=0

ciσ
(r−1)−i(fi).

Comparing finally the coefficient of xr gives

crfr = σ(ar−1) = −
r−1�
i=0

ciσ
(r−1)−i+1(fi),

and therefore we must have

c0σ
r(f0) + c1σ

r−1(f1) + · · · + crfr = 0,

as claimed.

For obtaining a recurrence equation of the definite sum Sn :=
� n

k=0 fn,kXn+k via creative telescoping, we choose f0 =
fn,k, f1 = fn+1,k,. . . , fr = fn+r,k (or more precisely, corre-
sponding difference field elements). Thus the above theorem
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states that a recurrence for Sn is found via creative telescop-
ing if and only if the antidiagonal sequences fi−n,n (i ∈ � )
are all solutions of a single homogeneous linear recurrence
with constant coefficients.

Similar criteria can be obtained for sums of the form

Sn =
n�

k=0

fn,kXan+bk

for any fixed a, b ∈ � . For a = 1, b = −1, we find the
criterion that c0, . . . , cr ∈ � and g ∈ � 〈x〉 with

σ(g)− g = c0f0x0 + c1f1x−1 + · · · + crfrx−r

exist iff there exist b0, . . . , br ∈ � with

b0f0 + b1σ(f1) + · · · + crσ
r(fr) = 0,

If gcd(a, b) = 1 (which we may assume without loss of gener-
ality by the substitution X ′

i := Xgcd(a,b)i) and |a| > 1, then
a recurrence exists only in the trivial case fn,k ≡ 0. The
case |a| = 1, |b| ≥ 0 leads to a restriction on the summand
similar as the one stated above. The arguments for all these
variations are fully analogous to the proof given above.

The theorem provides a means to obtain creative telescop-
ing recurrences without actually executing the algorithm de-
scribed in Section 2.1.

Example 4. Consider once more the definite sum Sn =
� n

k=0 kXn+k of Example 1. In the notation of the theorem,
we have fn,k = k, so we immediately obtain the recurrence

gn,k+1 − gn,k = kXn+k − 2kX(n+1)+k + kX(n+2)+k,

where

gn,k = (k − 1)Xn+k+1 − kXn+k.

Summing k from 0 to n+2 leads to the same inhomogeneous
recurrence which we obtained before.

The more interesting implication of the theorem is of course
that which allows us to definitely exclude the existence of
creative telescoping recurrences for sums of a certain shape.
For instance, the following results follow immediately.

Corollary 1. For the following definite sums, no recur-

rence can be found via creative telescoping.

1. � n

k=0 r(k)Xn+k for any r ∈ � (x) \ � [x],

2. � n

k=0

�
n

k � Xn+k,

3. � n

k=0 r(k) � k

i=1 Xn+i for any r ∈ � (x) \ � [x].

The third sum can be brought to the form of Theorem 1 by
putting Yk := � k

i=0 Xi, for then

n�
k=0

r(k)
k�

i=1

Xn+i =
n�

k=0

r(k)Yn+k/Yn =
1

Yn

n�
k=0

r(k)Yn+k,

and the factor 1/Yn, which is independent of k, does not
affect the existence of a recurrence. The possibility of such

substitutions extends the range of Theorem 1. In order to
find nontrivial examples, it is necessary to focus on sums
with more complicated summands.

4. MOTIVATING RESULTS
We present in this section some general identities which
we have found by using the algorithm described in Sec-
tion 2.1. The examples are separated into indefinite and
definite sums.

4.1 Indefinite summation
Example 5. For the sum � a

k=1(−1)k � k

j=1 Xj we find the
closed form evaluation

a�
k=1

(−1)k

k�
j=1

Xj =
1

2

�
(−1)a

a�
k=1

Xk +
a�

k=1

(−1)kXk � .

Specializing Xj gives the following identities.
• Xj := 1

j
:

a�
k=1

(−1)kHk =
1

2
(−1)aHa +

1

2

a�
k=1

(−1)k

k
;

Ha = � a

k=1
1
k

denotes the harmonic numbers.

• Xj :=
�

n

j−1 � , a := n + 1; see [23, Thm. 4.2]:

n�
k=0

(−1)k+1
k�

j=0

�
n

j � =
1

2
(−1)n+12n.

Example 6. We find

a�
k=1

(−1)k
�
n

k �
k�

j=1

Xj =

1

n

�
(n − a)

�
n

a � (−1)a

a�
k=1

Xk +

a�
k=1

(−1)kk
�
n

k � Xk � .

In particular, in the special case a = n and Xj = 1
jm where

m ≥ 1 we get the following simplification. By [9, Prop. 2.1]
we get

n�
k=1

(−1)k

km−1

�
n

k � = −
1

(m − 1)!
Bm−1(. . . , (i − 1)!H

(i)
N , . . . )

where Bm(. . . , xi, . . . ) are the complete Bell polynomials [3]
and

H(s)
n =

n�
k=1

1

ks
, s > 0

are the generalized harmonic numbers. Hence we get the
closed form evaluation

n�
k=1

(−1)k
�
n

k � H
(m)
k = −

1

n(m − 1)!
Bm−1(. . . , (i−1)!H(i)

n , . . . );
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see [11, Thm. 3] The first instances are:

a�
k=1

(−1)k
�
n

k � Hk = −
1

n
,

a�
k=1

(−1)k
�
n

k � H
(2)
k = −

1

n
Hn,

a�
k=1

(−1)k
�
n

k � H
(3)
k = −

1

2n
(H2

n + H(2)
n ).

Further indefinite summation identities are

a�
k=1

(−1)k
� k�

j=1

Xj −
Xk

2 � 2

=
1

2
(−1)a

� a�
k=1

Xk � 2
−

1

4

a�
k=1

(−1)kX2
k ,

a�
k=1

� k�
j=1

Xj + Xk(k − 1) � 2

= n
� a�

k=1

Xk � 2
−

a�
k=1

kX2
k +

a�
k=1

k2X2
k � .

4.2 Definite summation and summability cri-
terions

Example 7. Similar as carried out in Examples 1 and 3
we find (and prove) with our difference field machinery the
identity

n�
k=0

� k�
i=0

Xn−i � 2

= 2
n�

k=0

Xk

k�
j=0

jXj−1 +
n�

k=0

X2
k +

n�
k=0

kX2
k .

Namely, starting with Sn = � n

k=0

�
� k

i=0 Xn−i � 2

we can

compute by creative telescoping the recurrence

− Xn+1Sn+2 + (Xn+1 + Xn+2)Sn+1 − Xn+2Sn

= −Xn+1Xn+2

�
(n + 2)Xn+1 + (n + 3)Xn+2 � .

Next, we solve this recurrence relation and find the solutions
1, � n

k=0 Xk for the homogeneous version and the particular
solution

Pn =
n�

k=0

Xk

k�
i=0

�
iXi−1 + Xi + iXi � ;

since Sn = Pn for n = 0, 1, it follows that Pn = Sn for
all n. Finally, applying our indefinite summation algorithm,
we get the simplification

Sn = Pn = 2
n�

k=0

Xk

k�
j=0

jXj−1 +
n�

k=0

X2
k +

n�
k=0

kX2
k .

Example 8. Consider the definite sum

Sn :=
n�

k=1

�
n

k �
k�

j=1

Xj .

With our refined creative telescoping algorithm we can com-
pute the recurrence

Sn+1 − 2Sn = Xn+1 +
n�

k=1

�
n

k−1 � Xk. (9)

In the next step we would like to solve this recurrence. For
applying our algorithms, we first have to express the definite
sum

Cn :=
n�

k=1

�
n

k−1 � Xk

in terms of ΠΣ∗-expressions. To this end, we would normally
compute a recurrence for that sum and afterwards solve it.
However, no recurrence can be found in this case. (This can
also be seen with Theorem 1, because Cn = � n−1

k=0

�
n

k � Xn−k

after reversing the order of summation). Therefore, we have
to proceed differently. Note that any solution of (9) can
be decomposed into An + Bn where An and Bn fulfill the
recurrences

An+1 − 2An = Xn+1, (10)

Bn+1 − 2Bn = Cn. (11)

Therefore, we can split our problem to solve (9) by solving
the two recurrences in (10) and (11) separately. Then we
combine the two sets of solutions to the solution set of (9).
For (10) we derive the general solution

An = c1 2n + 2n

n�
k=1

Xk

2k

where c1 ranges over the constants. Hence, we get all solu-
tions for (9) in the form

c12
n + 2n

n�
k=1

Xk

2k
+ Bn (12)

by taking all constants c1 and by considering all solutions Bn

of (11).
Note that (11) gives us a recipe how we can discover nice
identities: Try to specialize Xk in such a way that Cn can
be written in a closed form (e.g., can be represented in form
of a ΠΣ∗-extension) and that the solutions of (11) are nice.
We may therefore consider (11) as a summability criterion

for the sum Sn.

• Xk = 1
k
: We get easily the identity Cn = 2n+1

−2
n+1

and find
the general solution

Bn = c22
n + 2n

�
Hn − 2

n�
i=1

1

i2i �
for (11). Consequently, the general solution of (9) is

c1 2n + 2n

n�
k=1

1

k2k
+ c22

n + 2n
�
Hn − 2

n�
i=1

1

i2i � .

By choosing c1 = c2 = 0 we obtain

n�
k=1

�
n

k � Hk = 2n
�
Hn −

n�
k=1

1

k2k � ;

see [13, Equ. (41)].
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With the same strategy we get the following identities.
• Xk = 1

k2 :

n�
k=1

�
n

k � H
(2)
k = 2n

� n�
k=1

� k

j=1
2j

j

k2k
−

n�
k=1

Hk

k2k � .

• Xk = (k − 1)!:

n�
k=1

�
n

k �
k�

j=1

(j−1)! = 2n
� n�

k=1

k!

k2k
+

n�
k=1

k!
k

�
j=1

1
j!

k2k
−

n�
k=1

1

k2k � .

Example 9. We attack the sum

Sn :=
n�

k=1

�
n

k � 2
k�

j=1

Xj

as in the previous example. First, we compute the recur-
rence

(n + 1)Sn+1 − 2(2n + 1)Sn

= (n + 1)Xn+1 +

n�
k=1

(3n + 3 − 2k)
�

n

k−1 � 2
Xk.

This gives the general solution

�
2n

n �
n�

k=1

Xk�
2k

k � + c1

�
2n

n � + S(2)
n

by taking all constants c1 and all solutions of

(n + 1)S
(2)
n+1 − 2(2n + 1)S(2)

n =

n�
k=1

(3n + 3 − 2k)
�

n

k−1 � 2
Xk.

Looking at this summability criterion we find the following
identities.
• Xk = 1

k
; see [4, Equ. 2.26]:

n�
k=1

�
n

k � 2
Hn =

�
2n

n � (2Hn − H2n).

• Xk = 1
k2 :

n�
k=1

�
n

k � 2
H(2)

n =
�
2n

n � (2H(2)
n − 3

n�
k=1

1

k2
�
2k

k � ).

Example 10. We compute for

Sn =
n�

k=0

Xk

n−k�
i=1

Yi

the recurrence

Sn+1 − Sn = Y1Xn +

n�
k=1

Yn+2−kXk−1

and get the general solution

c1 + Y1

n�
k=1

Xk−1 + S(2)
n

by taking all solutions of

S
(2)
n+1 − S(2)

n =
n�

k=1

Yn+2−kXk−1.

With this summability criterion we find the following iden-
tities.
• Xk = 1

k!
, Yk = 1

(k−2)!
:

n�
k=0

1

k!

n−k�
j=1

1

(j − 2)!
=

1

2

n−1�
k=1

2k

(k − 1)!
.

• Xk = Hk, Yk = 1
k
; see [10, Chapter 1.2.7, Exercise 22]:

n�
k=0

HkHn−k = 2n(1 − Hn) + (n + 1)H2
n − (n + 1)H(2)

n .

5. CONCLUSION
The extension of symbolic summation algorithms to free dif-
ference fields allows one the discovery of general families of
summation identities, depending on unspecified sequences.
We have illustrated in this paper how the ΠΣ-theory for
nested sum expressions can be extended, and we have found
several general identities with the modified summation algo-
rithms. We have also indicated (Section 3) that interesting
relations can only be found for sums whose summand ex-
ceeds a certain level of sophistication; if it is too simple,
then only trivial relations remain.

Though our extension itself is not very difficult, it should be
remarked that it is based on a highly developed machinery
for generating and solving recurrence equations with dif-
ference fields. Without using, for instance, algorithms that
can optimize the nesting depth of sum expressions, we would
hardly have been able to find any of the nontrivial examples
in Section 4. Once general identities like those of Section 4
are available, they may be specialized in such a way that
well-developed theories and/or algorithms can be applied for
further processing. Example 6 points into that direction.
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