Computer Algebra Proofs for Combinatorial Inequalities and Identities

Manuel Kauers

RISC-Linz, Austria

Typical Combinatorial Identities

Typical Combinatorial Identities

- Identities involving sums and products

$$
\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{i}=-n+(n+1) \sum_{k=1}^{n} \frac{1}{k} \quad(n \geq 1)
$$

Typical Combinatorial Identities

- Identities involving sums and products

$$
\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{i}=-n+(n+1) \sum_{k=1}^{n} \frac{1}{k} \quad(n \geq 1)
$$

- Identities about the Fibonacci numbers

$$
\sum_{k=1}^{n} \frac{(-1)^{k}}{F_{k} F_{k+1}}=-\frac{F_{n}}{F_{n+1}}
$$

$$
(n \geq 1)
$$

Typical Combinatorial Identities

- Identities involving sums and products

$$
\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{i}=-n+(n+1) \sum_{k=1}^{n} \frac{1}{k} \quad(n \geq 1)
$$

- Identities about the Fibonacci numbers

$$
\sum_{k=1}^{n} \frac{(-1)^{k}}{F_{k} F_{k+1}}=-\frac{F_{n}}{F_{n+1}}
$$

$$
(n \geq 1)
$$

- Identities with orthogonal polynomials, double exponential sequences, ...

Typical Combinatorial Identities

- Identities involving sums and products

$$
\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{i}=-n+(n+1) \sum_{k=1}^{n} \frac{1}{k} \quad(n \geq 1)
$$

- Identities about the Fibonacci numbers

$$
\sum_{k=1}^{n} \frac{(-1)^{k}}{F_{k} F_{k+1}}=-\frac{F_{n}}{F_{n+1}}
$$

$$
(n \geq 1)
$$

- Identities with orthogonal polynomials, double exponential sequences, ...
- Routines are desired which not only prove but also find such identities.

Typical Combinatorial Inequalities

Typical Combinatorial Inequalities

- Inequalities involving sums and products

$$
\prod_{k=0}^{n} \frac{3 k+4}{3 k+2}>1+\frac{2}{3} \sum_{k=1}^{n+1} \frac{1}{k}
$$

$$
(n \geq 1)
$$

Typical Combinatorial Inequalities

- Inequalities involving sums and products

$$
\prod_{k=0}^{n} \frac{3 k+4}{3 k+2}>1+\frac{2}{3} \sum_{k=1}^{n+1} \frac{1}{k}
$$

$$
(n \geq 1)
$$

- Inequalities about the Fibonacci numbers

$$
\sum_{k=1}^{n} \frac{\left(2 F_{k+1}-F_{k}\right)^{2}}{F_{k}} \geq \frac{\left(3 F_{n+1}+F_{n}-3\right)^{2}}{F_{n+2}-1} \quad(n \geq 2)
$$

Typical Combinatorial Inequalities

- Inequalities involving sums and products

$$
\prod_{k=0}^{n} \frac{3 k+4}{3 k+2}>1+\frac{2}{3} \sum_{k=1}^{n+1} \frac{1}{k}
$$

- Inequalities about the Fibonacci numbers

$$
\sum_{k=1}^{n} \frac{\left(2 F_{k+1}-F_{k}\right)^{2}}{F_{k}} \geq \frac{\left(3 F_{n+1}+F_{n}-3\right)^{2}}{F_{n+2}-1} \quad(n \geq 2)
$$

- Inequalities like

$$
\left(\sum_{k=1}^{n} \sqrt{k}\right)^{2} \stackrel{?}{\lesseqgtr}\left(\sum_{k=1}^{n} \sqrt[3]{k}\right)^{3}
$$

$$
(n \geq 1)
$$

Typical Combinatorial Inequalities

- Inequalities involving sums and products

$$
\prod_{k=0}^{n} \frac{3 k+4}{3 k+2}>1+\frac{2}{3} \sum_{k=1}^{n+1} \frac{1}{k}
$$

- Inequalities about the Fibonacci numbers

$$
\sum_{k=1}^{n} \frac{\left(2 F_{k+1}-F_{k}\right)^{2}}{F_{k}} \geq \frac{\left(3 F_{n+1}+F_{n}-3\right)^{2}}{F_{n+2}-1} \quad(n \geq 2)
$$

- Inequalities like

$$
\left(\sum_{k=1}^{n} \sqrt{k}\right)^{2} \stackrel{?}{\lesseqgtr}\left(\sum_{k=1}^{n} \sqrt[3]{k}\right)^{3}
$$

$$
(n \geq 1)
$$

- "Combinatorial" here just means that the inequality depends on a discrete parameter n. Inequalities like $\sin x<x(x \geq 0)$ are out of scope.

Proving Combinatorial Identities

Known Algorithms for Proving Identities

Known Algorithms for Proving Identities

- Summation Algorithms

Known Algorithms for Proving Identities

- Summation Algorithms
- Gosper's algorithm

Known Algorithms for Proving Identities

- Summation Algorithms
- Gosper's algorithm
- Zeilberger's algorithm

Known Algorithms for Proving Identities

- Summation Algorithms
- Gosper's algorithm
- Zeilberger's algorithm
- Sister Celine's algorithm

Known Algorithms for Proving Identities

- Summation Algorithms
- Gosper's algorithm
- Zeilberger's algorithm
- Sister Celine's algorithm
- Karr's algorithm

Known Algorithms for Proving Identities

- Summation Algorithms
- Gosper's algorithm
- Zeilberger's algorithm
- Sister Celine's algorithm
- Karr's algorithm
- ... variations and generalizations of those ...

Known Algorithms for Proving Identities

- Summation Algorithms
- Gosper's algorithm
- Zeilberger's algorithm
- Sister Celine's algorithm
- Karr's algorithm
- ... variations and generalizations of those
- Generating Function Algorithms (remember Paule's talk)

Known Algorithms for Proving Identities

- Summation Algorithms
- Gosper's algorithm
- Zeilberger's algorithm
- Sister Celine's algorithm
- Karr's algorithm
- ... variations and generalizations of those ...
- Generating Function Algorithms (remember Paule's talk)
- Today: An algorithm for proving identities, which is applicable to a much larger input class.

Proof by Induction: Outline

- Note: Proving an identity $A=B$ amounts to testing zero equivalence of $A-B$.

Proof by Induction: Outline

- Note: Proving an identity $A=B$ amounts to testing zero equivalence of $A-B$.
- Task: Given a sequence $\left(f_{n}\right)$, prove that

$$
\forall n \geq 0: f_{n}=0
$$

Proof by Induction: Outline

- Note: Proving an identity $A=B$ amounts to testing zero equivalence of $A-B$.
- Task: Given a sequence $\left(f_{n}\right)$, prove that

$$
\forall n \geq 0: f_{n}=0
$$

- Idea: Find an $N \geq 0$ such that

$$
\left(\forall n \geq 0: f_{n}=0\right) \Longleftrightarrow\left(f_{0}=f_{1}=\cdots=f_{N-1}=0\right)
$$

Then zero equivalence of $\left(f_{n}\right)$ can be decided by just evaluating the sequence at the first N points.

Proof by Induction: Outline

- Note: Proving an identity $A=B$ amounts to testing zero equivalence of $A-B$.
- Task: Given a sequence $\left(f_{n}\right)$, prove that

$$
\forall n \geq 0: f_{n}=0
$$

- Idea: Find an $N \geq 0$ such that

$$
\left(\forall n \geq 0: f_{n}=0\right) \Longleftrightarrow\left(f_{0}=f_{1}=\cdots=f_{N-1}=0\right)
$$

Then zero equivalence of $\left(f_{n}\right)$ can be decided by just evaluating the sequence at the first N points.

- Clearly: Every $N \geq 0$ with

$$
\forall n \geq 0:\left(f_{n}=f_{n+1}=\cdots=f_{n+N-1}=0 \Longrightarrow f_{n+N}=0\right)
$$

does the job.

Proof by Induction: Outline

- Note: Proving an identity $A=B$ amounts to testing zero equivalence of $A-B$.
- Task: Given a sequence $\left(f_{n}\right)$, prove that

$$
\forall n \geq 0: f_{n}=0
$$

- Idea: Find an $N \geq 0$ such that

$$
\left(\forall n \geq 0: f_{n}=0\right) \Longleftrightarrow\left(f_{0}=f_{1}=\cdots=f_{N-1}=0\right)
$$

Then zero equivalence of $\left(f_{n}\right)$ can be decided by just evaluating the sequence at the first N points.

- Clearly: Every $N \geq 0$ with

$$
\forall n \geq 0:\left(f_{n}=f_{n+1}=\cdots=f_{n+N-1}=0 \Longrightarrow f_{n+N}=0\right)
$$

does the job.

- Proof: If N has this property and $f_{0}=\cdots=f_{N-1}=0$ then $f \equiv 0$ by induction. If not $f_{0}=\cdots=f_{N-1}=0$, then $f \not \equiv 0$ anyway.

Proof by Induction: Use Knowledge

Proof by Induction: Use Knowledge

- Method: try for $N=1,2,3, \ldots$ whether

$$
\forall n \geq 0:\left(f_{n}=f_{n+1}=\cdots=f_{n+N}=0 \Longrightarrow f_{n+N+1}=0\right)
$$

Stop as soon as this is the case and output the corresponding N.

Proof by Induction: Use Knowledge

- Method: try for $N=1,2,3, \ldots$ whether

$$
\forall n \geq 0:\left(f_{n}=f_{n+1}=\cdots=f_{n+N}=0 \Longrightarrow f_{n+N+1}=0\right)
$$

Stop as soon as this is the case and output the corresponding N.

- Sufficient: if

$$
\forall x_{0}, \ldots, x_{N}: x_{0}=x_{1}=\cdots=x_{N-1}=0 \Longrightarrow x_{N}=0
$$

then N certainly qualifies.

Proof by Induction: Use Knowledge

- Method: try for $N=1,2,3, \ldots$ whether

$$
\forall n \geq 0:\left(f_{n}=f_{n+1}=\cdots=f_{n+N}=0 \Longrightarrow f_{n+N+1}=0\right)
$$

Stop as soon as this is the case and output the corresponding N.

- Sufficient: if

$$
\forall x_{0}, \ldots, x_{N}: x_{0}=x_{1}=\cdots=x_{N-1}=0 \Longrightarrow x_{N}=0
$$

then N certainly qualifies.

- But: This can hardly be true for any N, if x_{0}, \ldots, x_{N} are independent.

Proof by Induction: Use Knowledge

- Method: try for $N=1,2,3, \ldots$ whether

$$
\forall n \geq 0:\left(f_{n}=f_{n+1}=\cdots=f_{n+N}=0 \Longrightarrow f_{n+N+1}=0\right)
$$

Stop as soon as this is the case and output the corresponding N.

- Sufficient: if

$$
\forall x_{0}, \ldots, x_{N}: x_{0}=x_{1}=\cdots=x_{N-1}=0 \Longrightarrow x_{N}=0
$$

then N certainly qualifies.

- But: This can hardly be true for any N, if x_{0}, \ldots, x_{N} are independent.
- Here, we need not assume that x_{0}, \ldots, x_{N} be independent! If $\left(f_{n}\right)$ is defined via recurrence equations, then these equations give rise to known polynomial relations

$$
p_{1}\left(x_{0}, \ldots, x_{N}\right)=\cdots=p_{m}\left(x_{0}, \ldots, x_{N}\right)=0
$$

Proof by Induction: Use Knowledge and Computer Algebra

Proof by Induction: Use Knowledge and Computer Algebra

- Thus we may deliver an N with

$$
\begin{aligned}
\forall x_{0}, \ldots, x_{N+1}:\left(p_{1}=\right. & \left.\cdots=p_{m}=x_{0}=x_{1}=\cdots=x_{N}=0\right) \\
& \Longrightarrow x_{N+1}=0
\end{aligned}
$$

Proof by Induction: Use Knowledge and Computer Algebra

- Thus we may deliver an N with

$$
\begin{aligned}
\forall x_{0}, \ldots, x_{N+1}:\left(p_{1}=\right. & \left.\cdots=p_{m}=x_{0}=x_{1}=\cdots=x_{N}=0\right) \\
& \Longrightarrow x_{N+1}=0
\end{aligned}
$$

- In other words, an N with

$$
x_{N+1} \in \operatorname{Rad}\left\langle p_{1}, \ldots, p_{m}, x_{0}, \ldots, x_{N}\right\rangle .
$$

Proof by Induction: Use Knowledge and Computer Algebra

- Thus we may deliver an N with

$$
\begin{aligned}
\forall x_{0}, \ldots, x_{N+1}:\left(p_{1}=\right. & \left.\cdots=p_{m}=x_{0}=x_{1}=\cdots=x_{N}=0\right) \\
& \Longrightarrow x_{N+1}=0
\end{aligned}
$$

- In other words, an N with

$$
x_{N+1} \in \operatorname{Rad}\left\langle p_{1}, \ldots, p_{m}, x_{0}, \ldots, x_{N}\right\rangle
$$

- This can be decided using Gröbner Bases.

Example: Cassini's Identity

- Let's prove $F_{n+1}^{2}-F_{n} F_{n+2}=(-1)^{n}$.

Example: Cassini's Identity

- Let's prove $F_{n+1}^{2}-F_{n} F_{n+2}=(-1)^{n}$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim\left(F_{n+i}\right) \quad y_{i} \sim\left((-1)^{n+i}\right) \quad(i=0,1,2,3, \ldots)
$$

Example: Cassini's Identity

- Let's prove $F_{n+1}^{2}-F_{n} F_{n+2}=(-1)^{n}$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim\left(F_{n+i}\right) \quad y_{i} \sim\left((-1)^{n+i}\right) \quad(i=0,1,2,3, \ldots)
$$

- Then we know

$$
\begin{array}{lll}
x_{2}=x_{1}+x_{0}, & x_{3}=x_{2}+x_{1}, & x_{4}=x_{3}+x_{2}, \ldots \\
y_{1}=-y_{0}, & y_{2}=-y_{1}, & y_{3}=-y_{2},
\end{array}
$$

Example: Cassini's Identity

- Let's prove $F_{n+1}^{2}-F_{n} F_{n+2}=(-1)^{n}$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim\left(F_{n+i}\right) \quad y_{i} \sim\left((-1)^{n+i}\right) \quad(i=0,1,2,3, \ldots)
$$

- Then we know

$$
\begin{array}{lll}
x_{2}=x_{1}+x_{0}, & x_{3}=x_{2}+x_{1}, & x_{4}=x_{3}+x_{2}, \ldots \\
y_{1}=-y_{0}, & y_{2}=-y_{1}, & y_{3}=-y_{2},
\end{array}, \ldots
$$

- First iteration $(N=0)$:

$$
x_{1}^{2}-x_{0} x_{2}-y_{1} \stackrel{?}{\in} \operatorname{Rad}\left\langle x_{2}-x_{1}-x_{0}, y_{1}+y_{0}, y_{2}+y_{1}\right\rangle
$$

Example: Cassini's Identity

- Let's prove $F_{n+1}^{2}-F_{n} F_{n+2}=(-1)^{n}$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim\left(F_{n+i}\right) \quad y_{i} \sim\left((-1)^{n+i}\right) \quad(i=0,1,2,3, \ldots)
$$

- Then we know

$$
\begin{array}{lll}
x_{2}=x_{1}+x_{0}, & x_{3}=x_{2}+x_{1}, & x_{4}=x_{3}+x_{2}, \ldots \\
y_{1}=-y_{0}, & y_{2}=-y_{1}, & y_{3}=-y_{2},
\end{array}, \ldots
$$

- First iteration $(N=0)$:

$$
x_{1}^{2}-x_{0} x_{2}-y_{1} \stackrel{?}{\in} \operatorname{Rad}\left\langle x_{2}-x_{1}-x_{0}, y_{1}+y_{0}, y_{2}+y_{1}\right\rangle \quad \text { false. }
$$

Example: Cassini's Identity

- Let's prove $F_{n+1}^{2}-F_{n} F_{n+2}=(-1)^{n}$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim\left(F_{n+i}\right) \quad y_{i} \sim\left((-1)^{n+i}\right) \quad(i=0,1,2,3, \ldots)
$$

- Then we know

$$
\begin{array}{lll}
x_{2}=x_{1}+x_{0}, & x_{3}=x_{2}+x_{1}, & x_{4}=x_{3}+x_{2}, \ldots \\
y_{1}=-y_{0}, & y_{2}=-y_{1}, & y_{3}=-y_{2},
\end{array}, \ldots
$$

- First iteration $(N=0)$:

$$
x_{1}^{2}-x_{0} x_{2}-y_{1} \stackrel{?}{\in} \operatorname{Rad}\left\langle x_{2}-x_{1}-x_{0}, y_{1}+y_{0}, y_{2}+y_{1}\right\rangle \quad \text { false. }
$$

- Second iteration $(N=1)$:

$$
\begin{gathered}
x_{2}^{2}-x_{1} x_{3}-y_{2} \stackrel{?}{\in} \operatorname{Rad}\left\langle x_{1}^{2}-x_{0} x_{2}-y_{1}, x_{2}-x_{1}-x_{0},\right. \\
\left.x_{3}-x_{2}-x_{1}, y_{1}+y_{0}, y_{2}+y_{1}\right\rangle
\end{gathered}
$$

Example: Cassini's Identity

- Let's prove $F_{n+1}^{2}-F_{n} F_{n+2}=(-1)^{n}$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim\left(F_{n+i}\right) \quad y_{i} \sim\left((-1)^{n+i}\right) \quad(i=0,1,2,3, \ldots)
$$

- Then we know

$$
\begin{array}{lll}
x_{2}=x_{1}+x_{0}, & x_{3}=x_{2}+x_{1}, & x_{4}=x_{3}+x_{2}, \ldots \\
y_{1}=-y_{0}, & y_{2}=-y_{1}, & y_{3}=-y_{2},
\end{array}, \ldots
$$

- First iteration $(N=0)$:

$$
x_{1}^{2}-x_{0} x_{2}-y_{1} \stackrel{?}{\in} \operatorname{Rad}\left\langle x_{2}-x_{1}-x_{0}, y_{1}+y_{0}, y_{2}+y_{1}\right\rangle \quad \text { false. }
$$

- Second iteration $(N=1)$:

$$
\begin{array}{r}
x_{2}^{2}-x_{1} x_{3}-y_{2} \stackrel{?}{\in} \operatorname{Rad}\left\langle x_{1}^{2}-x_{0} x_{2}-y_{1}, x_{2}-x_{1}-x_{0},\right. \\
\left.x_{3}-x_{2}-x_{1}, y_{1}+y_{0}, y_{2}+y_{1}\right\rangle \quad \text { true } .
\end{array}
$$

Example: Cassini's Identity

- Let's prove $F_{n+1}^{2}-F_{n} F_{n+2}=(-1)^{n}$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim\left(F_{n+i}\right) \quad y_{i} \sim\left((-1)^{n+i}\right) \quad(i=0,1,2,3, \ldots)
$$

- Then we know

$$
\begin{array}{lll}
x_{2}=x_{1}+x_{0}, & x_{3}=x_{2}+x_{1}, & x_{4}=x_{3}+x_{2}, \ldots \\
y_{1}=-y_{0}, & y_{2}=-y_{1}, & y_{3}=-y_{2},
\end{array}, \ldots
$$

- First iteration $(N=0)$:

$$
x_{1}^{2}-x_{0} x_{2}-y_{1} \stackrel{?}{\in} \operatorname{Rad}\left\langle x_{2}-x_{1}-x_{0}, y_{1}+y_{0}, y_{2}+y_{1}\right\rangle \quad \text { false. }
$$

- Second iteration $(N=1)$:

$$
\begin{array}{r}
x_{2}^{2}-x_{1} x_{3}-y_{2} \stackrel{?}{\in} \operatorname{Rad}\left\langle x_{1}^{2}-x_{0} x_{2}-y_{1}, x_{2}-x_{1}-x_{0},\right. \\
\left.x_{3}-x_{2}-x_{1}, y_{1}+y_{0}, y_{2}+y_{1}\right\rangle \quad \text { true } .
\end{array}
$$

- The proof is completed by checking the claim for $n=0$.

When is the Method Applicable?

When is the Method Applicable?

- The sequence $\left(f_{n}\right)$ should be defined by a system of recurrences.

When is the Method Applicable?

- The sequence $\left(f_{n}\right)$ should be defined by a system of recurrences.
- The value f_{n} may depend rationally upon a history $f_{n-1}, f_{n-2}, \ldots, f_{n-r}$ of fixed length, and possibly on values of other sequences g_{n}, h_{n}, \ldots which are themselves defined in the same way.

When is the Method Applicable?

- The sequence $\left(f_{n}\right)$ should be defined by a system of recurrences.
- The value f_{n} may depend rationally upon a history $f_{n-1}, f_{n-2}, \ldots, f_{n-r}$ of fixed length, and possibly on values of other sequences g_{n}, h_{n}, \ldots which are themselves defined in the same way.
- Recurrence scheme:

$$
g_{n+2}=\operatorname{rat}_{g}\left(g_{n}, g_{n+1}\right)
$$

When is the Method Applicable?

- The sequence $\left(f_{n}\right)$ should be defined by a system of recurrences.
- The value f_{n} may depend rationally upon a history $f_{n-1}, f_{n-2}, \ldots, f_{n-r}$ of fixed length, and possibly on values of other sequences g_{n}, h_{n}, \ldots which are themselves defined in the same way.
- Recurrence scheme:

$$
g_{n+2}=\operatorname{rat}_{g}\left(g_{n}, g_{n+1}\right)
$$

When is the Method Applicable?

- The sequence $\left(f_{n}\right)$ should be defined by a system of recurrences.
- The value f_{n} may depend rationally upon a history $f_{n-1}, f_{n-2}, \ldots, f_{n-r}$ of fixed length, and possibly on values of other sequences g_{n}, h_{n}, \ldots which are themselves defined in the same way.
- Recurrence scheme:

$$
g_{n+2}=\operatorname{rat}_{g}\left(g_{n}, g_{n+1}\right)
$$

When is the Method Applicable?

- The sequence $\left(f_{n}\right)$ should be defined by a system of recurrences.
- The value f_{n} may depend rationally upon a history $f_{n-1}, f_{n-2}, \ldots, f_{n-r}$ of fixed length, and possibly on values of other sequences g_{n}, h_{n}, \ldots which are themselves defined in the same way.
- Recurrence scheme:

$$
h_{n+2}=\operatorname{rat}_{h}\left(g_{n}, g_{n+1}, g_{n+2}, h_{n}, h_{n+1}\right)
$$

g_{n}	g_{n+1}	g_{n+2}	g_{n+3}	g_{n+4}	\ldots
h_{n}	h_{n+1}	h_{n+2}	h_{n+3}	h_{n+4}	\cdots
f_{n}	f_{n+1}	f_{n+2}	f_{n+3}	f_{n+4}	\cdots

When is the Method Applicable?

- The sequence $\left(f_{n}\right)$ should be defined by a system of recurrences.
- The value f_{n} may depend rationally upon a history $f_{n-1}, f_{n-2}, \ldots, f_{n-r}$ of fixed length, and possibly on values of other sequences g_{n}, h_{n}, \ldots which are themselves defined in the same way.
- Recurrence scheme:

$$
h_{n+2}=\operatorname{rat}_{h}\left(g_{n}, g_{n+1}, g_{n+2}, h_{n}, h_{n+1}\right)
$$

g_{n}	g_{n+1}	g_{n+2}	g_{n+3}	g_{n+4}	\ldots
h_{n}	h_{n+1}	h_{n+2}	h_{n+3}	h_{n+4}	\ldots
f_{n}	f_{n+1}	f_{n+2}	f_{n+3}	f_{n+4}	\cdots

When is the Method Applicable?

- The sequence $\left(f_{n}\right)$ should be defined by a system of recurrences.
- The value f_{n} may depend rationally upon a history $f_{n-1}, f_{n-2}, \ldots, f_{n-r}$ of fixed length, and possibly on values of other sequences g_{n}, h_{n}, \ldots which are themselves defined in the same way.
- Recurrence scheme:

$$
h_{n+2}=\operatorname{rat}_{h}\left(g_{n}, g_{n+1}, g_{n+2}, h_{n}, h_{n+1}\right)
$$

g_{n}	g_{n+1}	g_{n+2}	g_{n+3}	g_{n+4}	\ldots
h_{n}	h_{n+1}	h_{n+2}	h_{n+3}	h_{n+4}	\ldots
f_{n}	f_{n+1}	f_{n+2}	f_{n+3}	f_{n+4}	\ldots

When is the Method Applicable?

- The sequence $\left(f_{n}\right)$ should be defined by a system of recurrences.
- The value f_{n} may depend rationally upon a history $f_{n-1}, f_{n-2}, \ldots, f_{n-r}$ of fixed length, and possibly on values of other sequences g_{n}, h_{n}, \ldots which are themselves defined in the same way.
- Recurrence scheme:

$$
f_{n+1}=\operatorname{rat}_{f}\left(g_{n}, g_{n+1}, h_{n}, h_{n+1}, f_{n}\right)
$$

g_{n}	g_{n+1}	g_{n+2}	g_{n+3}	g_{n+4}	\ldots
h_{n}	h_{n+1}	h_{n+2}	h_{n+3}	h_{n+4}	\ldots
f_{n}	f_{n+1}	f_{n+2}	f_{n+3}	f_{n+4}	\ldots

When is the Method Applicable?

- The sequence $\left(f_{n}\right)$ should be defined by a system of recurrences.
- The value f_{n} may depend rationally upon a history $f_{n-1}, f_{n-2}, \ldots, f_{n-r}$ of fixed length, and possibly on values of other sequences g_{n}, h_{n}, \ldots which are themselves defined in the same way.
- Recurrence scheme:

$$
f_{n+1}=\operatorname{rat}_{f}\left(g_{n}, g_{n+1}, h_{n}, h_{n+1}, f_{n}\right)
$$

g_{n}	g_{n+1}	g_{n+2}	g_{n+3}	g_{n+4}	\ldots
h_{n}	h_{n+1}	h_{n+2}	h_{n+3}	h_{n+4}	\ldots
f_{n}	f_{n+1}	f_{n+2}	f_{n+3}	f_{n+4}	\ldots

When is the Method Applicable?

- The sequence $\left(f_{n}\right)$ should be defined by a system of recurrences.
- The value f_{n} may depend rationally upon a history $f_{n-1}, f_{n-2}, \ldots, f_{n-r}$ of fixed length, and possibly on values of other sequences g_{n}, h_{n}, \ldots which are themselves defined in the same way.
- Recurrence scheme:

$$
f_{n+1}=\operatorname{rat}_{f}\left(g_{n}, g_{n+1}, h_{n}, h_{n+1}, f_{n}\right)
$$

g_{n}	g_{n+1}	g_{n+2}	g_{n+3}	g_{n+4}	\ldots
h_{n}	h_{n+1}	h_{n+2}	h_{n+3}	h_{n+4}	\ldots
f_{n}	f_{n+1}	f_{n+2}	f_{n+3}	f_{n+4}	\ldots

When is the Method Applicable?

- The sequence $\left(f_{n}\right)$ should be defined by a system of recurrences.
- The value f_{n} may depend rationally upon a history $f_{n-1}, f_{n-2}, \ldots, f_{n-r}$ of fixed length, and possibly on values of other sequences g_{n}, h_{n}, \ldots which are themselves defined in the same way.
- Recurrence scheme:

$$
f_{n+1}=\operatorname{rat}_{f}\left(g_{n}, g_{n+1}, h_{n}, h_{n+1}, f_{n}\right)
$$

g_{n}	g_{n+1}	g_{n+2}	g_{n+3}	g_{n+4}	\ldots
h_{n}	h_{n+1}	h_{n+2}	h_{n+3}	h_{n+4}	\ldots
f_{n}	f_{n+1}	f_{n+2}	f_{n+3}	f_{n+4}	\ldots

When is the Method Applicable?

When is the Method Applicable?

- This class of sequences is really big!

When is the Method Applicable?

- This class of sequences is really big!
- It contains many special sequences such as

$$
n, \quad F_{n}, \quad F_{2^{n}}, \quad F_{F_{n}}, \quad P_{n}(x), \quad L_{n}^{\alpha}(x), \quad C_{n}^{m}(x), \quad \ldots
$$

When is the Method Applicable?

- This class of sequences is really big!
- It contains many special sequences such as

$$
n, \quad F_{n}, \quad F_{2^{n}}, \quad F_{F_{n}}, \quad P_{n}(x), \quad L_{n}^{\alpha}(x), \quad C_{n}^{m}(x), \quad \ldots
$$

- It satisfies important closure properties such as
$+, \cdot-, /, \quad \Sigma, \quad \Pi, \quad \mathrm{K}, \quad$ affine transforms

When is the Method Applicable?

- This class of sequences is really big!
- It contains many special sequences such as

$$
n, \quad F_{n}, \quad F_{2^{n}}, \quad F_{F_{n}}, \quad P_{n}(x), \quad L_{n}^{\alpha}(x), \quad C_{n}^{m}(x), \quad \ldots
$$

- It satisfies important closure properties such as

$$
+, \cdot,-, /, \quad \Sigma, \quad \Pi, \quad \mathrm{K}, \quad \text { affine transforms }
$$

- Theorem. For all sequences from this class, the algorithm described before terminates (i.e., a value N is always found).

When is the Method Applicable?

- This class of sequences is really big!
- It contains many special sequences such as

$$
n, \quad F_{n}, \quad F_{2^{n}}, \quad F_{F_{n}}, \quad P_{n}(x), \quad L_{n}^{\alpha}(x), \quad C_{n}^{m}(x), \quad \ldots
$$

- It satisfies important closure properties such as

$$
+, \cdot,-, /, \quad \Sigma, \quad \Pi, \quad \mathrm{K}, \quad \text { affine transforms }
$$

- Theorem. For all sequences from this class, the algorithm described before terminates (i.e., a value N is always found).
- In particular: Zero equivalence is decidable for this class.

Example Gallery

Example Gallery

$$
\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{i}=-n+(n+1) \sum_{k=1}^{n} \frac{1}{k}
$$

Example Gallery

$>\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{i}=-n+(n+1) \sum_{k=1}^{n} \frac{1}{k}$
$\sum_{k=1}^{n} \frac{(-1)^{k}}{F_{k} F_{k+1}}=-\frac{F_{n}}{F_{n+1}}$

Example Gallery

$\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{i}=-n+(n+1) \sum_{k=1}^{n} \frac{1}{k}$
$\sum_{k=1}^{n} \frac{(-1)^{k}}{F_{k} F_{k+1}}=-\frac{F_{n}}{F_{n+1}}$
$>\sum_{k=0}^{n} \frac{1}{U_{2^{k}-1}(x)}=\frac{2 x U_{2^{n}}(x)-U_{2^{n}-1}(x)}{U_{2^{n}-1}(x)}$

Example Gallery

- $\sum_{i=1}^{n} \sum_{i=1}^{1}=-n+(n+1) \sum_{i=1}^{n} \frac{1}{n}$

- $\sum_{k=0}^{n} \frac{1}{U_{2^{k}-1}(x)}=\frac{2 x U_{2^{n}}(x)-U_{2^{n}-1}(x)}{U_{2^{n}-1}(x)}$
$\frac{2}{2+\frac{3}{4}}=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$
$3+\frac{4}{\cdots+\frac{n}{n}}$

Example Gallery

$$
\begin{aligned}
& >\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{i}=-n+(n+1) \sum_{k=1}^{n} \frac{1}{k} \\
& >\sum_{k=1}^{n} \frac{(-1)^{k}}{F_{k} F_{k+1}}=-\frac{F_{n}}{F_{n+1}} \\
& >\sum_{k=0}^{n} \frac{1}{U_{2^{k}-1}(x)}=\frac{2 x U_{2^{n}(x)-U_{2^{n}-1}(x)}^{U_{2^{n}-1}(x)}}{2+\frac{2}{3+\frac{3}{n}}}=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} \\
& \cdots+\frac{n}{n}
\end{aligned}
$$

Proving Combinatorial Inequalities

Known Algorithms for Proving Inequalities

Known Algorithms for Proving Inequalities

- None.

Known Algorithms for Proving Inequalities

- None.
- Today: A method for proving inequalities, which succeeds for a great many instances.

Proof by Induction: Outline

- Note: Proving an inequality $A>B$ amounts to testing positivity of $A-B$.

Proof by Induction: Outline

- Note: Proving an inequality $A>B$ amounts to testing positivity of $A-B$.
- Task: Given a sequence $\left(f_{n}\right)$, prove that

$$
\forall n \geq 0: f_{n}>0
$$

Proof by Induction: Outline

- Note: Proving an inequality $A>B$ amounts to testing positivity of $A-B$.
- Task: Given a sequence $\left(f_{n}\right)$, prove that

$$
\forall n \geq 0: f_{n}>0
$$

- Idea: Find an $N \geq 0$ such that

$$
\left(\forall n \geq 0: f_{n}>0\right) \Longleftrightarrow\left(f_{0}>0 \wedge f_{1}>0 \wedge \cdots \wedge f_{N-1}>0\right)
$$

Proof by Induction: Outline

- Note: Proving an inequality $A>B$ amounts to testing positivity of $A-B$.
- Task: Given a sequence $\left(f_{n}\right)$, prove that

$$
\forall n \geq 0: f_{n}>0
$$

- Idea: Find an $N \geq 0$ such that

$$
\left(\forall n \geq 0: f_{n}>0\right) \Longleftrightarrow\left(f_{0}>0 \wedge f_{1}>0 \wedge \cdots \wedge f_{N-1}>0\right)
$$

- Clearly: Every $N \geq 0$ with

$$
\forall n \geq 0:\left(f_{n}>0 \wedge \cdots \wedge f_{n+N-1}>0 \Longrightarrow f_{n+N}>0\right)
$$

does the job.

Proof by Induction: Outline

- Note: Proving an inequality $A>B$ amounts to testing positivity of $A-B$.
- Task: Given a sequence $\left(f_{n}\right)$, prove that

$$
\forall n \geq 0: f_{n}>0
$$

- Idea: Find an $N \geq 0$ such that

$$
\left(\forall n \geq 0: f_{n}>0\right) \Longleftrightarrow\left(f_{0}>0 \wedge f_{1}>0 \wedge \cdots \wedge f_{N-1}>0\right)
$$

- Clearly: Every $N \geq 0$ with

$$
\forall n \geq 0:\left(f_{n}>0 \wedge \cdots \wedge f_{n+N-1}>0 \Longrightarrow f_{n+N}>0\right)
$$

does the job.

- Proof: If N has this property and $f_{0}>0, \ldots, f_{N-1}>0$ then $f>0$ by induction. If not $f_{0}>0, \ldots, f_{N-1}>0$, then $f \ngtr 0$ anyway.

Proof by Induction: Use Knowledge

Proof by Induction: Use Knowledge

- Method: try for $N=1,2,3, \ldots$ whether

$$
\forall n \geq 0:\left(f_{n}>0 \wedge \cdots \wedge f_{n+N}>0 \Longrightarrow f_{n+N+1}>0\right)
$$

Stop as soon as this is the case and output the corresponding N.

Proof by Induction: Use Knowledge

- Method: try for $N=1,2,3, \ldots$ whether

$$
\forall n \geq 0:\left(f_{n}>0 \wedge \cdots \wedge f_{n+N}>0 \Longrightarrow f_{n+N+1}>0\right)
$$

Stop as soon as this is the case and output the corresponding N.

- Sufficient: if
$\forall x_{0}, \ldots, x_{N}: x_{0}>0 \wedge x_{1}>0 \wedge \cdots \wedge x_{N-1}>0 \Longrightarrow x_{N}>0$ then N certainly qualifies.

Proof by Induction: Use Knowledge

- Method: try for $N=1,2,3, \ldots$ whether

$$
\forall n \geq 0:\left(f_{n}>0 \wedge \cdots \wedge f_{n+N}>0 \Longrightarrow f_{n+N+1}>0\right)
$$

Stop as soon as this is the case and output the corresponding N.

- Sufficient: if
$\forall x_{0}, \ldots, x_{N}: x_{0}>0 \wedge x_{1}>0 \wedge \cdots \wedge x_{N-1}>0 \Longrightarrow x_{N}>0$ then N certainly qualifies.
- Again, this will be false if x_{0}, \ldots, x_{N} are independent variables.

Proof by Induction: Use Knowledge

- Method: try for $N=1,2,3, \ldots$ whether

$$
\forall n \geq 0:\left(f_{n}>0 \wedge \cdots \wedge f_{n+N}>0 \Longrightarrow f_{n+N+1}>0\right)
$$

Stop as soon as this is the case and output the corresponding N.

- Sufficient: if
$\forall x_{0}, \ldots, x_{N}: x_{0}>0 \wedge x_{1}>0 \wedge \cdots \wedge x_{N-1}>0 \Longrightarrow x_{N}>0$ then N certainly qualifies.
- Again, this will be false if x_{0}, \ldots, x_{N} are independent variables.
- Again, we assume knowledge (e.g., defining recurrences) about $\left(f_{n}\right)$ to be given, and extend the hypothesis accordingly.

Proof by Induction: Use Knowledge

- Method: try for $N=1,2,3, \ldots$ whether

$$
\forall n \geq 0:\left(f_{n}>0 \wedge \cdots \wedge f_{n+N}>0 \Longrightarrow f_{n+N+1}>0\right)
$$

Stop as soon as this is the case and output the corresponding N.

- Sufficient: if
$\forall x_{0}, \ldots, x_{N}: x_{0}>0 \wedge x_{1}>0 \wedge \cdots \wedge x_{N-1}>0 \Longrightarrow x_{N}>0$ then N certainly qualifies.
- Again, this will be false if x_{0}, \ldots, x_{N} are independent variables.
- Again, we assume knowledge (e.g., defining recurrences) about $\left(f_{n}\right)$ to be given, and extend the hypothesis accordingly.
- This knowledge may be anything that gives rise to polynomial (in)equalities for the x_{i}.

Proof by Induction: Use Knowledge and Computer Algebra

Proof by Induction: Use Knowledge and Computer Algebra

- Thus we may deliver an N with

$$
\begin{aligned}
\forall x_{0}, \ldots, x_{N+1}:\left(p_{1}\right. & \left.\lesseqgtr 0, \ldots p_{m} \lesseqgtr 0, x_{0}>0, \ldots x_{N}>0\right) \\
& \Longrightarrow x_{N+1}>0
\end{aligned}
$$

for certain explicit polynomials p_{1}, \ldots, p_{m}.

Proof by Induction: Use Knowledge and Computer Algebra

- Thus we may deliver an N with

$$
\begin{aligned}
\forall x_{0}, \ldots, x_{N+1}:\left(p_{1}\right. & \left.\lesseqgtr 0, \ldots p_{m} \lesseqgtr 0, x_{0}>0, \ldots x_{N}>0\right) \\
& \Longrightarrow x_{N+1}>0
\end{aligned}
$$

for certain explicit polynomials p_{1}, \ldots, p_{m}.

- This can be decided using Cylindrical Algebraic Decomposition.

Proof by Induction: Use Knowledge and Computer Algebra

- Thus we may deliver an N with

$$
\begin{aligned}
\forall x_{0}, \ldots, x_{N+1}:\left(p_{1}\right. & \left.\lesseqgtr 0, \ldots p_{m} \lesseqgtr 0, x_{0}>0, \ldots x_{N}>0\right) \\
& \Longrightarrow x_{N+1}>0
\end{aligned}
$$

for certain explicit polynomials p_{1}, \ldots, p_{m}.

- This can be decided using Cylindrical Algebraic Decomposition.
- The method can be applied to the same class of sequences as the identity prover explained before.

Example: Bernoulli's Inequality

- Let's prove $(z+1)^{n} \geq 1+n z$ for $z \geq-1, n \geq 0$.

Example: Bernoulli's Inequality

- Let's prove $(z+1)^{n} \geq 1+n z$ for $z \geq-1, n \geq 0$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim(z+1)^{n+i} \quad y_{i} \sim n+i \quad(i=0,1,2,3, \ldots)
$$

Example: Bernoulli's Inequality

- Let's prove $(z+1)^{n} \geq 1+n z$ for $z \geq-1, n \geq 0$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim(z+1)^{n+i} \quad y_{i} \sim n+i \quad(i=0,1,2,3, \ldots)
$$

- Then we know

$$
\begin{array}{lll}
x_{1}=(z+1) x_{0}, & x_{2}=(z+1) x_{1}, & x_{3}=(z+1) x_{2}, \ldots \\
y_{1}=y_{0}+1, & y_{2}=y_{1}+1, & y_{3}=y_{2}+1,
\end{array}
$$

Example: Bernoulli's Inequality

- Let's prove $(z+1)^{n} \geq 1+n z$ for $z \geq-1, n \geq 0$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim(z+1)^{n+i} \quad y_{i} \sim n+i \quad(i=0,1,2,3, \ldots)
$$

- Then we know

$$
\begin{array}{lll}
x_{1}=(z+1) x_{0}, & x_{2}=(z+1) x_{1}, & x_{3}=(z+1) x_{2}, \ldots \\
y_{1}=y_{0}+1, & y_{2}=y_{1}+1, & y_{3}=y_{2}+1,
\end{array}
$$

- First iteration $(N=0)$:

$$
\forall x_{0}, y_{0}, z: z \geq-1 \Longrightarrow x_{0} \geq 1+y_{0} z
$$

Example: Bernoulli's Inequality

- Let's prove $(z+1)^{n} \geq 1+n z$ for $z \geq-1, n \geq 0$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim(z+1)^{n+i} \quad y_{i} \sim n+i \quad(i=0,1,2,3, \ldots)
$$

- Then we know

$$
\begin{array}{lll}
x_{1}=(z+1) x_{0}, & x_{2}=(z+1) x_{1}, & x_{3}=(z+1) x_{2}, \ldots \\
y_{1}=y_{0}+1, & y_{2}=y_{1}+1, & y_{3}=y_{2}+1,
\end{array}
$$

- First iteration $(N=0)$:

$$
\forall x_{0}, y_{0}, z: z \geq-1 \Longrightarrow x_{0} \geq 1+y_{0} z \quad \text { false. }
$$

Example: Bernoulli's Inequality

- Let's prove $(z+1)^{n} \geq 1+n z$ for $z \geq-1, n \geq 0$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim(z+1)^{n+i} \quad y_{i} \sim n+i \quad(i=0,1,2,3, \ldots)
$$

- Then we know

$$
\begin{array}{lll}
x_{1}=(z+1) x_{0}, & x_{2}=(z+1) x_{1}, & x_{3}=(z+1) x_{2}, \ldots \\
y_{1}=y_{0}+1, & y_{2}=y_{1}+1, & y_{3}=y_{2}+1,
\end{array}
$$

- First iteration $(N=0)$:

$$
\forall x_{0}, y_{0}, z: z \geq-1 \Longrightarrow x_{0} \geq 1+y_{0} z \quad \text { false. }
$$

- Second iteration $(N=1)$:

$$
\begin{gathered}
\forall x_{0}, y_{0}, x_{1}, y_{1}, z: z \geq-1 \wedge x_{0} \geq 1+y_{0} z \wedge x_{1}=(z+1) x_{0} \\
\wedge y_{1}=y_{0}+1 \Longrightarrow x_{1} \geq 1+y_{1} z
\end{gathered}
$$

Example: Bernoulli's Inequality

- Let's prove $(z+1)^{n} \geq 1+n z$ for $z \geq-1, n \geq 0$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim(z+1)^{n+i} \quad y_{i} \sim n+i \quad(i=0,1,2,3, \ldots)
$$

- Then we know

$$
\begin{array}{lll}
x_{1}=(z+1) x_{0}, & x_{2}=(z+1) x_{1}, & x_{3}=(z+1) x_{2}, \ldots \\
y_{1}=y_{0}+1, & y_{2}=y_{1}+1, & y_{3}=y_{2}+1,
\end{array}
$$

- First iteration $(N=0)$:

$$
\forall x_{0}, y_{0}, z: z \geq-1 \Longrightarrow x_{0} \geq 1+y_{0} z \quad \text { false. }
$$

- Second iteration $(N=1)$:

$$
\begin{aligned}
& \forall x_{0}, y_{0}, x_{1}, y_{1}, z: z \geq-1 \wedge x_{0} \geq 1+y_{0} z \wedge x_{1}=(z+1) x_{0} \\
& \wedge y_{1}=y_{0}+1 \Longrightarrow x_{1} \geq 1+y_{1} z \text { true. }
\end{aligned}
$$

Example: Bernoulli's Inequality

- Let's prove $(z+1)^{n} \geq 1+n z$ for $z \geq-1, n \geq 0$.
- Introduce some variables x_{i}, y_{i} with the correspondence

$$
x_{i} \sim(z+1)^{n+i} \quad y_{i} \sim n+i \quad(i=0,1,2,3, \ldots)
$$

- Then we know

$$
\begin{array}{lll}
x_{1}=(z+1) x_{0}, & x_{2}=(z+1) x_{1}, & x_{3}=(z+1) x_{2}, \ldots \\
y_{1}=y_{0}+1, & y_{2}=y_{1}+1, & y_{3}=y_{2}+1,
\end{array}
$$

- First iteration $(N=0)$:

$$
\forall x_{0}, y_{0}, z: z \geq-1 \Longrightarrow x_{0} \geq 1+y_{0} z \quad \text { false. }
$$

- Second iteration $(N=1)$:

$$
\begin{aligned}
& \forall x_{0}, y_{0}, x_{1}, y_{1}, z: z \geq-1 \wedge x_{0} \geq 1+y_{0} z \wedge x_{1}=(z+1) x_{0} \\
& \wedge y_{1}=y_{0}+1 \Longrightarrow x_{1} \geq 1+y_{1} z \quad \text { true. }
\end{aligned}
$$

- The proof is completed by checking the claim for $n=0$.

Example: Bernoulli's Inequality

- Let's have a look at the functions $(z+1)^{n}-(1+n z)$ for $n=1,2,3, \ldots$:

Example: Bernoulli's Inequality

- Let's have a look at the functions $(z+1)^{n}-(1+n z)$ for $n=1,2,3, \ldots$:

- The picture suggests that Bernoulli's inequality already holds for $z \geq-2$. Is this true?

Example: Bernoulli's Inequality

- Apply the method:

Example: Bernoulli's Inequality

- Apply the method:
- $N=0$...

Example: Bernoulli's Inequality

- Apply the method:
- $N=0 \ldots$ false.

Example: Bernoulli's Inequality

- Apply the method:
- $N=0 \ldots$ false.
- $N=1 .$. .

Example: Bernoulli's Inequality

- Apply the method:
- $N=0 \ldots$ false.
- $N=1$. . false.

Example: Bernoulli's Inequality

- Apply the method:
- $N=0$. . false.
- $N=1$. . false.
- $N=2$..

Example: Bernoulli's Inequality

- Apply the method:
- $N=0$. . false.
- $N=1$. . false.
- $N=2 \ldots$ false.

Example: Bernoulli's Inequality

- Apply the method:
- $N=0$. . false.
- $N=1$. . false.
- $N=2 \ldots$ false.
- $N=3 .$.

Example: Bernoulli's Inequality

- Apply the method:
- $N=0$. . false.
- $N=1$. . false.
- $N=2 \ldots$ false.
- $N=3$...true.

Example: Bernoulli's Inequality

- Apply the method:
- $N=0$. . false.
- $N=1$. . false.
- $N=2 \ldots$ false.
- $N=3$...true.
- Now it only remains to check $n=0,1,2$:

Example: Bernoulli's Inequality

- Apply the method:
- $N=0$... false.
- $N=1$. . false.
- $N=2 \ldots$. false.
- $N=3 \ldots$. true.
- Now it only remains to check $n=0,1,2$:
- $n=0: 1 \geq 1$

Example: Bernoulli's Inequality

- Apply the method:
- $N=0$... false.
- $N=1$. . false.
- $N=2 \ldots$. false.
- $N=3 \ldots$. true.
- Now it only remains to check $n=0,1,2$:
- $n=0: 1 \geq 1$ OK.

Example: Bernoulli's Inequality

- Apply the method:
- $N=0$... false.
- $N=1$. . false.
- $N=2 \ldots$ false.
- $N=3$...true.
- Now it only remains to check $n=0,1,2$:
- $n=0: 1 \geq 1$ OK.
- $n=1: z+1 \geq z+1$

Example: Bernoulli's Inequality

- Apply the method:
- $N=0$... false.
- $N=1$. . false.
- $N=2 \ldots$ false.
- $N=3$...true.
- Now it only remains to check $n=0,1,2$:
- $n=0: 1 \geq 1$ OK.
- $n=1: z+1 \geq z+1$ OK.

Example: Bernoulli's Inequality

- Apply the method:
- $N=0$... false.
- $N=1$. . false.
- $N=2 \ldots$ false.
- $N=3 \ldots$. true.
- Now it only remains to check $n=0,1,2$:
- $n=0: 1 \geq 1$ OK.
- $n=1: z+1 \geq z+1$ OK.
- $n=2: z^{2}+2 z+1 \geq 1+2 z$

Example: Bernoulli's Inequality

- Apply the method:
- $N=0$... false.
- $N=1$. . false.
- $N=2 \ldots$ false.
- $N=3 \ldots$. true.
- Now it only remains to check $n=0,1,2$:
- $n=0: 1 \geq 1$ OK.
- $n=1: z+1 \geq z+1$ OK.
- $n=2: z^{2}+2 z+1 \geq 1+2 z$ OK. \square.

Example: Bernoulli's Inequality

- Apply the method:
- $N=0 \ldots$ false.
- $N=1$. . false.
- $N=2 \ldots$ false.
- $N=3 \ldots$. true.
- Now it only remains to check $n=0,1,2$:
- $n=0: 1 \geq 1$ OK.
- $n=1: z+1 \geq z+1$ OK.
- $n=2: z^{2}+2 z+1 \geq 1+2 z$ OK. \square.
- Conclusion: We have generalized Bernoulli's inequality.

Some further Examples

Some further Examples

$$
\prod_{k=0}^{n} \frac{3 k+4}{3 k+2}>1+\frac{2}{3} \sum_{k=1}^{n+1} \frac{1}{k}
$$

Some further Examples

$>\prod_{k=0}^{n} \frac{3 k+4}{3 k+2}>1+\frac{2}{3} \sum_{k=1}^{n+1} \frac{1}{k}$
$\sum_{k=1}^{n} \frac{\left(2 F_{k+1}-F_{k}\right)^{2}}{F_{k}} \geq \frac{\left(3 F_{n+1}+F_{n}-3\right)^{2}}{F_{n+2}-1}$

Some further Examples

$>\prod_{k=0}^{n} \frac{3 k+4}{3 k+2}>1+\frac{2}{3} \sum_{k=1}^{n+1} \frac{1}{k}$
$>\sum_{k=1}^{n} \frac{\left(2 F_{k+1}-F_{k}\right)^{2}}{F_{k}} \geq \frac{\left(3 F_{n+1}+F_{n}-3\right)^{2}}{F_{n+2}-1}$
$>\left(\sum_{k=1}^{n} x_{k} y_{k}\right)^{2} \leq \sum_{k=1}^{n} x_{k}^{2} \sum_{k=1}^{n} y_{k}^{2}$

Some further Examples

- $\prod_{k=0}^{n} \frac{3 k+4}{3 k+2}>1+\frac{2}{3} \sum_{k=1}^{n+1} \frac{1}{k}$
- $\sum_{k=1}^{n} \frac{\left(2 F_{k+1}-F_{k}\right)^{2}}{F_{k}} \geq \frac{\left(3 F_{n+1}+F_{n}-3\right)^{2}}{F_{n+2}-1}$
$>\left(\sum_{k=1}^{n} x_{k} y_{k}\right)^{2} \leq \sum_{k=1}^{n} x_{k}^{2} \sum_{k=1}^{n} y_{k}^{2}$
- $\prod_{k=1}^{n-1}\left(a^{k}+1\right)<\frac{1-a}{a^{n}-2 a+1}\left(\right.$ for $\left.0<a<\frac{1}{2}\right)$

Some further Examples

$>\prod_{k=0}^{n} \frac{3 k+4}{3 k+2}>1+\frac{2}{3} \sum_{k=1}^{n+1} \frac{1}{k}$
$>\sum_{k=1}^{n} \frac{\left(2 F_{k+1}-F_{k}\right)^{2}}{F_{k}} \geq \frac{\left(3 F_{n+1}+F_{n}-3\right)^{2}}{F_{n+2}-1}$
$>\left(\sum_{k=1}^{n} x_{k} y_{k}\right)^{2} \leq \sum_{k=1}^{n} x_{k}^{2} \sum_{k=1}^{n} y_{k}^{2}$
$\prod_{k=1}^{n-1}\left(a^{k}+1\right)<\frac{1-a}{a^{n}-2 a+1}\left(\right.$ for $\left.0<a<\frac{1}{2}\right)$

- $P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq 0($ for $-1 \leq x \leq 1)$

Some further Examples

$>\prod_{k=0}^{n} \frac{3 k+4}{3 k+2}>1+\frac{2}{3} \sum_{k=1}^{n+1} \frac{1}{k}$
$>\sum_{k=1}^{n} \frac{\left(2 F_{k+1}-F_{k}\right)^{2}}{F_{k}} \geq \frac{\left(3 F_{n+1}+F_{n}-3\right)^{2}}{F_{n+2}-1}$
$>\left(\sum_{k=1}^{n} x_{k} y_{k}\right)^{2} \leq \sum_{k=1}^{n} x_{k}^{2} \sum_{k=1}^{n} y_{k}^{2}$
$\prod_{k=1}^{n-1}\left(a^{k}+1\right)<\frac{1-a}{a^{n}-2 a+1}\left(\right.$ for $\left.0<a<\frac{1}{2}\right)$

- $P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq 0($ for $-1 \leq x \leq 1)$

Some Computational Theoretic Remarks

Some Computational Theoretic Remarks

- Is this a Decision Procedure?

Some Computational Theoretic Remarks

- Is this a Decision Procedure?
- No. There are examples where the procedure does not terminate.

Some Computational Theoretic Remarks

- Is this a Decision Procedure?
- No. There are examples where the procedure does not terminate.
- But a decision procedure is too much to hope for.

Some Computational Theoretic Remarks

- Is this a Decision Procedure?
- No. There are examples where the procedure does not terminate.
- But a decision procedure is too much to hope for.
- If a decision procedure existed, we could also decide $\exists n: f_{n}=0$ (root finding), by simply applying the algorithm to $f_{n}^{2}>0$.

Some Computational Theoretic Remarks

- Is this a Decision Procedure?
- No. There are examples where the procedure does not terminate.
- But a decision procedure is too much to hope for.
- If a decision procedure existed, we could also decide $\exists n: f_{n}=0$ (root finding), by simply applying the algorithm to $f_{n}^{2}>0$.
- Already for small classes of sequences, subincluded in ours, it is open whether root finding is decidable.

Some Computational Theoretic Remarks

- Is this a Decision Procedure?
- No. There are examples where the procedure does not terminate.
- But a decision procedure is too much to hope for.
- If a decision procedure existed, we could also decide $\exists n: f_{n}=0$ (root finding), by simply applying the algorithm to $f_{n}^{2}>0$.
- Already for small classes of sequences, subincluded in ours, it is open whether root finding is decidable.
- Then, is it a Semi Decision Procedure?

Some Computational Theoretic Remarks

- Is this a Decision Procedure?
- No. There are examples where the procedure does not terminate.
- But a decision procedure is too much to hope for.
- If a decision procedure existed, we could also decide $\exists n: f_{n}=0$ (root finding), by simply applying the algorithm to $f_{n}^{2}>0$.
- Already for small classes of sequences, subincluded in ours, it is open whether root finding is decidable.
- Then, is it a Semi Decision Procedure?
- Also not.

Some Computational Theoretic Remarks

- Is this a Decision Procedure?
- No. There are examples where the procedure does not terminate.
- But a decision procedure is too much to hope for.
- If a decision procedure existed, we could also decide $\exists n: f_{n}=0$ (root finding), by simply applying the algorithm to $f_{n}^{2}>0$.
- Already for small classes of sequences, subincluded in ours, it is open whether root finding is decidable.
- Then, is it a Semi Decision Procedure?
- Also not.
- Because it can be semidecided that an inequality does not hold (enumerate all $n \geq 0$ in search of a counterexample)

Some Computational Theoretic Remarks

- Is this a Decision Procedure?
- No. There are examples where the procedure does not terminate.
- But a decision procedure is too much to hope for.
- If a decision procedure existed, we could also decide $\exists n: f_{n}=0$ (root finding), by simply applying the algorithm to $f_{n}^{2}>0$.
- Already for small classes of sequences, subincluded in ours, it is open whether root finding is decidable.
- Then, is it a Semi Decision Procedure?
- Also not.
- Because it can be semidecided that an inequality does not hold (enumerate all $n \geq 0$ in search of a counterexample)
- Together with a semi decision procedure for proving inequalities, we would obtain a decision procedure.

Some Computational Theoretic Remarks

- Is this a Decision Procedure?
- No. There are examples where the procedure does not terminate.
- But a decision procedure is too much to hope for.
- If a decision procedure existed, we could also decide $\exists n: f_{n}=0$ (root finding), by simply applying the algorithm to $f_{n}^{2}>0$.
- Already for small classes of sequences, subincluded in ours, it is open whether root finding is decidable.
- Then, is it a Semi Decision Procedure?
- Also not.
- Because it can be semidecided that an inequality does not hold (enumerate all $n \geq 0$ in search of a counterexample)
- Together with a semi decision procedure for proving inequalities, we would obtain a decision procedure.
- Then, What is it?

Some Computational Theoretic Remarks

- Is this a Decision Procedure?
- No. There are examples where the procedure does not terminate.
- But a decision procedure is too much to hope for.
- If a decision procedure existed, we could also decide $\exists n: f_{n}=0$ (root finding), by simply applying the algorithm to $f_{n}^{2}>0$.
- Already for small classes of sequences, subincluded in ours, it is open whether root finding is decidable.
- Then, is it a Semi Decision Procedure?
- Also not.
- Because it can be semidecided that an inequality does not hold (enumerate all $n \geq 0$ in search of a counterexample)
- Together with a semi decision procedure for proving inequalities, we would obtain a decision procedure.
- Then, What is it?
- It's just a method that often succeeds.

