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We introduce the class of nested polynomially recurrent sequences which includes a large number of

sequences that are of combinatorial interest. We present an algorithm for deciding zero equivalence
of these sequences, thereby providing a new algorithm for proving identities among combinatorial
sequences: in order to prove an identity, decide by the algorithm whether the difference of left hand
side and right hand side is identically zero. This algorithm is able to treat mathematical objects
which are not covered by any other known symbolic method for proving combinatorial identities.
Despite its theoretical flavor and its high complexity, an implementation of the algorithm can be
successfully applied to nontrivial examples.
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1. INTRODUCTION

Computer proofs of special function identities came up in the early nineties when
Zeilberger [Zeilberger 1990] presented algorithms for deciding whether a representa-
tion of a holonomic function represents the zero function. Holonomic functions are
solutions of systems of differential-difference equations of a certain shape. The study
of holonomic (and so-called ∂-finite) functions [Chyzak and Salvy 1998; Chyzak
2000] was motivated by the observation that many special functions are of such
type and that the defining differential-difference system of such functions provides
a convenient representation of the mathematical object which can be used in com-
putations.

In this paper, we restrict our attention to univariate sequences, i.e., functions
with domain N. In this case, a sequence (f(n))n≥0 is called holonomic if it satisfies
a linear homogeneous recurrence relation with polynomial coefficients, i.e., we have

p0(n)f(n) + p1(n)f(n+ 1) + · · ·+ pr(n)f(n+ r) = 0 (n ≥ 0)

for certain polynomials p1, . . . , pr. Univariate holonomic sequences are also called
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P-finite [Stanley 1999] and there are computer algebra packages available for dealing
with such sequences [Salvy and Zimmermann 1994; Mallinger 1996]. However, little
is known about the algorithmic treatment of functions which are not holonomic. We
present an algorithm for proving zero equivalence (and hence, for proving identities)
of nested polynomially recurrent sequences, to be defined in Section 3. The class of
these sequences contains all holonomic sequences, but it contains in addition also
plenty of interesting objects which are not holonomic and which, to our knowledge,
could not be handled so far by symbolic methods. Section 6 contains some examples.
A similar algorithm for deciding zero equivalence for a certain class of analytic
functions was given by Shackell [Shackell 1993].

We will employ the notions of difference algebra [Cohn 1965], which can be seen
as a discrete analogue to differential algebra [Ritt 1950]. Sequences will be defined
by annihilating difference polynomials from a polynomial difference ring whose
variables represent the sequences under consideration, or shifts of these sequences
(see Section 2). Compared to the definition of sequences by annihilating linear
operators, as it is used in algorithms for holonomic objects [Zeilberger 1990; Chyzak
and Salvy 1998; Chyzak 2000], the use of difference polynomials allows the definition
of sequences of a more general type, as will be shown in Section 3. However, we
employ the notion of difference algebra only as a convenient language, but we will
not need any deep results from the theory of difference algebra. The basic definitions
we need will be stated in Section 2. For our arguments we assume familiarity with
elementary concepts of computational commutative algebra only, as it is presented,
e.g., in [Cox et al. 1992].

On one hand, our algorithm is of theoretical interest. It provides a decision pro-
cedure for deciding zero equivalence of nested polynomially recurrent sequences.
No such decision procedure was known before. On the other hand, our algorithm
is of practical relevance, for instance, to prove entries from mathematical tables
like [Abramowitz and Stegun 1972] (see also Example 6.4). Despite its very high
worst case complexity, we succeeded in proving nontrivial identities using an im-
plementation of the algorithm in frame of a Mathematica package [Kauers 2006].

This paper is organized as follows. Section 2 introduces some basic notions and
convenient notation. In Section 3 we introduce the class of nested polynomially
recurrent sequence. We will give some examples and some closure properties of
the class of these sequences. Section 4 presents how nested polynomially recurrent
sequences are translated into the language of difference rings by means of defining
relations. Section 5 presents the algorithm for proving zero equivalence, along with
proofs of its correctness and termination. Section 6 has a collection of examples
that can be tackled by the algorithm. The paper is concluded by some remarks
about the efficiency of the algorithm in Section 7.

2. DIFFERENCE RINGS AND DIFFERENCE IDEALS

Let K be a computable field of characteristic zero. By computable, we mean that
every element a ∈ K should have a finite representation ā and for any representation
ā of an element in a ∈ K it should be decidable if a is the zero element of K, and
for any two representations ā, b̄ of field elements a, b ∈ K, representations of a+ b
and a · b should be computable. Natural choices for K are number fields of finite
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degree or finite transcendental extensions of Q.

We recall the basic definitions of difference algebra [Cohn 1965]. A difference
ring R is a commutative ring, equipped with an endomorphism s : R → R. The
endomorphism s is called the shift operator of R. An element r ∈ R is called
constant if s(r) = r.

An important example of a difference ring is the m-fold polynomial difference
ring, to be denoted by R(m). Let {ti,j : i = 1, . . . ,m, j ∈ N0} be algebraically
independent over K and let s be canonically defined by s(c) = c (c ∈ K) and
s(ti,j) := ti,j+1. Then

R(m) := K[t1,0, . . . , tm,0, t2,1, . . . , tm,1, t3,1, . . . . . . ],

equipped with this s, forms a difference ring. We view R(m) as a polynomial ring
with infinitely many indeterminates. The elements of R(m) are called difference
polynomials. Readers familiar with differential algebra will note the similarity with
differential polynomials. However, it is worth noting that s(ab) = s(a)s(b) whereas
the derivative D in a differential ring obeys the more complicated Leibniz rule
D(ab) = D(a)b+ aD(b).

Writing sn := s ◦ sn−1, s0 = id, defining ti := ti,0 (i = 1, . . . ,m) and omitting
parentheses we will often write sjti in place of ti,j . This shall remind us that the
index j corresponds to the jth shift of the object represented by the variable ti. We
will use similar shortcuts not only for the indeterminates, but also for polynomials,
sets of polynomials, etc. As an example, sp = s3t2 +s2t3 + st1 if p = s2t2 + st3 + t1.

Though we understand R(m) as a polynomial ring with infinitely many indeter-
minates, each particular difference polynomial p ∈ R(m) only involves finitely many

of them. We introduce restrictions R
(m)
r of R(m) where only shifts up to some finite

order r ∈ N appear. We define

R(m)
r := K[t1,0, t2,0, . . . , tm,0, . . . . . . t1,r, . . . , tm,r] ⊆ R(m) (r ∈ N).

This is a polynomial ring overK in m(r+1) indeterminates. The shift operator s on

R(m) does not induce a shift operator of R
(m)
r because s(ti,r) 6∈ R(m)

r (i = 1, . . . ,m).

We call r the order and m the depth of R
(m)
r . As m will be fixed in all our

considerations, we can safely write R := R(m) and Rr := R
(m)
r for short. Observe

that every difference polynomial p ∈ R also belongs to Rr provided that r is large
enough.

A difference ideal I in some difference ring R is an ideal in R such that sI ⊆ I .
If S ⊆ R is any subset of R and I is the intersection of all difference ideals in R
containing S, then we say I is generated by S and S is called a basis of I . We write
I = 〈〈S〉〉. Note that if S itself has the property that sS ⊆ S then I is the usual
ring ideal generated by S, denoted by I = 〈S〉.

For S ⊆ Rr, we write 〈S〉r for the polynomial ideal generated by S in Rr. Note
that 〈S〉r 6= 〈S〉r+1 unless S = {0}. The notation I E Rr expresses that the set
I ⊆ Rr is a polynomial ideal in Rr, i.e., I = 〈I〉r. If I E Rr is some ideal, then
Rad I denotes the radical of I .
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3. NESTED POLYNOMIALLY RECURRENT SEQUENCES

We have already fixed a computable field K of characteristic zero in the previous
section. Let the class C of sequences N→ K be defined by structural induction as
follows. Let f1, . . . , fs ∈ C and r ≥ 0. A sequence f = (f(n))∞n=1 in K belongs to
C if it satisfies a recurrence relation of the form

f(n+ r) = p
(
f1(n), f1(n+ 1), . . . . . . , f1(n+ r − 1), f1(n+ r),
f2(n), . . . . . . . . . . . . , f2(n+ r − 1), f2(n+ r),

...
...

...
fs(n), . . . . . . . . . . . . , fs(n+ r − 1), fs(n+ r),
f(n), f(n+ 1), . . . . . . , f(n+ r − 1)

)

where p may be (1) a polynomial function or (2) the reciprocal of a polynomial
function. (In other words: p is a rational function with constant numerator or
constant denominator.) The induction base is given by the case s = 0.

We call C the class of nested polynomially recurrent sequences. Its elements are
“polynomially recurrent” in the sense that p is not limited to polynomials that are
linear in f(n + i). Nonlinear recurrences are allowed as well. The term “nested”
reflects the fact that the definition of f may involve other nested polynomially
recurrent sequences.

The number r in the definition is called the order of f . The sequences f1, . . . , fs

from the definition are called subexpressions of f , and the notion of subexpression
is understood transitively. The total number m of subexpressions of f is called the
depth of f . The notions of depth and order depend on the definition of a sequence
rather than on the sequence itself, e.g., (1/n − 1/n)∞n=1 has order 0 and depth 2,
(f(n))∞n=1 with f(n + 2) := 3f(n), f(1) = f(2) = 0 has order 2 and depth 1,
and (0)∞n=1 has depth 0 and order 0, yet all three sequences are equal, only their
representations differ.

The class C contains a large variety of sequences which appear frequently in
practice. It is immediate that all holonomic sequences are contained in C. In
addition, C contains sequences like (αβn

)∞n=1 (α ∈ K,β ∈ Z; by f(n+ 1) = f(n)β)
or (αF(n))∞n=1 (α ∈ K, F(n) the nth Fibonacci number; by f(n+2) = f(n+1)f(n))
which are easily seen not to be holonomic. If k ∈ N is fixed, then also the sequences
(s(n, k))n≥0, (S(n, k))n≥0, (e(n, k))n≥0, and (E(n, k))n≥0 of Stirling and Eulerian
numbers of first and second kind [Graham et al. 1994] belong to C. A class of
nonlinear recurrent sequences which arise in combinatorial and number theoretic
considerations is studied in [Aho and Sloane 1973; Golomb 1963]. These sequences
satisfy recurrences of the form f(n+ 1) = f(n)2 + αf(n) + β for certain α, β ∈ Q,
thus they are members of C. An example is Sylvester’s sequence [Sloane and Plouffe
1995, M0865]. Solutions of the “quadratic” Fibonacci recurrence [Duke et al. 1998]
h(n+ 2) = h(n+ 1) + h(n)2 also belong to C.

The Handbook of Mathematical Functions [Abramowitz and Stegun 1972] con-
tains a lot of families fn(x) of special functions which, for fixed x, admit sequences
in n which belong to C.

Example 3.1. The following quantities may be regarded as elements of C:
ACM Journal Name, Vol. V, No. N, November 2006.
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(1 ) The exponential integral [Abramowitz and Stegun 1972, p. 227ff.]

En(x) :=

∫ ∞

1

t−n exp(−xt) dt

by En+1(x) = (exp(−x)− xEn(x))/n,

(2 ) The incomplete Gamma function [Abramowitz and Stegun 1972, p. 260ff.]

Γ(n, x) :=

∫ ∞

x

tn−1 exp(−t) dt

by Γ(n, x) = Γ(n− 1, x)(n− 1) + xn−1 exp(−x),
(3 ) the quantile of the χ2-distribution [Abramowitz and Stegun 1972, p. 940ff.]

Q(χ2|n) := 1− 1

2n/2Γ(n/2)

∫ χ2

0

tn/2−1 exp(−t/2) dt

by Q(χ2|n+ 2) = Q(χ2|n) + (χ2/2)n/2 exp(−χ2/2)/Γ(n/2 + 1).

If these functions can be handled for every fixed n ∈ N, then our algorithm provides
a tool to prove relations among them for general n.

It is clear that C is closed under field operations provided that they are mean-
ingful, i.e., denominators must not vanish anywhere on the natural numbers. It
is also quite clear that C is closed under taking indefinite sums and products, for
F (n) =

∑n
k=1 f(k) satisfies F (n+1) = F (n)+f(n+1) and F (n) =

∏n
k=1 f(k) sat-

isfies F (n + 1) = f(n + 1)F (n). It follows that C contains all ΠΣ-sequences [Karr
1981], i.e., all sequences that can be represented by expressions involving ratio-
nal functions and indefinite summation and product signs. Many definite sums
F (n) =

∑n
k=1 f(k, n) obey linear recurrences and therefore also belong to C. For

large classes of summands f(k, n), suitable recurrences for F (n) can be computed
by the methods of Chyzak [Chyzak 2000], Schneider [Schneider 2001] or Zimmer-
mann [Zimmermann pear], and a recurrence computed by one of these methods can
be used as a definition of F in the present context.

It may be remarked that C is also closed under taking indefinite continued frac-
tions. Given (f(n))∞n=1 ∈ C with f(n) 6= 0 (n ∈ N) we introduce the notation

F (n) :=
n

K
k=1

f(k) := f(1) + 1
/

f(2) + 1
/

· · ·+ 1
/

f(n).

It is at the heart of the theory of continued fractions [Perron 1929] that F (n) can
be written as a quotient κ1(n)/κ2(n) where

κ1(n+ 2) = f(n+ 2)κ1(n+ 1) + κ1(n), κ1(1) = f(1), κ1(2) = 1 + f(1)f(2),

κ2(n+ 2) = f(n+ 2)κ2(n+ 1) + κ2(n), κ2(1) = 1, κ2(2) = f(2).

Obviously, (κ1(n))∞n=1, (κ2(n))∞n=1 ∈ C, and as C is closed under arithmetic opera-
tions, it follows (F (n))∞n=1 ∈ C.

4. DEFINING RELATIONS

Let f ∈ C be given. The goal of this section is the construction of a finite set
D ⊆ Rr of defining relations for f , according to the following definition.
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Definition 4.1. Let f1, . . . , fm ∈ C, r ∈ N. A finite set D ⊆ Rr is called a set of

defining relations for f1, . . . , fm if

(1) For all n ∈ N, the ideal
〈
D ∪ {sitj − fj(n+ i) : i = 0, . . . , r − 1, j = 1, . . . ,m}

〉

r

has a unique point, and in this solution srtj = fj(n+ r) (j = 1, . . . ,m).

(2) For every j ∈ {1, . . . ,m}, there exists exactly one polynomial p ∈ D of the form
p = srtj + q or p = qsrtj − 1 where q depends only on sr′

tj′ with j′ ≤ j and
r′ ≤ r, but not on srtj . This p is called the defining polynomial or the defining
relation of srtj .

(3) For all p ∈ Rr−1, we have p ∈ D ⇐⇒ sp ∈ D.

The number r is called the order of D. We say that the sequence fi corresponds
to the variable ti and write ti ∼ fi. If f1, . . . , fm−1 are the subexpressions of fm,
then we also say D is a set of defining relations for fm.

Defining relations define the sequence up to initial values: if a set D of defining
relations for f1, . . . , fm ∈ C is given, and D is of order r, then all values fi(n) can
be computed as soon as initial values fi(j) (i = 1, . . . ,m; j = 1, . . . , r) are fixed.

We next collect some important properties of sets of defining relations. If we say
that the set A∪ sA ⊆ Rr+1 is obtained on shift of the set A ⊆ Rr, then the essence
of the following lemma is that the property of being a set of defining relations is
preserved under shift.

Lemma 4.2. Let f ∈ C be a nested polynomially recurrent sequence of depth m
and D ⊆ Rr be a set of defining relations for f . Let f1, . . . , fm be the sequences
corresponding to the variables t1, . . . , tm, respectively. Then D ∪ sD ⊆ Rr+1 is also
a set of defining relations for f .

Proof. It is clear that the conditions (2) and (3) of Def. 4.1 are satisfied for
D ∪ sD . As for (1), take an arbitrary n ∈ N. Then,

〈
D ∪ {sitj − fj(n+ i) : i = 0, . . . , r − 1, j = 1, . . . ,m}

〉

r

has a unique solution with srtj = fj(n+ r) (j = 1, . . . ,m) and
〈
sD ∪ {sitj − fj(n+ i) : i = 0, . . . , r, j = 1, . . . ,m}

〉

r+1

has a unique solution with sr+1tj = fj(n+ r + 1) (j = 1, . . . ,m). It follows that
〈
(D ∪ sD) ∪ {sitj − fj(n+ i) : i = 0, . . . , r, j = 1, . . . ,m}

〉

r+1

also as a unique solution with sr+1tj = fj(n+ r + 1) (j = 1, . . . ,m).

The following proposition states that the polynomial ideal generated by a set of
defining relations in some Rr coincides with the intersection of Rr with the differ-
ence ideal it generates in R. The proof of the proposition proceeds by considering
lexicographic Gröbner bases and using the elimination property in polynomial rings
with finitely many variables. As the proposition is not needed in the sequel, we
omit the details of the proof.
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Proposition 4.3. If D is a set of defining relations of order r and 〈〈D〉〉 is the
difference ideal generated by D in R, then 〈〈D〉〉 ∩ Rr = 〈D〉r.

We now turn to the construction of sets of defining relations for the elements
of C. Given f ∈ C with subexpressions f1, . . . , fm−1, a set of defining relations can
easily be obtained using the recurrences fulfilled by the fl (l = 1, . . . ,m − 1) and
fm := f . Suppose the fl are numbered such that all subexpressions of fl are among
the f1, . . . , fl−1, let rl be the order of fl and put r := maxl rl. We distinguish two
cases, according to the two cases in the definition of C.

(1) fl(n + rl) = p
(
f1(n), . . . , fi(n + j), . . . , fl(n + rl − 1)

)
for some polynomial

function p. For such fl, put dl := srltl − p(t1, . . . , sjti, . . . , s
rl−1tl) ∈ Rrl

.

(2) fl(n + rl) = 1/p
(
f1(n), . . . , fi(n + j), . . . , fl(n + rl − 1)

)
for some polynomial

function p. For such fl, put dl := p(t1, . . . , s
jti, . . . , s

rl−1tl)s
rl tl − 1 ∈ Rrl

.

Using this notation, define D ⊆ Rr as

D := {d1, sd1, . . . , s
r−r1d1, d2, sd2, . . . , s

r−r2d2, . . . . . . , dm, sdm, . . . , s
r−rmdm}.

It is immediate by construction that D is a set of defining relations for f . In
practice, we will of course represent common subexpressions by a single variable
queue tl, st l, sst l, . . . rather than by separate ones, and more subtle optimizations
for reducing the number of variables are thinkable as well.

Example 4.4. Consider the sequence (f(n))∞n=1 ∈ C defined by

f(n) :=
F(n)

F(n+ 1)
+

n∑

k=1

(−1)k

F(k) F(k + 1)
,

where F(n) denotes the nth Fibonacci number. An appropriate set of defining rela-
tions for f is

D = {st1 + t1, sst1 + st1, ( t1 ∼ (−1)n )

sst2 − st2 − t2, ( t2 ∼ F(n) )

sst3 − st3 − t3, ( t3 ∼ F(n+ 1) )

t4t3 − 1, st4st3 − 1, sst4sst3 − 1, ( t4 ∼ 1/F(n+ 1) )

t5t2t3 − 1, st5st2st3 − 1, sst5sst2sst3 − 1, ( t5 ∼ 1/F(n) F(n+ 1) )

st6 − t6 − st1st5, sst6 − st6 − sst1sst5, ( t6 ∼ Σn
k=1 . . . )

t7 − t2t4 − t6, st7 − st2st4 − st6, ( t7 ∼ f(n) )

sst7 − sst2sst4 − sst6 }

This representation was obtained by mechanically applying the definitions of the
various subexpressions, and representing identical subexpressions by the same vari-
able. However, a “better” set of defining relations for f can be obtained by exploiting
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that t2 ∼ F(n) implies st2 ∼ F(n+ 1).

D′ = {t1 + st1, st1 + sst1, ( t1 ∼ (−1)n )

sst2 − st2 − t2, ( t2 ∼ F(n) )

t3t2 − 1, st3st2 − 1, sst3sst2 − 1, ( t3 ∼ 1/F(n) )

st4 − t4 − t1t2st3, sst4 − st4 − st1st2sst3, ( t4 ∼ Σn−1
k=1 . . . )

st5 − t2st3 − st4, sst5 − st2sst3 − sst4 } ( t5 ∼ f(n− 1) ).

Given an expression in standard mathematical notation as in the example above,
it is not hard to construct a set of defining relations. The SumCracker pack-
age [Kauers 2006], implementing the algorithm of this paper, is able to do this task
automatically for a fairly large set of expressions.

5. PROVING ZERO EQUIVALENCE

We now turn to the algorithm for deciding f
?
= 0 for elements f ∈ C given by a

set D of defining relations and initial values.
The key idea is an induction argument. The algorithm computes a number

k ∈ N such that f(n) = · · · = f(n+ k − 1) = 0 implies f(n+ k) = 0 for arbitrary
n ∈ N. After that, f is evaluated at k consecutive points, and either there is a
counterexample among these values, or there is no counterexample at all.

Algorithm 5.1.
Input: f — a nested polynomially recurrent sequence

D — a set of defining relations for f
Output: true or false, depending on whether f ≡ 0 or not
Assumptions: tm corresponds to (f(n))∞n=1, D is of order r

1 function isZeroEquivalent(f,D)
2 k ← 0
3 I0 ← 〈D〉r + 〈tm, stm, . . . , s

r−1tm〉r
4 while sk+rtm 6∈ Rad Ik do

5 k ← k + 1
6 Ik ← 〈Ik−1〉k+r + 〈sr+k−1tm〉k+r + 〈skD〉k+r

7 end do

8 for n from 1 to k + r do

9 if f(n) 6= 0 then

10 return false, counterexample = n
11 return true

Note that all steps of the algorithm are computable: a basis for the sum of two
ideals is obtained by concatenating the bases of the summands, and the radical
membership test in line 4 can be decided by means of Gröbner bases and the
Rabinowitsch trick [Cox et al. 1992]. Hilbert’s Nullstellensatz implies that f ∈
Rad〈f1, . . . , fn〉 if and only if vanishing of all the fi implies vanishing of f . This is
the core of the correctness argument which is made explicit next.

Theorem 5.2. Algorithm 5.1 is correct.

ACM Journal Name, Vol. V, No. N, November 2006.



· 9

Proof. It is clear that f 6≡ 0 whenever the algorithm returns “false” because
this does only happen when a counterexample has been found. Now suppose the
algorithm returns “true.”. We will prove f(n) = 0 (n ∈ N) by induction on n.

First, according to lines 8–10, we have f(1) = · · · = f(k + r) = 0 as base of
the induction. Now let n ∈ N be arbitrary such that f(n) = f(n + 1) = · · · =
f(n+ k + r − 1) = 0. Prove f(n+ k + r) = 0.

By repeated application of Lemma 4.2, D ∪ sD ∪ · · · ∪ skD is a set of defining
relations for f because D is. Let fj (j = 1, . . . ,m) be the sequences corresponding
to the variables tj (j = 1, . . . ,m), respectively. By assumption of the algorithm,
fm = f . Condition (1) of Def. 4.1 asserts that the ideal

J =
〈
D ∪ · · · ∪ skD ∪ {sitj − fj(n+ i) : i = 0, . . . , k + r − 1, j = 1, . . . ,m}

〉

k+r

has a unique point, and this point has the coordinates sk+rtj = fj(n + k + r).
Now, by induction hypothesis, Ik ⊆ J . Every solution of J must be a solution of
Ik as well. But by the termination condition in line 4, Ik has only solutions with
sk+rtm = 0. This implies f(n+ k + r) = 0.

The next theorem will assert the termination of Algorithm 5.1. For its proof, we
will need two technical lemmas.

Lemma 5.3. Let p E K[X ] =: K[x1, . . . , xn] be a prime ideal. By Q(R), we
denote the quotient field of an integral domain R. Then

(1 ) For all q ∈ K[X ], the ideal p′ := 〈p ∪ {p}〉 E K[X, y] with p = y − q is prime
and the quotient fields of the coordinate rings are isomorphic, Q(K[X ]/p) ∼=
Q(K[X, y]/p′).

(2 ) For all q ∈ K[X ] \ p, the ideal p′ := 〈p ∪ {p}〉 E K[X, y] with p = qy − 1 is
prime and Q(K[X ]/p) ∼= Q(K[X, y]/p′).

Proof. Let R = K[X ]/p and R′ = K[X, y]/p′.
(1) p = y − q for q ∈ K[X ]. Consider the homomorphisms φ, ψ defined by

φ : K[X ]→ R′ xi 7→ xi (i = 1, . . . , n),

ψ : K[X, y]→ R xi 7→ xi (i = 1, . . . , n), y 7→ q(x1, . . . , xn).

As p ⊆ kerφ and p′ ⊆ kerψ, these homomorphisms induce homomorphisms φ̄ : R→
R′ and ψ̄ : R′ → R. φ̄ and ψ̄ are inverses of each other because ψ̄(φ̄(xi)) =
φ̄(ψ̄(xi)) = xi for i = 1, . . . , n and φ̄(ψ̄(y)) = φ̄(q) = q ≡p′ y. It follows that
R ∼= R′ and consequently Q(R) ∼= Q(R′).

(2) p = qy−1 for q ∈ K[X ]\p. This case is not as immediate as case (1) because
R and R′ themselves need not be isomorphic. But we still have Q(R) ∼= Q(R′):
By p′ = 〈p〉 + 〈p〉 we have R′ ∼= R[y]/〈p〉. It suffices to show the existence of an
embedding R′ ↪→ Q(R), for then R ↪→ R′ ↪→ Q(R), and hence Q(R) ↪→ Q(R′) ↪→
Q(R), and hence Q(R′) ∼= Q(R).

As q 6∈ p, there is some element 1/q ∈ Q(R). The evaluation homomorphism
φ : R[y] → Q(R), φ(y) = 1/q induces a homomorphism φ̄ : R′ → Q(R) because
〈p〉 ⊆ kerφ. If furthermore kerφ ⊆ 〈p〉 then φ̄ is injective, and we are done. Indeed,
kerφ ⊆ 〈p〉: Let a =

∑n
i=0 aiy

i 6∈ 〈qy − 1〉 be in canonical form, i.e., fully reduced
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wrt. qy − 1. Then q - an in K[X ]. Suppose a ∈ kerφ, i.e.,

0 = φ(a) =

n∑

i=0

aiφ(y)i =

n∑

i=0

ai

qi
=

1

qn

n∑

i=0

aiq
n−i.

As 1/qn 6= 0, it follows that

0 =
n∑

i=0

aiq
n−i = an + q

n−1∑

i=0

aiq
(n−1)−i

︸ ︷︷ ︸

∈K[X]

,

and hence q | an, a contradiction.

For the present context, the previous lemma provides an invariant property for
certain ideals in Rk upon extending them to ideals in Rk+1. This observation is
crucial for the termination proof. Recall [Cox et al. 1992] that the dimension of a
prime ideal a E K[X ] may be defined as the transcendence degree of Q(K[X ]/a)
over K. Every ideal a can be written as a finite intersection a =

⋂

i pi where the
Rad(pi) are uniquely determined pairwise distinct prime ideals, called the associated
prime ideals of a. The dimension of an arbitrary ideal a is then defined as the
maximum of the dimensions of the associated prime ideals of a.

Lemma 5.4. Let D ⊆ Rr be a set of defining relations for some f ∈ C, where r
is the order of D. For all k ≥ 0, define Jk := 〈D∪sD∪· · ·∪skD〉k+r. Furthermore,
let Jk ⊆ a E Rk+r and a′ := 〈a〉k+r+1 + Jk+1 E Rk+r+1 for some fixed k ∈ N. Let
p1, . . . , ps E Rk+r be the associated prime ideals of a. Then

(1 ) The ideals pi + Jk+1 (i = 1, . . . , s) are the associated primes of a′.

(2 ) The dimension of pi in Rk+r is equal to the dimension of pi + Jk+1 in Rk+r+1

(i = 1, . . . , s).

Proof. As Jk ⊆ a, we have a′ = 〈a〉k+r+1 + 〈d1, . . . , dm〉k+r+1 where di is the
defining relation of sk+r+1ti (i = 1, . . . ,m).

Consider the special case a′ = 〈a〉+ 〈d1〉 E Rk+r [s
k+r+1t1]. Applying Lemma 5.3

to pi, we obtain that pi + 〈d1〉 is prime and its function field is isomorphic to that
of pi. The field isomorphism implies the claim about the dimension.

The general case a′ = 〈a〉k+r+1+〈d1, . . . , dm〉k+r+1 is proven by repeating the ar-
gument m times. This is possible because di does not depend on variables sk+r+1tj
with j > i by Def. 4.1.(2).

Theorem 5.5. Algorithm 5.1 terminates.

Proof. The only critical part is the loop in lines 4–7. We define an ordering ≺
on ideals as follows. Let a E A be a nonzero ideal in some Noetherian ring A, and let
p1, . . . , ps be the associated prime ideals of a, labeled such that dim pi ≥ dim pi+1

(i = 1, . . . , s− 1). Equip a with the integer vector

v(a) := (dim p1, dim p2, . . . , dim ps) ∈ Ns.

Another ideal ã E Ã is called smaller than a, ã ≺ a, whenever v(ã) is lexico-
graphically smaller than v(a), i.e., the leftmost entry of v(ã) which differs from the
corresponding entry of v(a) is smaller than this entry.
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It suffices to show that Ik+1 ≺ Ik , because then the ideal sequence I1, I2, . . .
computed by the algorithm is strictly decreasing wrt. ≺, and hence, by Dickson’s
lemma [Cox et al. 1992], it must be finite. Eventually, there will be a k with Ik = 〈1〉
and at least then the loop is left.

Suppose sk+rtm 6∈ Rad Ik at the end of the loop body, otherwise we are done. Let
p1, . . . , ps be the associated primes of Ik. Evidently dim(pi + 〈sk+rtm〉) ≤ dim pi

in Rk+r for all i. Furthermore, by sk+rtm 6∈ Rad Ik there must be at least one
pi with sk+rtm 6∈ pi, and so dim(pi + 〈sk+rtm〉k+r) < dim pi in Rk+r . Hence
Ik + 〈sk+rtm〉k+r ≺ Ik. Now, by

Ik+1 = (〈Ik〉k+r+1 + 〈sk+rtm〉k+r+1) + 〈sk+1D〉k+r+1,

Lemma 5.4 ensures that v(Ik + 〈sk+rtm〉k+r) = v(Ik+1), and therefore Ik+1 ≺ Ik
as claimed.

6. EXAMPLES

Example 6.1. In order to have the algorithm iterate k times (k ∈ N fixed),
consider f(n) = (n− 1)(n− 2) . . . (n− k) represented via

D = {st1 − t1 − 1, t2 − (t1 − 1) . . . (t1 − k), st2 − (st1 − 1) . . . (st1 − k)}.

Applying the algorithm to the query f(n)
?
= 0 will force at least k iterations, because

for any smaller value the algorithm would return “true,” quite in contrast to the
correct result. In view of this example, Theorem 5.5 asserts that C does not contain
nonzero sequences having arbitrary long runs of zero.

Example 6.2. (Example 4.4 continued) We apply Algorithm 5.1 to show

f(n) =
F(n)

F(n+ 1)
+

n∑

k=1

(−1)k

F(k) F(k + 1)
= 0

for all n ∈ N. Using D from page 7 as set of defining relations, we find sst7 6∈
Rad〈D ∪ {t7, st7}〉2, s3t7 ∈ Rad〈D ∪ sD ∪ {t7, st7, sst7}〉3. We conclude k = 1 and
we have to check k+r = 3 initial values. It is easily verified f(1) = f(2) = f(3) = 0,
and this implies f(n) = 0 for all n ∈ N.

A careful inspection of the proofs in Section 5 shows that condition (2) of Def. 4.1
is only used in the termination proof, but not needed for the correctness. If we apply
Algorithm 5.1 to a set D ⊆ Rr which satisfies conditions (1) and (3) of Def. 4.1
and we obtain an answer, then this result is correct — we may, however, obtain no
answer at all. The next example is an application of this observation.

Example 6.3. (from [Graham et al. 1994], Exercise 5.93) We want to show for
all functions f and all α 6= 0 the identity

n∑

k=1

∏k−1
i=1

(
f(i) + α

)

∏k
i=1 f(i)

=
1

α

( n∏

k=1

f(k) + α

f(k)
− 1

)

.

The idea is to omit the defining relation for the variable corresponding to f(n). We
will use K = Q as field of constants. The constant α is considered as constant
sequence with undetermined initial values.
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We use the following set as a set of defining relations. The variable t3 will

correspond to f(n).

D = {st1 − t1, ( t1 ∼ α )

t2t1 − 1, st2st1 − 1, ( t2 ∼ 1/α )

st4 − t4st3, ( t4 ∼ Πf(n) )

t5t3 − 1, st5st3 − 1, ( t5 ∼ 1/f(n) )

st6 − t6(st3 + st1)st5, ( t6 ∼ Π((f(n) + α)/f(n)) )

st7 − t7(t3 + t1), ( t7 ∼ Π(f(n) + α) )

t8t4 − 1, st8st4 − 1, ( t8 ∼ 1/Π(f(n)) )

st9 − t9 − st8st7, ( t9 ∼ Σ(Π/Π) )

t10 − t9 + t2(t6 − 1), ( t10 ∼ identity candidate )

st10 − st9 + st2(st6 − 1) }
It is easily checked that st10 6∈ Rad〈D ∪ {t10}〉1 and

sst10 ∈ Rad〈D ∪ sD ∪ {t10, st10}〉2.
The loop terminates with k = 1 and we have to check k + r = 2 initial values. For
n = 1, the left hand side evaluates to 1/f(1), and the right hand side evaluates to

1

α

( 1∏

k=1

f(k) + α

f(k)
− 1

)

=
1

α

(f(1) + α

f(1)
− 1

)

=
1

f(1)
.

For n = 2, the left hand side evaluates to

2∑

k=1

∏k−1
i=1

(
f(i) + α

)

∏k
i=1 f(i)

=
1

f(1)
+
f(1) + α

f(1)f(2)
=
α+ f(1) + f(2)

f(1)f(2)
.

The right hand side evaluates to

1

α

( 2∏

k=1

f(k) + α

f(k)
− 1

)

=
1

α

((f(1) + α)(f(2) + α)

f(1)f(2)
− 1

)

=
α+ f(1) + f(2)

f(1)f(2)
.

This completes the proof.

It is possible to restore the termination property of the algorithm in situations
like above by regarding the free difference variables as elements of the ground field,
as pointed out in [Kauers 2004].

While the examples above were selected in order to illustrate the computations
of the algorithm in detail, the next example lists some identities which we were able
to check automatically using our algorithm. Note that all these identities were up
to now out of the scope of algorithmic computer proofs.

Example 6.4. (1 ) Exercise 6.61 in [Graham et al. 1994]. If F(n) denotes the
nth Fibonacci number then

n∑

k=0

1

F(2k)
= 3− F(2n − 1)

F(2n)
.
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(2 ) (5.1.45) in [Abramowitz and Stegun 1972]. Let En(x) denote the nth exponen-
tial integral and Γ(n, x) be the incomplete Gamma function (See Ex. 3.1 for
definitions and defining relations). Then

En(x) = xn−1Γ(1− n, x)

(3 ) (26.4.5) in [Abramowitz and Stegun 1972]. Let Q(χ2|n) be the quantile of the
Chi Square distribution (cf. Ex. 3.1), and let n!! = 2 · 4 · 6 · · ·n for n ∈ N even.
Then

Q(χ2|n) = exp(−χ2/2)
(
1 +

n/2−1
∑

r=1

(χ2)r

(2r)!!

)
.

(4 ) Recall the notation K
n
k=1 ak introduced in Section 3 for continued fractions,

and let

h(n) =
(n+ 1)((−1)n(π + 2) + π − 2)Γ(n

2 )

4
√
π Γ(n+1

2 )
(n ∈ N).

Then

n∑

k=0

1

k!
=

n

K
k=1

(

h(k)−
k∏

i=1

(
−7

4 i
2 + 9i− 45

4

))

.

7. SOME REMARKS ON COMPLEXITY ISSUES

We have no results about the time and space complexity of Algorithm 5.1. A com-
plexity analysis would have to focus on two questions: First, how much time is
consumed by the radical membership test in line 4, and secondly, how many iter-
ations of the while loop might be necessary. Using the recurrence relations given
in D, it is possible to evaluate f(n) in a number of field operations that is linear
in n, so the contribution of lines 8–10 may be neglected.

It is generally hard to make statements about the time complexity of algorithms
in commutative algebra. It was mentioned that the radical membership test can be
done by a standard application of Gröbner basis techniques, but the computation
of Gröbner bases is known to be expensive: doubly exponential runtime and expo-
nential space requirements have to be assumed in general for the worst case. The
special problem of radical membership can, however, be decided with polynomial
space [Mayr 1997].

As for the number of iterations, it is not likely that a reasonable bound depending
on, say, m, r and the maximum total degree d of the polynomials in D could be
established. In fact, any such bound κ(m, r, d) would give rise to a much faster
algorithm for deciding zero equivalence, provided that κ itself can be computed in
reasonable time: it would be sufficient to evaluate f(n) for n = 1, . . . , κ(m, r, d),
and if f(n) = 0 for all those n, then f(n) = 0 for all n, as follows directly from the
proof of Theorem 5.2. The while loop with its expensive radical membership test
could be discarded altogether.

Despite its conjectured poor worst case complexity, we want to stress that our
algorithm performs quite well in practice. It is well known that Gröbner basis com-
putations perform far better than suggested by the worst case complexity analysis
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on problems arising in practice. A similar remark applies to the number of itera-
tions of the loop in lines 4–7. Though it is easy to construct input which requires
any prescribed number of iterations, already two or three iterations suffice for most
examples we tried. Indeed, all the examples given in Section 6 were completed with
only a few seconds of CPU time (2.4GHz, 1Gb RAM) — at least if fast special pur-
pose software is used for the Gröbner basis computations. We have used Faugère’s
Gb system [Faugère 2002] in Example 11.(3) and Example 11.(4), all other examples
are also in the scope of Mathematica’s builtin for computing Gröbner basis. This
may underline the applicability of the algorithm to instances arising from practical
applications.
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