Fast Solvers for Dense Linear Systems

Manuel Kauers

RISC-Linz, Austria

Example

- Suppose you have given a sequence a_{n} of rational numbers, say

$$
\frac{25}{24}, \frac{3898}{4213}, \frac{4774398}{5383247}, \frac{445394100}{509117429}, \frac{1875780301068}{2147400656503}, \frac{445092169340}{507340266747}, \ldots
$$

Example

- Suppose you have given a sequence a_{n} of rational numbers, say

$$
\frac{25}{24}, \frac{3898}{4213}, \frac{4774398}{5383247}, \frac{445394100}{509117429}, \frac{1875780301068}{2147400656503}, \frac{445092169340}{507340266747}, \ldots
$$

- Suppose you suspect that a_{n} can be written as

$$
a_{n}=\operatorname{rat}\left(n, H_{n}, H_{n}^{(2)}, H_{n}^{(3)}\right)
$$

for some rational function rat.

Example

- Suppose you have given a sequence a_{n} of rational numbers, say

$$
\frac{25}{24}, \frac{3898}{4213}, \frac{4774398}{5383247}, \frac{445394100}{509117429}, \frac{1875780301068}{2147400656503}, \frac{445092169340}{507340266747}, \ldots
$$

- Suppose you suspect that a_{n} can be written as

$$
a_{n}=\operatorname{rat}\left(n, H_{n}, H_{n}^{(2)}, H_{n}^{(3)}\right)
$$

for some rational function rat.

- How could you discover such a rational function?

Example

- Suppose you have given a sequence a_{n} of rational numbers, say

$$
\frac{25}{24}, \frac{3898}{4213}, \frac{4774398}{5383247}, \frac{445394100}{509117429}, \frac{1875780301068}{2147400656503}, \frac{445092169340}{507340266747}, \ldots
$$

- Suppose you suspect that a_{n} can be written as

$$
a_{n}=\operatorname{rat}\left(n, H_{n}, H_{n}^{(2)}, H_{n}^{(3)}\right)
$$

for some rational function rat.

- How could you discover such a rational function?
- Make an ansatz!

Example

Find constants $c_{i} \in \mathbb{Q}$ such that

$$
a_{n}=\frac{c_{1}+c_{2} n+c_{3} H_{n}+c_{4} H_{n}^{(2)}+c_{5} H_{n}^{(3)}}{c_{6}+c_{7} n+c_{8} H_{n}+c_{9} H_{n}^{(2)}+c_{10} H_{n}^{(3)}},
$$

Example

Find constants $c_{i} \in \mathbb{Q}$ such that

$$
a_{n}=\frac{c_{1}+c_{2} n+c_{3} H_{n}+c_{4} H_{n}^{(2)}+c_{5} H_{n}^{(3)}}{c_{6}+c_{7} n+c_{8} H_{n}+c_{9} H_{n}^{(2)}+c_{10} H_{n}^{(3)}},
$$

i.e.,

$$
\begin{aligned}
0= & c_{1}+c_{2} n+c_{3} H_{n}+c_{4} H_{n}^{(2)}+c_{5} H_{n}^{(3)} \\
& -c_{6} a_{n}-c_{7} n a_{n}-c_{8} H_{n} a_{n}-c_{9} H_{n}^{(2)} a_{n}-c_{10} H_{n}^{(3)} a_{n}
\end{aligned}
$$

Example

Find constants $c_{i} \in \mathbb{Q}$ such that

$$
a_{n}=\frac{c_{1}+c_{2} n+c_{3} H_{n}+c_{4} H_{n}^{(2)}+c_{5} H_{n}^{(3)}}{c_{6}+c_{7} n+c_{8} H_{n}+c_{9} H_{n}^{(2)}+c_{10} H_{n}^{(3)}}
$$

i.e.,

$$
\begin{aligned}
0= & c_{1}+c_{2} n+c_{3} H_{n}+c_{4} H_{n}^{(2)}+c_{5} H_{n}^{(3)} \\
& -c_{6} a_{n}-c_{7} n a_{n}-c_{8} H_{n} a_{n}-c_{9} H_{n}^{(2)} a_{n}-c_{10} H_{n}^{(3)} a_{n}
\end{aligned}
$$

By plugging in $n=1, \ldots, 10$ we get a dense linear system:

$$
\left(\begin{array}{ccc}
* & \cdots & * \\
\vdots & \ddots & \vdots \\
* & \cdots & *
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{10}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

Example

This system has no solution.

Example

This system has no solution. Try a bigger ansatz:

$$
a_{n}=\frac{c_{1}+\cdots+c_{15} n H_{n} H_{n}^{(2)}+\cdots+c_{30} n^{2}\left(H_{n}^{(3)}\right)^{2}}{c_{31}+\cdots+c_{45} n H_{n} H_{n}^{(2)}+\cdots+c_{60} n^{2}\left(H_{n}^{(3)}\right)^{2}} .
$$

Example

This system has no solution. Try a bigger ansatz:

$$
a_{n}=\frac{c_{1}+\cdots+c_{15} n H_{n} H_{n}^{(2)}+\cdots+c_{30} n^{2}\left(H_{n}^{(3)}\right)^{2}}{c_{31}+\cdots+c_{45} n H_{n} H_{n}^{(2)}+\cdots+c_{60} n^{2}\left(H_{n}^{(3)}\right)^{2}} .
$$

This leads to a system of size 60×60.

Example

This system has no solution. Try a bigger ansatz:

$$
a_{n}=\frac{c_{1}+\cdots+c_{15} n H_{n} H_{n}^{(2)}+\cdots+c_{30} n^{2}\left(H_{n}^{(3)}\right)^{2}}{c_{31}+\cdots+c_{45} n H_{n} H_{n}^{(2)}+\cdots+c_{60} n^{2}\left(H_{n}^{(3)}\right)^{2}} .
$$

This leads to a system of size 60×60.
This system has a solution that corresponds to the closed form

$$
\begin{aligned}
a_{n}=(& (n+3) H_{n}^{2}+(2 n+3) H_{n}+(3 n-2) H_{n}^{(2)} H_{n} \\
& +(2 n-5) H_{n}^{(2)}+\left(n^{2}+n-3\right) H_{n}^{(3)} \\
& \left.+(2 n+17) H_{n}^{(2)} H_{n}^{(3)}\right) /\left(3 n H_{n}^{2}+(5 n-3)\left(H_{n}^{(2)}\right)^{2}\right. \\
& \left.+(6 n+5)\left(H_{n}^{(3)}\right)^{2}+(2 n+3) H_{n}^{(2)}+(7 n-5) H_{n}^{(3)}+1\right)
\end{aligned}
$$

Example

If there had not been a closed form at this point, we would have included cubic terms.

Example

If there had not been a closed form at this point, we would have included cubic terms.
The corresponding system would have been of size 160×160.

Example

If there had not been a closed form at this point, we would have included cubic terms.

The corresponding system would have been of size 160×160. The ugliest coefficient in this system would have been

908832599038694847038986851619916896699069828520278576734313218152228688617842975740915627396600 773096516860514938584475180035408435641902208677547085204403335118857901897921641508178647778278 950903964390545421753413156253428091388374361101038380706238279355922616786499296651605565677324 470873903641969510610033133866940362732235659419739168449043859859310108067614923918419572568852 463851315094097859434813883995756702579167128186328425670763241523886987083882016038071001636239 882720818524396979841994456391528090086739296315810673976687526368697214077911507428570965825294 889257827598342283599564261186266965141843600586071958087703197746205189825787434923775654359633 142865809525435636703214553432835616991039905573484634179460089512753393831372170001034464084815 860074912527360333164889060007697392681240306838092094762240357437235301741257767771407557323331 $98776514572024833132166748245392570781813055455442682338791285775275321 / 608071561520469263771864$ 912900208340519341228462325866654070954648781382761160831047292475594970168876391229713333361460 617524426158506233015628532580104175799899603569619861748499212232349202704257338492766228143557 938393336466485636213537922123315123885938042342534943489837490551827553484761723686376518648743 365387695416861600852713536364490121065994222729396210947647475233184372489732847890966566597135 449686235059997946055799717491204008129578384888903681795059365804600893257023388718806123574709 883282534363429790748372716661107973838303728281458354476754486477224385836362983346375210030954 250430003579185696334806802111301940101874894701556977700464998889377408829983347785295119355949 072698840068582490079977153154387203675675429903671982942691774960800951099556416364355824981174 954670310861065507270681127707808170666366703709841624760002521355747824458767885526659062092840 5585081746477547520000000000000000000000

Example

If there had not been a closed form at this point, we would have included cubic terms.
The corresponding system would have been of size 160×160.
The total size of the system would have been 7.5 Megabytes.

Example

If there had not been a closed form at this point, we would have included cubic terms.
The corresponding system would have been of size 160×160.
The total size of the system would have been 7.5 Megabytes.
And this was only a toy example...

Problem

Given: a matrix $A \in \mathbb{Q}^{n \times n}$
Find: all $x \in \mathbb{Q}^{n}$ such that $A \cdot x=0$.

Problem

Given: a matrix $A \in \mathbb{Q}^{n \times n}$
Find: all $x \in \mathbb{Q}^{n}$ such that $A \cdot x=0$.
This can be done with Gaussian elimination.

Problem

Given: a matrix $A \in \mathbb{Q}^{n \times n}$
Find: all $x \in \mathbb{Q}^{n}$ such that $A \cdot x=0$.
This can be done with Gaussian elimination.

But this is very slow...

Problem

Given: a matrix $A \in \mathbb{Q}^{n \times n}$
Find: all $x \in \mathbb{Q}^{n}$ such that $A \cdot x=0$.
This can be done with Gaussian elimination.

> But this is very slow...
> Observation:
> This seems to be exponential.

Problem

Given: a matrix $A \in \mathbb{Q}^{n \times n}$
Find: all $x \in \mathbb{Q}^{n}$ such that $A \cdot x=0$.
This can be done with Gaussian elimination.

> But this is very slow...
> Observation:
> This seems to be exponential.

Ex: expected runtime for solving a 300×300 system: 10^{33} years.

Problem

Given: a matrix $A \in \mathbb{Q}^{n \times n}$
Find: all $x \in \mathbb{Q}^{n}$ such that $A \cdot x=0$.
This can be done with Gaussian elimination.

> But this is very slow...
> Observation:
> This seems to be exponential.

Ex: expected runtime for solving a 300×300 system: 10^{33} years. (If you are 100000 times faster, you still have to wait 10^{27} years.)

Problem

Why is this?

Problem

Why is this? Gaussian elimination should run in polynomial time.

Problem

Why is this? Gaussian elimination should run in polynomial time.
Indeed it does, but let's have a closer look:

Problem

Why is this? Gaussian elimination should run in polynomial time. Indeed it does, but let's have a closer look:
$\left(\begin{array}{cccc}\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10} \\ \frac{1}{11} & \frac{1}{12} & \frac{1}{13} & \frac{1}{14}\end{array}\right)$

Problem

Why is this? Gaussian elimination should run in polynomial time. Indeed it does, but let's have a closer look:
$\left(\begin{array}{cccc}\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ 0 & \frac{1}{168} & \frac{8}{945} & \frac{1}{105} \\ 0 & \frac{1}{198} & \frac{16}{2145} & \frac{2}{231}\end{array}\right)$

Problem

Why is this? Gaussian elimination should run in polynomial time. Indeed it does, but let's have a closer look:
$\left(\begin{array}{cccc}\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ 0 & \frac{1}{168} & \frac{8}{945} & \frac{1}{105} \\ 0 & 0 & \frac{2}{1216215} & \frac{1}{291060}\end{array}\right)$

Problem

Why is this? Gaussian elimination should run in polynomial time. Indeed it does, but let's have a closer look:
$\left(\begin{array}{cccc}\frac{2}{3648645} & \frac{1}{2432430} & 0 & -\frac{211}{510810300} \\ 0 & \frac{1}{102162060} & 0 & -\frac{4}{297972675} \\ 0 & 0 & \frac{2}{1216215} & \frac{1}{291060}\end{array}\right)$

Problem

Why is this? Gaussian elimination should run in polynomial time. Indeed it does, but let's have a closer look:
$\left(\begin{array}{cccc}\frac{1}{186376544704350} & 0 & 0 & \frac{1}{677732889834000} \\ 0 & \frac{1}{102162060} & 0 & -\frac{4}{297972675} \\ 0 & 0 & \frac{2}{1216215} & \frac{1}{291060}\end{array}\right)$

Problem

Why is this? Gaussian elimination should run in polynomial time. Indeed it does, but let's have a closer look:
$\left(\begin{array}{cccc}1 & 0 & 0 & \frac{11}{40} \\ 0 & 1 & 0 & -\frac{48}{35} \\ 0 & 0 & 1 & \frac{117}{56}\end{array}\right)$

Problem

Why is this? Gaussian elimination should run in polynomial time.
Indeed it does, but let's have a closer look:
$\left(\begin{array}{cccc}1 & 0 & 0 & \frac{11}{40} \\ 0 & 1 & 0 & -\frac{48}{35} \\ 0 & 0 & 1 & \frac{117}{56}\end{array}\right)$

Solution: $\left(\frac{11}{40},-\frac{48}{35}, \frac{117}{56},-1\right)$

Problem

Why is this? Gaussian elimination should run in polynomial time. Indeed it does, but let's have a closer look:
$\left(\begin{array}{cccc}1 & 0 & 0 & \frac{11}{40} \\ 0 & 1 & 0 & -\frac{48}{35} \\ 0 & 0 & 1 & \frac{117}{56}\end{array}\right)$

Solution: $\left(\frac{11}{40},-\frac{48}{35}, \frac{117}{56},-1\right)$
Ugliest intermediate coefficient: $\frac{1}{186376544704350}$

Problem

Why is this? Gaussian elimination should run in polynomial time.
Indeed it does, if numbers could be multiplied in constant time.

Problem

Why is this? Gaussian elimination should run in polynomial time.
Indeed it does, if numbers could be multiplied in constant time.
But in \mathbb{Q}, this time depends on the bitsize of the number.

Problem

Why is this? Gaussian elimination should run in polynomial time.
Indeed it does, if numbers could be multiplied in constant time.
But in \mathbb{Q}, this time depends on the bitsize of the number.
The bitsize of the coefficients doubles at each elimination step.

Problem

Why is this? Gaussian elimination should run in polynomial time.
Indeed it does, if numbers could be multiplied in constant time.
But in \mathbb{Q}, this time depends on the bitsize of the number.
The bitsize of the coefficients doubles at each elimination step.
Therefore, we have

Problem

Why is this? Gaussian elimination should run in polynomial time.
Indeed it does, if numbers could be multiplied in constant time.
But in \mathbb{Q}, this time depends on the bitsize of the number.
The bitsize of the coefficients doubles at each elimination step.
Therefore, we have

- exponential "bit complexity" despite of the

Problem

Why is this? Gaussian elimination should run in polynomial time.
Indeed it does, if numbers could be multiplied in constant time.
But in \mathbb{Q}, this time depends on the bitsize of the number.
The bitsize of the coefficients doubles at each elimination step.
Therefore, we have

- exponential "bit complexity" despite of the
- polynomial "arithmetic complexity".

Problem

Why is this? Gaussian elimination should run in polynomial time.
Indeed it does, if numbers could be multiplied in constant time.
But in \mathbb{Q}, this time depends on the bitsize of the number.
The bitsize of the coefficients doubles at each elimination step.
Therefore, we have

- exponential "bit complexity" despite of the
- polynomial "arithmetic complexity".

What to do?

Problem

Why is this? Gaussian elimination should run in polynomial time.
Indeed it does, if numbers could be multiplied in constant time.
But in \mathbb{Q}, this time depends on the bitsize of the number.
The bitsize of the coefficients doubles at each elimination step.
Therefore, we have

- exponential "bit complexity" despite of the
- polynomial "arithmetic complexity".

What to do? Goal: Find ways to avoid expression swell.

Technique I: Gauss-Bareiss Elimination

Gauss-Bareiss Elimination

This is applicable to integer matrices.

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.

$$
\left(\begin{array}{lllll}
a_{1,1} & a_{1,2} & * & * & * \\
a_{2,1} & a_{2,2} & * & * & * \\
a_{3,1} & a_{3,2} & * & * & * \\
a_{4,1} & a_{4,2} & * & * & * \\
a_{5,1} & a_{5,2} & * & * & *
\end{array}\right)
$$

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.

$$
\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & * * & * * & * * \\
0 & a_{1,1} a_{2,2}-a_{1,2} a_{2,1} & * * & * * & * * \\
0 & a_{1,1} a_{3,2}-a_{1,2} a_{3,1} & * * & * * & * * \\
0 & a_{1,1} a_{4,2}-a_{1,2} a_{4,1} & * * & * * & * * \\
0 & a_{1,1} a_{5,2}-a_{1,2} a_{5,1} & * * & * * & * *
\end{array}\right)
$$

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.

$$
\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & * * * & * * * & * * * \\
0 & a_{1,1} a_{2,2}-a_{1,2} a_{2,1} & * * * & * * * & * * * \\
0 & 0 & * * * & * * * & * * * \\
0 & 0 & * * * & * * * & * * * \\
0 & 0 & * * * & * * * & * * *
\end{array}\right)
$$

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.

$$
\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & * * * & * * * & * * * \\
0 & a_{1,1} a_{2,2}-a_{1,2} a_{2,1} & * * * & * * * & * * * \\
0 & 0 & * * * & * * * & * * * \\
0 & 0 & * * * & * * * & * * * \\
0 & 0 & * * * & * * * & * * *
\end{array}\right)
$$

Thm. All elements in the remaining matrix are divisible by $a_{1,1}$.

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.

$$
\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & * * * & * * * & * * * \\
0 & a_{1,1} a_{2,2}-a_{1,2} a_{2,1} & * * * & * * * & * * * \\
0 & 0 & * * * & * * * & * * * \\
0 & 0 & * * * & * * * & * * * \\
0 & 0 & * * * & * * * & * * *
\end{array}\right)
$$

Thm. All elements in the remaining matrix are divisible by $a_{1,1}$.
$E x . * * *=a_{1,1}\left(-a_{1,4} a_{2,2} a_{4,1}+a_{1,2} a_{2,4} a_{4,1}+a_{1,4} a_{2,1} a_{4,2}\right.$
$\left.-a_{1,1} a_{2,4} a_{4,2}-a_{1,2} a_{2,1} a_{4,4}+a_{1,1} a_{2,2} a_{4,4}\right)$

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.
In general, all entries in the submatrix of step i are divisible by the pivot of step $i-2$.

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.
In general, all entries in the submatrix of step i are divisible by the pivot of step $i-2$.

Keep on dividing out the old pivots!

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.
In general, all entries in the submatrix of step i are divisible by the pivot of step $i-2$.

Keep on dividing out the old pivots!
This division takes some time, but the resulting reduction in expression swell is worth it.

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.
In general, all entries in the submatrix of step i are divisible by the pivot of step $i-2$.

Keep on dividing out the old pivots!
This division takes some time, but the resulting reduction in expression swell is worth it.

In fact, the resulting algorithm as only polynomial bit complexity.

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.
This technique is useless for rational matrices.

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.
This technique is useless for rational matrices.
Given a matrix over \mathbb{Q}, we could clear denominators to obtain a matrix over \mathbb{Z}.

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.
This technique is useless for rational matrices.
Given a matrix over \mathbb{Q}, we could clear denominators to obtain a matrix over \mathbb{Z}.

But this will lead to an explosion in the bitsize of the coefficients.

Gauss-Bareiss Elimination

This is applicable to integer matrices.
Let $A=\left(\left(a_{i, j}\right)\right)$ be such a matrix.
This technique is useless for rational matrices.
Given a matrix over \mathbb{Q}, we could clear denominators to obtain a matrix over \mathbb{Z}.

But this will lead to an explosion in the bitsize of the coefficients.
We need another idea here.

Technique II: Homomorphic Images

Homomorphic Images

Idea: Perform the computation in an algebraic domain where all elements have the same bitsize.

Homomorphic Images

Idea: Perform the computation in an algebraic domain where all elements have the same bitsize.

Let p be a prime number, e.g., $p=7$ or $p=2147483647$.

Homomorphic Images

Idea: Perform the computation in an algebraic domain where all elements have the same bitsize.

Let p be a prime number, e.g., $p=7$ or $p=2147483647$.
Let $\mathbb{Z}_{p}:=\{0,1,2,3, \ldots, p-1\}$.

Homomorphic Images

Idea: Perform the computation in an algebraic domain where all elements have the same bitsize.

Let p be a prime number, e.g., $p=7$ or $p=2147483647$.
Let $\mathbb{Z}_{p}:=\{0,1,2,3, \ldots, p-1\}$.
Define + and on \mathbb{Z}_{p} via

$$
a+b:=(a+b) \bmod p \quad a \cdot b:=(a \cdot b) \bmod p \quad\left(a, b \in \mathbb{Z}_{p}\right)
$$

Homomorphic Images

Idea: Perform the computation in an algebraic domain where all elements have the same bitsize.

Let p be a prime number, e.g., $p=7$ or $p=2147483647$.
Let $\mathbb{Z}_{p}:=\{0,1,2,3, \ldots, p-1\}$.
Define + and . on \mathbb{Z}_{p} via

$$
a+b:=(a+b) \bmod p \quad a \cdot b:=(a \cdot b) \bmod p \quad\left(a, b \in \mathbb{Z}_{p}\right)
$$

Example: $4+5=2$ and $4 \cdot 5=6$ in \mathbb{Z}_{7}.

Homomorphic Images

Idea: Perform the computation in an algebraic domain where all elements have the same bitsize.

Let p be a prime number, e.g., $p=7$ or $p=2147483647$.
Let $\mathbb{Z}_{p}:=\{0,1,2,3, \ldots, p-1\}$.
Define + and . on \mathbb{Z}_{p} via

$$
a+b:=(a+b) \bmod p \quad a \cdot b:=(a \cdot b) \bmod p \quad\left(a, b \in \mathbb{Z}_{p}\right)
$$

Example: $4+5=2$ and $4 \cdot 5=6$ in \mathbb{Z}_{7}.
The algebraic domain \mathbb{Z}_{p} is called a finite field of characteristic p.

Homomorphic Images

The domains \mathbb{Z} and \mathbb{Z}_{p} are closely related:

Homomorphic Images

The domains \mathbb{Z} and \mathbb{Z}_{p} are closely related:
Let $m: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ be the $\operatorname{map} a \mapsto a \bmod p$.

Homomorphic Images

The domains \mathbb{Z} and \mathbb{Z}_{p} are closely related:
Let $m: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ be the map $a \mapsto a \bmod p$.
Then
$m(a+b)=m(a)+m(b), \quad m(a \cdot b)=m(a) \cdot m(b) \quad(a, b \in \mathbb{Z})$.

Homomorphic Images

The domains \mathbb{Z} and \mathbb{Z}_{p} are closely related:
Let $m: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ be the map $a \mapsto a \bmod p$.
Then
$m(a+b)=m(a)+m(b), \quad m(a \cdot b)=m(a) \cdot m(b) \quad(a, b \in \mathbb{Z})$.
The map m is called a homomorphism.

Homomorphic Images

The domains \mathbb{Z} and \mathbb{Z}_{p} are closely related:
Let $m: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ be the $\operatorname{map} a \mapsto a \bmod p$.
Then
$m(a+b)=m(a)+m(b), \quad m(a \cdot b)=m(a) \cdot m(b) \quad(a, b \in \mathbb{Z})$.
The map m is called a homomorphism.
We can extend m from \mathbb{Z} to rational numbers by mapping $u / v \in \mathbb{Q}$ to the solution of $m(v) \cdot x=m(u)$ in \mathbb{Z}_{p}.

Homomorphic Images

The domains \mathbb{Z} and \mathbb{Z}_{p} are closely related:
Let $m: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ be the $\operatorname{map} a \mapsto a \bmod p$.
Then
$m(a+b)=m(a)+m(b), \quad m(a \cdot b)=m(a) \cdot m(b) \quad(a, b \in \mathbb{Z})$.
The map m is called a homomorphism.
We can extend m from \mathbb{Z} to rational numbers by mapping $u / v \in \mathbb{Q}$ to the solution of $m(v) \cdot x=m(u)$ in \mathbb{Z}_{p}.

This will be possible whenever $p \nmid v$ (otherwise $m(v)=0$.)

Homomorphic Images

The domains \mathbb{Z} and \mathbb{Z}_{p} are closely related:
Let $m: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ be the $\operatorname{map} a \mapsto a \bmod p$.
Then
$m(a+b)=m(a)+m(b), \quad m(a \cdot b)=m(a) \cdot m(b) \quad(a, b \in \mathbb{Z})$.
The map m is called a homomorphism.
We can extend m from \mathbb{Z} to rational numbers by mapping $u / v \in \mathbb{Q}$ to the solution of $m(v) \cdot x=m(u)$ in \mathbb{Z}_{p}.

This will be possible whenever $p \nmid v$ (otherwise $m(v)=0$.)
Example: $m(4 / 3)=6$ in \mathbb{Z}_{7}, because $3 \cdot 6=4$ in \mathbb{Z}_{7}.

Homomorphic Images

Global strategy:

$$
A \in \mathbb{Q}^{n \times n}
$$

Homomorphic Images

Global strategy:

$$
\begin{gathered}
A \in \mathbb{Q}^{n \times n} \\
\downarrow \\
m(A) \in \mathbb{Z}_{p}^{n \times n}
\end{gathered}
$$

Homomorphic Images

Global strategy:

$$
\begin{aligned}
& A \in \mathbb{Q}^{n \times n} \\
& \downarrow \\
& m(A) \in \mathbb{Z}_{p}^{n \times n} \quad \xrightarrow{\text { Gauss in } \mathbb{Z}_{p}} m(x) \in \mathbb{Z}_{p}^{n}
\end{aligned}
$$

Homomorphic Images

Global strategy:

Homomorphic Images

Global strategy:

- Feature: Gaussian elimination in \mathbb{Z}_{p} has polynomial bit complexity.

Homomorphic Images

Global strategy:

- Feature: Gaussian elimination in \mathbb{Z}_{p} has polynomial bit complexity.
- Problem: m is not invertible. How to "lift" $m(x)$ to x ?

Homomorphic Images

- Problem: m is not invertible. How to "lift" $m(x)$ to x ?

Homomorphic Images

- Problem: m is not invertible. How to "lift" $m(x)$ to x ?
- To do: Given $a \in \mathbb{Z}_{p}$, find $u / v \in \mathbb{Q}$ with $m(u / v)=a$.

Homomorphic Images

- Problem: m is not invertible. How to "lift" $m(x)$ to x ?
- To do: Given $a \in \mathbb{Z}_{p}$, find $u / v \in \mathbb{Q}$ with $m(u / v)=a$.
- One possible solution is $a / 1$.

Homomorphic Images

- Problem: m is not invertible. How to "lift" $m(x)$ to x ?
- To do: Given $a \in \mathbb{Z}_{p}$, find $u / v \in \mathbb{Q}$ with $m(u / v)=a$.
- One possible solution is $a / 1$.
- We want the solution u / v where $\max (|u|,|v|)$ is minimal.

Homomorphic Images

- Problem: m is not invertible. How to "lift" $m(x)$ to x ?
- To do: Given $a \in \mathbb{Z}_{p}$, find $u / v \in \mathbb{Q}$ with $m(u / v)=a$.
- One possible solution is $a / 1$.
- We want the solution u / v where $\max (|u|,|v|)$ is minimal.
- Example: For $a=3, p=7$, we want to obtain $-1 / 2$.

Homomorphic Images

- Problem: m is not invertible. How to "lift" $m(x)$ to x ?
- To do: Given $a \in \mathbb{Z}_{p}$, find $u / v \in \mathbb{Q}$ with $m(u / v)=a$.
- One possible solution is $a / 1$.
- We want the solution u / v where $\max (|u|,|v|)$ is minimal.
- Example: For $a=3, p=7$, we want to obtain $-1 / 2$.
- Example: For $a=209510601, p=2147483647$, we want to obtain 53/41.

Homomorphic Images

- Problem: m is not invertible. How to "lift" $m(x)$ to x ?
- To do: Given $a \in \mathbb{Z}_{p}$, find $u / v \in \mathbb{Q}$ with $m(u / v)=a$.
- One possible solution is $a / 1$.
- We want the solution u / v where $\max (|u|,|v|)$ is minimal.
- Example: For $a=3, p=7$, we want to obtain $-1 / 2$.
- Example: For $a=209510601, p=2147483647$, we want to obtain 53/41.
- There is an efficient way to compute u, v for given a, p with a modified version of the Euclidean algorithm.

Homomorphic Images

- Problem: m is not invertible. How to "lift" $m(x)$ to x ?
- To do: Given $a \in \mathbb{Z}_{p}$, find $u / v \in \mathbb{Q}$ with $m(u / v)=a$.
- One possible solution is $a / 1$.
- We want the solution u / v where $\max (|u|,|v|)$ is minimal.
- Example: For $a=3, p=7$, we want to obtain $-1 / 2$.
- Example: For $a=209510601, p=2147483647$, we want to obtain 53/41.
- There is an efficient way to compute u, v for given a, p with a modified version of the Euclidean algorithm.
- This is called rational reconstruction.

Homomorphic Images

Theorem. This works.

Homomorphic Images

Theorem. This works.
More precisely:

Homomorphic Images

Theorem. This works.
More precisely:
Theorem. If $A \in \mathbb{Q}^{n \times n}$ and p is a sufficiently large prime, then the rational reconstruction x of a solution $m(x)$ of $m(A)$ in \mathbb{Z}_{p} is a solution of A in \mathbb{Q}.

Homomorphic Images

Theorem. This works.
More precisely:
Theorem. If $A \in \mathbb{Q}^{n \times n}$ and p is a sufficiently large prime, then the rational reconstruction x of a solution $m(x)$ of $m(A)$ in \mathbb{Z}_{p} is a solution of A in \mathbb{Q}.

What means "sufficiently large"?

Homomorphic Images

Theorem. This works.
More precisely:
Theorem. If $A \in \mathbb{Q}^{n \times n}$ and p is a sufficiently large prime, then the rational reconstruction x of a solution $m(x)$ of $m(A)$ in \mathbb{Z}_{p} is a solution of A in \mathbb{Q}.

What means "sufficiently large"?
The prime p has to be about twice as large as the largest numerator or denominator in the solution vector $x \in \mathbb{Q}^{n}$.

Homomorphic Images

Theorem. This works.
More precisely:
Theorem. If $A \in \mathbb{Q}^{n \times n}$ and p is a sufficiently large prime, then the rational reconstruction x of a solution $m(x)$ of $m(A)$ in \mathbb{Z}_{p} is a solution of A in \mathbb{Q}.

What means "sufficiently large"?
The prime p has to be about twice as large as the largest numerator or denominator in the solution vector $x \in \mathbb{Q}^{n}$.

This might be too large to be efficient. We prefer to compute with small primes.

Homomorphic Images

Idea: Instead of one big prime p, compute with several small primes $p_{1}, p_{2}, \ldots, p_{k}$.

Homomorphic Images

Idea: Instead of one big prime p, compute with several small primes $p_{1}, p_{2}, \ldots, p_{k}$.

Then we get several homomorphic images, $m_{1}(x), \ldots, m_{k}(x)$ of the solution x, one image for each of the primes.

Homomorphic Images

Idea: Instead of one big prime p, compute with several small primes $p_{1}, p_{2}, \ldots, p_{k}$.

Then we get several homomorphic images, $m_{1}(x), \ldots, m_{k}(x)$ of the solution x, one image for each of the primes.

There is a simple way to combine these images to one (big) image $m(x)$ in $\mathbb{Z}_{p_{1} p_{2} \cdots p_{k}}$, called Chinese Remaindering:

Homomorphic Images

Idea: Instead of one big prime p, compute with several small primes $p_{1}, p_{2}, \ldots, p_{k}$.

Then we get several homomorphic images, $m_{1}(x), \ldots, m_{k}(x)$ of the solution x, one image for each of the primes.

There is a simple way to combine these images to one (big) image $m(x)$ in $\mathbb{Z}_{p_{1} p_{2} \cdots p_{k}}$, called Chinese Remaindering:

If $\operatorname{gcd}(p, q)=1$ then we can find s, t with $s p+t q=1$.

Homomorphic Images

Idea: Instead of one big prime p, compute with several small primes $p_{1}, p_{2}, \ldots, p_{k}$.

Then we get several homomorphic images, $m_{1}(x), \ldots, m_{k}(x)$ of the solution x, one image for each of the primes.

There is a simple way to combine these images to one (big) image $m(x)$ in $\mathbb{Z}_{p_{1} p_{2} \cdots p_{k}}$, called Chinese Remaindering:

If $\operatorname{gcd}(p, q)=1$ then we can find s, t with $s p+t q=1$.
Let $a \in \mathbb{Z}_{p}, b \in \mathbb{Z}_{q}$.

Homomorphic Images

Idea: Instead of one big prime p, compute with several small primes $p_{1}, p_{2}, \ldots, p_{k}$.

Then we get several homomorphic images, $m_{1}(x), \ldots, m_{k}(x)$ of the solution x, one image for each of the primes.

There is a simple way to combine these images to one (big) image $m(x)$ in $\mathbb{Z}_{p_{1} p_{2} \cdots p_{k}}$, called Chinese Remaindering:

If $\operatorname{gcd}(p, q)=1$ then we can find s, t with $s p+t q=1$.
Let $a \in \mathbb{Z}_{p}, b \in \mathbb{Z}_{q}$.
Consider $c=a+(b-a) s p=a+(b-a)(1-t q)$.

Homomorphic Images

Idea: Instead of one big prime p, compute with several small primes $p_{1}, p_{2}, \ldots, p_{k}$.

Then we get several homomorphic images, $m_{1}(x), \ldots, m_{k}(x)$ of the solution x, one image for each of the primes.

There is a simple way to combine these images to one (big) image $m(x)$ in $\mathbb{Z}_{p_{1} p_{2} \cdots p_{k}}$, called Chinese Remaindering:

If $\operatorname{gcd}(p, q)=1$ then we can find s, t with $s p+t q=1$.
Let $a \in \mathbb{Z}_{p}, b \in \mathbb{Z}_{q}$.
Consider $c=a+(b-a) s p=a+(b-a)(1-t q)$.
Then $c=a \bmod p$ and $c=b \bmod q$.

Homomorphic Images

Idea: Instead of one big prime p, compute with several small primes $p_{1}, p_{2}, \ldots, p_{k}$.

Then we get several homomorphic images, $m_{1}(x), \ldots, m_{k}(x)$ of the solution x, one image for each of the primes.

There is a simple way to combine these images to one (big) image $m(x)$ in $\mathbb{Z}_{p_{1} p_{2} \cdots p_{k}}$, called Chinese Remaindering:

Example: If $a=3$ in \mathbb{Z}_{7} and $b=4$ in \mathbb{Z}_{11}, then $(-3) \cdot 7+2 \cdot 11=1$
and $c=3+(4-3)(-3) 7=-18=59$ in \mathbb{Z}_{77}.

Homomorphic Images

Algorithm: For primes $p_{k}=p_{1}, p_{2}, p_{3}, \ldots$ do

Homomorphic Images

Algorithm: For primes $p_{k}=p_{1}, p_{2}, p_{3}, \ldots$ do

- Solve the system $A x=0$ in $\mathbb{Z}_{p_{k}}$, obtaining an image $m_{k}(x)$.

Homomorphic Images

Algorithm: For primes $p_{k}=p_{1}, p_{2}, p_{3}, \ldots$ do

- Solve the system $A x=0$ in $\mathbb{Z}_{p_{k}}$, obtaining an image $m_{k}(x)$.
- Combine all images $m_{1}(x), \ldots, m_{k}(x)$ to a big image $m(x)$.

Homomorphic Images

Algorithm: For primes $p_{k}=p_{1}, p_{2}, p_{3}, \ldots$ do

- Solve the system $A x=0$ in $\mathbb{Z}_{p_{k}}$, obtaining an image $m_{k}(x)$.
- Combine all images $m_{1}(x), \ldots, m_{k}(x)$ to a big image $m(x)$.
- Apply rational reconstruction to recover a preimage x from $m(x)$.

Homomorphic Images

Algorithm: For primes $p_{k}=p_{1}, p_{2}, p_{3}, \ldots$ do

- Solve the system $A x=0$ in $\mathbb{Z}_{p_{k}}$, obtaining an image $m_{k}(x)$.
- Combine all images $m_{1}(x), \ldots, m_{k}(x)$ to a big image $m(x)$.
- Apply rational reconstruction to recover a preimage x from $m(x)$.
- If $A x=0$ in \mathbb{Q}, stop.

Homomorphic Images

Algorithm: For primes $p_{k}=p_{1}, p_{2}, p_{3}, \ldots$ do

- Solve the system $A x=0$ in $\mathbb{Z}_{p_{k}}$, obtaining an image $m_{k}(x)$.
- Combine all images $m_{1}(x), \ldots, m_{k}(x)$ to a big image $m(x)$.
- Apply rational reconstruction to recover a preimage x from $m(x)$.
- If $A x=0$ in \mathbb{Q}, stop.
- Otherwise, proceed with the next prime.

Homomorphic Images

Algorithm: For primes $p_{k}=p_{1}, p_{2}, p_{3}, \ldots$ do

- Solve the system $A x=0$ in $\mathbb{Z}_{p_{k}}$, obtaining an image $m_{k}(x)$.
- Combine all images $m_{1}(x), \ldots, m_{k}(x)$ to a big image $m(x)$.
- Apply rational reconstruction to recover a preimage x from $m(x)$.
- If $A x=0$ in \mathbb{Q}, stop.
- Otherwise, proceed with the next prime.

Cool: The images $m_{1}(x), \ldots, m_{k}(x)$ can be computed independently in parallel, each prime on a seperate processor.

Homomorphic Images

In total, we get a bit complexity of $d n^{2}+d n^{3} / N$ with

Homomorphic Images

In total, we get a bit complexity of $d n^{2}+d n^{3} / N$ with

- n the size of the matrix,

Homomorphic Images

In total, we get a bit complexity of $d n^{2}+d n^{3} / N$ with

- n the size of the matrix,
- d the length of the output,

Homomorphic Images

In total, we get a bit complexity of $d n^{2}+d n^{3} / N$ with

- n the size of the matrix,
- d the length of the output,
- N the number of processors.

Homomorphic Images

In total, we get a bit complexity of $d n^{2}+d n^{3} / N$ with

- n the size of the matrix,
- d the length of the output,
- N the number of processors.

This allows to crack much larger systems in a reasonable time, even on a single processor machine.

Homomorphic Images

Feature: This technique extends to linear systems with polynomial coefficients:

Concluding Remarks

Concluding Remarks

Concluding Remarks

- Linear systems can be solved in polynomial time.

Concluding Remarks

- Linear systems can be solved in polynomial time. Seriously.

Concluding Remarks

- Linear systems can be solved in polynomial time. Seriously.
- Matrix sizes of up to 2000×2000 are feasible on a laptop, at least if the solution has a reasonable bitsize.

Concluding Remarks

- Linear systems can be solved in polynomial time. Seriously.
- Matrix sizes of up to 2000×2000 are feasible on a laptop, at least if the solution has a reasonable bitsize.
- The algorithms presented in this talk are known since long.

Concluding Remarks

- Linear systems can be solved in polynomial time. Seriously.
- Matrix sizes of up to 2000×2000 are feasible on a laptop, at least if the solution has a reasonable bitsize.
- The algorithms presented in this talk are known since long.
- Modern algorithms are even faster than this. (But also more difficult.)

Concluding Remarks

- Linear systems can be solved in polynomial time. Seriously.
- Matrix sizes of up to 2000×2000 are feasible on a laptop, at least if the solution has a reasonable bitsize.
- The algorithms presented in this talk are known since long.
- Modern algorithms are even faster than this. (But also more difficult.)
- In applications, special knowledge about a matrix should always be taken into account (sparsity, structure, ...) before a general purpose algorithm is applied.

