Computer Algebra for Special Function Inequalities

Manuel Kauers
RISC-Linz, Austria

1. Yakub's Inequality
2. Bernoulli's Inequality
3. Alzer's Inequality
4. Moll's Inequality

Yakub's Inequality

Problem 11199 (proposed by Aliyer Yakub; vol. 113(1), 2006, p. 80): Let $a, b, c>0$ be such that $a+b+c=1$. Show that

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{25}{1+48 a b c} .
$$

Yakub's Inequality

Problem 11199 (proposed by Aliyer Yakub; vol.
113(1), 2006, p. 80): Let $a, b, c>0$ be such that $a+b+c=1$. Show that

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{25}{1+48 a b c} .
$$

- You should not need more than 30 seconds to come up with a completely rigorous solution to this problem

Yakub's Inequality

Problem 11199 (proposed by Aliyer Yakub; vol. 113(1), 2006, p. 80): Let $a, b, c>0$ be such that $a+b+c=1$. Show that

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{25}{1+48 a b c} .
$$

- You should not need more than 30 seconds to come up with a completely rigorous solution to this problem
- ... because it can be done by a computer!

Yakub's Inequality

Problem 11199 (proposed by Aliyer Yakub; vol. 113(1), 2006, p. 80): Let $a, b, c>0$ be such that $a+b+c=1$. Show that

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{25}{1+48 a b c} .
$$

- You should not need more than 30 seconds to come up with a completely rigorous solution to this problem
- ... because it can be done by a computer!
- Yakub's problem is therefore as uninteresting as asking for a proof that

$$
317034851 \cdot 41539045=13169324942257295
$$

Collin's Algorithm (1975)

- Consider formulas composed out of

Collin's Algorithm (1975)

- Consider formulas composed out of
- rational numbers (e.g., $0,1,-\frac{432}{241}, 42, \ldots$)

Collin's Algorithm (1975)

- Consider formulas composed out of
- rational numbers (e.g., $0,1,-\frac{432}{241}, 42, \ldots$)
- variables (e.g., $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$)

Collin's Algorithm (1975)

- Consider formulas composed out of
- rational numbers (e.g., $0,1,-\frac{432}{241}, 42, \ldots$)
- variables (e.g., $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$)
- field operations $(+, \cdot,-, /)$

Collin's Algorithm (1975)

- Consider formulas composed out of
- rational numbers (e.g., $0,1,-\frac{432}{241}, 42, \ldots$)
- variables (e.g., $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$)
- field operations ($+, \cdot,-, /$)
- order relations ($=, \neq,>,<, \geq, \leq$)

Collin's Algorithm (1975)

- Consider formulas composed out of
- rational numbers (e.g., $0,1,-\frac{432}{241}, 42, \ldots$)
- variables (e.g., $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$)
- field operations ($+, \cdot,-, /$)
- order relations ($=, \neq,>,<, \geq, \leq$)
- logical connectives ($\wedge, \vee, \Rightarrow, \Leftrightarrow, \neg$, True, False)

Collin's Algorithm (1975)

- Consider formulas composed out of
- rational numbers (e.g., $0,1,-\frac{432}{241}, 42, \ldots$)
- variables (e.g., $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$)
- field operations ($+, \cdot,-, /$)
- order relations ($=, \neq,>,<, \geq, \leq$)
- logical connectives ($\wedge, \vee, \Rightarrow, \Leftrightarrow, \neg$, True, False)
- quantifiers \forall, \exists

Collin's Algorithm (1975)

- Consider formulas composed out of
- rational numbers (e.g., $0,1,-\frac{432}{241}, 42, \ldots$)
- variables (e.g., $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$)
- field operations ($+, \cdot,-, /$)
- order relations ($=, \neq,>,<, \geq, \leq$)
- logical connectives ($\wedge, \vee, \Rightarrow, \Leftrightarrow, \neg$, True, False)
- quantifiers \forall, \exists
- Such formulas are called Tarski-formulas.

Collin's Algorithm (1975)

- Consider formulas composed out of
- rational numbers (e.g., $0,1,-\frac{432}{241}, 42, \ldots$)
- variables (e.g., $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$)
- field operations ($+, \cdot,-, /$)
- order relations ($=, \neq,>,<, \geq, \leq$)
- logical connectives ($\wedge, \vee, \Rightarrow, \Leftrightarrow, \neg$, True, False)
- quantifiers \forall, \exists
- Such formulas are called Tarski-formulas.
- Examples:

Collin's Algorithm (1975)

- Consider formulas composed out of
- rational numbers (e.g., $0,1,-\frac{432}{241}, 42, \ldots$)
- variables (e.g., $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$)
- field operations $(+, \cdot,-, /)$
- order relations $(=, \neq,>,<, \geq, \leq)$
- logical connectives $(\wedge, \vee, \Rightarrow, \Leftrightarrow, \neg$, True, False)
- quantifiers \forall, \exists
- Such formulas are called Tarski-formulas.
- Examples:
- $\forall a>0 \forall b>0 \forall c>0:\left(a+b+c=1 \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{25}{1+48 a b c}\right)$

Collin's Algorithm (1975)

- Consider formulas composed out of
- rational numbers (e.g., $0,1,-\frac{432}{241}, 42, \ldots$)
- variables (e.g., $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$)
- field operations $(+, \cdot,-, /)$
- order relations $(=, \neq,>,<, \geq, \leq)$
- logical connectives $(\wedge, \vee, \Rightarrow, \Leftrightarrow, \neg$, True, False)
- quantifiers \forall, \exists
- Such formulas are called Tarski-formulas.
- Examples:
- $\forall a>0 \forall b>0 \forall c>0:\left(a+b+c=1 \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{25}{1+48 a b c}\right)$
- $\forall a>0 \forall b>0 \forall c>0:\left(a+b+c=1 \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{x}{1+y a b c}\right)$

Collin's Algorithm (1975)

- Collin's algorithm solves the quantifier elimination problem:

Collin's Algorithm (1975)

- Collin's algorithm solves the quantifier elimination problem:
- INPUT: a Tarski formula Φ

Collin's Algorithm (1975)

- Collin's algorithm solves the quantifier elimination problem:
- INPUT: a Tarski formula Φ
- OUTPUT: a quantifier free formula Φ^{\prime} with $\mathbb{R} \models\left(\Phi \Leftrightarrow \Phi^{\prime}\right)$.

Collin's Algorithm (1975)

- Collin's algorithm solves the quantifier elimination problem:
- INPUT: a Tarski formula Φ
- OUTPUT: a quantifier free formula Φ^{\prime} with $\mathbb{R} \models\left(\Phi \Leftrightarrow \Phi^{\prime}\right)$.
- Example:
- INPUT:

$$
\forall a>0 \forall b>0 \forall c>0:\left(a+b+c=1 \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{25}{1+48 a b c}\right)
$$

Collin's Algorithm (1975)

- Collin's algorithm solves the quantifier elimination problem:
- INPUT: a Tarski formula Φ
- OUTPUT: a quantifier free formula Φ^{\prime} with $\mathbb{R} \models\left(\Phi \Leftrightarrow \Phi^{\prime}\right)$.
- Example:
- INPUT:
$\forall a>0 \forall b>0 \forall c>0:\left(a+b+c=1 \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{25}{1+48 a b c}\right)$
- OUTPUT:

True

Collin's Algorithm (1975)

- Collin's algorithm solves the quantifier elimination problem:
- INPUT: a Tarski formula Φ
- OUTPUT: a quantifier free formula Φ^{\prime} with $\mathbb{R} \models\left(\Phi \Leftrightarrow \Phi^{\prime}\right)$.
- Example:
- INPUT:

$$
\forall a>0 \forall b>0 \forall c>0:\left(a+b+c=1 \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{x}{1+y a b c}\right)
$$

Collin's Algorithm (1975)

- Collin's algorithm solves the quantifier elimination problem:
- INPUT: a Tarski formula Φ
- OUTPUT: a quantifier free formula Φ^{\prime} with $\mathbb{R} \models\left(\Phi \Leftrightarrow \Phi^{\prime}\right)$.
- Example:
- INPUT:
$\forall a>0 \forall b>0 \forall c>0:\left(a+b+c=1 \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{x}{1+y a b c}\right)$
- OUTPUT:

$$
\begin{aligned}
& (x<0 \wedge y \geq-27) \vee \\
& (0 \leq x<25 \wedge y \geq 3 x-27) \vee \\
& (x \geq 25 \wedge y \geq a(x))
\end{aligned}
$$

where $a(x)=\operatorname{Root}\left(16 x^{3}-16 x^{4}+\right.$
$\left(729-1053 x+300 x^{2}+8 x^{3}\right) X-$ $\left.\left.\left(216+132 x+x^{2}\right) X^{2}+16 X^{3}, 2\right)\right)$

Collin's Algorithm (1975)

- Collin's algorithm solves the quantifier elimination problem:
- INPUT: a Tarski formula Φ
- OUTPUT: a quantifier free formula Φ^{\prime} with $\mathbb{R} \models\left(\Phi \Leftrightarrow \Phi^{\prime}\right)$.
- Example:
- INPUT:
$\forall a>0 \forall b>0 \forall c>0:\left(a+b+c=1 \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{x}{1+y a b c}\right)$
- OUTPUT:

$$
\begin{aligned}
& (x<0 \wedge y \geq-27) \vee \\
& (0 \leq x<25 \wedge y \geq 3 x-27) \vee \\
& (x \geq 25 \wedge y \geq a(x))
\end{aligned}
$$

where $a(x)=\operatorname{Root}\left(16 x^{3}-16 x^{4}+\right.$
$\left(729-1053 x+300 x^{2}+8 x^{3}\right) X-$ $\left.\left.\left(216+132 x+x^{2}\right) X^{2}+16 X^{3}, 2\right)\right)$

1. Yakub's Inequality
2. Bernoulli's Inequality
3. Alzer's Inequality
4. Moll's Inequality

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- CAD is not applicable directly, because $(x+1)^{n} \notin \mathbb{Q}[n, x]$

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x .
$$

- CAD is not applicable directly, because $(x+1)^{n} \notin \mathbb{Q}[n, x]$
- Another trick is needed here.

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x .
$$

- CAD is not applicable directly, because $(x+1)^{n} \notin \mathbb{Q}[n, x]$
- Another trick is needed here.
- Let's try induction on n.

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- CAD is not applicable directly, because $(x+1)^{n} \notin \mathbb{Q}[n, x]$
- Another trick is needed here.
- Let's try induction on n.

Induction base: $n=1$

$$
\forall x \geq-1:(x+1)^{1} \geq 1+1 x
$$

This can be done with CAD.

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- CAD is not applicable directly, because $(x+1)^{n} \notin \mathbb{Q}[n, x]$
- Another trick is needed here.
- Let's try induction on n.

Induction base: $n=1$

$$
\forall x \geq-1:(x+1)^{1} \geq 1+1 x
$$

This can be done with CAD. (maybe also without. . .)

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- CAD is not applicable directly, because $(x+1)^{n} \notin \mathbb{Q}[n, x]$
- Another trick is needed here.
- Let's try induction on n.

Induction step:

$$
\begin{aligned}
& n \geq 1 \wedge x \geq-1 \wedge(x+1)^{n} \geq 1+n \\
\Rightarrow & (x+1)^{n+1} \geq 1+(n+1) x
\end{aligned}
$$

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- CAD is not applicable directly, because $(x+1)^{n} \notin \mathbb{Q}[n, x]$
- Another trick is needed here.
- Let's try induction on n.

Induction step:

$$
\begin{aligned}
& n \geq 1 \wedge x \geq-1 \wedge(x+1)^{n} \geq 1+n \\
\Rightarrow & (x+1)^{n+1} \geq 1+(n+1) x
\end{aligned}
$$

Replace the annoying term $(x+1)^{n}$ by a new variable y :

$$
n \geq 1 \wedge x \geq-1 \wedge y \geq 1+n x \Rightarrow(x+1) y \geq 1+(n+1) x
$$

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- CAD is not applicable directly, because $(x+1)^{n} \notin \mathbb{Q}[n, x]$
- Another trick is needed here.
- Let's try induction on n.

Induction step:

$$
\begin{aligned}
& n \geq 1 \wedge x \geq-1 \wedge(x+1)^{n} \geq 1+n \\
\Rightarrow & (x+1)^{n+1} \geq 1+(n+1) x
\end{aligned}
$$

Replace the annoying term $(x+1)^{n}$ by a new variable y :

$$
n \geq 1 \wedge x \geq-1 \wedge y \geq 1+n x \Rightarrow(x+1) y \geq 1+(n+1) x
$$

The rest can be left to CAD. \square

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- CAD is not applicable directly, because $(x+1)^{n} \notin \mathbb{Q}[n, x]$
- Another trick is needed here.
- Let's try induction on n.

Conclusion: A computer proof was obtained by reducing the original inequality to a polynomial statement which is in the scope of CAD.

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- CAD is not applicable directly, because $(x+1)^{n} \notin \mathbb{Q}[n, x]$
- Another trick is needed here.
- Let's try induction on n.

Conclusion: A computer proof was obtained by reducing the original inequality to a polynomial statement which is in the scope of CAD. Warning: The polynomial statement need not be true.

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- CAD is not applicable directly, because $(x+1)^{n} \notin \mathbb{Q}[n, x]$
- Another trick is needed here.
- Let's try induction on n.

Conclusion: A computer proof was obtained by reducing the original inequality to a polynomial statement which is in the scope of CAD. Warning: The polynomial statement need not be true.
If it is false, the proof has failed and another reduction has to be used.

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- CAD is not applicable directly, because $(x+1)^{n} \notin \mathbb{Q}[n, x]$
- Another trick is needed here.
- Let's try induction on n.

Conclusion: A computer proof was obtained by reducing the original inequality to a polynomial statement which is in the scope of CAD. Warning: The polynomial statement need not be true.
If it is false, the proof has failed and another reduction has to be used.

How to find a GOOD reduction?

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- CAD is not applicable directly, because $(x+1)^{n} \notin \mathbb{Q}[n, x]$
- Another trick is needed here.
- Let's try induction on n.

Conclusion: A computer proof was obtained by reducing the original inequality to a polynomial statement which is in the scope of CAD. Warning: The polynomial statement need not be true.
If it is false, the proof has failed and another reduction has to be used.

How to find a GOOD reduction? \rightarrow By experimenting!

Bernoulli's Inequality

$$
\forall x \geq-1 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

Bernoulli's Inequality

$$
\forall x \geq-2 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

Bernoulli's Inequality

$$
\forall x \geq-2 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- Another trick is needed here, because

$$
n \geq 1 \wedge x \geq-2 \wedge y \geq 1+n x \Rightarrow(x+1) y \geq 1+(n+1) x
$$

is false. (CAD can be used also for constructing counterexamples.)

Bernoulli's Inequality

$$
\forall x \geq-2 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- Extending the induction step helps:

$$
\begin{aligned}
& (1+x)^{n} \geq 1+n x \wedge(1+x)^{n+1} \geq 1+(n+1) x \\
& \Rightarrow(1+x)^{n+2} \geq 1+(n+2) x
\end{aligned}
$$

Bernoulli's Inequality

$$
\forall x \geq-2 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- Extending the induction step helps:

$$
\begin{aligned}
& (1+x)^{n} \geq 1+n x \wedge(1+x)^{n+1} \geq 1+(n+1) x \\
& \Rightarrow(1+x)^{n+2} \geq 1+(n+2) x
\end{aligned}
$$

follows from

$$
\begin{aligned}
& n \geq 1 \wedge x \geq-2 \wedge y \geq 1+n x \wedge(x+1) y \geq 1+(n+1) x \\
& \quad \Rightarrow(x+1)^{2} y \geq 1+(n+2) x .
\end{aligned}
$$

Bernoulli's Inequality

$$
\forall x \geq-2 \forall n \in \mathbb{N}:(x+1)^{n} \geq 1+n x
$$

- Extending the induction step helps:

$$
\begin{aligned}
& (1+x)^{n} \geq 1+n x \wedge(1+x)^{n+1} \geq 1+(n+1) x \\
& \Rightarrow(1+x)^{n+2} \geq 1+(n+2) x
\end{aligned}
$$

follows from

$$
\begin{aligned}
& n \geq 1 \wedge x \geq-2 \wedge y \geq 1+n x \wedge(x+1) y \geq 1+(n+1) x \\
& \quad \Rightarrow(x+1)^{2} y \geq 1+(n+2) x .
\end{aligned}
$$

CAD does the rest. \square

1. Yakub's Inequality
2. Bernoulli's Inequality
3. Alzer's Inequality
4. Moll's Inequality

Alzer's Inequality

Consider the Legendre polynomials

$$
P_{n}(x):=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

Alzer's Inequality

Consider the Legendre polynomials

$$
P_{n}(x):=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

Turan's inequality says

$$
P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq 0
$$

Alzer's Inequality

Consider the Legendre polynomials

$$
P_{n}(x):=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

Turan's inequality says

$$
P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq 0
$$

We can computer-prove it using CAD.

Alzer's Inequality

Consider the Legendre polynomials

$$
P_{n}(x):=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

Turan's inequality says

$$
P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq 0
$$

We can computer-prove it using CAD.
But it's hard to do by hand.

Alzer's Inequality

Alzer has conjectured the sharper variant

$$
\begin{gathered}
P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right) \\
\text { with } \alpha_{n}:=\mu_{\lfloor n / 2\rfloor} \mu_{\lfloor(n+1) / 2\rfloor} \text { where } \mu_{n}:=(2 n-1)!!/(2 n)!!.
\end{gathered}
$$

Alzer's Inequality

Alzer has conjectured the sharper variant

$$
P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

with $\alpha_{n}:=\mu_{\lfloor n / 2\rfloor} \mu_{\lfloor(n+1) / 2\rfloor}$ where $\mu_{n}:=(2 n-1)!!/(2 n)!!$.

Alzer's Inequality

Alzer has conjectured the sharper variant

$$
P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

with $\alpha_{n}:=\mu_{\lfloor n / 2\rfloor} \mu_{\lfloor(n+1) / 2\rfloor}$ where $\mu_{n}:=(2 n-1)!!/(2 n)!!$.

- Nobody was able to prove this by hand

Alzer's Inequality

Alzer has conjectured the sharper variant

$$
P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

with $\alpha_{n}:=\mu_{\lfloor n / 2\rfloor} \mu_{\lfloor(n+1) / 2\rfloor}$ where $\mu_{n}:=(2 n-1)!!/(2 n)!!$.

- Nobody was able to prove this by hand
- Induction + CAD also did not work

Alzer's Inequality

Alzer has conjectured the sharper variant

$$
P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

with $\alpha_{n}:=\mu_{\lfloor n / 2\rfloor} \mu_{\lfloor(n+1) / 2\rfloor}$ where $\mu_{n}:=(2 n-1)!!/(2 n)!!$.

- Nobody was able to prove this by hand
- Induction + CAD also did not work
- Also extending the induction hypothesis did not help

Alzer's Inequality

Alzer has conjectured the sharper variant

$$
P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

with $\alpha_{n}:=\mu_{\lfloor n / 2\rfloor} \mu_{\lfloor(n+1) / 2\rfloor}$ where $\mu_{n}:=(2 n-1)!!/(2 n)!!$.

- Nobody was able to prove this by hand
- Induction + CAD also did not work
- Also extending the induction hypothesis did not help
- Another trick is needed here

Alzer's Inequality

Alzer has conjectured the sharper variant

$$
P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

with $\alpha_{n}:=\mu_{\lfloor n / 2\rfloor} \mu_{\lfloor(n+1) / 2\rfloor}$ where $\mu_{n}:=(2 n-1)!!/(2 n)!!$.

- Key observation: It suffices to show that

$$
f_{n}(x):=\frac{P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x)}{1-x^{2}}
$$

is increasing on $(0,1)$.

Alzer's Inequality

Alzer has conjectured the sharper variant

$$
P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

with $\alpha_{n}:=\mu_{\lfloor n / 2\rfloor} \mu_{\lfloor(n+1) / 2\rfloor}$ where $\mu_{n}:=(2 n-1)!!/(2 n)!!$.

- Key observation: It suffices to show that

$$
f_{n}(x):=\frac{P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x)}{1-x^{2}}
$$

is increasing on $(0,1)$.

- f_{n} is increasing iff $\frac{d}{d x} f_{n}(x) \geq 0$

Alzer's Inequality

Alzer has conjectured the sharper variant

$$
P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

with $\alpha_{n}:=\mu_{\lfloor n / 2\rfloor} \mu_{\lfloor(n+1) / 2\rfloor}$ where $\mu_{n}:=(2 n-1)!!/(2 n)!!$.

- Observe

$$
\begin{aligned}
\frac{d}{d x} f_{n}(x) & =\left((n-1) n P_{n}(x)^{2}\right. \\
& -\left(2 n x^{2}+x^{2}-1\right) P_{n}(x) P_{n+1}(x) \\
& \left.+(n+1) x P_{n+1}(x)^{2}\right) /\left(n\left(1-x^{2}\right)^{2}\right)
\end{aligned}
$$

and leave the rest to CAD and induction.

1. Yakub's Inequality
2. Bernoulli's Inequality
3. Alzer's Inequality
4. Moll's Inequality

Moll's Inequality

For $0 \leq l \leq m \in \mathbb{Z}$, let

$$
\begin{aligned}
d_{l}(m)=\sum_{j=0}^{l} & \sum_{s=0}^{m-j} \sum_{k=s+l}^{m} \frac{(-1)^{k-l-s}}{2^{3 k}}\binom{2 k}{k}\binom{2 m+1}{2 s+2 j} \\
& \times\binom{ m-s-j}{m-k}\binom{s+j}{j}\binom{k-s-j}{l-j} .
\end{aligned}
$$

Moll's Inequality

For $0 \leq l \leq m \in \mathbb{Z}$, let

$$
\begin{aligned}
d_{l}(m)=\sum_{j=0}^{l} & \sum_{s=0}^{m-j} \sum_{k=s+l}^{m} \frac{(-1)^{k-l-s}}{2^{3 k}}\binom{2 k}{k}\binom{2 m+1}{2 s+2 j} \\
& \times\binom{ m-s-j}{m-k}\binom{s+j}{j}\binom{k-s-j}{l-j} .
\end{aligned}
$$

These numbers appear in the closed form of

$$
\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} d x \quad(a>-1, m \in \mathbb{N})
$$

Moll's Inequality

Theorem (Moll) $d_{l}(m)>0$

Moll's Inequality

Moll's Inequality

Theorem (Moll) $d_{l}(m)>0$
Proof (Paule) Easy observations:

- $d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0$

Moll's Inequality

Theorem (Moll) $d_{l}(m)>0$
Proof (Paule) Easy observations:

- $d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0$
- $d_{-1}(m)=0 \geq 0$

Moll's Inequality

$$
\begin{aligned}
& \text { Theorem (Moll) } d_{l}(m)>0 \\
& \text { Proof (Paule) Easy observations: } \\
& \text { - } d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0 \\
& \text { - } d_{-1}(m)=0 \geq 0
\end{aligned}
$$

Summation software delivers:

$$
2(m+1) d_{l}(m+1)=2(l+m) d_{l-1}(m)+(2 l+4 m+3) d_{l}(m)
$$

Moll's Inequality

Theorem (Moll) $d_{l}(m)>0$

Proof (Paule) Easy observations:

- $d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0$
- $d_{-1}(m)=0 \geq 0$

Summation software delivers:

$$
\underbrace{2(m+1)}_{+} d_{l}(m+1)=\underbrace{2(l+m)}_{+} d_{l-1}(m)+\underbrace{(2 l+4 m+3)}_{+} d_{l}(m)
$$

Moll's Inequality

Theorem (Moll) $d_{l}(m)>0$

Proof (Paule) Easy observations:

- $d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0$
- $d_{-1}(m)=0 \geq 0$

Summation software delivers:

$$
\underbrace{2(m+1)}_{+} d_{l}(m+1)=\underbrace{2(l+m)}_{+} d_{l-1}(m)+\underbrace{(2 l+4 m+3)}_{+} d_{l}(m)
$$

Moll's Inequality

$$
\begin{aligned}
& \text { Theorem (Moll) } d_{l}(m)>0 \\
& \text { Proof (Paule) Easy observations: } \\
& \text { - } d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0 \\
& \text { - } d_{-1}(m)=0 \geq 0
\end{aligned}
$$

Summation software delivers:

$$
\underbrace{2(m+1)}_{+} d_{l}(m+1)=\underbrace{2(l+m)}_{+} d_{l-1}(m)+\underbrace{(2 l+4 m+3)}_{+} d_{l}(m)
$$

Theorem follows by induction.

Moll's Inequality

$$
\begin{aligned}
& \text { Theorem (Moll) } d_{l}(m)>0 \\
& \text { Proof (Paule) Easy observations: } \\
& \text { - } d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0 \\
& -d_{-1}(m)=0 \geq 0
\end{aligned}
$$

Summation software delivers:

$$
\underbrace{2(m+1)}_{+} d_{l}(m+1)=\underbrace{2(l+m)}_{+} d_{l-1}(m)+\underbrace{(2 l+4 m+3)}_{+} d_{l}(m)
$$

Theorem follows by induction.
(No CAD needed here.)

Moll's Inequality

How does $d_{l}(m)$ behave for fixed m ?

Moll's Inequality

How does $d_{l}(m)$ behave for fixed m ?

Moll's Inequality

How does $d_{l}(m)$ behave for fixed m ?

Theorem (Moll) $d_{l}(m)$ is unimodal wrt. l for any fixed m.

Moll's Inequality

How does $d_{l}(m)$ behave for fixed m ?

Theorem (Moll) $d_{l}(m)$ is unimodal wrt. l for any fixed m.

Moll's Inequality

How does $d_{l}(m)$ behave for fixed m ?

Theorem (Moll) $d_{l}(m)$ is unimodal wrt. l for any fixed m.
Conjecture (Moll) $d_{l}(m)$ is log-concave wrt. l for any fixed m.

Moll's Inequality

How does $d_{l}(m)$ behave for fixed m ?

Theorem (Moll) $d_{l}(m)$ is unimodal wrt. l for any fixed m.
Conjecture (Moll) $d_{l}(m)$ is log-concave wrt. l for any fixed m.
$d_{l}(m)$ log-concave : $\Longleftrightarrow \log d_{l}(m)$ concave

Moll's Inequality

How does $d_{l}(m)$ behave for fixed m ?

Theorem (Moll) $d_{l}(m)$ is unimodal wrt. l for any fixed m.
Conjecture (Moll) $d_{l}(m)$ is log-concave wrt. l for any fixed m.
$d_{l}(m)$ log-concave $: \Longleftrightarrow \log d_{l}(m)$ concave

$$
: \Longleftrightarrow \log d_{l-1}(m)+\log d_{l+1}(m) \leq 2 \log d_{l}(m)
$$

Moll's Inequality

How does $d_{l}(m)$ behave for fixed m ?

Theorem (Moll) $d_{l}(m)$ is unimodal wrt. l for any fixed m.
Conjecture (Moll) $d_{l}(m)$ is log-concave wrt. l for any fixed m.
$d_{l}(m)$ log-concave : $\Longleftrightarrow \log d_{l}(m)$ concave

$$
\begin{aligned}
: & \Longleftrightarrow \log d_{l-1}(m)+\log d_{l+1}(m) \leq 2 \log d_{l}(m) \\
& \Longleftrightarrow d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}
\end{aligned}
$$

Moll's Inequality

How to show $d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}$?

Moll's Inequality

How to show $d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}$?

- "Human-mathematics" failed.

Moll's Inequality

How to show $d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}$?

- "Human-mathematics" failed.
- CAD + induction on l failed.

Moll's Inequality

How to show $d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}$?

- "Human-mathematics" failed.
- CAD + induction on l failed.
- Extending induction hypothesis did not help.

Moll's Inequality

How to show $d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}$?

- "Human-mathematics" failed.
- CAD + induction on l failed.
- Extending induction hypothesis did not help.
- Same with induction on m.

Moll's Inequality

How to show $d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}$?

- "Human-mathematics" failed.
- CAD + induction on l failed.
- Extending induction hypothesis did not help.
- Same with induction on m.
- There is no witness recurrence.

Moll's Inequality

How to show $d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}$?

- "Human-mathematics" failed.
- CAD + induction on l failed.
- Extending induction hypothesis did not help.
- Same with induction on m.
- There is no witness recurrence.
- Another trick is needed here.

Moll's Inequality

How to show $d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}$?
Using CAD and some recurrence equations, it can be found that

$$
\begin{aligned}
& d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2} \\
\Longleftrightarrow & d_{l}(m+1) \geq \frac{-2 l^{2}+(m+1)(4 m+3)+\sqrt{l\left(4 l^{3}-3 l-4 m(m+1)\right)}}{2(m+1)(m-l+1)} d_{l}(m)
\end{aligned}
$$

Moll's Inequality

How to show $d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}$?
Using CAD and some recurrence equations, it can be found that

$$
\begin{aligned}
& d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2} \\
\Longleftrightarrow & d_{l}(m+1) \geq \frac{-2 l^{2}+(m+1)(4 m+3)+\sqrt{l\left(4 l^{3}-3 l-4 m(m+1)\right)}}{2(m+1)(m-l+1)} d_{l}(m)
\end{aligned}
$$

- This is better because the $d_{l}(m)$ occur only linearly.

Moll's Inequality

How to show $d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}$?
Using CAD and some recurrence equations, it can be found that

$$
\begin{aligned}
& d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2} \\
\Longleftrightarrow & d_{l}(m+1) \geq \frac{-2 l^{2}+(m+1)(4 m+3)+\sqrt{l\left(4 l^{3}-3 l-4 m(m+1)\right)}}{2(m+1)(m-l+1)} d_{l}(m)
\end{aligned}
$$

- This is better because the $d_{l}(m)$ occur only linearly.
- It is worse because of the root expression

Moll's Inequality

How to show $d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}$?
Observation: It suffices to show the stronger condition

$$
d_{l}(m+1) \geq \frac{-2 l^{2}+(m+1)(4 m+3)+\sqrt{l\left(4 l^{3}-3 l-4 m(m+1)\right)+u(l, m)}}{2(m+1)(m-l+1)} d_{l}(m)
$$

for some appropriate $u(l, m) \geq 0$.

Moll's Inequality

How to show $d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}$?
Observation: It suffices to show the stronger condition

$$
d_{l}(m+1) \geq \frac{-2 l^{2}+(m+1)(4 m+3)+\sqrt{l\left(4 l^{3}-3 l-4 m(m+1)\right)+u(l, m)}}{2(m+1)(m-l+1)} d_{l}(m)
$$

for some appropriate $u(l, m) \geq 0$.
Choosing $u(l, m)=4 l^{2}+4 l^{3}+4 l m(m+1)$ turns the radicand into a square and we are left with

$$
d_{l}(m+1) \geq \frac{4 m^{2}+7 m+l+1}{2(m+1-l)(m+1)} d_{l}(m)
$$

Moll's Inequality

How to show $d_{l-1}(m) d_{l+1}(m) \leq d_{l}(m)^{2}$?
Observation: It suffices to show the stronger condition

$$
d_{l}(m+1) \geq \frac{-2 l^{2}+(m+1)(4 m+3)+\sqrt{l\left(4 l^{3}-3 l-4 m(m+1)\right)+u(l, m)}}{2(m+1)(m-l+1)} d_{l}(m)
$$

for some appropriate $u(l, m) \geq 0$.
Choosing $u(l, m)=4 l^{2}+4 l^{3}+4 l m(m+1)$ turns the radicand into a square and we are left with

$$
d_{l}(m+1) \geq \frac{4 m^{2}+7 m+l+1}{2(m+1-l)(m+1)} d_{l}(m)
$$

This can be done with CAD and induction. \square.

