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Abstract

We present an algorithm for computing generators for the ideal of algebraic relations
among sequences which are given by homogeneous linear recurrence equations with
constant coefficients. Knowing these generators makes it possible to use Gröbner
basis methods for carrying out certain basic operations in the ring of such sequences
effectively. In particular, one can answer the question whether a given sequence can
be represented in terms of other given sequences.

1 Introduction

A C-finite sequence over a field k is a function a : Z → k which satisfies
a linear homogeneous recurrence with constant coefficients c0, c1, . . . , cs ∈ k
with c0 6= 0 and cs 6= 0,

c0a(n) + c1a(n + 1) + · · ·+ csa(n+ s) = 0 (n ∈ Z);

(Zeilberger, 1990). C-finite sequences, also known as recurrence sequences, are
well studied in the literature (Everest et al., 2003). The most famous C-finite
sequence is the sequence of Fibonacci numbers satisfying Fn+2 = Fn+1 + Fn

and F0 = 0, F1 = 1.
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An algebraic relation over k among r sequences a1, . . . , ar : Z → k is a poly-
nomial f ∈ k[x1, . . . , xr] such that f (a1(n), . . . , ar(n)) = 0 for all n ∈ Z.
For instance, the polynomial x1x2 − x2

3 − x4 is an algebraic relation over
Q among the four sequences Fn−1, Fn+1, Fn and (−1)n by Cassini’s identity
Fn−1Fn+1 − F 2

n = (−1)n.

It is sometimes of interest to decide whether or not a given polynomial is
an algebraic relation of given sequences. This is trivial for the case of C-
finite (Nemes and Petkovšek, 1995) sequences and, nowadays, routine for holo-
nomic sequences (Salvy and Zimmermann, 1994) and many other classes of
sequences. However, finding the algebraic relations among given sequences in
the first place is a completely different task. Note that the set of algebraic re-
lations among sequences a1, . . . , ar forms an ideal of k[x1, . . . , xr]. The aim of
this paper is to give algorithms for computing generators for this ideal in the
case of C-finite sequences (Section 4) and C-finite multisequences (Section 7).

Let k[a1, . . . , ar] be the smallest subring of kZ that contains the sequences
a1, . . . , ar and all constant sequences, and let I be the ideal of all algebraic
relations among a1, . . . , ar. A Gröbner basis (Buchberger, 1965; Adams and
Loustaunau, 1994) of I allows us to compute in k[a1, . . . , ar] via the presenta-
tion by generators and relations

k[a1, . . . , ar] ≃ k[x1, . . . , xr]/I.

In particular, we can carry out addition, multiplication and canonical simplifi-
cation effectively. Moreover, the question of whether a given C-finite sequence
is representable in terms of other given C-finite sequences can be answered.
The following is a typical example.

Example 1. (Graham et al., 1994, Exercise 7.26).

The second-order Fibonacci numbers Fn are defined by the recurrence

Fn = Fn−1 + Fn−2 + Fn (n ≥ 2), F0 = 0,F1 = 1.

Express Fn in terms of the usual Fibonacci numbers Fn and Fn+1.

It is an easy matter to compute the recurrence

Fn+4 = 2Fn+3 + Fn+2 − 2Fn+1 − Fn (n ≥ 0);

we use this recurrence as the “C-finite definition” of the second order Fibonacci
numbers Fn. Using the algorithm for problem RatRep, it is a matter of less
than a second to prove that Fn cannot be represented as a rational function
in Fn and Fn+1 alone; and the algorithm for problem AlgRep tells us that Fn

cannot even be represented by an algebraic function in Fn and Fn+1. However,
Fn can be expressed as a polynomial in Fn, Fn+1 and n, and the algorithm for
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problem PolyRep finds the representation Fn = 1
5
(2(n + 1)Fn + nFn+1); see

Section 8 for details. No other algorithm is known to us which provides both
the negative and the positive answers. �

Countless identities in the literature on Fibonacci numbers (Hoggatt, 1979) are
algebraic relations among C-finite sequences of several arguments; Catalan’s
identity

F 2
n − Fn+mFn−m = (−1)n−mF 2

m, (1)

a typical example. With Algorithm 3 (Section 7) all such identities can be
found – and proved – automatically.

2 Problem Specification

In this section, we give a concrete description of the problem that we are
dealing with. The shift operator E is defined on univariate sequences a : Z→ k
by

(E · a)(n) = a(n+ 1) (n ∈ Z).

Polynomials in k[E] represent linear constant coefficient recurrence operators.
For instance, (E2−E−1) ·F = 0 is the recurrence Fn+2−Fn+1−Fn = 0 in op-
erator notation. The i-th partial shift operator Ei is defined on multisequences
a : Zd → k by

(Ei · a)(n1, . . . , ni, . . . , nd) := a(n1, . . . , ni + 1, . . . , nd) (n1, . . . , nd ∈ Z).

Following Zeilberger (1990), we define:

Definition 2 (C-finite sequences and multisequences). A sequence
a : Z → k is C-finite over k iff it is annihilated by some nonzero operator
P ∈ k[E]:

P · a = 0, P ∈ k[E], P 6= 0.

A multisequence a : Zd → k is C-finite over k iff for each i with 1 ≤ i ≤ d
there is a nonzero operator Pi in k[Ei] such that

Pi · a = 0.

If a : Z→ k is a C-finite sequence and α1, . . . , αd are integers, then

b(n1, . . . , nd) = a(α1n1 + · · ·+ αdnd)

is a C-finite multisequence.

Definition 3 (Algebraic Relations). Let k ⊆ K be fields and let S be a set.
The ideal of algebraic relations over k among functions a1, . . . , ar : S → K
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is the kernel of the ring map ϕ : k[x1, . . . , xr] → KS which maps xi to ai for
1 ≤ i ≤ r and which maps elements of k to corresponding constant functions.
We denote it by I(a1, . . . , ar; k). Algebraic relations among sequences and
multisequences are defined by taking S = Z and S = Zd respectively.

By Hilbert’s basis theorem, I(a1, . . . , ar; k) is finitely generated. The aim of
this paper is to give an algorithm for computing generators for I(a1, . . . , ar; Q)
in the case where a1, . . . , ar : Zd → Q are C-finite multisequences:

Problem MCRels.
(Algebraic Relations among C-finite Multisequences)
Input: C-finite multisequences a1, . . . , ar : Zd → Q, where each sequence is
given by d recurrences (one for each argument) and sufficiently many initial
values.
Output: A set {g1, . . . , gm} ⊆ Q[x1, . . . , xr] such that

I(a1, . . . , ar; Q) = 〈g1, . . . , gm〉

Although we focus on sequences in Q, all our results generalize immediately
to sequences in algebraic number fields.

By “sufficiently many” initial values, we mean that the sequences should be
determined uniquely by the recurrence equations and the initial values. To be
precise, if a : Zd → Q is defined by d recurrences having the orders s1, . . . , sd ∈N, respectively, then the specification of all values a(n1, . . . , nd) for 0 ≤ ni < si

(i = 1, . . . , d) would be needed in order to uniquely define a.

For solving Problem MCRels in full generality, we solve special cases of it first:
The algorithm for the C-finite multisequences calls an algorithm for C-finite
univariate sequences. That algorithm, in turn, calls an algorithm for the case
of univariate geometric sequences. In summary, the problem reductions are:

GeoRels (Section 3) ←− CRels (Section 4) ←− MCRels (Section 7)

3 Relations among Geometric Sequences

Let Q̄ be the algebraic closure of Q and Q̄× = Q̄ \ {0}. It is well-known
that any C-finite sequence over Q can be represented in terms of various
geometric sequences n 7→ ζn with ζ ∈ Q̄× and the sequence n 7→ n. (For the
Fibonacci numbers, Binet’s formula (7) gives such a representation.) We study
the algebraic relations among such sequences.
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Problem GeoRels.
(Algebraic Relations among Geometric Sequences)
Input: α ∈ Q̄×, given by q ∈ Q[x]\{0} with q(α) = 0, and ζ1, . . . , ζr ∈ Q(α)×

Output: A set {g1, . . . , gm} ⊆ Q(α)[x0, x1, . . . , xr] such that

I(n, ζn
1 , . . . , ζ

n
r ; Q̄) = 〈g1, . . . , gm〉

where x0 corresponds to the arithmetic sequence n 7→ n, and xi corresponds
to the geometric sequence n 7→ ζn

i , for i = 1, . . . , r.

Multiplicative relations among the numbers ζ1, . . . , ζr immediately imply cor-
responding relations among the geometric sequences ζn

1 , . . . , ζ
n
r : A trivial cal-

culation shows that

r
∏

i=1

(ζn
i )ai −

r
∏

i=1

(ζn
i )bi = 0 (n ∈ Z), (2)

for any integers a1, . . . , ar and b1, . . . , br satisfying

r
∏

i=1

ζai−bi

i = 1. (3)

Observe that the logarithmic map ζ 7→ log ζ turns a multiplicative dependence
∏

i ζ
mi

i = 1 into a Z-linear dependence
∑

imi log ζi = 0. We recall the following
usual definitions (Ge, 1993; Sturmfels et al., 1995).

Definition 4. A lattice is a submodule of the Z-module Zr. The exponent
lattice of nonzero elements ζ1, . . . , ζr of a field is given by

L(ζ1, . . . , ζr) :=
{

(m1, . . . , mr) ∈ Zr :
r
∏

i=1

ζmi

i = 1
}

.

The lattice ideal I(L) of a lattice L ⊆ Zr is the ideal

I(L) :=
〈{ r

∏

i=1

xai

i −
r
∏

i=1

xbi

i : a ∈ Nr, b ∈ Nr, and a− b ∈ L
}〉

of Q̄[x1, . . . , xr].

These definitions allow us to state (2)–(3) concisely as

I(ζn
1 , . . . , ζ

n
r ; Q̄) ⊇ I(L(ζ1, . . . , ζr)). (4)

In fact, equality holds true in (4), and throwing in the linear sequence n 7→ n
does not introduce any new relations:

Proposition 5. The relations among the r + 1 sequences n, ζn
1 , . . . , ζ

n
r over

Q̄ form the ideal of R := Q̄[x0, x1, . . . , xr] generated by the lattice ideal of the
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exponent lattice of ζ1, . . . , ζr:

I(n, ζn
1 , . . . , ζ

n
r ; Q̄) = R I(L(ζ1, . . . , ζr))

Proof. Let I := I(n, ζn
1 , . . . , ζ

n
r ; Q̄) and J := R I(L(ζ1, . . . , ζr)). We already

know that I ⊇ J by (2)–(3). It remains to show I ⊆ J . Let G be a Gröbner
basis of J with respect to some fixed term order ≺. We show that we can
reduce any f ∈ I to 0 by G. Let f ∈ I be arbitrary. Assume that f is totally
reduced by G. We have to show that f = 0. Write f as

f =
∑

a∈S

fa(x0)
r
∏

i=1

xai

i

with a minimal S ⊆ Zr, i.e., with fa 6= 0 for a ∈ S. Since f ∈ I,
∑

a∈S

fa(n)

(

r
∏

i=1

ζai

i

)n

= 0 (5)

for all integers n. In (5), the bases
∏r

i=1 ζ
ai

i of the geometric sequences are
pairwise distinct. (Suppose, to the contrary, that

∏r
i=1 ζ

ai

i =
∏r

i=1 ζ
bi

i for a 6= b
with a ∈ S and b ∈ S. Then f would involve monomials xa0

0

∏r
i=1 x

ai

i and
xb0

0

∏r
i=1 x

bi

i with
∏r

i=1 x
ai

i −
∏r

i=1 x
bi

i ∈ J , contradicting the assumption that
f is totally reduced with respect to G.) Geometric sequences over a field k
with pairwise distinct bases are linearly independent over k[n] (for a proof of
this well-known fact, see, for instance, Milne-Thomson, 1933, Section 13.0).
Therefore, (5) implies that fa = 0 for all a ∈ S. But we assumed fa 6= 0 for
all a ∈ S. So S = ∅, which means that f = 0.

Algorithm 1 is a straightforward implementation of Proposition 5.

Algorithm 1 (solving Problem GeoRels).
Input: α ∈ Q̄×, given by q ∈ Q[x]\{0} with q(α) = 0, and ζ1, . . . , ζr ∈ Q(α)×

Output: A set {g1, . . . , gm} ⊆ Q(α)[x0, x1, . . . , xr] such that

I(n, ζn
1 , . . . , ζ

n
r ; Q̄) = 〈g1, . . . , gm〉 .

1 function GeoRels(ζ1, . . . , ζr)

2 L := ExponentLattice(ζ1, . . . , ζr;α)

3 I := LatticeIdeal(L)

4 return I

It builds on two procedures LatticeIdeal and ExponentLattice, which
solve the following problems:

Problem ExponentLattice.
Input: α ∈ Q̄× and ζ1, . . . , ζr ∈ Q(α)×
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Output: A set {v1, . . . , vt} ⊆ Zr such that

L(ζ1, . . . , ζr) = Zv1 + · · ·+ Zvt.

Problem LatticeIdeal.
Input: A finite set {v1, . . . , vt} of vectors from Zr.
Output: A set {g1, . . . , gm} ⊆ Q̄[x1, . . . , xr] such that

I(Zv1 + · · ·+ Zvt) = 〈g1, . . . , gm〉 .

Ge (1993) gives an efficient algorithm for solving Problem ExponentLattice.
Algorithms for Problem LatticeIdeal can be found, for instance, in (Sturmfels
et al., 1995).

Example 6. What are the algebraic relations among n, ζn
+, ζn

−, and (−1)n

over Q̄, where ζ+ = (1 +
√

5)/2 and ζ− = (1 −
√

5)/2? Ge’s algorithm for
Problem ExponentLattice delivers

L(ζ+, ζ−,−1) = (1, 1, 1)Z+ (0, 0, 2)Z
corresponding to ζ+ζ− = −1 and (−1)2 = 1. Calling LatticeIdeal on that
lattice gives

I(n, ζn
+, ζ

n
−, (−1)n; Q̄) = 〈y1y2 − y3, y

2
3 − 1〉

which means that all algebraic relations among n, ζn
+, ζn

− and (−1)n are con-

sequences of ζn
+ζ

n
− − (−1)n = 0 and ((−1)n)2 − 1 = 0. �

4 Relations among C-finite Sequences over Q

A fundamental and well known fact is that every C-finite sequence a : Z→ k
can be written as a linear combination of geometric sequences with polynomial
coefficients. If a satisfies the recurrence

c0a(n) + c1a(n + 1) + · · ·+ cs−1a(n+ s− 1) + a(n+ s) = 0 (n ∈ Z)

then it has a representation of the form

a(n) = p1(n)ζn
1 + · · ·+ pℓ(n)ζn

ℓ (n ∈ Z) (6)

where ζ1, . . . , ζℓ are the disctinct roots of the characteristic polynomial

c(z) = c0 + c1z + · · ·+ cs−1z
s−1 + zs

and pi(n) is a polynomial in n whose degree is less than the multiplicity of the
root ζi (i = 1, . . . , ℓ). As we may assume c0 6= 0 without loss of generality, we
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can assume that all roots ζi be different from 0. Representation (6) allows us to
reduce the problem of finding all relations among C-finite sequences (Problem
CRels) to the problem of finding all relations among geometric sequences
ζn
1 , . . . , ζ

n
ℓ and the arithmetic sequence n (Problem GeoRels).

Problem CRels.
(Algebraic Relations among C-finite Sequences)
Input: C-finite sequences a1, . . . , ar : Z→ Q, where each sequence is given by
a recurrence and sufficiently many initial values.
Output: A set {g1, . . . , gm} ⊆ Q[x1, . . . , xr] such that

I(a1, . . . , ar;Q) = 〈g1, . . . , gm〉 .

Algorithm 2 receives recurrences for a1, . . . , ar as input, and starts by ex-
pressing them in terms of suitable geometric sequences ζn

i and the arith-
metic sequence n (line 2). Next, it computes a set A of generators for the
ideal J := I(n, ζn

1 , . . . , ζ
n
ℓ ; Q̄) ⊆ Q̄[y0, y1, . . . , yℓ] of relations among these

helper sequences (line 4) by calling Algorithm 1. Since aj(n) =
∑ℓ

i=1 pij(n)ζn
i ,

the ideal I(a1, . . . , ar; Q̄) is the kernel of the ring map ψ : Q̄[x1, . . . , xr] →
Q̄[y0, y1, . . . , yℓ]/J given by

ψ(xj) :=
s
∑

i=1

pij(y0)yi + J, ψ(c) = c+ J for c ∈ Q̄.

A set G of generators for this kernel is computed by elimination using a
Gröbner basis (line 5 – line 8) with respect to a suitable elimination order-
ing; the technique used is based on (Adams and Loustaunau, 1994, Theorem
2.4.2).

Algorithm 2 (solving Problem CRels).
Input: C-finite sequences a1, . . . , ar over Q. Each sequence is given by a re-
currence and initial values.
Output: A set {g1, . . . , gm} ⊆ Q[x1, . . . , xr] such that

I(a1, . . . , ar; Q) = 〈g1, . . . , gm〉 .
1 function CRels(a1, . . . , ar)

2 Compute ζi ∈ Q̄× and pij ∈ Q̄[y0] for i = 1, . . . , ℓ and j = 1, . . . , r
such that aj(n) =

∑ℓ
i=1 pij(n)ζn

i for j = 1, . . . , r and every n ∈ Z.

3 α := PrimitiveElement(ζ1, . . . , ζℓ)

4 A := GeoRels(ζ1, . . . , ζℓ;α) as an ideal of Q̄[y0, . . . , yℓ]

5 B := {xj −
s
∑

i=1

pij(y0) yi : j = 1, . . . , r}

6 Endow R := Q̄[y0, y1, . . . , yℓ, x1, . . . , xr] with an elimination order ≺
that has y0, y1, . . . , yℓ higher than x1, . . . , xr.
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7 G := MonicReducedGröbnerBasis(A∪B) in R with respect to ≺
8 return G ∩Q[x1, . . . , xr]

Example 7. What are the algebraic relations among Fn, Fn+1, and (−1)n

over Q, where Fn is the sequence of Fibonacci numbers?

Factorization of the characteristic polynomial z2 − z − 1 and consideration of
initial values gives Binet’s formula

Fn =
1√
5
ζn
+ −

1√
5
ζn
−, Fn+1 =

1 +
√

5

2
√

5
ζn
+ −

1−
√

5

2
√

5
ζn
− (n ∈ Z), (7)

where ζ± = (1±
√

5)/2 as in Example 6. There we got the result

I(n, ζn
+, ζ

n
−, (−1)n; Q̄) = 〈y1y2 − y3, y

2
3 − 1〉.

By elimination via Buchberger’s algorithm,

I(Fn, Fn+1, (−1)n; Q̄)

=
〈

x1 −
1√
5
y1 +

1√
5
y2, x2 −

1 +
√

5

2
√

5
y1 +

1−
√

5

2
√

5
y2, x3 − y3,

y1y2 − y3, y
2
3 − 1

〉

∩ Q̄[x1, x2, x3]

= 〈x2
1 + x1x2 − x2

2 + x3, x
2
3 − 1〉.

The generators of this ideal correspond to the identities

F 2
n + FnFn+1 − F 2

n+1 + (−1)n = 0 and ((−1)n)2 − 1 = 0;

all other polynomial identities among Fn, Fn+1, and (−1)n are consequences
of those two. �

By construction, Algorithm 2 returns a set of generators G ⊆ Q̄[x1, . . . , xr]
for the ideal I(a1, . . . , ar; Q̄) of Q̄[x1, . . . , xr]. However, Problem CRels asks
for generators G ⊆ Q[x1, . . . , xr] for the ideal I(a1, . . . , ar; Q) of Q[x1, . . . , xr].
For proving Algorithm 2 correct in that sense (Theorem 10 below), we need
two lemmata.

Lemma 8. Let f ∈ K[x1, . . . , xr] be an algebraic relation of some sequences
a1, . . . , ar : Z → k where K is an extension field of k. Then f is a linear
combination of algebraic relations whose coefficients are in k.

Proof. As K is an extension field of k, we can write f as

f = α1f1 + · · ·+ αmfm (8)
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with f1, . . . , fm ∈ k[x1, . . . , xr] and coefficients α1, . . . , αm ∈ K which are
linearly independent over k. We show that f1, . . . , fm are algebraic relations
of a1, . . . , ar. Fix an arbitrary n ∈ Z. As f is an algebraic relation, it follows
by (8) that

α1f1(a1(n), . . . , ar(n)) + · · ·+ αkfk(a1(n), . . . , ar(n)) = 0.

Note that fi(a1(n), . . . , ar(n)) ∈ k for i = 1, . . . , m. As α1, . . . , αm are linearly
independent over k, it follows that fi(a1(n), . . . , ar(n)) = 0 for i = 1, . . . , m.
Therefore, f1, . . . , fm are algebraic relations of a1, . . . , ar.

Lemma 9. Let I ⊆ K[x1, . . . , xr] be the ideal of algebraic relations over K
among sequences a1, . . . , ar that take values in a subfield k of K. Then I has
a finite set of generators in k[x1, . . . , xr], i.e., I is defined over k.

Proof. By Hilbert’s Basis Theorem, I is generated by finitely many elements
of K[x1, . . . , xr].

In that ideal basis, we can replace each element f ∈ K[x1, . . . , xr] by elements
f1, . . . , fm ∈ I ∩ k[x1, . . . , xr] according to Lemma 8.

Theorem 10. Algorithm 2 is correct. Its output G satisfies

(1) G ⊆ Q[x1, . . . , xr],
(2) G generates the ideal I(a1, . . . , ar; Q) of Q[x1, . . . , xr].

Proof. 1. By Lemma 9 with k = Q, K = Q̄ there is an A ⊆ Q[x1, . . . , xr]
that generates I(a1, . . . , ar; Q̄) over Q̄. Let B be the monic reduced Gröbner
basis of A. As computing a Gröbner basis involves only field operations on
the coefficient level, B ⊆ Q[x1, . . . , xr], too. By construction, both G and B
are monic reduced Gröbner bases of I(a1, . . . , ar; Q̄). Since the monic reduced
Gröbner basis of an ideal is unique, G = B, and G ⊆ Q[x1, . . . , xr] follows.

2. Let f ∈ I(a1, . . . , ar; Q) be arbitrary. As G = {g1, . . . , gm} generates
I(a1, . . . , ar; Q̄) over Q̄, we can find, by reduction, cofactors u1, . . . , um in
Q̄[x1, . . . , xr] such that

f = u1g1 + · · ·+ umgm. (9)

But, in fact, u1, . . . , um ∈ Q[x1, . . . , xr]: Both f and g1, . . . , gm have coefficients
in Q, and reduction involves only rational operations on the coefficient level.
By way of (9), G generates I(a1, . . . , ar; Q) over Q.
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5 Separation of C-finite Multisequences

We say that a multisequence a : Zd → k is quasiunivariate if a(n1, . . . , nd)
depends only on one of its d arguments, i.e., if there is an index i and a
sequence b : Z → k such that a(n1, . . . , nd) = b(ni) for all n1, . . . , nd ∈ Z. In
this section we show that any C-finite multisequence can be expressed as a
polynomial in quasiunivariate C-finite multisequences (Theorem 13). We call
such a representation separated. While this result is almost trivial, it is the
key for reducing Problem MCRels to Problem CRels in Section 7. Note that
separated representations are particular to C-finite multisequences; P-finite
multisequences in general do not admit them.

Example 11. The well-known addition theorem for the Fibonacci numbers

Fm+n = Fm+1Fn + FmFn+1 − FmFn

gives a separated representation for Fm+n. �

The sequences annihilated by a fixed recurrence operator P ∈ k[E] of order r
form an r-dimensional vector space over k. The sequences eP,0, . . . , eP,r−1 : Z→
k defined by the recurrence P · eP,i = 0 and the “canonical” initial values

eP,i(n) =







1 if n = i

0 if n 6= i
for 0 ≤ n < r.

form a basis of this vector space. Indeed, any solution a : Z → k of P · a = 0
can be written as

a(n) =
∑

0≤i<r

a(i)eP,i(n) (n ∈ Z). (10)

(Equation (10) is true by induction on n. For the induction step, note that both
sides of it satisfy the same order r recurrence given by P ; for the induction
base, note that both sides agree for n = 0, 1, . . . , r − 1.)

Lemma 12. Let a : Zd → k be a C-finite multisequence satisfying the system
of recurrences P1 · a = 0, . . . , Pd · a = 0 with Pi ∈ k[Ei] \ {0} for i = 1, . . . , d.
Then

a(n1, . . . , nd) :=
∑

0≤i1<r1

· · ·
∑

0≤id<rd

a(i1, . . . , id) eP1,i1(n1) · · · ePd,id(nd). (11)

where ri = degPi for i = 1, . . . , d.

Proof. By induction on d. The induction base d = 1 is Equation (10). Let
(n1, . . . , nd−1) ∈ Zd−1 be arbitrary but fixed and consider a(n1, . . . , nd−1, nd)
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as a univariate sequence in nd. According to Equation (10), it has the repre-
sentation

a(n1, . . . , nd−1, nd) =
∑

0≤id<rd

a(n1, . . . , nd−1, id)ePd,id(nd). (12)

As (n1, . . . , nd−1) was arbitrary, (12) holds for all (n1, . . . , nd) ∈ Zd. Consider
the term a(n1, . . . , nd−1, id) appearing under the sum as a C-finite multise-
quence of d− 1 arguments. By the induction hypothesis, it can be written as
a (d− 1)-fold sum of the shape (11).

Theorem 13. Any C-finite multisequence can be separated: For any C-finite
multisequence a : Zd → k there exists an m ∈ N, C-finite sequences b1, . . . , bm :
Z→ k, and a polynomial f ∈ k[x11, . . . , xdm] such that

a(n1, . . . , nd) = f( b1(n1), . . . , bm(n1),
...

...

b1(nd), . . . , bm(nd) )

for all (n1, . . . , nd) ∈ Zd.

Proof. Equation (11) in Lemma 12 gives a suitable representation.

Theorem 13 states that the set of quasiunivariate multisequences generates
the ring of all C-finite multisequences. Note that Equation (11) shows how to
compute quasiunivariate representations effectively.

6 Separation and Algebraic Relations

Separation leaves us with the problem of computing the ideal I∗ of relations
among quasiunivariate multisequences

b1(n1), . . . , bm(n1),
...

...

b1(nd), . . . , bm(nd)

(13)

where b1, . . . , bm are C-finite. Computing the algebraic relations among the
entries of a fixed row in this table is, essentially, a univariate problem; Algo-
rithm 2 applies. Is I∗ already generated by the union (taken over all the rows)
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of the relations among the entries in one row? Indeed, for R = k[y11, . . . , ydm]
and Ii = I(b1, . . . , bm; k) ⊆ k[yi1, . . . , yim], we have

R/I∗ ∼= k[b1(n1), . . . , bm(n1), . . . . . . , b1(nd), . . . , bm(nd)]

∼=
d
⊗

i=1

k[b1, . . . , bm] ∼=
d
⊗

i=1

k[yi1, . . . , yim]/Ii ∼= R/(RI1 + · · ·+RId),

so it is to be expected that I∗ = RI1 + · · ·+RId. For the sake of completeness,
we shall give a detailed proof of this ideal identity in the remainder of this
section. First we consider the special case d = 2.

Lemma 14. Assume that the functions a1, . . . , ar : U×V → k depend only on
their first argument, i.e., the one in U , while the functions b1, . . . , bs : U×V →
k depend only on their second argument, i.e., the one in V . Let us write their
algebraic relations in the ring R = k[x1, . . . , xr, y1, . . . , ys] where xi corresponds
to ai and yj to bj, for i = 1, . . . , r and j = 1, . . . , s.

(1) Let F be a Gröbner basis for I(a1, . . . , ar; k) and let G be a Gröbner basis
for I(b1, . . . , bs; k) with respect to some fixed term order. Then F ∪ G is
a Gröbner basis for I(a1, . . . , ar, b1, . . . , bs; k).

(2) The relations among a1, . . . , ar, b1, . . . , bs are generated by the relations
among a1, . . . , ar together with the relations among b1, . . . , bs:

I(a1, . . . , ar, b1, . . . , bs; k) = RI(a1, . . . , ar; k) +RI(b1, . . . , bs; k).

Proof. Part 2 immediately follows from Part 1; we prove Part 1.

Let I∗ = I(a1, . . . , ar, b1, . . . , bs; k). To show that F ∪G is a Gröbner basis for
I∗ := I(a1, . . . , ar, b1, . . . , bs; k), it suffices to show (a) that F ∪G ⊆ I∗ and (b)
that any element of I∗ reduces to 0 by F ∪G.

(a) F ∪G ⊆ I∗ since F ⊆ I(a1, . . . , ar; k) ⊆ I∗ and G ⊆ I(b1, . . . , bs; k) ⊆ I∗.

(b) Let f ∈ I∗ be fully reduced with respect to F ∪G. We have to show that
f = 0. Fix an arbitrary u ∈ U . Define a ring map

φu : k[x1, . . . , xr, y1, . . . , ys]→ k[y1, . . . , ys]

fixing k by φu(xi) = ai(u) for i = 1, . . . , r and φu(yi) = yi for i = 1, . . . , s.
Note that f ∈ I∗ implies φu(f) ∈ I(b1, . . . , bs; k). By assumption, f is fully
reduced with respect to G. Since the head terms of elements of G involve only
y1, . . . , ys while they are free of x1, . . . , xr, this implies that also φu(f) is fully
reduced with respect to G. As φu(f) ∈ I(b1, . . . , bs; k) is fully reduced by a
Gröbner basis of I(b1, . . . , bs; k), we know that, in fact, φu(f) = 0.
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Let us write the polynomial f ∈ k[x1, . . . , xr, y1, . . . , ys] as a finite sum

f =
∑

m∈Ns

fm y
m1

1 . . . yms

s (14)

with coefficient polynomials fm ∈ k[x1, . . . , xr]. Since φu(f) = 0, we have
φu(fm) = 0 for all m ∈ Ns. To show that f = 0, it remains to show that
all coefficient polynomials fm vanish. Fix an arbitrary m. As we have shown
φu(fm) = 0 for an arbitrary u ∈ U , we know that fm ∈ I(a1, . . . , ar; k).
Since, by assumption, f is fully reduced with respect to F , and since F ⊆
k[x1, . . . , xr], we know by (14) that also fm is fully reduced with respect to F .
We have shown that fm ∈ I(a1, . . . , ar; k) is fully reduced with respect to a
Gröbner basis of I(a1, . . . , ar; k). Therefore, fm = 0.

Generalizing Lemma 14 from functions of 2 to functions of d arguments is a
simple matter of induction. The result is:

Theorem 15. Consider an array

b11(n1), . . . , b1m(n1)
...

...

bd1(nd), . . . , bdm(nd)

of d×m quasiunivariate multisequences bij : Zd → k, in which multisequences
in the i-th row depend only on their i-th argument ni. Let Ii = I(bi1, . . . , bim; k)
⊆ k[yi1, . . . , yim] be the ideal of relations of the entries in the i-th row, and let
I∗ = I(b11, . . . , bdm; k) ⊆ k[y11, . . . , ydm] be the ideal of relations of all the
entries in the array. Then I∗ is generated by I1, . . . , Id:

I∗ =
d
∑

i=1

k[y11, . . . , ydm]Ii.

Proof. By induction on d. For d = 1, there is nothing to prove. In the induction
step from d to d+1, use Lemma 14 Part 2 with U = Zd, V = Z, (a1, . . . , ar) =
(b1,1, . . . , bd,m), and (b1, . . . , bs) = (bd+1,1, . . . , bd+1,m).

Example 16. Determine the ideal

I∗ := I(Fm, Fm+1, (−1)m, Fn, Fn+1, (−1)n; Q) ⊆ R := Q[x1, x2, x3, y1, y2, y3].

(Notation: Fm stands for the multisequence (m,n) 7→ Fm, etc.)

By Example 7 (twice), both I1 := I(Fm, Fm+1, (−1)m; Q) ⊆ Q[x1, x2, x3] and
I2 := I(Fn, Fn+1, (−1)n; Q) ⊆ Q[y1, y2, y3] are known. Clearly, I∗ contains
RI1 + RI2. The question is whether or not I∗ contains anything beyond that.
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As Fm, Fm+1 and (−1)m depend only on m while Fn, Fn+1 and (−1)n depend
only on n, this is not the case, by Lemma 14. Therefore,

I∗ = 〈x2
1 + x1x2 − x2

2 + x3, x
2
3 − 1, y2

1 + y1y2 − y2
2 + y3, y

2
3 − 1〉.

�

7 Relations among C-finite Multisequences

Now we have all the tools for solving Problem MCRels. All we need to do is
to combine separation (Section 5, Theorem 13) with Theorem 15 and Algo-
rithm 2; the result is Algorithm 3 below. This algorithm, like Algorithm 2,
exploits (Adams and Loustaunau, 1994, Theorem 2.4.2).

Algorithm 3 (solving Problem MCrels).
Input: C-finite multisequences a1, . . . , ar : Zd → Q, where each sequence is
given by d recurrences (one for each argument) and sufficiently many initial
values.
Output: A finite set G ⊆ Q[x1, . . . , xr] generating I(a1, . . . , ar; Q).

1 function MCRels(a1, . . . , ar)

2 Compute a separated representation for a1, . . . , ar. It consists of poly-
nomials p1, . . . , pr ∈ Q[y11, . . . , ydm]and univariate C-finite sequences
b1, . . . , bm : Z→ Q such that

ak(n1, . . . , nd) = pk( b1(n1), . . . , bm(n1),
...

...

b1(nd), . . . , bm(nd) )

for k = 1, . . . , r and all (n1, . . . , nd) ∈ Zd.

3 F := CRels(b1, . . . , bm) as an ideal of Q[z1, . . . , zm].

4 A :=
d
⋃

i=1

{f(yi1, . . . , yim) : f ∈ F}

5 B := {xk − pk : k = 1, . . . , r}
6 Endow R := Q[y11, . . . , ydm; x1, . . . , xr] with a term order ≺ for elimi-

nating y11, . . . , ydm.
7 G := MonicReducedGröbnerBasis(A∪B) in R with respect to ≺
8 return G ∩Q[x1, . . . , xr]

Theorem 17. Algorithm 3 is correct: Its output G generates I(a1, . . . , ar; Q).
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Proof. By the correctness of Algorithm 2 and renaming of variables, the set
{f(yi1, . . . , yim) : f ∈ F} generates the ideal Ii := I(b1(ni), . . . , bm(ni); Q)
⊆ k[yi1, . . . , yim] for i = 1, . . . , d. By Theorem 15, this implies that A generates
I∗ := I(b1(n1), . . . , bm(nd); Q). From the representation of a1, . . . , ar in terms
of b1(n1), . . . , bm(nd) computed in step 2, it follows that I(a1, . . . , ar; Q) is the
kernel of the ring map ψ : Q̄[x1, . . . , xr] → Q[y11, . . . , ydm] given by ψ(xj) :=
pk+I∗ for j = 1, . . . , r and ψ(c) = c+I∗ for c ∈ Q. By (Adams and Loustaunau,
1994, Theorem 2.4.2), the set G computed in Step 5 – Step 8 generates the
kernel of ψ.

8 Finding Representations

It is sometimes of interest to know whether a given C-finite sequence can be
represented in terms of other given C-finite sequences.

Problem Rep (variants: LinRep, PolyRep, RatRep, AlgRep).
Input: A C-finite (multi-)sequence a and C-finite (multi-)sequences b1, . . . , br.
Output: Either a linear combination (resp. a polynomial, resp. a rational
function, resp. an algebraic function) f in r variables such that

a(n1, . . . , nd) = f(b1(n1, . . . , nd), . . . , br(n1, . . . , nd)) (15)

for all (n1, . . . , nd) ∈ Zd or the string “no such representation exists.”

All four variants of the problem can be easily solved by looking at a Gröbner
basis of

I(a, b1, . . . , br; k) ⊆ Q[x0, x1, . . . , xr]

with respect to an elimination ordering for the variable x0 corresponding to a:

(1) A linear combination f = c1x1 + · · · crxr (ci ∈ Q) such that (15) holds
exists if and only if the reduced Gröbner basis contains a polynomial
of the form c0x0 − c1x1 − · · · − crxr for some ci ∈ Q; in this case f =
c1x1 + · · ·+ crxr.

(2) A polynomial f ∈ Q[x1, . . . , xr] such that (15) holds exists if and only if
the reduced Gröbner basis contains a polynomial of the form x0 + q for
some polynomial q ∈ Q[x1, . . . , xm]; in this case, f = −q.

(3) A rational function f ∈ Q(x1, . . . , xr) such that (15) holds exists if and
only if the Gröbner basis contains a polynomial of the form px0 + q for
some polynomials p, q ∈ Q[x1, . . . , xm], p 6= 0; in this case, f = −q/p.

(4) An algebraic function f(x1, . . . , xr) such that (15) holds exists if and only
if the Gröbner basis contains a polynomial in which x0 appears.

From another point of view, Problem Rep is about solving recurrences: We
solve the defining recurrence of a in terms of the sequences b1, . . . , br.
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Example 1 (continued from page 2). A lexicographic Gröbner basis of
I(F(n), Fn, Fn+1; Q) with respect to x0 ≻ x1 ≻ x2 is {−1+x4

1 +2x3
1x2−x2

1x
2
2−

2x1x
3
2 + x4

2}. As the generator of this ideal is free of x0, we can conclude that
there does not exist any algebraic function A with Fn = A(Fn, Fn+1).

Taking the arithmetic sequence n 7→ n into account, we find that a lexicographic
Gröbner basis of I(F(n), Fn, Fn+1, n; Q) with respect to x0 ≻ x1 ≻ x2 ≻ x3 is
{−5x0 +2x1 +2x1x3 +x2x3,−1+x4

1 +2x3
1x2−x2

1x
2
2−2x1x

3
2 +x4

2, 16−40x0x
3
1−

60x0x
2
1x2−8x3

1x2+70x0x1x
2
2−12x2

1x
2
2+45x0x

3
2+14x1x

3
2−16x4

2+16x3−25x4
2x3},

the first generator of which implies Fn = 1
5
(2(n+ 1)Fn + nFn+1). �

9 Minimal Recurrences

A C-finite sequence given by a linear recurrence equation of some order s may
already satisfy a linear recurrence of smaller order than s. The well-known
Berlekamp-Massey-Algorithm can be used for computing the shortest (least
order) linear recurrence that a given C-finite sequence satisfies. More generally,
consider recurrences of the form

a(n+ s) = f
(

a(n), . . . , a(n+ s− 1)
)

(n ∈ Z).

We call such a recurrence linear, polynomial, rational, or algebraic, if f is a
linear combination, a polynomial, a rational function, or an algebraic function
of its arguments, respectively. Given a C-finite sequence, it might also be of
interest to know the minimal order recurrence of any of these types.

Problem MinRec. (variants: LinMinRec, PolyMinRec, RatMinRec,
AlgMinRec)
Input: A C-finite sequence a.
Output: A linear (resp. polynomial, resp. rational, resp. algebraic) recurrence
equation of minimal order satisfied by a.

Problem MinRec and its variants can be easily reduced to the respective vari-
ant of problem Rep. Suppose that a is a univariate C-finite sequence, defined
by a recurrence of order s. To find its minimal recurrence, use the algorithm
for problem Rep to check whether a(n + r) can be expressed in terms of
a(n), . . . , a(n + r − 1), for r = 0, . . . , s − 1. The first representation found
is the smallest recurrence. If no representation is found for any r then the
recurrence by which a was defined is already minimal.

Example 18. For the Fibonacci numbers with even index, F2n, we find the
first order algebraic recurrence

F2(n+1) = 1
2

(

3F2n +
√

4 + 5F 2
2n

)

.
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There does not exist a rational first order recurrence for F2n. �

In Algorithm 3, we have assumed that C-finite multisequences a : Zd → Q
are defined by d separated recurrence equations, one per argument. Other
recurrence equations, which the sequence may satisfy in addition, can be found
by an application of Algorithm 3.

10 C-finite Sequences over Q(z1, . . . , zn)

So far, our algorithms deal with C-finite sequences over the field Q of ra-
tional numbers. In fact, they work also for C-finite sequences over the alge-
braic numbers Q̄ without any modification. In this section, we briefly sketch
how to extend them to C-finite sequences over a field of rational functions
Q(z1, . . . , zn).

It turns out that the only problem with generalizing the algorithms from Q to
Q(z1, . . . , zn) is that Ge’s algorithm ExponentLattice works for algebraic
numbers ζ1, . . . , ζr ∈ Q[α]× with α ∈ Q̄, while for our present generalization
we would need it for algebraic functions ζ1, . . . , ζr ∈ Q(z1, . . . , zn)[α]× with
α ∈ Q(z1, . . . , zn). There is a pragmatic approach for extending Ge’s algo-
rithm to the latter case: To get rid of the indeterminates z1, . . . , zn, substitute
randomly chosen rational numbers z

(1)
1 , . . . , z(1)

n for them in the defining rela-

tions of ζ1, . . . , ζr and α. That way we obtain images ζ
(1)
1 , . . . , ζ (1)

r ∈ Q[α(1)]×,

with α(1) ∈ Q̄, of ζ1, . . . , ζr, except possibly when some ζ
(1)
i has a singular-

ity at (z
(1)
1 , . . . , z(1)

n ), which we can always avoid. Note that any multiplica-
tive relation ζm1

1 · · · ζmr

r = 1 among ζ1, . . . , ζr implies a corresponding relation

(ζ
(1)
1 )m1 · · · (ζ (1)

r )mr = 1 among their images ζ
(1)
1 , . . . , ζ (1)

r . Therefore, the lattice

L = L(ζ1, . . . , ζr) is contained in the lattice L(1) = L(ζ
(1)
1 , . . . , ζ (1)

r ). Genera-
tors for L(1) can be computed by Ge’s algorithm. In unlucky cases, the images
ζ

(1)
1 , . . . , ζ (1)

r may satisfy additional multiplicative relations, and so we cannot
conclude at this point that L = L(1). To make sure that we did not run into an
unlucky case, all we have to do is to check membership in L for each generator
m ∈ Zr of L(1), i.e., to check that indeed ζm1

1 . . . ζmr

r = 1. This can be done,
for instance, by an ideal membership test using Gröbner basis methods. If
this check succeeds, ExponentLattice(ζ1, . . . , ζr) finishes by returning the
generators of L = L(1). Otherwise, in the unlucky case, the algorithm repeats
the same steps with different values for z1, . . . , zn, and so on. Unlucky cases
can be made unlikely by drawing z1, . . . , zn from a large enough (finite) subset
of Qn with uniform probability. It would be interesting to find bounds for the
probability of running into an unlucky case, or, better, to give a deterministic
– but still efficient – algorithm.
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In case we use N different images of ζ1, . . . , ζr, leading to N superlattices
L(1), . . . , L(N) of L, an optimization is possible: As a candidate for L, use their
intersection L(1) ∩ · · · ∩ L(N), as it is, in general, smaller than each of them;
Cohen (1993) describes how to intersect integer lattices.

Example 19. The Chebyshev polynomials of the first kind Tn(z) are C-finite
over Q(z):

Tn+2(z)− 2zTn+1(z) + Tn(z) = 0 (n ∈ Z).

With Algorithm 3 we can compute

I(Tn−m(z), Tn(z), Tm+n(z), Tm(z); Q(z)) =

〈−x1− x3 + 2x2x4, x
2
2 + x2

4− x1x3− 1,−2x3
4 + 2x1x3x4 + 2x4−x1x2− x2x3〉.

The second generator gives the identity

Tm(z)2 + Tn(z)2 − Tn−m(z)Tm+n(z)− 1 = 0

which is a well-known analog of Catalan’s identity (1) for the Chebyshev poly-
nomials. �

11 Examples and Applications

If the ideal of algebraic relations of some C-finite sequences is explicitly known,
then a lot of information about these sequences can be computed algorithmi-
cally.

Proving and Finding Identities

In order to decide whether a conjectured algebraic relation of some given C-
finite multisequences holds, it suffices to compute the ideal of the algebraic
relations of these sequences by Algorithm 3 and to check whether the poly-
nomial corresponding to the conjectured identity belongs to that ideal. For
instance, Catalan’s identity (1) can be proved in that way. Textbooks on Fi-
bonacci numbers (Hoggatt, 1979, e.g.) list dozens of such identities. More
interesting might be that such identities can also be found in an automated
way, provided that it is specified where to search. In order to find, for instance,
an identity that relates Fn, Fm, Fn+m, Fn−m, (−1)n and (−1)m, it is sufficient
to compute

I(Fn, Fm, Fn+m, Fn−m, (−1)n, (−1)m; Q).

The ideal basis returned by Algorithm 3 contains a polynomial corresponding
to (1).
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We are by no means restricted to the Fibonacci numbers. Many other com-
binatorial sequences also obey C-finite recurrences, and Algorithm 2 can be
used to study their algebraic relations.

Example 20. The sequence f defined via

f(n+ 3) = 5f(n+ 2)− 7f(n+ 1) + 4f(n), f(0) = 5
16
, f(1) = 3

4
, f(2) = 2

describes the number of HC-polyominoes for n ≥ 2 (Stanley, 1997, Exam-
ple 4.7.18). With Algorithm 2, we find that f(n), f(n+ 1), f(n+ 2) are alge-
braically dependent with 2n via

22n = 256f(n)3 − 896f(n)2f(n+ 1) + 1104f(n)f(n+ 1)2 − 496f(n+ 1)3

+ 320f(n)2f(n+ 2)− 752f(n)f(n+ 1)f(n+ 2)

+ 512f(n+ 1)2f(n+ 2) + 112f(n)f(n+ 2)2

− 160f(n+ 1)f(n+ 2)2 + 16f(n+ 2)3 (n ≥ 0).

This identity might not have been known before, and it seems hard to prove it
in a combinatorial way.

With the algorithm for Problem AlgRep, we prove that f(n) cannot be repre-
sented as an algebraic function in terms of Fn, Fn+1, (−1)n and n. We do not
know of any other method – combinatorially or not – for proving the absence
of such representations. �

Example 21. The “Tribonacci” numbers Tn, defined via

Tn+3 = Tn + Tn+1 + Tn+2, T0 = 0, T1 = T2 = 1

(Sloane and Plouffe, 1995, A000073), satisfy the identity

T 3
2n + T 2

nT4n + 2T3nT4nT5n + T2nT4nT6n = 2TnT2nT3n + T 3
4n + T2nT

2
5n + T 2

3nT6n.

This identity was discovered by Algorithm 2. It appeared, together with some
further polynomials, as basis element of I(Tn, T2n, . . . , T6n; Q). �

Example 22. For the Perrin numbers Pn (Sloane and Plouffe, 1995, A001608),
defined via

Pn+3 = Pn + Pn+1, P0 = 3, P1 = 0, P2 = 2,

we find

I(Pn, P2n, P3n; Q) = 〈x3
1 − 3x1x2 + 2x3 − 6〉,

and hence the identity P 3
n − 3PnP2n + 2P3n = 6. �
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Solving Recurrences

Example 23. It is easy to see that the sum

a(n) =
n
∑

k=0

(

n

k

)

Fk

satisfies
a(n + 2) = 3a(n+ 1)− a(n), a(0) = 0, a(1) = 1.

Using the algorithm for Problem PolyRep, we can solve this recurrence in
terms of Fibonacci numbers, i.e., b1(n) = Fn and b2(n) = Fn+1, getting

a(n) = Fn(2Fn+1 − Fn)

which is well-known. �

Example 24. The sum

a(n) =
n
∑

k=0

(

n

k

)

Fn+k

satisfies the recurrence

a(n + 2) = 4a(n + 1) + a(n) a(0) = 0, a(1) = 2.

Using the algorithm for Problem PolyRep, we find the representation

a(n) = Fn(2F 2
n − 3FnFn+1 + 3F 2

n+1).

�

Example 25. The sum

a(n) =
n
∑

k=0

(

n

k

)

F2k

satisfies the recurrence

a(n+ 2) = 5a(n + 1)− 5a(n) a(0) = 0, a(1) = 1.

The algorithm for Problem AlgRep proves that a(n) cannot be written as an
algebraic function in n, Fn, and Fn+1. �

Proving Divisibility Relations

Example 26. In order to prove the divisibility property

Ln | L4
n+2m − (L2

2m − 4)2 (n,m ≥ 0) (16)
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for the Lucas numbers Ln defined by Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1, it
suffices to find an identity of the form

L4
n+2m − (L2

2m − 4)2 = q(n,m)Ln (n,m ≥ 0)

for some integer sequence q(n,m). If q(n,m) can itself be expressed in terms
of Ln, L2m, and Ln+2m, then it can be computed. For, if

a := I(Ln, L2m, Ln+2m; Q) = 〈g1, . . . , gℓ〉,

then, by an extended Gröbner basis computation (Becker et al., 1993, Sec-
tion 5.6) we can find polynomials c0, . . . , cℓ such that

x4
3 − (x2

2 − 4)2 = c0x1 + c1g1 + · · ·+ cℓgℓ.

In this way, we have found that

q(n,m) = (Ln − 2Ln+2mL2m)(L2
n + 2L2

n+2m − LnL2m+nL2m)

does the job. (Observe that q(n,m) 6= 0 for all n,m ≥ 0.)

In fact, the present example is even simpler: (16) follows by inspection from

a = 〈−16 + x4
1 + 8x2

2 − x4
2 − 2x3

1 x2x3 + 2x2
1x

2
3 + x2

1x
2
2x

2
3 − 2x1x2x

3
3 + x4

3〉.

�

Example 27. The problem proposed by Furdui (2002) can be treated in a
similar way: Prove that gcd(Ln, Fn+1) = 1 for all n ≥ 1.

Using Algorithm 2, we find that

I(Ln, Fn+1; Q) = 〈x4
1 − 10x3

1x2 + 35x2
1x

2
2 − 50x1x

3
2 + 25x4

2 − 1〉.

Let us denote the generator of this ideal by g. An extended Gröbner basis
computation shows that

1 = (x1)
3 · (x1) + (−10x3

1 + 35x2
1x2 − 50x1x

2
2 + 25x3

2) · (x2) + (−1) · g.

Hence there are integer sequences p(n), q(n) such that

1 = p(n)Ln + q(n)Fn+1 + 0 (n ≥ 1).

The claim follows. �

Example 28. For the sequence a(n) defined via

a(n+ 2) = 5a(n+ 1)− a(n) (n ≥ 0), a(0) = a(1) = 1
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we have
I(a(n), a(n+ 1); Q) = 〈x2

2 + x2
1 + 3− 5x1x2〉.

An immediate consequence is that a(n)a(n+ 1) | a(n+ 1)2 + a(n)2 + 3 for all
n ∈ N. Friendman (1995) has asked for a proof of this divisibility property.
Such problems can easily be generated using our algorithm. �

12 An Implementation

A package for the computer algebra system Mathematica 5 implementing Al-
gorithm 3 is available for download at

http://www.risc.uni-linz.ac.at/research/combinat/software/

It provides a function “Dependencies” which computes the ideal of algebraic
relations among a given list of C-finite multisequences over Q. We illustrate the
usage of this package by a short example, and refer to the user manual (Kauers
and Zimmermann, 2007) for further information.

Example 1 (continued). In order to compute the algebraic relations among
F(n), Fn, Fn+1 and n, we type

In[1]:= Dependencies[{F[n],Fibonacci[n],Fibonacci[n + 1], n}, x,
Where→ {F[n+ 2] == F[n+ 1] + F[n] + Fibonacci[n+ 2],

F[0] == 0,F[1] == 1}]

and obtain in less than a second the following basis:

Out[1]= {−5x1 + 2x2 + 2x2x4 + x3x4,−1 + x4
2 + 2x3

2x3 − x2
2x

2
3 − 2x2x

3
3 + x4

3, 16 −
40x1x

3
2−60x1x

2
2x3−8x3

2x3 +70x1x2x
2
3−12x2

2x
2
3 +45x1x

3
3 +14x2x

3
3−16x4

3 +
16x4 − 25x4

3x4}

�

13 Concluding Remarks

Our algorithm depends heavily on the fact that linear recurrence equations (or
differential equations) with constant coefficients admit closed form solutions
in terms of exponentials and polynomials. In general, this is no longer true if
the coefficients ci(n) in a recurrence equation

c0(n)a(n) + c1(n)a(n+ 1) + · · ·+ cr(n)a(n + r) = 0 (n ∈ Z)
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can be polynomials in n. Solutions a(n) of such recurrence equations are called
P-finite. It would be very interesting to have an algorithm for computing the
algebraic relations among given P-finite sequences. Such an algorithm would
be extremely useful in the field of symbolic summation and integration of
special functions.

Another line of generalization concerns Karr’s ΠΣ-theory. Recall that Karr’s
celebrated summation algorithm (Karr, 1981) is able to determine the alge-
braic relations among terms that are composed of nested indefinite sums and
products (subject to some technical restrictions). For instance, Karr’s algo-
rithm finds

I(
n
∑

k=1

Hk

k
,Hn, H

(2)
n ;Q) = 〈2x1 − x2

2 − x3〉,

where Hk :=
∑n

k=1 1/k and H
(2)
k :=

∑n
k=1 1/k2 denote the Harmonic numbers

and the Harmonic numbers of second order, respectively. Karr’s algorithm re-
quires the constituents of each sum (e.g., k and Hk in the first sum above)
to be algebraically independent. Schneider (2001) has extended Karr’s algo-
rithm such as to allow the appearence of (−1)n in summands. We believe that
with our algorithms, this restriction could be relaxed further. This would for
instance allow to compute a complete list of generators of

I(
n
∑

k=1

1

FkFk+2
, Fn, Fn+1;Q) ⊇ 〈x1x

2
3 − x2

3 + x1x2x3 − x2x3 + 1,

x4
2 + 2x3x

3
2 − x2

3x
2
2 − 2x3

3x2 + x4
3 − 1〉,

which neither Karr’s nor our algorithms can do alone. In particular, such a
generalization would immediately lead to a summation algorithm for nested
sums and products involving arbitrary C-finite sequences.

We did not analyze the complexity of our algorithms. The computation of a
primitive element (Algorithm 2, line 3) is costly and dominates the runtime
in many cases. Experiments suggest that it is the runtime bottleneck if the
degrees of the minimal polynomials for ζ1, . . . , ζℓ exceeds approximately 15.
Less frequently, the runtime bottleneck is the Gröbner basis computation in
Algorithm 2.

Acknowledgement. We wish to thank Peter Paule for helpful discussions, and
two anonymous referees for valuable comments.
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