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ABSTRACT
An extension of Karr’s summation algorithm is presented
by which symbolic sums involving radical expressions can
be simplified. We discuss the construction of appropriate
difference fields as well as algorithms for solving difference
equations in these fields. The paper is concluded by a list of
identities found with an implementation of our techniques.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; G.2.1 [Discrete Mathe-
matics]: Combinatorics—Recurrences and difference equa-
tions

General Terms
Algorithms

Keywords
Symbolic Summation, Difference Fields

1. INTRODUCTION
The algorithm of Karr [6] has often been called the sum-

mation analogue to Risch’s integration algorithm [10]. Both
algorithms are applicable only to expressions composed from
building blocks that are algebraically independent. For the
integration case, Bronstein [2] was able to remove this re-
striction by giving a generalized integration algorithm that
can handle elementary functions with arbitrary algebraic re-
lations among them.

No summation analogue to this algorithm is known. Even
worse, while algebraic functions naturally belong to the el-
ementary functions, it is not clear what the most natural
class of sequences is that a summation algorithm allowing
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algebraic relations should target on. In this paper, we con-
sider the most literal analogue: we provide a simplifier for
symbolic sums that allows radical expressions to appear in
the summand. A simple example for such a sum is

n�

k=0

(k −
√

k + 1)
√

k!.

Continuing earlier work [13, 11, 8, 7] on extending Karr’s
algorithm, we have obtained algorithms for handling tele-
scoping, creative telescoping [9] and recurrence solving for
nested sums and products involving radical expressions.

Our algorithms are correct and complete as long as the
difference fields by which the radical expressions are repre-
sented are properly constructed. In the construction of the
difference field for a given expression, we need to assume a
very deep algebraic property of the sequences correspond-
ing to the expression. We do believe that this assumption is
justified for most algebraic sequences, but we are not able
to show it even for the simple sequence

√
n.

It is therefore important to note that on expressions for
which the assumption is wrong (or undecided), our algo-
rithms remain correct, but completeness may be lost: every
identity found by the algorithm is true, but identities may
be overlooked or the algorithms may inadvertently run into
a division by zero. We have implemented our algorithms as a
supplement to the summation package Sigma [14], and while
experimenting with this implementation, we have never ob-
served any failure due to a violated assumption. A collec-
tion of identities found with our implementation is given
in Section 7. As summation identities involving radical ex-
pressions appear only very sparsely in the literature, this
collection is likely to contain previously unpublished identi-
ties.

2. PRELIMINARIES
Let ( � , σ) be a difference field, i.e., a field1 � together

with a field automorphism σ : � → � . Then indefinite
summation can be formulated as follows: Given f ∈ � , find
g ∈ � with

σ(g)− g = f. (1)

Namely, if we can model a sequence f ′(k) with f ∈ � by the
shift f ′(k+1) ≡ σ(f), then we solve the telescoping problem.
More generally, we are interested in solving parameterized
linear difference equations. Here we need the set of constants

constσ � := {c ∈ � |σ(c) = c}.
1All fields are commutative, contain � , and are computable.
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Note that constσ � is a subfield of � . In particular, it follows
that � is a subfield of constσ � .

Parameterized linear difference equations (PLDE):
Given ( � , σ) with � := constσ � , a0, . . . , ar ∈ � (not all
zero) and f1, . . . , fm ∈ � . Find all g ∈ � , c0, . . . , cm ∈ �
such that

a0g + a1σ(g) + · · · + arσ
r(g) = c1f1 + · · · + cmfm. (2)

Note that � := {(c1, . . . , cm, g) ∈ � m × � |ci, g is a solution
of (2)} is a vector space of � which has dimension ≤ m+ r.
Hence problem PLDE is solved by finding a basis of � .

The following prominent summation problems [9] are cov-
ered by the PLDE-problem; for further details see [14]:

1. Telescoping (1) can be obtained by restricting to r =
m = 1 with a0 = −1 and a1 = 1.

2. Zeilberger’s creative telescoping can be formulated by
restricting to r = 1 with a0 = −1 and a1 = 1 and
setting fi ≡ f ′(n + i − 1, k) for a parameter n which
occurs in the constant field � .

3. Solving linear difference equations (recurrences) can
be handled by setting m = 1.

4. PLDEs are the backbone to treat the telescoping and
creative telescoping problem for rather general classes
of holonomic and ∂-finite sequences, see, e.g., [12].

Problem PLDE can be solved for the rational case � =� (k) with σ(k) = k+1 and the q-rational case � = � ′(q)(k)
where q is transcendental over � ′ and σ(k) = q k; for the
corresponding literature we refer to [13, p 801].

More generally, algorithms and methods exist for ΠΣ∗-
extensions which allow to model nested sums and products.
Those difference fields are defined by difference field exten-
sions. A difference field ( � , σ) is a difference field exten-
sion of a difference field ( � , σ′) if � is a subfield of � and
σ′ = σ| � ; usually we do not distinguish σ and σ′.

Definition 1. A ΠΣ∗-extension ( � (t), σ) of ( � , σ) is a dif-
ference field extension where σ(t) = t + a or σ(t) = a t for
some a ∈ � ∗ and constσ � (t) = constσ � . More generally, a
tower of such ΠΣ∗-extensions is called a ΠΣ∗-extension.

Karr [6] presented algorithms that solve problem PLDE
with r = 1 for the so-called ΠΣ∗-fields: these are ΠΣ∗-
extensions ( � , σ) of ( � , σ) where constσ � = � . Analyzing
Karr’s machinery [6], it turns out that one can lift vari-
ous algorithmic properties from the ground field ( � , σ) (not
necessarily the constant field) to the field ( � , σ). E.g., we
obtain the following result [8].

Theorem 1. Let ( � , σ) be a ΠΣ∗-extension of ( � , σ). If
( � , σ) is σ∗-computable (see Definition 2 below) and one can
solve PLDEs with r = 1 for ( � , σ), then ( � , σ) is σ∗-com-
putable and one can solve PLDEs with r = 1 for ( � , σ).

Moreover, we get the following result; see [11, 8].

Theorem 2. Let ( � , σ) be a ΠΣ∗-extension of ( � , σ). If
( � , σ) is σ∗-computable and one can solve PLDEs with r = 1
for ( � , σ), there is an algorithm for problem DOS2.
2Note that the ΠΣ∗-extension ( � , σ) of ( � , σ) itself must
be constructed in a refined form. Again, if ( � , σ) is σ∗-
computable, this task can be accomplished.

Depth optimal summation (DOS): Given a ΠΣ∗-ex-
tension ( � , σ) of ( � , σ) and f ∈ � . Find, if possible, a
ΠΣ∗-extension ( � , σ) of ( � , σ) such that g ∈ � with (1)
and such that the additional sums and products introduced
by the extension � are not more nested than the already
given sums and products occurring in f .

Furthermore, by Theorem 5.7 in [13] we obtain the follow-
ing result if one can solve problem PLDE in the ground field
( � , σ) by a recursive enumeration procedure; i.e. there is a
method that produces after finitely many solve-attempts all
solutions.

Theorem 3. Let ( � , σ) be a ΠΣ∗- extension of ( � , σ). If
( � , σ) is σ∗-computable and one can solve PLDEs for ( � , σ)
by an enumerative procedure, then one can solve PLDEs for
( � , σ) by an enumerative procedure.

SUMMARY. For a ΠΣ∗-extension ( � , σ) of ( � , σ) where
( � , σ) is σ∗-computable we can produce in a systematic
fashion all solutions of a given PLDE (Theorem 3). More-
over, if one can solve all first order PLDEs in ( � , σ), then
one can solve all first order PLDEs in ( � , σ) (Theorem 1);
in particular, there are algorithms for DOS (Theorem 2).

So far it has been shown that the following two difference
fields ( � , σ) satisfy these properties:

1. ( � , σ) with constσ � = � ; see [6, 8].

2. ( � , σ) is a tower of free difference field extensions over
the constant field; see [8, 7].

In this article we show that those properties hold also
for what we call radical extensions (see Definition 4 below).
In combination with Theorem 1 we obtain completely new
input classes of difference fields for our algorithms.

Finally, we define σ∗-computability. Here we need the
following notions.

Let ( � , σ) be a difference field. For f ∈ � ∗ we define

f(k,σ) :=

�
fσ(f) . . . σk−1(f) if k > 0

1
σ−1(f)...σ−k(f)

if k < 0
,

f(0,σ) := 1, and

f{k,σ} :=

�
f(0,σ) + f(1,σ) + · · · + f(k−1,σ) if k > 0

−(f(−1,σ) + · · · + f(k,σ)) if k < 0,

f(0,k) := 0. If it is clear from the context we also write
f(k) := f(k,σ) and f{k} := f{k,σ}.

We call ( � , σ) torsion-free, if for all k ∈ � \ {0} and all

g ∈ � ∗ the equality � σ(g)
g 	 k

= 1 implies σ(g)
g

= 1.

Definition 2. A difference field ( � , σ) is σ∗-computable if
the following holds.

1. There is an algorithm that factors multivariate poly-
nomials over � .

2. ( � , σk) is torsion free for all k ∈ � .

3. Π-Regularity. Given f, g ∈ � with f not a root of
unity, there is at most one n ∈ � such that f(n,σ) = g.
There is an algorithm that finds, if possible, this n.
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4. Σ-Regularity. Given k ∈ � \ {0} and f, g ∈ � with
f = 1 or f not a root of unity, there is at most one
n ∈ � such that f{n,σk} = g. There is an algorithm
that finds, if possible, this n.

5. Orbit-Problem. There is an algorithm that solves
the orbit problem: Given ( � , σ) and f1, . . . , fm ∈ � ∗,
find a basis of the following � -module:

M(f1, . . . , fm; � ) :=

{ (e1, . . . , em) ∈ � m | ∃g ∈ � ∗ : fe1
1 · · · fem

m = σ(g)
g

}.
(3)

3. RADICAL EXTENSIONS
Given a field � , � {x} denotes the ring

� {x} := � [. . . , x−2, x−1, x0, x1, x2, . . . ]

with infinitely many variables xi, i ∈ � . Note that for any
f ∈ � {x} we can take a polynomial ring � [xl, . . . , xr] which
contains f . Obviously, � {x} is an integral domain.

A difference ring ( � , σ) is a ring � with a ring automor-
phism σ; ( � , σ) is a difference ring extension of ( � , σ′) if �
is a subring of � and σ′ = σ| � .

Definition 3. A difference ring extension ( � , σ) of ( � , σ)
is free if � = � {x} and σ(xi) := xi+1 for i ∈ � .

Let ( � {x}, σ) be a free difference ring extension of ( � , σ)
and let I be a difference ideal of � {x}, i.e., I is an ideal
of � {x} which is closed under σ. Moreover let � {x}/I be
the quotient ring of the integral domain � {x} modulo the
ideal I. Since the elements � can be naturally embedded
in � {x}/I, we consider � {x}/I as a ring extension of � .
Moreover, � {x}/I is a field iff I is a maximal ideal.
Finally, we consider the map σ′ : � {x}/I → � {x}/I with

σ′(a + I) := σ(a) + I;

note that σ′| � = σ. Since I is a difference ideal, it is easy
to see that σ′ is a ring automorphism.

Summarizing, given a difference ideal I, we obtain the dif-
ference ring extension ( � {x}/I, σ′) of ( � , σ). In particular
we get a difference field extension if and only if the ideal I
is maximal. We identify σ and σ′ from now on.

In this article, we are interested in difference ideals I =
〈〈p〉〉 which are generated by a polynomial p ∈ � [x0], i.e.,
the ideal is given by

〈〈p〉〉 := 〈. . . , σ−2(p), σ−1(p), p, σ(p), σ2(p), . . . 〉. (4)

Clearly, if deg(p) > 0, 〈〈p〉〉 6= � {x}. In order to turn the
difference ring ( � {x}/〈〈p〉〉, σ) to a field, we need in addi-
tion the property that 〈〈p〉〉 is maximal. This leads to the
following definition.

Definition 4. A difference field extension ( � {x}/〈〈p〉〉, σ)
of ( � , σ) is called a simple algebraic extension if p ∈ � [x0],
d := deg(p) > 1, and the difference ideal 〈〈p〉〉 is maximal.
A simple algebraic extension is called radical extension if
p = xd

0 − h for some d > 1 and h ∈ � .

It seems to be rather difficult to show for a particular p
that 〈〈p〉〉 is maximal.

Example 1. It has been shown [5, Thm. 7] by non-trivial
arguments that the sequence xn :=

√
n is not holonomic.

Namely, if � is a subfield of the complex numbers, then
there is no relation of the form

p0(n)xn + · · · + pd(n)xn+d = 0, ∀n ≥ 0

for polynomials pi(n) ∈ � [n]. To show that there is no
polynomial p(y0, . . . , xr) ∈ � [n][y0, . . . , yr] with

p(xn, . . . , xn+r) = 0, ∀n ≥ 0 (5)

and degyi
(p) < 2 is even more challenging. But this is ex-

actly what we need to model
√

n in a radical extension.
More precisely, let ( � (n), σ) with σ(n) = n + 1 be the
ground field and consider the free difference field extension
( � (n){x}, σ) of ( � (n), σ). Then we could identify xi with√

n + i in � (n){x}/〈〈x2
0 − n〉〉 if 〈〈x2

0 + n〉〉 is maximal, i.e.,
no relations of the form (5) exist.

Motivated by all our computations, see Sections 7, we
strongly believe that I := 〈〈xd

0 − n〉〉 for d > 1 is maximal
in � (n){x} with σ(n) = n + 1. I.e., we conjecture that
( � (n){x}/I, σ) is a radical extension of ( � (n), σ). The fol-
lowing question is immediate.

Question 1. Let ( � (t), σ) be a ΠΣ∗-extension of ( � , σ)
and d > 0. For which h ∈ � (t) is the difference ideal I :=
〈〈xd

0 − h〉〉 in � (t){x} maximal? Even stronger, are there
decision procedures?

Subsequently, we collect some basic properties of a simple
algebraic extension ( � {x}/〈〈p〉〉, σ) of ( � , σ).

Consider the maximal ideal

〈〈p〉〉l,r := 〈σl(p), σl+1(p), . . . , σr(p)〉 (6)

in � [xl, . . . , xr] which is contained in 〈〈p〉〉. Notice that
〈〈p〉〉l,r is not a difference ideal. If 〈〈p〉〉l,r is maximal, then
also 〈〈p〉〉l+i,r+i is maximal in � [xl+i, . . . , xr+i] for all i ∈ � ;
this follows by applying the automorphism σ. Moreover,
all 〈〈p〉〉λ,ρ with l ≤ λ ≤ ρ ≤ r are also maximal ide-
als in � [xλ, . . . , xρ]. Summarizing, we can assume that� [xλ+i, . . . , xρ+i]/〈〈p〉〉λ+i,ρ+i is a subfield of � {x}/〈〈p〉〉 for
all l ≤ λ ≤ ρ ≤ r and all i ∈ � .

Lemma 1. Let ( � {x}, σ) be a free difference ring exten-
sion of the difference field ( � , σ) and let p ∈ � [x0] with
degree d > 0. Let 〈〈p〉〉l,r be a maximal ideal with l < r.
Then the following holds.

1. The elements of � := � [xl, . . . , xr]/〈〈p〉〉l,r are uniquely
represented in

Rd := {f ∈ � [xl, . . . , xr]| degxi
(f) < d for l ≤ i ≤ r}.

2. For l ≤ k < r, σk(p) ∈ ( � [xl, . . . , xk]/〈〈p〉〉l,k−1)[xk] is
irreducible.

3. The elements in � [xl, . . . , xr]/〈〈p〉〉l,r can be inverted
by the extended Euclidean algorithm.

Proof. (1) By (6) the elements from � can be written
in the form a+ 〈〈p〉〉l,r where a ∈ Rd. Now let a, b ∈ Rd with
a 6= b and a + 〈〈p〉〉l,r = b + 〈〈p〉〉l,r. Then a − b ∈ 〈〈p〉〉l,r.
Since a − b ∈ Rd, a − b = 0. This proves uniqueness.
(2) Suppose σk(p) is not irreducible. Then there are a, b ∈
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� [xl, . . . , xk−1]/〈〈p〉〉l,k−1[xk] with d > deg(a), deg(b) > 0
and a b = σk(p). Hence we get zero-divisors in the field � ,
a contradiction.
(3) Let a ∈ � ∗. If a ∈ � , we can compute a−1 by assump-
tion. Otherwise, suppose we can invert elements from the
field � := � [xl, . . . , xr]/〈〈p〉〉l,r−1. If a ∈ � , we are done.
Otherwise, a ∈ � [xr]/〈σr(p)〉(= � ). By part (2) there exist
α, β ∈ � [xr] such that α a + β σr(p) = 1. Such α, β can
be computed by the extended Euclidean algorithm. Conse-
quently, α is the inverse element of f .

If we write a+〈〈p〉〉l,r ∈ � {x}/〈〈p〉〉l,r or a+〈〈p〉〉 ∈ � {x}/〈〈p〉〉
we assume that a is in normal form, i.e., a ∈ Rd. In partic-
ular, if we say that xi occurs in a ∈ � {x}, then we mean
that xi occurs in the normal form of a.

Remark 1. Let ( � , σ) be σ∗-computable, this means we
can factorize polynomials over � . Then Lemma 1.2 tells us
how we can check algorithmically if 〈〈p〉〉l,r is maximal:
Namely, suppose that we have checked already that 〈〈p〉〉l,i−1

is maximal in � [xl, . . . , xi−1]. Moreover, suppose that we
have constructed an irreducible polynomial q ∈ � [y] such
that � := � [y]/〈q〉 = � [xl, . . . , xi−1]/〈〈p〉〉l,i−1. Then with
the algorithms presented in [15] we can check if σi(p) ∈ � [xi]
is irreducible. If σi(p) is reducible, 〈〈p〉〉l,i and therefore
〈〈p〉〉l,r are not maximal. Otherwise, if σi(p) is irreducible,
〈〈p〉〉l,i is maximal. In particular, we can construct a new ir-
reducible polynomial q′ ∈ � [y] such that � ′ := � [y]/〈q′〉 '� [xl, . . . , xi]/〈〈p〉〉l,i. Iterating this procedure for i = 1, . . . , r
completes the job.

Lemma 2. Let ( � , σ) with � = � {x}/〈〈p〉〉 be a simple
algebraic extension of ( � , σ) and k ∈ � \ {0}. Then:

1. If g ∈ � \ � , then σk(g)
g

/∈ � .

2. If f ∈ � \ � , then for any n ∈ � \{0} we have fn 6= 1,
f(n,σk) ∈ � \ � , and f{n,σk} ∈ � \ � .

3. constσ � = constσ � .

Proof. (1) Assume g ∈ � \ � where f := σ(g)
g

∈ � .

Let r be maximal such that g depends on xr. Then σk(g)
depends on xr+k, a contradiction to σ(g) = f g.
(2) Let n ∈ � \{0} and f ∈ � \ � ; let r ∈ � be maximal and
l be minimal such that f depends on xr, xl, respectively.
The property fn = 1 for some n will lead to a contradiction.
Note that we can assume that n > 0 (If n < 0, take 1/f
instead of f). Since 1 = σi(fn) = (σi(f))n, the polynomial
Y n − 1 has the roots σi(f) for i ≥ 0. Note that i + r is
maximal such that xi+r occurs in σi(f). Hence all the roots
σi(f) are different. But Y n − 1 can have at most n roots, a
contradiction. Hence fn 6= 1 for any n ∈ � \ {0}.
Note that x(n−1) k+r occurs in f(n,σk) and in f{n,σk} if n > 0
and k > 0. Similar arguments (using also the minimal index
l) for the cases (n > 0, k < 0), (n < 0, k > 0), (n < 0, k < 0)
show that f(n,σk), f{n,σk} /∈ � for all k, n /∈ � \ {0}.
(3) Let � := constσ � , � ′ := constσ � . Clearly, � ⊆ � ′.
Now let g ∈ � ′. With σ(g) = g and part (1), g ∈ � . Hence
g ∈ � .

4. σ∗-COMPUTABILITY
We show in this section that certain radical extensions

are compatible with ΠΣ-extensions: radical extensions of
σ∗-computable fields are again σ∗-computable.

Theorem 4. Let ( � , σ) be a σ∗-computable field, � (t) be
a ΠΣ-extension of � and let � := � (t){x}/〈〈P 〉〉 be a radical
extension of � (t), where P = xd

0 −h(t) for some irreducible
polynomial h ∈ � [t]. Then ( � , σ) is σ∗-computable.

In order to prove that � is σ∗-computable, we need to
show that this difference field satisfies the conditions listed
in Definition 2. Condition 1 is clear under the assumption
that the subfield � is σ∗-computable. Conditions 2–4 are
settled by the following proposition.

Proposition 1. Let ( � , σ) with � = � {x}/〈〈p〉〉 be a
simple algebraic extension of ( � , σ) where ( � , σ) is σ∗-com-
putable. Let f, g ∈ � and k ∈ � \ {0}.

1. ( � , σk) is torsion-free.

2. (Π-Regularity) If f is not a root of unity, there is at
most one n ∈ � such that f(n,σ) = g. If n exists, it
can be computed.

3. (Σ-Regularity) If f = 1 or f is not a root of unity,
there is at most one n ∈ � such that f{n,σk} = g. If n
exists, it can be computed.

Proof. (1) Let g ∈ � ∗ and set f := σk(g)/g ∈ � ∗.
Suppose that fn = 1 for some n ∈ � \{0}. By Lemma 2.2 it
follows that f ∈ � . Then also g ∈ � by Lemma 2.1. Since
( � , σ) is torsion-free, f = 1.
(2) Algorithms for deciding Π regularity can be obtained as
follows. Let f, g ∈ � where f is not a root of unity.
First suppose that f ∈ � . Then f(n,σ) ∈ � . Hence, if
g /∈ � , there is no solution n. If also g ∈ � , there is at most
one n such that f(n,σ) = g by assumption. In particular,
there is an algorithm to compute n, if it exists.
Next, suppose f /∈ � . Then f(n,σ) /∈ � by Lemma 2.2. If
g ∈ � , the only choice is n = 0; check this candidate.
Finally, consider the case f, g ∈ � \ � . Here the solution n =
0 is not possible. Let rf , rg be the maximum index i such
that xi occurs in f, g, respectively. Similarly, let lf , lg be
the minimum index. If for the possible n we have n > 0, the
maximum index i for which xi occurs in f(n,σ) is n− 1 + rf .
Therefore, g = f(n,σ) can only occur if n = rg − rf + 1.
Hence there is at most one solution n > 0 and it suffices to
check this candidate. Notice that a solution n > 0 implies
that lg = lf . Similarly, if n < 0, then we get the constraint
n = lg − lf . Again, we can conclude that there is at most
one negative solution, and, in case of existence, it can be
computed. Moreover, if there is such a solution, it follows
that rg = rf . This proves in addition that there is either
a positive or a negative solution. Summarizing, there is at
most one solution n ∈ � .
(3) Σ-regularity can be shown along the lines of (2).

It only remains to provide an algorithm for solving the
OHG problem. In the remainder of this section, we describe
an algorithm for reducing the OHG problem in � to OHG
problems in the ground field � . We use terminology from
the theory of algebraic functions [3], similar reasoning is
used in Bronstein’s integration algorithm for algebraic func-
tions [2]. In particular, for f ∈ � and a place p, we write
νp(f) for the order of f at p.

By P = xd
0 − h(t) with h irreducible, it follows that every

xi is singular at precisely one finite place pi, and we have
νp(f) = 1/d. We call these the critical places, and write
Σ := {pi : i ∈ � } for the set of critical places.
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Example 2. Let � := � (n){x}/〈〈x2
0 − n〉〉 with σ(n) =

n + 1. Here, xi corresponds to
√

n + i (i ∈ � ) and has its
singular place pi over n = −i. We have νpi

(xi) = 1/2 and
νp(xi) = 0 for all other finite places.

Let f1, . . . , fm ∈ � ∗ be given. We seek a basis for the� -module M(f1, . . . , fm; � ).
Karr [6] solves the OHG problem in transcendental exten-

sions by factoring numerators and denominators of the fi,
grouping shift equivalent factors and determining exponent
vectors that cancel disturbing factors. In the algebraic case,
factorization has no meaning. We will mimic Karr’s OHG
algorithm by considering singularities of the fi instead of ir-
reducible factors. To make this work, we need the following
observations.

Lemma 3. We have

νp(f) ∈
� � if p 6∈ Σ

1
deg P

� if p ∈ Σ

for all f ∈ � ∗ and for all finite places p.

Proof. For p 6∈ Σ there is nothing to prove. If p ∈ Σ,
then, by assumption on � , there is exactly one index i such
that p is a singular place of xi. Write f = � e aex

el

l · · ·xer
r

for appropriate l, r ∈ � and e = (el, . . . , er) ∈ � r−l+1. Then

νp(f) = max
e � νp(ae)� ��� �

∈ � +
�

j 6=i

ejνp(xj)� ��� �
∈ � + eiνp(xi)� ��� �

∈ 1
deg P

�
	
and the claim follows.

Lemma 4. Let p ∈ Σ and ν ∈ 1
deg P

� . Then there exists

g ∈ � such that νp(g) = ν and νq(g) = 0 for all q 6= p.

Proof. If i is such that p is the branch place of xi, then
g := xν deg P

i does the job.

Lemma 5. Let pl, . . . , pr be the branch places of xl, . . . , xr

and let νl, . . . , νr ∈ 1
deg P

� be such that �
i
νi = 0. Then

there exists g ∈ � such that

νpi
(σ(g)/g) = νi (i = l, . . . , r)

and νp(σ(g)/g) = 0 for p 6∈ {pl, . . . , pr}.
Proof. By Lemma 4, for each i = l, . . . , r we can find

elements gi ∈ � with νpi
(gi) = − � i

j=l
νj and νp(gi) = 0

for p 6= pi. Set g := � r

i=l
gi. Then

νpl
(σ(g)/g) = νpl

(σ(g))− νpl
(g) = 0 − (−νl) = νl

and for i = l + 1, . . . , r we have

νpi
(σ(g)/g) = νpi

(σ(g)) − νpi
(g) = νpi−1

(g) − νpi
(g)

= −
i−1�

j=l

νj − � − i�

j=l

νj 	 = νi.

Furthermore,

νpr+1
(σ(g)/g) = νpr+1

(σ(g))− νpr+1
(g)

= νpr (g) − νpr+1
(g) = −

r�

j=l

νj − 0 = 0

and obviously νp(σ(g)/g) = 0 for p 6∈ {pl, . . . , pr+1}.

The automorphism σ on � naturally induces a bijection
on the set of finite places, which we also denote by σ. Let
p be a finite place. If p ∈ Σ, say p = pi, then we define
σ(pi) = pi+1. If p 6∈ Σ, then p is the vanishing place of
some irreducible polynomial Q ∈ � [t], and we define σ(p)
to be the vanishing place of the irreducible polynomial σ(Q).
With this definition, we say that two finite places p, q are
shift equivalent if p = σk(q) for some k ∈ � .

We can now determine exponent vectors (e1, . . . , em) for
which appropriate cancellations among the singularities hap-
pen. This is the main step in reducing the OHG problem in
� to OHG problems in � .

Lemma 6. Let f1, . . . , fm ∈ � ∗. Denote by pfin
1 , pfin

2 , . . .
finite places, pairwise not shift equivalent, such that all finite
singular places of the fi can be written as σk(pfin

j ) for ap-
propriate k and j. Write p∞

1 , p∞
2 , . . . for the singular places

of the fi over infinity.
Let

M := { (e1, . . . , em) ∈ � m | ∃g ∈ � ∗ : fe1
1 · · · fem

m

g

σ(g)
∈ � }

and define

Mfin := { (e1, . . . , em) ∈ � m | ∀i :
�

j,k

ejνσk(pfin
i

)(fj) = 0 },

M∞ := { (e1, . . . , em) ∈ � m | ∀i :
�

j

ejνp∞

i
(fj) = 0 }.

Then M = Mfin ∩ M∞.

Proof. “⊆” Let e = (e1, . . . , em) ∈ M . Then there are
g ∈ � ∗ and c ∈ � ∗ with fe1

1 · · · fem
m = cσ(g)/g.

Consider an arbitrary place pfin
i . Then for each k ∈ � ,

e1νσk(pfin
i

)(f1) + · · · + emνσk(pfin
i

)(fm)

= νσk(pfin
i

)(f
e1
1 · · · fem

m ) = νσk(pfin
i

)(cσ(g)/g)

= νσk(pfin
i

)(c) + νσk(pfin
i

)(σ(g)) − νσk(pfin
i

)(g)

= 0 + νσk−1(pfin
i

)(g) − νσk(pfin
i

)(g).

As νσk(pfin
i

)(g) 6= 0 only for finitely many k, summing over

all k gives �
j,k

ejνσk(pfin
i

)(fj) = 0. Since i was arbitrary, it

follows that e ∈ Mfin.
Consider an arbitrary place p∞

i . Then

e1νp∞

i
(f1) + · · · + emνp∞

i
(fm) = νp∞

i
(fe1

1 · · · fem
m )

= νp∞

i
(cσ(g)/g) = νp∞

i
(c) + νp∞

i
(σ(g)) − νp∞

i
(g) = 0,

because νp(σ(g)) = νp(g) for every g ∈ � ∗ when p is a place
over infinity. Since i was arbitrary, it follows that e ∈ M∞.

“⊇” Now let e ∈ Mfin ∩ M∞.
Consider an arbitrary place pfin

i . Let l, r ∈ � be the min-
imum and maximum index such that σl(pfin

i ) and σr(pfin
i )

are singular for at least one of the fi. Since e ∈ Mfin, we
have �

k

�

j

ejνσk(pfin
i

)(fj) = 0.

Therefore there exists an element gi ∈ � ∗ with

νσk(pfin
i

)(σ(gi)/gi) =
�

j

ejνσk(pfin
i

)(fj)

and νp(σ(g)/g) = 0 for all other places. (For pfin
i ∈ Σ the

existence follows from Lemma 5, for pfin
i 6∈ Σ the existence

follows like in Karr’s original theorem.)
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Hence for g := �
i
gi we have

νp(f
e1
1 · · · fem

m ) = νp(σ(g)/g)

for all finite places p. Furthermore, since also e ∈ M∞ and
νp(σ(g)/g) = 0 for all places p over infinity, we have

νp(f
e1
1 · · · fem

m ) = νp(σ(g)/g)

for all places. Therefore fe1
1 · · · fem

m and σ(g)/g agree up to
a multiplicative factor from the ground field, and therefore
fe1
1 · · · fem

m g/σ(g) ∈ � , so (e1, . . . , em) ∈ M .

The above lemma is constructive in the sense that not only
can we compute a module basis for M ⊆ � m, but also we
can explicitly compute for every (e1, . . . , em) ∈ M a witness
g ∈ � with fe1

1 · · · fem
m σ(g)/g ∈ � , by just constructing the

element g as described in the proof.
We are now able to prove the following structure theo-

rems, which, together with the above lemma, correspond to
Theorem 8 in [6]. These theorems complete the reduction
to OHG problems in the ground field � .

Theorem 5. Suppose that � (t) is a Σ-extension of � .
Let f1, . . . , fm ∈ � ∗, and let M ⊆ � m be as in Lemma 6.

Let B = ((ej,i)) ∈ � m̄×m be such that the rows of B form a
basis of M , and let gj ∈ � (j = 1, . . . , m̄) be such that

f̄j := f
ej,1

1 · · · fej,m
m gj/σ(gj) ∈ � .

Let M̄ := M(f̄1, . . . , f̄m̄; � ) and let B̄ = ((ēk,j)) ∈ � ¯̄m×m̄ be
such that the rows of B̄ form a basis of M̄ . Then the rows
of B̄ · B form a basis of M(f1, . . . , fm; � ).

Proof. “⊆” We show that every row in B̄ · B belongs
to M(f1, . . . , fm; � ). If (e1, . . . , em) is the kth row, then

ei =
m̄�

j=1

ēk,jej,i (i = 1, . . . , m).

We have
�

i

fei
i =

�

i

(fi) � j ēk,jej,i =
�

j
� �

i

f
ej,i

i 	
ēk,j

=
�

j
� f̄j

gj/σ(gj) 	
ēk,j

=
�

j

f̄
ēk,j

j

�

j
� σ(gj)

gj 	
ēk,j

.

Since (ēk,1, . . . , ēk,m̄) ∈ M(f̄1, . . . , f̄m̄; � ), there exists ḡk ∈� such that �
j
f̄

ēk,j

j = σ(ḡk)/ḡk, altogether

�

i

fei
i =

σ(ḡk)

ḡk

�

j
� σ(gj)

gj 	
ēk,j

=
σ � ḡk � j g

ēk,j

j 	
ḡk � j

g
ēk,j

j

,

and therefore (e1, . . . , em) ∈ M(f1, . . . , fm; � ).
“⊇” We show that every (e1, . . . , em) ∈ M(f1, . . . , fm; � )

is a � -linear combination of the rows of B̄ · B. Let g ∈ � ∗

be such that

fe1
1 · · · fem

m = σ(g)/g.

Then clearly νp(f
e1
1 · · · fem

m g/σ(g)) = 0 for all places p. Con-
sequently, (e1, . . . , em) ∈ M , say

(e1, . . . , em) = (ē1, . . . , ēm̄) · B.

To complete the proof, it suffices to show that (ē1, . . . , ēm̄) ∈
M̄ . Indeed,

σ(g)/g =
�

i

fei
i =

�

j
� f̄j

gj/σ(gj) 	
ēj

,

therefore

�

j

f̄
ēj

j =
σ � g/ �

j
gj 	

g/ �
j
gj

.

Since the left side belongs to � , so does the right hand side.
It follows that (ē1, . . . , ēm̄) ∈ M̄ , as desired.

As it is easy to see that the rows of of B̄ · B are linearly
independent if the rows of B̄ and B are, the proof is com-
plete.

If � (t) is a Π-extension, we also have to take into account
that σ(t)/t ∈ � , while in a Σ-extension we have σ(f)/f ∈� ∗ only if f ∈ � ∗; see [6, Thm. 4]. But since the proof is
otherwise similar, we skip the details.

Theorem 6. Suppose that � (t) is a Π-extension of � .
Let f1, . . . , fm ∈ � ∗, and let M ⊆ � m be as in Lemma 6

and B ∈ � m̄×m and f̄j (j = 1, . . . , m̄) be as in Theorem 5.
Let

M̄ := π(M(f̄1, . . . , fm̄, t/σ(t); � )),

where π : � m̄+1 → � m̄ is the projection that drops the last
component, and let B̄ ∈ � ¯̄m×m̄ be such that the rows of B̄
form a basis of M̄ . Then the rows of B̄ · B form a basis of
M(f1, . . . , fm; � ).

Theorems 5 and 6 directly give rise to an algorithm for
solving the OHG problem in � . This algorithm differs from
Karr’s original algorithm for the transcendental case in that
Karr’s algorithm avoids the explicit computation of the el-
ements g on the right hand side. However, if our algorithm
is applied in the transcendental case, it is often faster than
Karr’s, because we often have m̄ < m so the problem size
may decrease during recursion whereas in Karr’s algorithm
the problem size never decreases during recursion.

5. SOLVING PLDES
We turn to the problem of solving difference equations

in radical extensions of difference fields. The result is sum-
marzied in the following theorem.

Theorem 7. Let ( � , σ) be a difference field with constant
field � and let � = � {x}/〈〈P 〉〉 be a simple algebraic exten-
sion of � .

1. If the solution space of PLDEs for ( � , σ) can be com-
puted, then the solution space of PLDEs for ( � , σ) can
be computed.

2. If the solution space of PLDEs for ( � , σ) can be recur-
sively enumerated, then the solution space of PLDEs
for ( � , σ) can be recursively enumerated.

The second item is included in order to cover also sophis-
ticated summation problems which can be formulated only
in difference fields ( � , σ) for which no solution algorithm is
known.

In the remainder of the section, we show Theorem 7 by
describing an algorithm. Let a0, . . . , ar ∈ � (not all zero)
and f1, . . . , fm ∈ � be given. We need to determine a ba-
sis for the vector space � ⊆ � m × � of all (c1, . . . , cm, g)
satisfying (2).

If, actually, the coefficients a0, . . . , ar and f1, . . . , fm be-
long to the ground field � , then we solve the equation in that
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field, which we can do by assumption. Now suppose that
at least one of the coefficients belongs to � \ � , i.e., some
xi occur in the equation. If l, r ∈ � denote the minimum
and maximum index i such that xi occurs in the equation
then any solution g can involve only xi with i ∈ {l, . . . , r},
since any xi with i outside that range would fail to can-
cel away with the coefficients. Since all xi are algebraic over
the ground field, � [xl, . . . , xr]/〈〈P 〉〉l,r is a finite dimensional
vector space over � , and since all solutions g must belong
to that field, we can find them all by an ansatz with unde-
termined coefficients.

Let τ1, . . . , τl be a vector space basis of

� [xl, . . . , xr]/〈〈P 〉〉l,r

over � . Plugging the ansatz g = � l

i=1 giτi into (2) and
comparing coefficients with respect to the τi gives a coupled
system of difference equations:

A0

��
� g1

...
gl

���
� + · · · + Ar

��
� σr(g1)

...
σr(gl)

���
� = c1F1 + · · · + cmFm.

Here, Ai ∈ � l×l and the Fi ∈ � l are the coefficient vectors
of the fi ∈ � in the original equation. We can assume that
ar = 1 in the original equation (otherwise divide by ar), and
thus that Ar is the identity matrix.

The system can be reduced to a first order system using
the companion matrix, this gives������������

�

σ(g1)
...

σ(gl)
...

σr(g1)
...

σr(gl)

� �����������
�

+

�������
�

0 −I 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 −I

A0 A1 · · · · · · Ar−1

� ������
�

�������������
�

g1

...
gl

...
σr−1(g1)

...
σr−1(gl)

� ������������
�

= c1F1 + · · · + cmFm,

where it is understood that the column vectors Fi on the
right hand side are padded by rl rows with 0 to above. Af-
ter renaming the unknowns for convenience of notation, the
system reads��

� σ(u1)
...

σ(uk)

���
� + A

��
� u1

...
uk

���
� = c1F1 + · · · + cmFm (7)

with k = (r + 1)l and A ∈ � k×k.
In the next step, we apply an uncoupling algorithm to

this system. Several algorithms are available for uncou-
pling systems of difference equations with arbitrary differ-
ence fields as ground fields [1, 16], in our implementation
we use Gerhold’s Mathematica implementation [4] of the
Abramov/Zima algorithm. The uncoupling algorithm re-
turns an equivalent system of the form��

� a1,0u1 + a1,1σ(u1) + · · · + a1,r1σ
r1(u1)

...
ak,0uk + ak,1σ(uk) + · · · + ak,rk

σrk (uk)

� �
�

=

�����
�
∗ · · · ∗ 0 · · · 0
...

... ∗
. . .

...
...

...
...

. . . 0
∗ · · · ∗ ∗ · · · ∗

� ����
�

���������
�

c1

...
cm

u1

...
uk−1

����������
�

(8)

The latter system consists of inhomogeneous linear differ-
ence equations for each of the ui, whose right hand sides
depend � -linearly on c1, . . . , cm (which are still undeter-
mined) and on u1, . . . , ui−1. (Uncoupling algorithms do, for
efficiency reasons, represent the system in a slightly more
complicated form, but this shall not bother us here.) The
uncoupled system can be solved iteratively: The first equa-
tion is a univariate PLDE for u1 which can be solved by
assumption on � , giving m′ linearly independent solutions

(c̄
(j)
1 , . . . , c̄(j)

m , ū
(j)
1 ) ∈ � m × � (j = 1, . . . , m′)

The general solution is thus

(c̄1, . . . , c̄m, ū1) :=
m′�

j=1

c′j(c̄
(j)
1 , . . . , c̄(j)

m , ū
(j)
1 ),

with c′j arbitrary. If we discard the first equation from the
system and replace ci by c̄i and u1 by ū1 in the remaining
equations, we end up with a system that is again of the
form (8), but with one equation less. (The role of the ci

in (8) is now played by the undetermined coefficients c′j .)
Iterating the process eventually gives d linearly independent
solutions

(c
(j)
1 , . . . , c(j)

m ,

���
�
u

(j)
1

...

u
(j)
k

� ��
� ) ∈ � m × � k (j = 1, . . . , d)

that generate the solution space of (8), and hence of (7),
as � vector space. The solution of the original difference
equation are now obtained as

(c
(j)
1 , . . . , c(j)

m ,

l�

i=1

u
(j)
i τi) (j = 1, . . . , d)

This completes the solution algorithm.

6. APPLICATIONS
Combining all the algorithmic steps from above, we can

treat towers of difference field extensions

� 0 ≤ � 1 ≤ · · · ≤ � e (9)

where � 0 is σ∗-computable, � 1 is a ΠΣ∗-extension of � 0

and for each 1 < i ≤ e, � i is a ΠΣ∗-extension of � i−1, or
� i−1 = � i−2(t) is a ΠΣ∗-extension of � i−1 and

� i = � i−2(t){x}/〈〈xd
0 − h〉〉 (10)

is a radical extension of � i−1 where h ∈ � i−2[t] is irre-
ducible. Then by Theorems 1 and 4 we have shown that
also � e is σ∗-computable. Therefore, as described in Sec-
tion 2, we can solve problems OHG, PLDE, and DOS in (9).

The following remarks are in place.

Checking the correctness of (9). If one finds answers
to Question 1, one might check algorithmically, if radical
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extensions (10) in the tower (9) are constructed properly.
In addition, using Karr’s theory [6], see also [11, Thm. 1],
the correctness of ΠΣ∗-extensions can be checked by solving
instances of problem OHG and PLDE in its sub-field.

Simple algebraic extensions. If one can solve prob-
lems PLDE and DOS without using our OHG-algorithm pre-
sented in Section 4, we can allow simple algebraic extensions
in (9). This happens, e.g., if (9) is free of Π-extensions.

Heuristic simplifier. If one thinks pessimistic, e.g., if
one does not believe that 〈〈x2

0 − n〉〉 is maximal, see Ex-
ample 1, or if one even knows that a given ideal 〈〈p〉〉 with
p = xd

0 − h is not maximal, one can use our algorithms as a
heuristic simplifier.

First, one can check algorithmically if (6) is maximal in� [xl, . . . , xr] for some interval l < r; see Remark 1. After
this check we can carry out all the operations in the field

� l,r := � [xl, . . . , xr]/〈〈p〉〉l,r. In particular, we can run all
our algorithms. E.g., for f ∈ � l,r we can decide, if there is
g ∈ � l,r−1 with (1). Similarly, one can look for solutions of
problems PLDE or OHG.

Our algorithms can be executed if several algebraic ring
extensions occur in the tower (9). Clearly, the more such ex-
tensions pop up, the more could go wrong: e.g., the attempt
to invert elements which cannot be inverted or adjoining
sums and products over a ring; notice that such extensions
cannot be handled properly with ΠΣ∗-extensions.

Summarizing, we can run our algorithms in a heuristic
fashion. Here we might fail within the computations or we
could obtain results which are not optimal: this means that
we model the algebraic expressions not sufficiently well. In-
teresting enough, in all our test runs, including the examples
in Section 7, we never encountered such problems.

7. EXAMPLES
The following identities were found by our implementa-

tion. Once the right hand side of an identity is found, a proof
an also easily be found independently of our algorithm.

n�

k=0

1√
k + 1 +

√
k

=
√

n + 1,

n�

k=0

(k −
√

k + 1)
√

k! = (n + 1)
√

n!,

n�

k=0

((k −
√

k + 1)Hk + 1)
√

k! = (1 + (n + 1)Hn)
√

n!,

n�

k=0

n −
√

k
√

k + 1 − k√
k + 1

�
n

k � = 0,

n�

k=1

� 2k + 2k2 + k3 − � k2 + 1 	 (k − 1)!
k�

i=1

� i2 + 1

= (2 + 2n + n2)n!
n�

k=1

� k2 + 1 − 2,

n�

k=2

Hk � (
√

k)3

k − 1
+

k�

i=1

√
i

i +
√

i 	
=

1

2
� − 3 − 5n + (5n + 3)Hn − (2n + 1)H2

n + H(2)
n 	

+
n�

k=1

√
k + � (n + 1)Hn − (n − 1) 	

n�

k=2

√
k

k − 1
,

n�

k=0
� k�

i=0

√
i 	

2√
k =

1

6

n�

k=0

k
√

k − 1

2

n�

k=0

k2
√

k

+
1

2
n(n + 1)

n�

k=0

√
k +

1

3 � n�

k=0

√
k 	

3

.

We abbreviate H
(a)
k := � k

i=1 1/ia for the kth Harmonic

number of a-th order (a ∈ � fixed), and Hk := H
(1)
k .
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