Pillwein's Proof of Schöberl's Conjecture

Manuel Kauers

currently at INRIA-Rocquencourt usually at RISC-Linz

Polynomial Inequalities

Polynomial Inequalities

... arise regularly as Monthly problems ...

Polynomial Inequalities

... arise regularly as Monthly problems ...
... are often considered difficult ...

Polynomial Inequalities

... arise regularly as Monthly problems ...
... are often considered difficult ...
... but are in fact trivial ...

Polynomial Inequalities

... arise regularly as Monthly problems ...
... are often considered difficult ...
... but are in fact trivial ...
... if we have a fast computer.

Polynomial Inequalities

- Problem 11251 (Marian Tetiva; vol. 113(10), 2006, p. 847): Let a, b, c be positive real numbers, two of which are ≤ 1, satisfying $a b+a c+b c=3$. Show that

$$
\frac{1}{(a+b)^{2}}+\frac{1}{(a+c)^{2}}+\frac{1}{(b+c)^{2}}-\frac{3}{4} \geq \frac{3(a-1)(b-1)(c-1)}{2(a+b)(a+c)(b+c)}
$$

Polynomial Inequalities

- Problem 11251 (Marian Tetiva; vol. 113(10), 2006, p. 847): Let a, b, c be positive real numbers, two of which are ≤ 1, satisfying $a b+a c+b c=3$. Show that

$$
\frac{1}{(a+b)^{2}}+\frac{1}{(a+c)^{2}}+\frac{1}{(b+c)^{2}}-\frac{3}{4} \geq \frac{3(a-1)(b-1)(c-1)}{2(a+b)(a+c)(b+c)}
$$

- Problem 11301 (Finbarr Holland; vol. 114(10), 2007, p. 547): Find the least number M such that for all a, b, c, $\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}$.

Polynomial Inequalities

A Tarski formula is a formula composed of

Polynomial Inequalities

A Tarski formula is a formula composed of

- rational numbers $\left(1,2,-\frac{31}{17}, \ldots\right)$

Polynomial Inequalities

A Tarski formula is a formula composed of

- rational numbers $\left(1,2,-\frac{31}{17}, \ldots\right)$
- variables (x, y, \ldots)

Polynomial Inequalities

A Tarski formula is a formula composed of

- rational numbers $\left(1,2,-\frac{31}{17}, \ldots\right)$
- variables (x, y, \ldots)
- arithmetic operations $(+,-, \cdot, /)$

Polynomial Inequalities

A Tarski formula is a formula composed of

- rational numbers $\left(1,2,-\frac{31}{17}, \ldots\right)$
- variables (x, y, \ldots)
- arithmetic operations $(+,-, \cdot, /)$
- comparison predicates $(=, \neq,<,>, \leq, \geq)$

Polynomial Inequalities

A Tarski formula is a formula composed of

- rational numbers $\left(1,2,-\frac{31}{17}, \ldots\right)$
- variables (x, y, \ldots)
- arithmetic operations $(+,-, \cdot, /)$
- comparison predicates $(=, \neq,<,>, \leq, \geq)$
- boolean operations (\wedge, \vee, \ldots)

Polynomial Inequalities

A Tarski formula is a formula composed of

- rational numbers $\left(1,2,-\frac{31}{17}, \ldots\right)$
- variables (x, y, \ldots)
- arithmetic operations $(+,-, \cdot, /)$
- comparison predicates $(=, \neq,<,>, \leq, \geq)$
- boolean operations (\wedge, \vee, \ldots)
- quantifiers (\forall, \exists)

Polynomial Inequalities

- Problem 11251:

$$
\begin{aligned}
& \forall a, b, c:(a>0 \wedge 1 \geq b>0 \wedge 1 \geq c>0 \wedge a b+a c+b c=3 \\
& \left.\quad \Rightarrow \frac{1}{(a+b)^{2}}+\frac{1}{(a+c)^{2}}+\frac{1}{(b+c)^{2}}-\frac{3}{4} \geq \frac{3(a-1)(b-1)(c-1)}{2(a+b)(a+c)(b+c)}\right)
\end{aligned}
$$

Polynomial Inequalities

- Problem 11251:

$$
\begin{aligned}
& \forall a, b, c:(a>0 \wedge 1 \geq b>0 \wedge 1 \geq c>0 \wedge a b+a c+b c=3 \\
& \left.\quad \Rightarrow \frac{1}{(a+b)^{2}}+\frac{1}{(a+c)^{2}}+\frac{1}{(b+c)^{2}}-\frac{3}{4} \geq \frac{3(a-1)(b-1)(c-1)}{2(a+b)(a+c)(b+c)}\right)
\end{aligned}
$$

- Problem 11301:

$$
\begin{aligned}
& \forall a, b, c:\left(\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right|\right. \\
& \left.\quad \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}\right)
\end{aligned}
$$

Polynomial Inequalities

Theorem. (Tarski, 1948) Every Tarski formula is, as a statement about real numbers, equivalent to a Tarski formula without any quantifiers.

Polynomial Inequalities

Theorem. (Tarski, 1948) Every Tarski formula is, as a statement about real numbers, equivalent to a Tarski formula without any quantifiers.

There are Quantifier Elimination algorithms which take arbitrary Tarski formulas as input and compute an equivalent quantifier free formula.

Polynomial Inequalities

Theorem. (Tarski, 1948) Every Tarski formula is, as a statement about real numbers, equivalent to a Tarski formula without any quantifiers.

There are Quantifier Elimination algorithms which take arbitrary Tarski formulas as input and compute an equivalent quantifier free formula.

One such algorithm is due to Collins (Cylindrical Algebraic Decomposition, CAD, 1975).

Polynomial Inequalities

- Problem 11251:

$$
\begin{aligned}
& \forall a, b, c:(a>0 \wedge 1 \geq b>0 \wedge 1 \geq c>0 \wedge a b+a c+b c=3 \\
& \left.\quad \Rightarrow \frac{1}{(a+b)^{2}}+\frac{1}{(a+c)^{2}}+\frac{1}{(b+c)^{2}}-\frac{3}{4} \geq \frac{3(a-1)(b-1)(c-1)}{2(a+b)(a+c)(b+c)}\right)
\end{aligned}
$$

Polynomial Inequalities

- Problem 11251:

$$
\begin{aligned}
& \forall a, b, c:(a>0 \wedge 1 \geq b>0 \wedge 1 \geq c>0 \wedge a b+a c+b c=3 \\
& \left.\quad \Rightarrow \frac{1}{(a+b)^{2}}+\frac{1}{(a+c)^{2}}+\frac{1}{(b+c)^{2}}-\frac{3}{4} \geq \frac{3(a-1)(b-1)(c-1)}{2(a+b)(a+c)(b+c)}\right) \\
& \xrightarrow{C A D} \text { true }
\end{aligned}
$$

Polynomial Inequalities

- Problem 11251:

$$
\begin{aligned}
& \forall a, b, c:(a>0 \wedge 1 \geq b>0 \wedge 1 \geq c>0 \wedge a b+a c+b c=3 \\
& \left.\quad \Rightarrow \frac{1}{(a+b)^{2}}+\frac{1}{(a+c)^{2}}+\frac{1}{(b+c)^{2}}-\frac{3}{4} \geq \frac{3(a-1)(b-1)(c-1)}{2(a+b)(a+c)(b+c)}\right) \\
& \xrightarrow{C A D} \text { true }
\end{aligned}
$$

- Problem 11301:

$$
\begin{aligned}
& \forall a, b, c:\left(\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right|\right. \\
& \left.\quad \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}\right)
\end{aligned}
$$

Polynomial Inequalities

- Problem 11251:

$$
\begin{aligned}
& \forall a, b, c:(a>0 \wedge 1 \geq b>0 \wedge 1 \geq c>0 \wedge a b+a c+b c=3 \\
& \left.\quad \Rightarrow \frac{1}{(a+b)^{2}}+\frac{1}{(a+c)^{2}}+\frac{1}{(b+c)^{2}}-\frac{3}{4} \geq \frac{3(a-1)(b-1)(c-1)}{2(a+b)(a+c)(b+c)}\right) \\
& \xrightarrow{C A D} \text { true }
\end{aligned}
$$

- Problem 11301:

$$
\begin{aligned}
& \forall a, b, c:\left(\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right|\right. \\
& \left.\quad \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}\right) \\
& \xrightarrow{C A D} M \geq \frac{9}{32} \sqrt{2}
\end{aligned}
$$

Polynomial Inequalities

Message:
 Polynomial inequalities can be proven by CAD without thinking.

Polynomial Inequalities

Message:
 Polynomial inequalities can be proven by CAD without thinking.

The rest of this talk is about inequalities that can be proven by CAD with thinking only.

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n} \geq 1+n x .
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

What exactly does $(x+1)^{n}-(1+n x)$ mean?

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

What exactly does $(x+1)^{n}-(1+n x)$ mean?

- For any specific integer n, it is a polynomial in x.

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

What exactly does $(x+1)^{n}-(1+n x)$ mean?

- For any specific integer n, it is a polynomial in x.
- View $(x+1)^{n}-(1+n x)$ as a sequence of polynomials.

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

What exactly does $(x+1)^{n}-(1+n x)$ mean?

- For any specific integer n, it is a polynomial in x.
- View $(x+1)^{n}-(1+n x)$ as a sequence of polynomials.
- View Bernoulli's inequality as a sequence of polynomial inequalities.

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Can we show Bernoulli's inequality with CAD?

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Can we show Bernoulli's inequality with CAD?
- Can CAD be used to do induction on n ?

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Can we show Bernoulli's inequality with CAD?
- Can CAD be used to do induction on n ?
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Can we show Bernoulli's inequality with CAD?
- Can CAD be used to do induction on n ?
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0
$$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Can we show Bernoulli's inequality with CAD?
- Can CAD be used to do induction on n ?
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0
$$

- Exploit the recurrence $f_{n+1}(x)=(x+1) f_{n}(x)+n x^{2}$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Can we show Bernoulli's inequality with CAD?
- Can CAD be used to do induction on n ?
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow(x+1) f_{n}(x)+n x^{2} \geq 0
$$

- Exploit the recurrence $f_{n+1}(x)=(x+1) f_{n}(x)+n x^{2}$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Can we show Bernoulli's inequality with CAD?
- Can CAD be used to do induction on n ?
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow(x+1) f_{n}(x)+n x^{2} \geq 0
$$

- Exploit the recurrence $f_{n+1}(x)=(x+1) f_{n}(x)+n x^{2}$
- Generalize $f_{n}(x)$ to y and $n \in \mathbb{N}$ to $n \geq 0$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Can we show Bernoulli's inequality with CAD?
- Can CAD be used to do induction on n ?
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \geq 0 \forall y \forall x \geq-1: y \geq 0 \Rightarrow(x+1) y+n x^{2} \geq 0
$$

- Exploit the recurrence $f_{n+1}(x)=(x+1) f_{n}(x)+n x^{2}$
- Generalize $f_{n}(x)$ to y and $n \in \mathbb{N}$ to $n \geq 0$

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Can we show Bernoulli's inequality with CAD?
- Can CAD be used to do induction on n ?
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \geq 0 \forall y \forall x \geq-1: y \geq 0 \Rightarrow(x+1) y+n x^{2} \geq 0
$$

- Exploit the recurrence $f_{n+1}(x)=(x+1) f_{n}(x)+n x^{2}$
- Generalize $f_{n}(x)$ to y and $n \in \mathbb{N}$ to $n \geq 0$
- The resulting formula is indeed true.

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Can we show Bernoulli's inequality with CAD?
- Can CAD be used to do induction on n ?
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0
$$

- This proves the induction step.

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Can we show Bernoulli's inequality with CAD?
- Can CAD be used to do induction on n ?
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0
$$

- This proves the induction step.
- The induction base $0 \geq 0$ is trivial.

Bernoulli's Inequality

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Can we show Bernoulli's inequality with CAD?
- Can CAD be used to do induction on n ?
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0
$$

- This proves the induction step.
- The induction base $0 \geq 0$ is trivial.
- This completes the proof.

Bernoulli's Inequality

Message:
We may use CAD to construct an induction proof for the positivity of a quantity satisfying a recurrence.

Legendre Polynomials

There are other interesting sequences of polynomials.

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$
- $P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$
- $P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$
- $P_{4}(x)=\frac{35}{8} x^{4}-\frac{15}{4} x^{2}+\frac{3}{8}$

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$
- $P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$
- $P_{4}(x)=\frac{35}{8} x^{4}-\frac{15}{4} x^{2}+\frac{3}{8}$

- $P_{5}(x)=\frac{63}{8} x^{5}-\frac{35}{4} x^{3}+\frac{15}{8} x$

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$
- $P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$
- $P_{4}(x)=\frac{35}{8} x^{4}-\frac{15}{4} x^{2}+\frac{3}{8}$

- $P_{5}(x)=\frac{63}{8} x^{5}-\frac{35}{4} x^{3}+\frac{15}{8} x$
- $P_{6}(x)=\frac{231}{16} x^{6}-\frac{315}{16} x^{4}+\frac{105}{16} x^{2}-\frac{5}{16}$

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$
- $P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$
- $P_{4}(x)=\frac{35}{8} x^{4}-\frac{15}{4} x^{2}+\frac{3}{8}$

- $P_{5}(x)=\frac{63}{8} x^{5}-\frac{35}{4} x^{3}+\frac{15}{8} x$
- $P_{6}(x)=\frac{231}{16} x^{6}-\frac{315}{16} x^{4}+\frac{105}{16} x^{2}-\frac{5}{16}$
- $P_{7}(x)=\frac{429}{16} x^{7}-\frac{693}{16} x^{5}+\frac{315}{16} x^{3}-\frac{35}{16} x$

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$
- $P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$
- $P_{4}(x)=\frac{35}{8} x^{4}-\frac{15}{4} x^{2}+\frac{3}{8}$

- $P_{5}(x)=\frac{63}{8} x^{5}-\frac{35}{4} x^{3}+\frac{15}{8} x$
- $P_{6}(x)=\frac{231}{16} x^{6}-\frac{315}{16} x^{4}+\frac{105}{16} x^{2}-\frac{5}{16}$
- $P_{7}(x)=\frac{429}{16} x^{7}-\frac{693}{16} x^{5}+\frac{315}{16} x^{3}-\frac{35}{16} x$
- $P_{8}(x)=\frac{6435}{128} x^{8}-\frac{3003}{32} x^{6}+\frac{3465}{64} x^{4}-\frac{315}{32} x^{2}+\frac{35}{128}$

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.
These polynomials satisfy

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 n+1} \delta_{n, m}
$$

so they are orthogonal to each other.

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.
These polynomials satisfy

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 n+1} \delta_{n, m}
$$

so they are orthogonal to each other.
They also satisfy a recurrence:

$$
(n+2) P_{n+2}(x)-(2 n+3) x P_{n+1}(x)+(n+1) P_{n}(x)=0
$$

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.
These polynomials satisfy

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 n+1} \delta_{n, m}
$$

so they are orthogonal to each other.
They also satisfy a recurrence:

$$
(n+2) P_{n+2}(x)-(2 n+3) x P_{n+1}(x)+(n+1) P_{n}(x)=0
$$

and various interesting inequalities, e.g.,

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow\left|P_{n}(x)\right| \leq 1
$$

Legendre Polynomials

There are other interesting sequences of polynomials.
For example, Legendre Polynomials $P_{n}(x)$.
These polynomials satisfy

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 n+1} \delta_{n, m}
$$

so they are orthogonal to each other.
They also satisfy a recurrence:

$$
(n+2) P_{n+2}(x)-(2 n+3) x P_{n+1}(x)+(n+1) P_{n}(x)=0
$$

and various interesting inequalities, e.g.,

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow\left|P_{n}(x)\right| \leq 1
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

- This is known as Turan's inequality.

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

- This is known as Turan's inequality.
- For specific n, it is just a polynomial inequality.

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

- This is known as Turan's inequality.
- For specific n, it is just a polynomial inequality.
- For general n, it is not easy. (Try it.)

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow \underbrace{P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x)}_{=: \Delta_{n}(x)} \geq 0
$$

- This is known as Turan's inequality.
- For specific n, it is just a polynomial inequality.
- For general n, it is not easy. (Try it.)

A proof for general n can be obtained in the same way as for Bernoulli's inequality.

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

Induction step:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow \underbrace{P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x)}_{=: \Delta_{n}(x)} \geq 0
$$

$$
\forall n \in \mathbb{N} \forall x:\left(-1 \leq x \leq 1 \wedge \Delta_{n}(x) \geq 0\right) \Rightarrow \Delta_{n+1}(x) \geq 0
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

Induction step:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow \underbrace{P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x)}_{=: \Delta_{n}(x)} \geq 0
$$

$$
\forall n \in \mathbb{N} \forall x:\left(-1 \leq x \leq 1 \wedge \Delta_{n}(x) \geq 0\right) \Rightarrow \Delta_{n+1}(x) \geq 0
$$

Use the recurrence for $P_{n}(x)$ to obtain

$$
\begin{aligned}
\Delta_{n}(x)= & \frac{(n+1)}{n+2} P_{n}(x)^{2}-\frac{2 n+3}{n+2} x P_{n+1}(x) P_{n}(x)+P_{n+1}(x)^{2} \\
\Delta_{n+1}(x)= & \frac{(n+1)^{2}}{(n+2)^{2}} P_{n}(x)^{2}-\frac{(n+1)\left(2 n^{2}+9 n+8\right) x}{(n+2)^{2}(n+3)} P_{n+1}(x) P_{n}(x) \\
& +\frac{(n+2)^{3}-(2 n+3) x^{2}}{(n+2)^{2}(n+3)} P_{n+1}(x)^{2}
\end{aligned}
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Relaxing $P_{n}(x)$ to y, and $P_{n+1}(x)$ to z, and $n \in \mathbb{N}$ to $n \geq 0$ leads to the formula

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Relaxing $P_{n}(x)$ to y, and $P_{n+1}(x)$ to z, and $n \in \mathbb{N}$ to $n \geq 0$ leads to the formula

$$
\begin{aligned}
& \forall n \forall x \forall y \forall z:\left(n \geq 0 \wedge x^{2} \leq 1 \wedge \frac{n+1}{n+2} y^{2}-\frac{2 n+3}{n+2} x y z+z^{2} \geq 0\right) \\
& \quad \Rightarrow\left(\frac{(n+1)^{2}}{(n+2)^{2}} y^{2}-\frac{(n+1)\left(2 n^{2}+9 n+8\right) x}{(n+2)^{2}(n+3)} y z+\frac{(n+2)^{3}-(2 n+3) x^{2}}{(n+2)^{2}(n+3)} z^{2} \geq 0\right)
\end{aligned}
$$

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Relaxing $P_{n}(x)$ to y, and $P_{n+1}(x)$ to z, and $n \in \mathbb{N}$ to $n \geq 0$ leads to the formula

$$
\begin{aligned}
& \forall n \forall x \forall y \forall z:\left(n \geq 0 \wedge x^{2} \leq 1 \wedge \frac{n+1}{n+2} y^{2}-\frac{2 n+3}{n+2} x y z+z^{2} \geq 0\right) \\
& \quad \Rightarrow\left(\frac{(n+1)^{2}}{(n+2)^{2}} y^{2}-\frac{(n+1)\left(2 n^{2}+9 n+8\right) x}{(n+2)^{2}(n+3)} y z+\frac{(n+2)^{3}-(2 n+3) x^{2}}{(n+2)^{2}(n+3)} z^{2} \geq 0\right)
\end{aligned}
$$

which is indeed true.

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Relaxing $P_{n}(x)$ to y, and $P_{n+1}(x)$ to z, and $n \in \mathbb{N}$ to $n \geq 0$ leads to the formula

$$
\begin{aligned}
& \forall n \forall x \forall y \forall z:\left(n \geq 0 \wedge x^{2} \leq 1 \wedge \frac{n+1}{n+2} y^{2}-\frac{2 n+3}{n+2} x y z+z^{2} \geq 0\right) \\
& \quad \Rightarrow\left(\frac{(n+1)^{2}}{(n+2)^{2}} y^{2}-\frac{(n+1)\left(2 n^{2}+9 n+8\right) x}{(n+2)^{2}(n+3)} y z+\frac{(n+2)^{3}-(2 n+3) x^{2}}{(n+2)^{2}(n+3)} z^{2} \geq 0\right)
\end{aligned}
$$

which is indeed true. This proves the induction step.

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Relaxing $P_{n}(x)$ to y, and $P_{n+1}(x)$ to z, and $n \in \mathbb{N}$ to $n \geq 0$ leads to the formula

$$
\begin{aligned}
& \forall n \forall x \forall y \forall z:\left(n \geq 0 \wedge x^{2} \leq 1 \wedge \frac{n+1}{n+2} y^{2}-\frac{2 n+3}{n+2} x y z+z^{2} \geq 0\right) \\
& \quad \Rightarrow\left(\frac{(n+1)^{2}}{(n+2)^{2}} y^{2}-\frac{(n+1)\left(2 n^{2}+9 n+8\right) x}{(n+2)^{2}(n+3)} y z+\frac{(n+2)^{3}-(2 n+3) x^{2}}{(n+2)^{2}(n+3)} z^{2} \geq 0\right),
\end{aligned}
$$

which is indeed true. This proves the induction step.
The induction base $\Delta_{0}(x) \geq 0$ is trivial.

Legendre Polynomials: Turan's Inequality

Here is an inequality about $P_{n}(x)$ that can be shown with CAD:

$$
\forall n \in \mathbb{N} \forall x:-1 \leq x \leq 1 \Rightarrow P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Relaxing $P_{n}(x)$ to y, and $P_{n+1}(x)$ to z, and $n \in \mathbb{N}$ to $n \geq 0$ leads to the formula

$$
\begin{aligned}
& \forall n \forall x \forall y \forall z:\left(n \geq 0 \wedge x^{2} \leq 1 \wedge \frac{n+1}{n+2} y^{2}-\frac{2 n+3}{n+2} x y z+z^{2} \geq 0\right) \\
& \quad \Rightarrow\left(\frac{(n+1)^{2}}{(n+2)^{2}} y^{2}-\frac{(n+1)\left(2 n^{2}+9 n+8\right) x}{(n+2)^{2}(n+3)} y z+\frac{(n+2)^{3}-(2 n+3) x^{2}}{(n+2)^{2}(n+3)} z^{2} \geq 0\right)
\end{aligned}
$$

which is indeed true. This proves the induction step.
The induction base $\Delta_{0}(x) \geq 0$ is trivial. This completes the proof.

Legendre Polynomials: Turan's Inequality

Message:

A "deep" special function inequality may be just an immediate consequence of a polynomial inequality.

Legendre Polynomials: Turan's Inequality

Turan's inequality

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq 0
$$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

$$
\text { where } \alpha_{n}=\Delta_{n}(0) \text {. }
$$

Can we show this also by induction?

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

where $\alpha_{n}=\Delta_{n}(0)$.
Can we show this also by induction?
We have the recurrence

$$
\begin{aligned}
& (n+3)(n+4) \alpha_{n+2} \\
& =(2 n+5) \alpha_{n+1}+(n+1)(n+2) \alpha_{n} .
\end{aligned}
$$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

A Tarski formula encoding the induction step would be...

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

$$
\begin{aligned}
& \forall n, x, y, z, a, b:\left(n \geq 0 \wedge x^{2} \leq 1 \wedge \frac{n+1}{n+2} y^{2}-\frac{2 n+3}{n+2} x y z+z^{2} \geq a\left(1-x^{2}\right)\right. \\
& \left.\wedge \frac{(n+1)^{2}}{(n+2)^{2}} y^{2}-\frac{(n+1)\left(2 n^{2}+9 n+8\right) x}{(n+2)^{2}(n+3)} y z+\frac{(n+2)^{3}-(2 n+3) x^{2}}{(n+2)^{2}(n+3)} z^{2} \geq b\left(1-x^{2}\right)\right) \\
& \Rightarrow\left(\frac{(n+1)^{2}\left((n+3)^{3}-(2 n+5) x^{2}\right)}{(n+4)(n+3)^{2}(n+2)^{2}} y^{2}\right. \\
& \quad+\frac{(n+1)\left(2(2 n+3)(2 n+5) x^{2}-\left(2 n^{4}+21 n^{3}+83 n^{2}+142 n+86\right)\right)}{(n+4)(n+3)^{2}(n+2)^{2}} x y z \\
& \quad+\frac{\left((n+4)(n+2)^{4}-(2 n+3)^{2}(2 n+5) x^{4}+(n+1)(2 n+3)(2 n+5) x^{2}\right)}{(n+4)(n+3)(n+2)} z^{2} \\
& \left.\geq \frac{(n+1)(n+2)}{(n+3)(n+4)} a+\frac{(2 n+5)}{(n+3)(n+4)} b\right)
\end{aligned}
$$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

$$
\begin{aligned}
& \forall n, x, y, z, a, b:\left(n \geq 0 \wedge x^{2} \leq 1 \wedge \frac{n+1}{n+2} y^{2}-\frac{2 n+3}{n+2} x y z+z^{2} \geq a\left(1-x^{2}\right)\right. \\
& \left.\wedge \frac{(n+1)^{2}}{(n+2)^{2}} y^{2}-\frac{(n+1)\left(2 n^{2}+9 n+8\right) x}{(n+2)^{2}(n+3)} y z+\frac{(n+2)^{3}-(2 n+3) x^{2}}{(n+2)^{2}(n+3)} z^{2} \geq b\left(1-x^{2}\right)\right) \\
& \Rightarrow\left(\frac{(n+1)^{2}\left((n+3)^{3}-(2 n+5) x^{2}\right)}{(n+4)(n+3)^{2}(n+2)^{2}} y^{2}\right. \\
& \quad+\frac{(n+1)\left(2(2 n+3)(2 n+5) x^{2}-\left(2 n^{4}+21 n^{3}+83 n^{2}+142 n+86\right)\right)}{(n+4)(n+3)^{2}(n+2)^{2}} x y z \\
& \quad+\frac{\left((n+4)(n+2)^{4}-(2 n+3)^{2}(2 n+5) x^{4}+(n+1)(2 n+3)(2 n+5) x^{2}\right)}{(n+4)(n+3)(n+2)} z^{2} \\
& \left.\geq \frac{(n+1)(n+2)}{(n+3)(n+4)} a+\frac{(2 n+5)}{(n+3)(n+4)} b\right) .
\end{aligned}
$$

Unfortunately, this is false.

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

$$
\begin{aligned}
& \forall n, x, y, z, a, b:\left(n \geq 0 \wedge x^{2} \leq 1 \wedge \frac{n+1}{n+2} y^{2}-\frac{2 n+3}{n+2} x y z+z^{2} \geq a\left(1-x^{2}\right)\right. \\
& \left.\wedge \frac{(n+1)^{2}}{(n+2)^{2}} y^{2}-\frac{(n+1)\left(2 n^{2}+9 n+8\right) x}{(n+2)^{2}(n+3)} y z+\frac{(n+2)^{3}-(2 n+3) x^{2}}{(n+2)^{2}(n+3)} z^{2} \geq b\left(1-x^{2}\right)\right) \\
& \Rightarrow\left(\frac{(n+1)^{2}\left((n+3)^{3}-(2 n+5) x^{2}\right)}{(n+4)(n+3)^{2}(n+2)^{2}} y^{2}\right. \\
& \quad+\frac{(n+1)\left(2(2 n+3)(2 n+5) x^{2}-\left(2 n^{4}+21 n^{3}+83 n^{2}+142 n+86\right)\right)}{(n+4)(n+3)^{2}(n+2)^{2}} x y z \\
& \quad+\frac{\left((n+4)(n+2)^{4}-(2 n+3)^{2}(2 n+5) x^{4}+(n+1)(2 n+3)(2 n+5) x^{2}\right)}{(n+4)(n+3)(n+2)} z^{2} \\
& \left.\geq \frac{(n+1)(n+2)}{(n+3)(n+4)} a+\frac{(2 n+5)}{(n+3)(n+4)} b\right) .
\end{aligned}
$$

Unfortunately, this is false. We must be more careful.

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Observations:

- By symmetry, it suffices to consider $x \geq 0$.

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Observations:

- By symmetry, it suffices to consider $x \geq 0$.
- For $x=0$ there is nothing to show.

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Observations:

- By symmetry, it suffices to consider $x \geq 0$.
- For $x=0$ there is nothing to show.
- For $x>0$, it suffices to show that $\Delta_{n}(x) /\left(1-x^{2}\right)$ is increasing.

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Observations:

- By symmetry, it suffices to consider $x \geq 0$.
- For $x=0$ there is nothing to show.
- For $x>0$, it suffices to show that $\Delta_{n}(x) /\left(1-x^{2}\right)$ is increasing.
New idea: Show that $\frac{d}{d x} \frac{\Delta_{n}(x)}{1-x^{2}} \geq 0$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

We have

$$
\begin{aligned}
\frac{d}{d x} \frac{\Delta_{n}(x)}{1-x^{2}}= & \left((n-1) n P_{n}(x)^{2}-\left((2 n+1) x^{2}-1\right) P_{n}(x) P_{n+1}(x)\right. \\
& \left.+(n+1) x P_{n+1}(x)^{2}\right) /\left(n\left(1-x^{2}\right)^{2}\right)
\end{aligned}
$$

Legendre Polynomials: Turan's Inequality

Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

We have

$$
\begin{aligned}
\frac{d}{d x} \frac{\Delta_{n}(x)}{1-x^{2}}= & \left((n-1) n P_{n}(x)^{2}-\left((2 n+1) x^{2}-1\right) P_{n}(x) P_{n+1}(x)\right. \\
& \left.+(n+1) x P_{n+1}(x)^{2}\right) /\left(n\left(1-x^{2}\right)^{2}\right)
\end{aligned}
$$

A positivity proof for the latter expression by CAD and induction on n succeeds.

Legendre Polynomials: Turan's Inequality

Message:
A special function inequality may require some non-obvious manipulation before an induction proof via CAD succeeds.

Schöberl's Conjecture

Schöberl's Conjecture

- In the higher order finite element method (FEM), solutions of PDEs are locally approximated by polynomials.

Schöberl's Conjecture

- In the higher order finite element method (FEM), solutions of PDEs are locally approximated by polynomials.
- Some basis polynomials lead to better numerical performance than the
 standard basis $1, x, x^{2}, x^{3}, \ldots$.

Schöberl's Conjecture

- In the higher order finite element method (FEM), solutions of PDEs are locally approximated by polynomials.
- Some basis polynomials lead to better numerical performance than the
 standard basis $1, x, x^{2}, x^{3}, \ldots$.
- In a certain application, a basis $f_{0}(x), f_{1}(x), f_{2}(x), \ldots$ was needed which satisfies

Schöberl's Conjecture

- In the higher order finite element method (FEM), solutions of PDEs are locally approximated by polynomials.
- Some basis polynomials lead to better numerical performance than the
 standard basis $1, x, x^{2}, x^{3}, \ldots$.
- In a certain application, a basis $f_{0}(x), f_{1}(x), f_{2}(x), \ldots$ was needed which satisfies

$$
\int_{-1}^{1} f_{n}(x) q(x) d x=q(0) \text { for all } q \text { with } \operatorname{deg} q \leq n
$$

Schöberl's Conjecture

- In the higher order finite element method (FEM), solutions of PDEs are locally approximated by polynomials.
- Some basis polynomials lead to better numerical performance than the
 standard basis $1, x, x^{2}, x^{3}, \ldots$.
- In a certain application, a basis $f_{0}(x), f_{1}(x), f_{2}(x), \ldots$ was needed which satisfies
- $\int_{-1}^{1} f_{n}(x) q(x) d x=q(0)$ for all q with $\operatorname{deg} q \leq n$.
- $\int_{-1}^{1}\left|f_{n}(x)\right| \leq C$ for some constant C.

Schöberl's Conjecture

- The Legendre kernel polynomials

$$
k_{n}(x, y):=\frac{n+1}{2(x-y)}\left(P_{n+1}(x) P_{n}(y)-P_{n+1}(y) P_{n}(x)\right)
$$

Schöberl's Conjecture

- The Legendre kernel polynomials

$$
k_{n}(x, y):=\frac{n+1}{2(x-y)}\left(P_{n+1}(x) P_{n}(y)-P_{n+1}(y) P_{n}(x)\right)
$$

have the property

$$
\int_{-1}^{1} k_{n}(x, y) q(x) d x=q(y)
$$

for all q with $\operatorname{deg} q \leq n$.

Schöberl's Conjecture

- The Legendre kernel polynomials

$$
k_{n}(x, y):=\frac{n+1}{2(x-y)}\left(P_{n+1}(x) P_{n}(y)-P_{n+1}(y) P_{n}(x)\right)
$$

have the property

$$
\int_{-1}^{1} k_{n}(x, y) q(x) d x=q(y)
$$

for all q with $\operatorname{deg} q \leq n$.

- So $f_{n}(x):=k_{n}(x, 0)$ satisfies the first condition.

Schöberl's Conjecture

- The Legendre kernel polynomials

$$
k_{n}(x, y):=\frac{n+1}{2(x-y)}\left(P_{n+1}(x) P_{n}(y)-P_{n+1}(y) P_{n}(x)\right)
$$

have the property

$$
\int_{-1}^{1} k_{n}(x, y) q(x) d x=q(y)
$$

for all q with $\operatorname{deg} q \leq n$.

- So $f_{n}(x):=k_{n}(x, 0)$ satisfies the first condition.
- But not the second.

Schöberl's Conjecture

- Schöberl next considered the "gliding averages"

$$
f_{n}(x):=\frac{1}{n+1} \sum_{i=n}^{2 n} k_{i}(x, 0)
$$

Schöberl's Conjecture

- Schöberl next considered the "gliding averages"

$$
f_{n}(x):=\frac{1}{n+1} \sum_{i=n}^{2 n} k_{i}(x, 0)
$$

- He could show that this family does the job

Schöberl's Conjecture

- Schöberl next considered the "gliding averages"

$$
f_{n}(x):=\frac{1}{n+1} \sum_{i=n}^{2 n} k_{i}(x, 0)
$$

- He could show that this family does the job if and only if...

$$
\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x) \geq 0
$$

for all $x \in[-1,1]$ and all $n \in \mathbb{N}$.

Schöberl's Conjecture

- Schöberl next considered the "gliding averages"

$$
f_{n}(x):=\frac{1}{n+1} \sum_{i=n}^{2 n} k_{i}(x, 0)
$$

- He could show that this family does the job if and only if...

$$
\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x) \geq 0
$$

for all $x \in[-1,1]$ and all $n \in \mathbb{N}$.

- Hence was born the Schöberl conjecture.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

- The conjecture seems to be true.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

- The conjecture seems to be true.
- For specific $n \in \mathbb{N}$, it can be shown without thinking.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

- The conjecture seems to be true.
- For specific $n \in \mathbb{N}$, it can be shown without thinking.
- It can be also be shown for $x=-1, x=0, x=+1$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

- The conjecture seems to be true.
- For specific $n \in \mathbb{N}$, it can be shown without thinking.
- It can be also be shown for $x=-1, x=0, x=+1$.
- But a proof for general x, n could not be found for some years.

Schöberl's Conjecture

Message:
 Special function inequalities arise in real world applications.

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

- The Askey-Gasper inequality:

$$
\sum_{k=0}^{n} P_{k}^{(\alpha, 0)} \geq 0 \quad(x \in[-1,1], \alpha \geq-2, n \in \mathbb{N})
$$

where $P_{k}^{(\alpha, \beta)}(x)$ refers to the Jacobi polynomials.

Similar Inequalities

- Fejer's inequality:

$$
\sum_{k=0}^{n} P_{k}(x) \geq 0 \quad(x \in[-1,1], n \in \mathbb{N})
$$

- The Askey-Gasper inequality:

$$
\sum_{k=0}^{n} P_{k}^{(\alpha, 0)} \geq 0 \quad(x \in[-1,1], \alpha \geq-2, n \in \mathbb{N})
$$

where $P_{k}^{(\alpha, \beta)}(x)$ refers to the Jacobi polynomials.
As $P_{k}(x)=P_{k}^{(0,0)}(x)$, it includes Fejer's inequality.

Similar Inequalities

- These inequalities are pretty deep.

Similar Inequalities

- These inequalities are pretty deep.
- Their classical proofs depend on rewriting the sums in terms of squares of other special functions.

Similar Inequalities

- These inequalities are pretty deep.
- Their classical proofs depend on rewriting the sums in terms of squares of other special functions.
- A computer proof would be highly interesting.

Similar Inequalities

- These inequalities are pretty deep.
- Their classical proofs depend on rewriting the sums in terms of squares of other special functions.
- A computer proof would be highly interesting.
- But all attempts to prove them directly by CAD and induction have failed so far.

Similar Inequalities

- These inequalities are pretty deep.
- Their classical proofs depend on rewriting the sums in terms of squares of other special functions.
- A computer proof would be highly interesting.
- But all attempts to prove them directly by CAD and induction have failed so far.
- It is not clear how the inequalities could be reformulated such as to make the proof go through.

Similar Inequalities

- These inequalities are pretty deep.
- Their classical proofs depend on rewriting the sums in terms of squares of other special functions.
- A computer proof would be highly interesting.
- But all attempts to prove them directly by CAD and induction have failed so far.
- It is not clear how the inequalities could be reformulated such as to make the proof go through.
- This is work in progress.

Similar Inequalities

- These inequalities are pretty deep.
- Their classical proofs depend on rewriting the sums in terms of squares of other special functions.
- A computer proof would be highly interesting.
- But all attempts to prove them directly by CAD and induction have failed so far.
- It is not clear how the inequalities could be reformulated such as to make the proof go through.
- This is work in progress.
- Now back to Schöberl's conjecture...

Pillwein's Proof

Pillwein has been able to bring this conjecture into a form for which a proof with CAD and induction succeeds.

Pillwein's Proof

Pillwein has been able to bring this conjecture into a form for which a proof with CAD and induction succeeds.

Her transformation is not trivial. It consists of

Pillwein's Proof

Pillwein has been able to bring this conjecture into a form for which a proof with CAD and induction succeeds.

Her transformation is not trivial. It consists of

- Generalizing the inequality to Jacobi polynomials $P_{n}^{(\alpha, \alpha)}(x)$

Pillwein's Proof

Pillwein has been able to bring this conjecture into a form for which a proof with CAD and induction succeeds.

Her transformation is not trivial. It consists of

- Generalizing the inequality to Jacobi polynomials $P_{n}^{(\alpha, \alpha)}(x)$
- Proving the inequality at the boundary for α

Pillwein's Proof

Pillwein has been able to bring this conjecture into a form for which a proof with CAD and induction succeeds.

Her transformation is not trivial. It consists of

- Generalizing the inequality to Jacobi polynomials $P_{n}^{(\alpha, \alpha)}(x)$
- Proving the inequality at the boundary for α
- Finding a decomposition for general α into two parts

Pillwein's Proof

Pillwein has been able to bring this conjecture into a form for which a proof with CAD and induction succeeds.

Her transformation is not trivial. It consists of

- Generalizing the inequality to Jacobi polynomials $P_{n}^{(\alpha, \alpha)}(x)$
- Proving the inequality at the boundary for α
- Finding a decomposition for general α into two parts
- Proving estimates for each part by hand

Pillwein's Proof

Pillwein has been able to bring this conjecture into a form for which a proof with CAD and induction succeeds.

Her transformation is not trivial. It consists of

- Generalizing the inequality to Jacobi polynomials $P_{n}^{(\alpha, \alpha)}(x)$
- Proving the inequality at the boundary for α
- Finding a decomposition for general α into two parts
- Proving estimates for each part by hand
- Combining the estimates for both components with CAD and induction

Schöberl's conjecture is not sharp

Consider the graph of

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=15$

Schöberl's conjecture is not sharp

Consider the graph of

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=15$ near $x=1$

Schöberl's conjecture is not sharp

Consider the graph of

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=15$ near $x=1$

Schöberl's conjecture is not sharp

Consider the graph of

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=15$ near $x=1$

What is the reason for this gap?

Schöberl's conjecture is not sharp

Consider, more generally, the graph of

$$
S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)
$$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$ near $x=1$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$ near $x=1$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$ near $x=1$

Conjecture: $S_{n}^{\alpha}(x) \geq 0$ for $\alpha \in\left[-\frac{1}{2}, \frac{1}{2}\right], x \in[-1,1], n \in \mathbb{N}$

Schöberl's conjecture is not sharp

Consider, more generally, the graph of
$S_{n}^{\alpha}(x):=\sum_{k=0}^{n}(2 \alpha+4 k+1)(2 n-2 k+1) \frac{\binom{2 k+2 \alpha}{\alpha}}{4^{\alpha}\binom{2 k+\alpha}{\alpha}} P_{2 k}^{(\alpha, \alpha)}(0) P_{2 k}^{(\alpha, \alpha)}(x)$
for $\alpha=1 / 2$ near $x=1$

Conjecture: $S_{n}^{\alpha}(x) \geq 0$ for $\alpha \in\left[-\frac{1}{2}, \frac{1}{2}\right], x \in[-1,1], n \in \mathbb{N}$
Note: $S_{n}(x)=S_{n}^{0}(x)$.

Situation at the boundary

For $\alpha=1 / 2$, the sum $S_{n}^{\alpha}(x)$ can be written in closed form.

Situation at the boundary

For $\alpha=1 / 2$, the sum $S_{n}^{\alpha}(x)$ can be written in closed form.
With $U_{k}(x):=\frac{\pi}{4}\binom{k+1}{1 / 2} P_{k}^{(1 / 2,1 / 2)}(x)$, we have

$$
S_{n}^{1 / 2}(x)=\frac{4}{\pi} \sum_{k=0}^{n}(2 n-2 k+1) U_{2 k}(0) U_{2 k}(x)
$$

Situation at the boundary

For $\alpha=1 / 2$, the sum $S_{n}^{\alpha}(x)$ can be written in closed form.
With $U_{k}(x):=\frac{\pi}{4}\binom{k+1}{1 / 2} P_{k}^{(1 / 2,1 / 2)}(x)$, we have

$$
\begin{aligned}
S_{n}^{1 / 2}(x) & =\frac{4}{\pi} \sum_{k=0}^{n}(2 n-2 k+1) U_{2 k}(0) U_{2 k}(x) \\
& =\frac{2}{\pi x^{2}}\left(1+(-1)^{n}-2(-1)^{n}\left(1-x^{2}\right) U_{n}(x)^{2}\right)
\end{aligned}
$$

Situation at the boundary

For $\alpha=1 / 2$, the sum $S_{n}^{\alpha}(x)$ can be written in closed form.
With $U_{k}(x):=\frac{\pi}{4}\binom{k+1}{1 / 2} P_{k}^{(1 / 2,1 / 2)}(x)$, we have

$$
\begin{aligned}
S_{n}^{1 / 2}(x) & =\frac{4}{\pi} \sum_{k=0}^{n}(2 n-2 k+1) U_{2 k}(0) U_{2 k}(x) \\
& =\frac{2}{\pi x^{2}}\left(1+(-1)^{n}-2(-1)^{n}\left(1-x^{2}\right) U_{n}(x)^{2}\right)
\end{aligned}
$$

This identity was found with symbolic summation.

Situation at the boundary

For $\alpha=1 / 2$, the sum $S_{n}^{\alpha}(x)$ can be written in closed form.
With $U_{k}(x):=\frac{\pi}{4}\binom{k+1}{1 / 2} P_{k}^{(1 / 2,1 / 2)}(x)$, we have

$$
\begin{aligned}
S_{n}^{1 / 2}(x) & =\frac{4}{\pi} \sum_{k=0}^{n}(2 n-2 k+1) U_{2 k}(0) U_{2 k}(x) \\
& =\frac{2}{\pi x^{2}}\left(1+(-1)^{n}-2(-1)^{n}\left(1-x^{2}\right) U_{n}(x)^{2}\right)
\end{aligned}
$$

This identity was found with symbolic summation.

$$
=\frac{4}{\pi x^{2}}\left\{\left(U_{n+1}(x)-x U_{n}(x)\right)^{2} \quad \text { if } n\right. \text { is even }
$$

Situation at the boundary

For $\alpha=1 / 2$, the sum $S_{n}^{\alpha}(x)$ can be written in closed form.
With $U_{k}(x):=\frac{\pi}{4}\binom{k+1}{1 / 2} P_{k}^{(1 / 2,1 / 2)}(x)$, we have

$$
\begin{aligned}
S_{n}^{1 / 2}(x) & =\frac{4}{\pi} \sum_{k=0}^{n}(2 n-2 k+1) U_{2 k}(0) U_{2 k}(x) \\
& =\frac{2}{\pi x^{2}}\left(1+(-1)^{n}-2(-1)^{n}\left(1-x^{2}\right) U_{n}(x)^{2}\right)
\end{aligned}
$$

This identity was found with symbolic summation.

$$
=\frac{4}{\pi x^{2}} \begin{cases}\left(U_{n+1}(x)-x U_{n}(x)\right)^{2} & \text { if } n \text { is even } \\ \left(1-x^{2}\right) U_{n}(x)^{2} & \text { if } n \text { is odd }\end{cases}
$$

Situation at the boundary

The case $\alpha=-1 / 2$ can be handled similarly.

Situation at the boundary

The case $\alpha=-1 / 2$ can be handled similarly.
But for general α, the sum does not have a closed form.

Situation at the boundary

The case $\alpha=-1 / 2$ can be handled similarly.
But for general α, the sum does not have a closed form.
Note: Symbolic summation can also assert the absense of closed forms.

Situation at the boundary

The case $\alpha=-1 / 2$ can be handled similarly.
But for general α, the sum does not have a closed form.
Note: Symbolic summation can also assert the absense of closed forms.

Idea: Write

$$
S_{n}^{\alpha}(x)=g_{n}^{\alpha}(x)-f_{n}^{\alpha}(x)
$$

where $f_{n}^{\alpha}(x)$ is a sum expression that vanishes for $\alpha= \pm 1 / 2$, and $g_{n}^{\alpha}(x)$ is a closed form expression.

Situation at the boundary

The case $\alpha=-1 / 2$ can be handled similarly.
But for general α, the sum does not have a closed form.
Note: Symbolic summation can also assert the absense of closed forms.

Idea: Write

$$
S_{n}^{\alpha}(x)=g_{n}^{\alpha}(x)-f_{n}^{\alpha}(x)
$$

where $f_{n}^{\alpha}(x)$ is a sum expression that vanishes for $\alpha= \pm 1 / 2$, and $g_{n}^{\alpha}(x)$ is a closed form expression.

This can be done in many ways.

Split

A good choice turned out to be

$$
\begin{aligned}
f_{n}^{\alpha}(x)= & \sum_{k=0}^{2 n} \frac{4^{-\alpha}\left(1-4 \alpha^{2}\right)}{(2 \alpha+2 k-1)(2 \alpha+2 k+3)} \frac{\binom{2 \alpha+k}{\alpha}}{\binom{\alpha+k}{\alpha}} P_{k}^{(\alpha, \alpha)}(0) P_{k}^{(\alpha, \alpha)}(x) \\
g_{n}^{\alpha}(x)= & 2^{-2 \alpha-1}(2 n+1) \frac{\binom{2 \alpha+2 n+1}{\alpha}}{\binom{\alpha+2 n}{\alpha}} P_{2 n}^{(\alpha, \alpha)}(0) \\
& \quad \times\left(x P_{2 n+1}^{(\alpha, \alpha)}(x)-\frac{2(\alpha+2 n+1)}{2 \alpha+4 n+3} P_{2 n}^{(\alpha, \alpha)}(x)\right)
\end{aligned}
$$

Split

A good choice turned out to be

$$
\begin{aligned}
f_{n}^{\alpha}(x)= & \sum_{k=0}^{2 n} \frac{4^{-\alpha}\left(1-4 \alpha^{2}\right)}{(2 \alpha+2 k-1)(2 \alpha+2 k+3)} \frac{\binom{2 \alpha+k}{\alpha}}{\binom{\alpha+k}{\alpha}} P_{k}^{(\alpha, \alpha)}(0) P_{k}^{(\alpha, \alpha)}(x) \\
g_{n}^{\alpha}(x)= & 2^{-2 \alpha-1}(2 n+1) \frac{\binom{2 \alpha+2 n+1}{\alpha}}{\binom{\alpha+2 n}{\alpha}} P_{2 n}^{(\alpha, \alpha)}(0) \\
& \quad \times\left(x P_{2 n+1}^{(\alpha, \alpha)}(x)-\frac{2(\alpha+2 n+1)}{2 \alpha+4 n+3} P_{2 n}^{(\alpha, \alpha)}(x)\right)
\end{aligned}
$$

Indeed, for this choice we have

$$
S_{n}^{\alpha}(x)=\frac{1}{x^{2}}\left(g_{n}^{\alpha}(x)-f_{n}^{\alpha}(x)\right) \quad \text { and } \quad f_{n}^{ \pm 1 / 2}(x)=0
$$

Split

A good choice turned out to be

$$
\begin{aligned}
f_{n}^{\alpha}(x)= & \sum_{k=0}^{2 n} \frac{4^{-\alpha}\left(1-4 \alpha^{2}\right)}{(2 \alpha+2 k-1)(2 \alpha+2 k+3)} \frac{\binom{2 \alpha+k}{\alpha}}{\binom{\alpha+k}{\alpha}} P_{k}^{(\alpha, \alpha)}(0) P_{k}^{(\alpha, \alpha)}(x) \\
g_{n}^{\alpha}(x)= & 2^{-2 \alpha-1}(2 n+1) \frac{\binom{2 \alpha+2 n+1}{\alpha}}{\binom{\alpha+2 n}{\alpha}} P_{2 n}^{(\alpha, \alpha)}(0) \\
& \quad \times\left(x P_{2 n+1}^{(\alpha, \alpha)}(x)-\frac{2(\alpha+2 n+1)}{2 \alpha+4 n+3} P_{2 n}^{(\alpha, \alpha)}(x)\right)
\end{aligned}
$$

Indeed, for this choice we have

$$
S_{n}^{\alpha}(x)=\frac{1}{x^{2}}\left(g_{n}^{\alpha}(x)-f_{n}^{\alpha}(x)\right) \quad \text { and } \quad f_{n}^{ \pm 1 / 2}(x)=0
$$

This can be verified (but not discovered!) by symbolic summation.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

The closed form part $g_{n}^{\alpha}(x)$ contains the main oscillations.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

The closed form part $g_{n}^{\alpha}(x)$ contains the main oscillations.

So maybe the sum part $f_{n}^{\alpha}(x)$ is
 now easier to handle.

Split

Now $S_{n}^{\alpha}(x) \geq 0$ is equivalent to $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
Consider $g_{n}^{0}(x)$ and $f_{n}^{0}(x)$ for $n=$ $0, \ldots, 15$.

The closed form part $g_{n}^{\alpha}(x)$ contains the main oscillations.

So maybe the sum part $f_{n}^{\alpha}(x)$ is
 now easier to handle.

Next goal: Find $e_{n}^{\alpha}(x)$ in closed form such that

$$
f_{n}^{\alpha}(x) \leq e_{n}^{\alpha}(x)
$$

Bound the sum

Consider

$$
f_{n}^{\alpha}(x, y)=\sum_{k=0}^{2 n} \frac{4^{-\alpha}\left(1-4 \alpha^{2}\right)}{(2 \alpha+2 k-1)(2 \alpha+2 k+3)} \frac{\binom{2 \alpha+k}{\alpha}}{\binom{\alpha+k}{\alpha}} P_{k}^{(\alpha, \alpha)}(x) P_{k}^{(\alpha, \alpha)}(y)
$$

Bound the sum

Consider

$$
f_{n}^{\alpha}(x, y)=\sum_{k=0}^{2 n} \frac{4^{-\alpha}\left(1-4 \alpha^{2}\right)}{(2 \alpha+2 k-1)(2 \alpha+2 k+3)} \frac{\binom{2 \alpha+k}{\alpha}}{\binom{\alpha+k}{\alpha}} P_{k}^{(\alpha, \alpha)}(x) P_{k}^{(\alpha, \alpha)}(y)
$$

Then $f_{n}^{\alpha}(x)=f_{n}^{\alpha}(x, 0)$.

Bound the sum

Consider

$$
f_{n}^{\alpha}(x, y)=\sum_{k=0}^{2 n} \frac{4^{-\alpha}\left(1-4 \alpha^{2}\right)}{(2 \alpha+2 k-1)(2 \alpha+2 k+3)} \frac{\binom{2 \alpha+k}{\alpha}}{\binom{\alpha+k}{\alpha}} P_{k}^{(\alpha, \alpha)}(x) P_{k}^{(\alpha, \alpha)}(y)
$$

Then $f_{n}^{\alpha}(x)=f_{n}^{\alpha}(x, 0)$.
It can be shown without too much effort that

$$
f_{n}^{\alpha}(x, y) \leq \frac{1}{2}\left(f_{n}^{\alpha}(x, x)+f_{n}^{\alpha}(y, y)\right) \quad\left(\alpha \in\left[-\frac{1}{2}, \frac{1}{2}\right]\right)
$$

Bound the sum

Consider

$$
f_{n}^{\alpha}(x, y)=\sum_{k=0}^{2 n} \frac{4^{-\alpha}\left(1-4 \alpha^{2}\right)}{(2 \alpha+2 k-1)(2 \alpha+2 k+3)} \frac{\binom{2 \alpha+k}{\alpha}}{\binom{\alpha+k}{\alpha}} P_{k}^{(\alpha, \alpha)}(x) P_{k}^{(\alpha, \alpha)}(y)
$$

Then $f_{n}^{\alpha}(x)=f_{n}^{\alpha}(x, 0)$.
It can be shown without too much effort that

$$
f_{n}^{\alpha}(x, y) \leq \frac{1}{2}\left(f_{n}^{\alpha}(x, x)+f_{n}^{\alpha}(y, y)\right) \quad\left(\alpha \in\left[-\frac{1}{2}, \frac{1}{2}\right]\right)
$$

There are closed forms for the sums $f_{n}^{\alpha}(x, x)$ and $f_{n}^{\alpha}(y, y)$.

Bound the sum

Consider

$$
f_{n}^{\alpha}(x, y)=\sum_{k=0}^{2 n} \frac{4^{-\alpha}\left(1-4 \alpha^{2}\right)}{(2 \alpha+2 k-1)(2 \alpha+2 k+3)} \frac{\binom{2 \alpha+k}{\alpha}}{\binom{\alpha+k}{\alpha}} P_{k}^{(\alpha, \alpha)}(x) P_{k}^{(\alpha, \alpha)}(y)
$$

Then $f_{n}^{\alpha}(x)=f_{n}^{\alpha}(x, 0)$.
It can be shown without too much effort that

$$
f_{n}^{\alpha}(x, y) \leq \frac{1}{2}\left(f_{n}^{\alpha}(x, x)+f_{n}^{\alpha}(y, y)\right) \quad\left(\alpha \in\left[-\frac{1}{2}, \frac{1}{2}\right]\right)
$$

There are closed forms for the sums $f_{n}^{\alpha}(x, x)$ and $f_{n}^{\alpha}(y, y)$.
So we may set

$$
e_{n}^{\alpha}(x):=\frac{1}{2}\left(f_{n}^{\alpha}(x, x)+f_{n}^{\alpha}(0,0)\right)
$$

Putting things together...

- We want to show $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.

Putting things together...

- We want to show $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
- We already know that $e_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.

Putting things together...

- We want to show $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
- We already know that $e_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
- Maybe we also have $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)$?

Putting things together...

- We want to show $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
- We already know that $e_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
- Maybe we also have $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)$?

Putting things together...

- We want to show $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
- We already know that $e_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
- Maybe we also have $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)$?

Putting things together...

- We want to show $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
- We already know that $e_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
- Maybe we also have $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)$?

Putting things together...

- We want to show $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
- We already know that $e_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)$.
- Maybe we also have $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)$?

Looks promising. . .

Putting things together...

We have

$$
\begin{aligned}
g_{n}^{\alpha}(x)= & 2^{-2 \alpha-1}(2 n+1) \frac{\binom{2 \alpha+2 n+1}{\alpha}}{\binom{\alpha+2 n}{\alpha}} P_{2 n}^{(\alpha, \alpha)}(0) \\
& \times\left(x P_{2 n+1}^{(\alpha, \alpha)}(x)-\frac{2(\alpha+2 n+1)}{2 \alpha+4 n+3} P_{2 n}^{(\alpha, \alpha)}(x)\right) \\
e_{n}^{\alpha}(x)= & 2^{-2 \alpha-1}(2 n+1) \frac{\binom{2 \alpha+2 n+1}{\alpha}}{\binom{\alpha+2 n}{\alpha}} \\
\times & \left(x P_{2 n}^{(\alpha, \alpha)}(x) P_{2 n+1}^{(\alpha, \alpha)}(x)-\frac{\alpha+2 n+1}{2 \alpha+4 n+3} P_{2 n}^{(\alpha, \alpha)}(x)^{2}\right. \\
& \left.-\frac{\alpha+2 n+1}{2 \alpha+4 n+3} P_{2 n}^{(\alpha, \alpha)}(0)^{2}-\frac{(2 n+1)(2 \alpha+2 n+1)}{(\alpha+2 n+1)(2 \alpha+4 n+1)} P_{2 n+1}^{(\alpha, \alpha)}(x)^{2}\right)
\end{aligned}
$$

Putting things together...

We have

$$
\begin{aligned}
g_{n}^{\alpha}(x)= & 2^{-2 \alpha-1}(2 n+1) \frac{\binom{2 \alpha+2 n+1}{\alpha}}{\binom{\alpha+2 n}{\alpha}} P_{2 n}^{(\alpha, \alpha)}(0) \\
& \times\left(x P_{2 n+1}^{(\alpha, \alpha)}(x)-\frac{2(\alpha+2 n+1)}{2 \alpha+4 n+3} P_{2 n}^{(\alpha, \alpha)}(x)\right) \\
e_{n}^{\alpha}(x)= & 2^{-2 \alpha-1}(2 n+1) \frac{\binom{2 \alpha+2 n+1}{\alpha}}{\binom{\alpha+2 n}{\alpha}} \\
\times & \left(x P_{2 n}^{(\alpha, \alpha)}(x) P_{2 n+1}^{(\alpha, \alpha)}(x)-\frac{\alpha+2 n+1}{2 \alpha+4 n+3} P_{2 n}^{(\alpha, \alpha)}(x)^{2}\right. \\
& \left.-\frac{\alpha+2 n+1}{2 \alpha+4 n+3} P_{2 n}^{(\alpha, \alpha)}(0)^{2}-\frac{(2 n+1)(2 \alpha+2 n+1)}{(\alpha+2 n+1)(2 \alpha+4 n+1)} P_{2 n+1}^{(\alpha, \alpha)}(x)^{2}\right)
\end{aligned}
$$

It remains to show $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)$.

Putting things together...

After some simplifications, it remains to show

$$
\begin{aligned}
(\alpha & +2 n+1)^{2}(2 \alpha+4 n+1)\left(P_{2 n}^{(\alpha, \alpha)}(0)^{2}+P_{2 n}^{(\alpha, \alpha)}(x)^{2}\right) \\
& +(2 n+1)(2 \alpha+2 n+1)(2 \alpha+4 n+3) P_{2 n+1}^{(\alpha, \alpha)}(x)^{2} \\
- & (\alpha+2 n+1)(2 \alpha+4 n+1) \\
& \times(2 \alpha+4 n+3) x P_{2 n}^{(\alpha, \alpha)}(x) P_{2 n+1}^{(\alpha, \alpha)}(x) \geq 0
\end{aligned}
$$

$$
\text { for }-1 \leq x \leq 1 \text { and }-\frac{1}{2} \leq \alpha \leq \frac{1}{2} \text {. }
$$

Putting things together...

After some simplifications, it remains to show

$$
\begin{aligned}
(\alpha & +2 n+1)^{2}(2 \alpha+4 n+1)\left(P_{2 n}^{(\alpha, \alpha)}(0)^{2}+P_{2 n}^{(\alpha, \alpha)}(x)^{2}\right) \\
& +(2 n+1)(2 \alpha+2 n+1)(2 \alpha+4 n+3) P_{2 n+1}^{(\alpha, \alpha)}(x)^{2} \\
- & (\alpha+2 n+1)(2 \alpha+4 n+1) \\
& \times(2 \alpha+4 n+3) x P_{2 n}^{(\alpha, \alpha)}(x) P_{2 n+1}^{(\alpha, \alpha)}(x) \geq 0
\end{aligned}
$$

for $-1 \leq x \leq 1$ and $-\frac{1}{2} \leq \alpha \leq \frac{1}{2}$.
This would still be a hard thing to do by hand.

Putting things together...

After some simplifications, it remains to show

$$
\begin{aligned}
(\alpha & +2 n+1)^{2}(2 \alpha+4 n+1)\left(P_{2 n}^{(\alpha, \alpha)}(0)^{2}+P_{2 n}^{(\alpha, \alpha)}(x)^{2}\right) \\
& +(2 n+1)(2 \alpha+2 n+1)(2 \alpha+4 n+3) P_{2 n+1}^{(\alpha, \alpha)}(x)^{2} \\
- & (\alpha+2 n+1)(2 \alpha+4 n+1) \\
& \times(2 \alpha+4 n+3) x P_{2 n}^{(\alpha, \alpha)}(x) P_{2 n+1}^{(\alpha, \alpha)}(x) \geq 0
\end{aligned}
$$

for $-1 \leq x \leq 1$ and $-\frac{1}{2} \leq \alpha \leq \frac{1}{2}$.
This would still be a hard thing to do by hand. (Try it.)

Putting things together...

After some simplifications, it remains to show

$$
\begin{aligned}
(\alpha+ & 2 n+1)^{2}(2 \alpha+4 n+1)\left(P_{2 n}^{(\alpha, \alpha)}(0)^{2}+P_{2 n}^{(\alpha, \alpha)}(x)^{2}\right) \\
+ & (2 n+1)(2 \alpha+2 n+1)(2 \alpha+4 n+3) P_{2 n+1}^{(\alpha, \alpha)}(x)^{2} \\
- & (\alpha+2 n+1)(2 \alpha+4 n+1) \\
& \times(2 \alpha+4 n+3) x P_{2 n}^{(\alpha, \alpha)}(x) P_{2 n+1}^{(\alpha, \alpha)}(x) \geq 0
\end{aligned}
$$

for $-1 \leq x \leq 1$ and $-\frac{1}{2} \leq \alpha \leq \frac{1}{2}$.
This would still be a hard thing to do by hand. (Try it.)
But CAD and induction on n is applicable here.

Putting things together...

After some simplifications, it remains to show

$$
\begin{aligned}
(\alpha+ & 2 n+1)^{2}(2 \alpha+4 n+1)\left(P_{2 n}^{(\alpha, \alpha)}(0)^{2}+P_{2 n}^{(\alpha, \alpha)}(x)^{2}\right) \\
& +(2 n+1)(2 \alpha+2 n+1)(2 \alpha+4 n+3) P_{2 n+1}^{(\alpha, \alpha)}(x)^{2} \\
& -(\alpha+2 n+1)(2 \alpha+4 n+1) \\
& \quad \times(2 \alpha+4 n+3) x P_{2 n}^{(\alpha, \alpha)}(x) P_{2 n+1}^{(\alpha, \alpha)}(x) \geq 0
\end{aligned}
$$

for $-1 \leq x \leq 1$ and $-\frac{1}{2} \leq \alpha \leq \frac{1}{2}$.
This would still be a hard thing to do by hand. (Try it.)
But CAD and induction on n is applicable here.
A Tarski formula for the induction step is. . .

and leaving the rest to the computer

$\forall n, \alpha, x, y, z, w\left(\left(n \geq 0 \wedge-1 \leq x \leq 1 \wedge-1 \leq 2 \alpha \leq 1 \wedge(2 \alpha+4 n+1)\left(y^{2}+z^{2}\right)(\alpha+2 n+1)^{2}-\right.\right.$ $\left.(2 \alpha+4 n+1)(2 \alpha+4 n+3) w x z(\alpha+2 n+1)+(2 n+1)(2 \alpha+2 n+1)(2 \alpha+4 n+3) w^{2} \geq 0\right) \Rightarrow$ $(2 n+3)(\alpha+2 n+1)^{2}(\alpha+2 n+3)^{2}(2 \alpha+2 n+3)(2 \alpha+4 n+5) y^{2}(\alpha+2 n+2)^{2}+(\alpha+2 n+$ $1)^{2}\left(64 n^{5}-256 x^{2} n^{4}+160 \alpha n^{4}+464 n^{4}+144 \alpha^{2} n^{3}-512 \alpha x^{2} n^{3}-1184 x^{2} n^{3}+928 \alpha n^{3}+1344 n^{3}+\right.$ $56 \alpha^{3} n^{2}+628 \alpha^{2} n^{2}-384 \alpha^{2} x^{2} n^{2}-1776 \alpha x^{2} n^{2}-1984 x^{2} n^{2}+2016 \alpha n^{2}+1944 n^{2}+8 \alpha^{4} n+$ $164 \alpha^{3} n+912 \alpha^{2} n-128 \alpha^{3} x^{2} n-888 \alpha^{2} x^{2} n-1984 \alpha x^{2} n-1434 x^{2} n+1944 \alpha n+1404 n+12 \alpha^{4}+$ $\left.120 \alpha^{3}+441 \alpha^{2}-16 \alpha^{4} x^{2}-148 \alpha^{3} x^{2}-496 \alpha^{2} x^{2}-717 \alpha x^{2}-378 x^{2}+702 \alpha+405\right) z^{2}(\alpha+2 n+2)^{2}-$ $w^{2}\left(-256 n^{7}+4096 x^{4} n^{6}-3072 x^{2} n^{6}-896 \alpha n^{6}-1728 n^{6}+12288 \alpha x^{4} n^{5}+25088 x^{4} n^{5}-1216 \alpha^{2} n^{5}-\right.$ $9216 \alpha x^{2} n^{5}-19968 x^{2} n^{5}-5184 \alpha n^{5}-4864 n^{5}+15360 \alpha^{2} x^{4} n^{4}+62720 \alpha x^{4} n^{4}+62464 x^{4} n^{4}-$ $800 \alpha^{3} n^{4}-5872 \alpha^{2} n^{4}-11008 \alpha^{2} x^{2} n^{4}-49920 \alpha x^{2} n^{4}-53120 x^{2} n^{4}-12160 \alpha n^{4}-7408 n^{4}-$ $256 \alpha^{4} n^{3}+10240 \alpha^{3} x^{4} n^{3}+62720 \alpha^{2} x^{4} n^{3}+124928 \alpha x^{4} n^{3}+81216 x^{4} n^{3}-3104 \alpha^{3} n^{3}-11072 \alpha^{2} n^{3}-$ $6656 \alpha^{3} x^{2} n^{3}-47744 \alpha^{2} x^{2} n^{3}-106240 \alpha x^{2} n^{3}-74176 x^{2} n^{3}-14816 \alpha n^{3}-6592 n^{3}-32 \alpha^{5} n^{2}-$ $752 \alpha^{4} n^{2}+3840 \alpha^{4} x^{4} n^{2}+31360 \alpha^{3} x^{4} n^{2}+93696 \alpha^{2} x^{4} n^{2}+121824 \alpha x^{4} n^{2}+58320 x^{4} n^{2}-4448 \alpha^{3} n^{2}-$
$10192 \alpha^{2} n^{2}-2112 \alpha^{4} x^{2} n^{2}-21696 \alpha^{3} x^{2} n^{2}-76416 \alpha^{2} x^{2} n^{2}-111264 \alpha x^{2} n^{2}-57396 x^{2} n^{2}-$ $9888 \alpha n^{2}-3424 n^{2}-64 \alpha^{5} n-736 \alpha^{4} n+768 \alpha^{5} x^{4} n+7840 \alpha^{4} x^{4} n+31232 \alpha^{3} x^{4} n+60912 \alpha^{2} x^{4} n+$
$58320 \alpha x^{4} n+21978 x^{4} n-2784 \alpha^{3} n-4576 \alpha^{2} n-320 \alpha^{5} x^{2} n-4608 \alpha^{4} x^{2} n-23296 \alpha^{3} x^{2} n-$
$53568 \alpha^{2} x^{2} n-57396 \alpha x^{2} n-23340 x^{2} n-3424 \alpha n-960 n-32 \alpha^{5}-240 \alpha^{4}+64 \alpha^{6} x^{4}+784 \alpha^{5} x^{4}+$ $3904 \alpha^{4} x^{4}+10152 \alpha^{3} x^{4}+14580 \alpha^{2} x^{4}+10989 \alpha x^{4}+3402 x^{4}-640 \alpha^{3}-800 \alpha^{2}-16 \alpha^{6} x^{2}-352 \alpha^{5} x^{2}-$ $\left.2504 \alpha^{4} x^{2}-8240 \alpha^{3} x^{2}-13881 \alpha^{2} x^{2}-11670 \alpha x^{2}-3897 x^{2}-480 \alpha-112\right)(\alpha+2 n+2)^{2}-2(\alpha+2 n+$ 1) $w x\left(128 n^{6}-1024 x^{2} n^{5}+384 \alpha n^{5}+1408 n^{5}+448 \alpha^{2} n^{4}-2560 \alpha x^{2} n^{4}-5504 x^{2} n^{4}+3520 \alpha n^{4}+\right.$ $5592 n^{4}+256 \alpha^{3} n^{3}+3296 \alpha^{2} n^{3}-2560 \alpha^{2} x^{2} n^{3}-11008 \alpha x^{2} n^{3}-11488 x^{2} n^{3}+11184 \alpha n^{3}+10888 n^{3}+$ $72 \alpha^{4} n^{2}+1424 \alpha^{3} n^{2}+7870 \alpha^{2} n^{2}-1280 \alpha^{3} x^{2} n^{2}-8256 \alpha^{2} x^{2} n^{2}-17232 \alpha x^{2} n^{2}-11688 x^{2} n^{2}+$
$16332 \alpha n^{2}+11258 n^{2}+8 \alpha^{5} n+272 \alpha^{4} n+2278 \alpha^{3} n+7692 \alpha^{2} n-320 \alpha^{4} x^{2} n-2752 \alpha^{3} x^{2} n-$ $8616 \alpha^{2} x^{2} n-11688 \alpha x^{2} n-5814 x^{2} n+11258 \alpha n+5940 n+16 \alpha^{5}+220 \alpha^{4}+1124 \alpha^{3}+2669 \alpha^{2}-$ $\left.\left.32 \alpha^{5} x^{2}-344 \alpha^{4} x^{2}-1436 \alpha^{3} x^{2}-2922 \alpha^{2} x^{2}-2907 \alpha x^{2}-1134 x^{2}+2970 \alpha+1257\right) z(\alpha+2 n+2)^{2} \geq 0\right)$

... and leaving the rest to the computer

Mathematica's CAD asserts (after some hours) that this is true.

... and leaving the rest to the computer

Mathematica's CAD asserts (after some hours) that this is true.
This proves that $g_{n+1}^{\alpha}(x) \geq e_{n+1}^{\alpha}(x)$ whenever $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)$.

Mathematica's CAD asserts (after some hours) that this is true.
This proves that $g_{n+1}^{\alpha}(x) \geq e_{n+1}^{\alpha}(x)$ whenever $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)$.
Showing the induction base

$$
g_{0}^{\alpha}(x) \geq e_{0}^{\alpha}(x)
$$

is not a problem.

Mathematica's CAD asserts (after some hours) that this is true.
This proves that $g_{n+1}^{\alpha}(x) \geq e_{n+1}^{\alpha}(x)$ whenever $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)$.
Showing the induction base

$$
\frac{(\alpha+1)\left(2 \alpha x^{2}+3 x^{2}-2\right)}{2(2 \alpha+3)} \geq \frac{\alpha+1}{2 \alpha+3}
$$

is not a problem.

... and leaving the rest to the computer

Mathematica's CAD asserts (after some hours) that this is true.
This proves that $g_{n+1}^{\alpha}(x) \geq e_{n+1}^{\alpha}(x)$ whenever $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)$.
Showing the induction base

$$
\frac{(\alpha+1)\left(2 \alpha x^{2}+3 x^{2}-2\right)}{2(2 \alpha+3)} \geq \frac{\alpha+1}{2 \alpha+3}
$$

is not a problem.
This completes the proof of $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)(n \in \mathbb{N})$.

... and leaving the rest to the computer

Mathematica's CAD asserts (after some hours) that this is true.
This proves that $g_{n+1}^{\alpha}(x) \geq e_{n+1}^{\alpha}(x)$ whenever $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)$.
Showing the induction base

$$
\frac{(\alpha+1)\left(2 \alpha x^{2}+3 x^{2}-2\right)}{2(2 \alpha+3)} \geq \frac{\alpha+1}{2 \alpha+3}
$$

is not a problem.
This completes the proof of $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)(n \in \mathbb{N})$.
This completes the proof of $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)(n \in \mathbb{N})$.

... and leaving the rest to the computer

Mathematica's CAD asserts (after some hours) that this is true.
This proves that $g_{n+1}^{\alpha}(x) \geq e_{n+1}^{\alpha}(x)$ whenever $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)$.
Showing the induction base

$$
\frac{(\alpha+1)\left(2 \alpha x^{2}+3 x^{2}-2\right)}{2(2 \alpha+3)} \geq \frac{\alpha+1}{2 \alpha+3}
$$

is not a problem.
This completes the proof of $g_{n}^{\alpha}(x) \geq e_{n}^{\alpha}(x)(n \in \mathbb{N})$.
This completes the proof of $g_{n}^{\alpha}(x) \geq f_{n}^{\alpha}(x)(n \in \mathbb{N})$.
This completes the proof of Schöberl's conjecture.

Pillwein's Proof

Message:

A special function inequality may require some very non-obvious manipulation before an induction proof via CAD succeeds.

Summary

Summary

- Polynomial inequalities can be proven without thinking.

Summary

- Polynomial inequalities can be proven without thinking.
- We may use CAD to construct an induction proof for a special function inequality.

Summary

- Polynomial inequalities can be proven without thinking.
- We may use CAD to construct an induction proof for a special function inequality.
- Special function inequalities arise in real world applications.

Summary

- Polynomial inequalities can be proven without thinking.
- We may use CAD to construct an induction proof for a special function inequality.
- Special function inequalities arise in real world applications.
- Some "deep" special function inequalities are just an immediate consequence of a polynomial inequality.

Summary

- Polynomial inequalities can be proven without thinking.
- We may use CAD to construct an induction proof for a special function inequality.
- Special function inequalities arise in real world applications.
- Some "deep" special function inequalities are just an immediate consequence of a polynomial inequality.
- Some inequalities require human preprocessing.

Summary

- Polynomial inequalities can be proven without thinking.
- We may use CAD to construct an induction proof for a special function inequality.
- Special function inequalities arise in real world applications.
- Some "deep" special function inequalities are just an immediate consequence of a polynomial inequality.
- Some inequalities require human preprocessing.
- The preprocessing may be hard (if at all possible).

Conclusion

Conclusion

- Classical inequality proofs proceed by reducing the claim to an obvious statement.

Conclusion

- Classical inequality proofs proceed by reducing the claim to an obvious statement.
- Modern inequality proofs proceed by reducing the claim to something that can be done with the computer.

Conclusion

- Classical inequality proofs proceed by reducing the claim to an obvious statement.
- Modern inequality proofs proceed by reducing the claim to something that can be done with the computer.
- Stronger computer algebra methods for proving special function inequalities would be highly appreciated...

Conclusion

- Classical inequality proofs proceed by reducing the claim to an obvious statement.
- Modern inequality proofs proceed by reducing the claim to something that can be done with the computer.
- Stronger computer algebra methods for proving special function inequalities would be highly appreciated. . .
- ... because these inequalities are soo difficult.

