The Polynomial Growth of an Operator Ideal

Manuel Kauers (RISC)

joint work with

Frederic Chyzak and Bruno Salvy (INRIA)

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Legendre polynomials:

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Legendre polynomials:

- $P_{0}(x)=1$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Legendre polynomials:

- $P_{0}(x)=1$
- $P_{1}(x)=x$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Legendre polynomials:

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Legendre polynomials:

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$

- $P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Legendre polynomials:

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$

- $P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$
- $P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Legendre polynomials:

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$

- $P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$
- $P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$
- $P_{5}(x)=\frac{1}{8}\left(15 x-70 x^{3}+63 x^{5}\right)$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Legendre polynomials:

$$
P_{n+2}(x)=-\frac{n+1}{n+2} P_{n}(x)+\frac{2 n+3}{n+2} x P_{n+1}(x)
$$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Legendre polynomials:

$$
\begin{aligned}
P_{n+2}(x) & =-\frac{n+1}{n+2} P_{n}(x)+\frac{2 n+3}{n+2} x P_{n+1}(x) \\
P_{0}(x) & =1 \\
P_{1}(x) & =x
\end{aligned}
$$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Jacobi polynomials:

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Jacobi polynomials:

$$
\text { - } P_{0}^{(1,-1)}(x)=1
$$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Jacobi polynomials:

$$
\begin{aligned}
& \text { - } P_{0}^{(1,-1)}(x)=1 \\
& \text { - } P_{1}^{(1,-1)}(x)=1+x
\end{aligned}
$$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Jacobi polynomials:

- $P_{0}^{(1,-1)}(x)=1$
- $P_{1}^{(1,-1)}(x)=1+x$
- $P_{2}^{(1,-1)}(x)=\frac{3}{2}\left(x+x^{2}\right)$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Jacobi polynomials:

- $P_{0}^{(1,-1)}(x)=1$
- $P_{1}^{(1,-1)}(x)=1+x$
- $P_{2}^{(1,-1)}(x)=\frac{3}{2}\left(x+x^{2}\right)$

- $P_{3}^{(1,-1)}(x)=\frac{1}{2}\left(-1-x+5 x^{2}+5 x^{3}\right)$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Jacobi polynomials:

- $P_{0}^{(1,-1)}(x)=1$
- $P_{1}^{(1,-1)}(x)=1+x$
- $P_{2}^{(1,-1)}(x)=\frac{3}{2}\left(x+x^{2}\right)$

- $P_{3}^{(1,-1)}(x)=\frac{1}{2}\left(-1-x+5 x^{2}+5 x^{3}\right)$
- $P_{4}^{(1,-1)}(x)=\frac{5}{8}\left(-3 x-3 x^{2}+7 x^{3}+7 x^{4}\right)$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Jacobi polynomials:

- $P_{0}^{(1,-1)}(x)=1$
- $P_{1}^{(1,-1)}(x)=1+x$
- $P_{2}^{(1,-1)}(x)=\frac{3}{2}\left(x+x^{2}\right)$

- $P_{3}^{(1,-1)}(x)=\frac{1}{2}\left(-1-x+5 x^{2}+5 x^{3}\right)$
- $P_{4}^{(1,-1)}(x)=\frac{5}{8}\left(-3 x-3 x^{2}+7 x^{3}+7 x^{4}\right)$
- $P_{5}^{(1,-1)}(x)=\frac{3}{8}\left(1+x-14 x^{2}-14 x^{3}+21 x^{4}+21 x^{5}\right)$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Jacobi polynomials:

$$
P_{n+2}^{(1,-1)}(x)=-\frac{n}{n+1} P_{n}^{(1,-1)}(x)+\frac{2 n+3}{n+2} x P_{n+1}^{(1,-1)}(x)
$$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

Jacobi polynomials:

$$
\begin{aligned}
& P_{n+2}^{(1,-1)}(x)=-\frac{n}{n+1} P_{n}^{(1,-1)}(x)+\frac{2 n+3}{n+2} x P_{n+1}^{(1,-1)}(x) \\
& P_{0}^{(1,-1)}(x)=1 \\
& P_{1}^{(1,-1)}(x)=1+x
\end{aligned}
$$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

How to prove this identity?

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)=\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)
$$

How to prove this identity? \longrightarrow By induction!

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)-\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)=0
$$

How to prove this identity? \longrightarrow By induction!

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)-\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)=0
$$

How to prove this identity? \longrightarrow By induction!
Compute a recurrence for the left hand side from the defining equations of its building blocks.

$$
\sum_{k=0}^{n} \underbrace{\frac{2 k+1}{k+1}}_{\substack{\text { recurrence } \\ \text { of order 1 }}} P_{k}^{(1,-1)}(x)-\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)=0
$$

$$
\sum_{k=0}^{n} \underbrace{\frac{2 k+1}{k+1}}_{\substack{\text { recurrennee } \\ \text { of order 1 }}} \underbrace{P_{k}^{(1,-1)}(x)}_{\substack{\text { recurrence } \\ \text { of order 2 }}}-\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)=0
$$

$$
\sum_{k=0}^{n} \underbrace{\frac{2 k+1}{k+1} \underbrace{P_{k}^{(1,-1)}(x)}_{\begin{array}{c}
\text { recurrence } \\
\text { of order 2 }
\end{array}}}_{\begin{array}{c}
\text { recurrence } \\
\text { of order 1 }
\end{array}}-\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)=0
$$

recurrence of order 5

recurrence of order 5

recurrence of order 5

recurrence of order 5

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)-\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)=0
$$

$$
\begin{aligned}
\operatorname{lhs}(n+7)= & (\cdots \text { messy } \cdots) \operatorname{lhs}(n+6) \\
& +(\cdots \text { messy } \cdots) \operatorname{lhs}(n+5) \\
& +(\cdots \text { messy } \cdots) \operatorname{lhs}(n+4) \\
& +(\cdots \text { messy } \cdots) \operatorname{lhs}(n+3) \\
& +(\cdots \text { messy } \cdots) \operatorname{lhs}(n+2) \\
& +(\cdots \text { messy } \cdots) \operatorname{lhs}(n+1) \\
& +(\cdots \text { messy } \cdots) \operatorname{lhs}(n)
\end{aligned}
$$

$$
\sum_{k=0}^{n} \frac{2 k+1}{k+1} P_{k}^{(1,-1)}(x)-\frac{1}{1-x}\left(2-P_{n}(x)-P_{n+1}(x)\right)=0
$$

$$
\begin{aligned}
\operatorname{lhs}(n+7)= & (\cdots \text { messy } \cdots) \operatorname{lhs}(n+6) \\
& +(\cdots \text { messy } \cdots) \operatorname{lhs}(n+5) \\
& +(\cdots \text { messy } \cdots) \operatorname{lhs}(n+4) \\
& +(\cdots \text { messy } \cdots) \operatorname{lhs}(n+3) \\
& +(\cdots \text { messy } \cdots) \operatorname{lhs}(n+2) \\
& +(\cdots \text { messy } \cdots) \operatorname{lhs}(n+1) \\
& +(\cdots \text { messy } \cdots) \operatorname{lhs}(n)
\end{aligned}
$$

Therefore the identity holds for all $n \in \mathbb{N}$
if and only if it holds for $n=0,1,2, \ldots, 6$.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
f_{n+R}=q_{0}(n) f_{n}+\cdots+q_{r-1}(n) f_{n+r-1} .
$$

We say f_{n+R} can be reduced (by the recurrence) to f_{n}, \ldots, f_{n+r-1}.

$$
r \quad R
$$

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main consequence: If f_{n} and g_{n} are D-finite then so are

$$
f_{n}+g_{n}, \quad f_{n} g_{n}, \quad \sum_{k=0}^{n} f_{k}, \quad \ldots
$$

Definition: A sequence f_{n} is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$
p_{r}(n) f_{n+r}+p_{r-1}(n) f_{n+r-1}+\cdots+p_{0}(n) f_{n}=0
$$

Main consequence: If f_{n} and g_{n} are D-finite then so are

$$
f_{n}+g_{n}, \quad f_{n} g_{n}, \quad \sum_{k=0}^{n} f_{k}, \quad \ldots
$$

Equations for each of those can be computed from equations for f_{n} and g_{n}.

Definition: A function $f(x)$ is D-finite if it satisfies a linear differential equation with polynomial coefficients:

$$
p_{r}(x) \frac{d^{r}}{d x^{r}} f(x)+\cdots+p_{1}(x) \frac{d}{d x} f(x)+p_{0}(x) f(x)=0
$$

Definition: A function $f(x)$ is D-finite if it satisfies a linear differential equation with polynomial coefficients:

$$
p_{r}(x) \frac{d^{r}}{d x^{r}} f(x)+\cdots+p_{1}(x) \frac{d}{d x} f(x)+p_{0}(x) f(x)=0
$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_{0}, \ldots, q_{r-1} such that

$$
\frac{d^{R}}{d x^{R}} f(x)=q_{0}(x) f(x)+\cdots+q_{r-1}(x) \frac{d^{r-1}}{d x^{r-1}} f(x)
$$

Definition: A function $f(x)$ is D-finite if it satisfies a linear differential equation with polynomial coefficients:

$$
p_{r}(x) \frac{d^{r}}{d x^{r}} f(x)+\cdots+p_{1}(x) \frac{d}{d x} f(x)+p_{0}(x) f(x)=0 .
$$

Main consequence: If $f(x)$ and $g(x)$ are D-finite then so are

$$
f(x)+g(x), \quad f(x) g(x), \quad \int_{x} f(x), \quad \cdots
$$

Equations for each of those can be computed from equations for $f(x)$ and $g(x)$.

How about multivariate sequences $f_{n, k}$?

How about multivariate sequences $f_{n, k}$?
Also a multivariate recurrence for $f_{n, k}$ like

$$
\begin{aligned}
& p_{2,2}(n, k) f_{n+2, k+2}+p_{0,3}(n, k) f_{n, k+3}+p_{1,2}(n, k) f_{n+1, k+2} \\
& \quad+p_{1,0}(n, k) f_{n+1, k}+p_{3,1}(n, k) f_{n+3, k+1}=0
\end{aligned}
$$

can be used for reducing a term $f_{n+U, k+V}$ to "smaller" ones.

How about multivariate sequences $f_{n, k}$?

- A single bivariate recurrence

How about multivariate sequences $f_{n, k}$?

- A single bivariate recurrence
- A system of bivariate recurrences

How about multivariate sequences $f_{n, k}$?

- A single bivariate recurrence
- A system of bivariate recurrences

Further reduction may be possible by using suitable combinations of the recurrences in the system.

How about multivariate sequences $f_{n, k}$?

- A single bivariate recurrence
- A system of bivariate recurrences

Further reduction may be possible by using suitable combinations of the recurrences in the system.

- If not, we say the system is a Gröbner basis.

How about multivariate sequences $f_{n, k}$?

- A single bivariate recurrence
- A system of bivariate recurrences

Further reduction may be possible by using suitable combinations of the recurrences in the system.

- If not, we say the system is a Gröbner basis.
- From now on, all systems are assumed to be Gröbner bases.

Definition: $f_{n, k}$ is D-finite if it satisfies a system of multivariate recurrence equations with polynomial coefficients of the form

(only finitely many points under the stairs).

Definition: $f_{n, k}$ is D-finite if it satisfies a system of multivariate recurrence equations with polynomial coefficients of the form

(only finitely many points under the stairs).
$f(x, y)$ is D-finite if it satisfies a system of multivariate differential equations with polynomial coefficients of this form.

Main feature: If $f_{n, k}$ and $g_{n, k}$ are D-finite then so are

$$
f_{n, k}+g_{n, k}, \quad f_{n, k} g_{n, k}, \quad \sum_{i=0}^{n} f_{i, k}, \quad \cdots
$$

Main feature: If $f_{n, k}$ and $g_{n, k}$ are D-finite then so are

$$
f_{n, k}+g_{n, k}, \quad f_{n, k} g_{n, k}, \quad \sum_{i=0}^{n} f_{i, k}, \quad \ldots
$$

If $f(x, y)$ and $g(x, y)$ are D-finite then so are

$$
f(x, y)+g(x, y), f(x, y) g(x, y), \int_{x} f(x, y), \int_{-\infty}^{\infty} f(x, y) d y, \ldots
$$

Main feature: If $f_{n, k}$ and $g_{n, k}$ are D-finite then so are

$$
f_{n, k}+g_{n, k}, \quad f_{n, k} g_{n, k}, \quad \sum_{i=0}^{n} f_{i, k}, \quad \ldots
$$

If $f(x, y)$ and $g(x, y)$ are D-finite then so are

$$
f(x, y)+g(x, y), f(x, y) g(x, y), \int_{x} f(x, y), \int_{-\infty}^{\infty} f(x, y) d y, \ldots
$$

Defining systems for all these can be computed from defining systems of f and g.

The results generalize to functions

$$
f_{n_{1}, n_{2}, \ldots, n_{s}}\left(x_{1}, x_{2}, \ldots, x_{r}\right)
$$

depending on any number s of discrete and any number r of continuous variables.

The results generalize to functions

$$
f_{n_{1}, n_{2}, \ldots, n_{s}}\left(x_{1}, x_{2}, \ldots, x_{r}\right)
$$

depending on any number s of discrete and any number r of continuous variables.

The only requirement is to have enough equations that there are only finitely many points under the stairs.

The results generalize to functions

$$
f_{n_{1}, n_{2}, \ldots, n_{s}}\left(x_{1}, x_{2}, \ldots, x_{r}\right)
$$

depending on any number s of discrete and any number r of continuous variables.

The only requirement is to have enough equations that there are only finitely many points under the stairs.

Question: Is this requirement really necessary?

The results generalize to functions

$$
f_{n_{1}, n_{2}, \ldots, n_{s}}\left(x_{1}, x_{2}, \ldots, x_{r}\right)
$$

depending on any number s of discrete and any number r of continuous variables.

The only requirement is to have enough equations that there are only finitely many points under the stairs.

Question: Is this requirement really necessary?
Answer: No!

The results generalize to functions

$$
f_{n_{1}, n_{2}, \ldots, n_{s}}\left(x_{1}, x_{2}, \ldots, x_{r}\right)
$$

depending on any number s of discrete and any number r of continuous variables.

The only requirement is to have enough equations that there are only finitely many points under the stairs.

Question: Is this requirement really necessary?
Answer: No!
We can exploit that in general $\infty \neq \infty$.

For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i+j \leq d$ under the stairs.

For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i+j \leq d$ under the stairs.

How does this number grow when $d \rightarrow \infty$?

For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i+j \leq d$ under the stairs.

How does this number grow when $d \rightarrow \infty$?

For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i+j \leq d$ under the stairs.

How does this number grow when $d \rightarrow \infty$?

$\mathrm{O}\left(d^{2}\right)$

For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i+j \leq d$ under the stairs.

How does this number grow when $d \rightarrow \infty$?

$\mathrm{O}\left(d^{2}\right)$

For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i+j \leq d$ under the stairs.

How does this number grow when $d \rightarrow \infty$?

$\mathrm{O}\left(d^{2}\right)$

$\mathrm{O}\left(d^{1}\right)$

For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i+j \leq d$ under the stairs.

How does this number grow when $d \rightarrow \infty$?

$\mathrm{O}\left(d^{2}\right)$

$\mathrm{O}\left(d^{1}\right)$

For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i+j \leq d$ under the stairs.

How does this number grow when $d \rightarrow \infty$?

$\mathrm{O}\left(d^{2}\right)$

$\mathrm{O}\left(d^{1}\right)$

$\mathrm{O}\left(d^{0}\right)$

For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i+j \leq d$ under the stairs.

How does this number grow when $d \rightarrow \infty$?

$\mathrm{O}\left(d^{2}\right)$
\Downarrow
dimension 2

dimension 1

$\mathrm{O}\left(d^{0}\right)$ \Downarrow
dimension 0

For a function f, let $A(f)$ be a system of equations it satisfies.

For a function f, let $A(f)$ be a system of equations it satisfies.
Theorem (C.K.S. ISSAC'09):

For a function f, let $A(f)$ be a system of equations it satisfies.
Theorem (C.K.S. ISSAC'09):

- $\operatorname{dim} A(f+g) \leq \max (\operatorname{dim} A(f), \operatorname{dim} A(g))$

For a function f, let $A(f)$ be a system of equations it satisfies.
Theorem (C.K.S. ISSAC'09):

- $\operatorname{dim} A(f+g) \leq \max (\operatorname{dim} A(f), \operatorname{dim} A(g))$
- $\operatorname{dim} A(f g) \leq \operatorname{dim} A(f)+\operatorname{dim} A(g)$

For a function f, let $A(f)$ be a system of equations it satisfies.
Theorem (C.K.S. ISSAC'09):

- $\operatorname{dim} A(f+g) \leq \max (\operatorname{dim} A(f), \operatorname{dim} A(g))$
- $\operatorname{dim} A(f g) \leq \operatorname{dim} A(f)+\operatorname{dim} A(g)$
- $\operatorname{dim} A\left(\sum_{k} f\right) \leq \operatorname{dim} A(f)$

For a function f, let $A(f)$ be a system of equations it satisfies.
Theorem (C.K.S. ISSAC'09):

- $\operatorname{dim} A(f+g) \leq \max (\operatorname{dim} A(f), \operatorname{dim} A(g))$
- $\operatorname{dim} A(f g) \leq \operatorname{dim} A(f)+\operatorname{dim} A(g)$
- $\operatorname{dim} A\left(\sum_{k} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\int_{x} f\right) \leq \operatorname{dim} A(f)$

For a function f, let $A(f)$ be a system of equations it satisfies.
Theorem (C.K.S. ISSAC'09):

- $\operatorname{dim} A(f+g) \leq \max (\operatorname{dim} A(f), \operatorname{dim} A(g))$
- $\operatorname{dim} A(f g) \leq \operatorname{dim} A(f)+\operatorname{dim} A(g)$
- $\operatorname{dim} A\left(\sum_{k} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\int_{x} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\int_{-\infty}^{\infty} f\right) \leq \operatorname{dim} A(f)$

For a function f, let $A(f)$ be a system of equations it satisfies.
Theorem (C.K.S. ISSAC'09):

- $\operatorname{dim} A(f+g) \leq \max (\operatorname{dim} A(f), \operatorname{dim} A(g))$
- $\operatorname{dim} A(f g) \leq \operatorname{dim} A(f)+\operatorname{dim} A(g)$
- $\operatorname{dim} A\left(\sum_{k} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\int_{x} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\int_{-\infty}^{\infty} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\sum_{-\infty}^{\infty} f\right) \leq$

For a function f, let $A(f)$ be a system of equations it satisfies.
Theorem (C.K.S. ISSAC'09):

- $\operatorname{dim} A(f+g) \leq \max (\operatorname{dim} A(f), \operatorname{dim} A(g))$
- $\operatorname{dim} A(f g) \leq \operatorname{dim} A(f)+\operatorname{dim} A(g)$
- $\operatorname{dim} A\left(\sum_{k} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\int_{x} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\int_{-\infty}^{\infty} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\sum_{-\infty}^{\infty} f\right) \leq \operatorname{dim} A(f)+\operatorname{pol} A(f)-1$

For a function f, let $A(f)$ be a system of equations it satisfies.
Theorem (C.K.S. ISSAC'09):

- $\operatorname{dim} A(f+g) \leq \max (\operatorname{dim} A(f), \operatorname{dim} A(g))$
- $\operatorname{dim} A(f g) \leq \operatorname{dim} A(f)+\operatorname{dim} A(g)$
- $\operatorname{dim} A\left(\sum_{k} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\int_{x} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\int_{-\infty}^{\infty} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\sum_{-\infty}^{\infty} f\right) \leq \operatorname{dim} A(f)+\operatorname{pol} A(f)-1$

What the hell means pol $A(f)$?

For a function f, let $A(f)$ be a system of equations it satisfies.
Theorem (C.K.S. ISSAC'09):

- $\operatorname{dim} A(f+g) \leq \max (\operatorname{dim} A(f), \operatorname{dim} A(g))$
- $\operatorname{dim} A(f g) \leq \operatorname{dim} A(f)+\operatorname{dim} A(g)$
- $\operatorname{dim} A\left(\sum_{k} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\int_{x} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\int_{-\infty}^{\infty} f\right) \leq \operatorname{dim} A(f)$
- $\operatorname{dim} A\left(\sum_{-\infty}^{\infty} f\right) \leq \operatorname{dim} A(f)+\operatorname{pol} A(f)-1$

What the hell means pol $A(f)$?
Answer: It's a number we call the polynomial growth of $A(f)$.

For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i+j<d$.

For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i+j<d$.

- Reduce $f_{n+i, k+j}$ to under the stairs.

For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i+j<d$.

- Reduce $f_{n+i, k+j}$ to under the stairs.

For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i+j<d$.

- Reduce $f_{n+i, k+j}$ to under the stairs.
- This corresponds to a representation
$\bullet=\operatorname{rat}(n, k) \bullet+\cdots+\operatorname{rat}(n, k) \bullet$

For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i+j<d$.

- Reduce $f_{n+i, k+j}$ to under the stairs.
- This corresponds to a representation

$$
\bullet \frac{\operatorname{poly}(n, k) \bullet+\cdots+\operatorname{poly}(n, k) \bullet}{\operatorname{denom}(n, k)}
$$

For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i+j<d$.

- Reduce $f_{n+i, k+j}$ to under the stairs.
- This corresponds to a representation

$$
\bullet=\frac{\operatorname{poly}(n, k) \bullet+\cdots+\operatorname{poly}(n, k) \bullet}{\operatorname{denom}(n, k)}
$$

- Find this $\operatorname{denom}(n, k)$ for each (i, j) with $i+j<d$.

For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i+j<d$.

- Reduce $f_{n+i, k+j}$ to under the stairs.
- This corresponds to a representation

$$
\bullet=\frac{\operatorname{poly}(n, k) \bullet+\cdots+\operatorname{poly}(n, k) \bullet}{\operatorname{denom}(n, k)}
$$

- Find this $\operatorname{denom}(n, k)$ for each (i, j) with $i+j<d$.
- Their least common multiple is a certain polynomial $P_{d}(n, k)$.

For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i+j<d$.

- Reduce $f_{n+i, k+j}$ to under the stairs.
- This corresponds to a representation

$$
\bullet=\frac{\operatorname{poly}(n, k) \bullet+\cdots+\operatorname{poly}(n, k) \bullet}{\operatorname{denom}(n, k)}
$$

- Find this denom (n, k) for each (i, j) with $i+j<d$.
- Their least common multiple is a certain polynomial $P_{d}(n, k)$.
- If $\operatorname{deg} P_{d}(n, k)=\mathrm{O}\left(d^{p}\right)(d \rightarrow \infty)$, then the system is said to have polynomial growth p.
(ت) If $f_{n, k}$ is hypergeometric then

$$
\operatorname{pol} A(f)=1 \quad \Longleftrightarrow \quad f_{n, k} \text { is proper }
$$

(ت) If $f_{n, k}$ is D-finite then

$$
\operatorname{pol} A(f)=1 \quad \Longleftrightarrow \quad f_{n, k} \text { is holonomic }
$$

*) If $f_{n, k}$ is D-finite then

$$
\operatorname{pol} A(f)=1 \quad \Longleftrightarrow \quad f_{n, k} \text { is holonomic }
$$

: "We always have pol $A(f)=1$, except for counterexamples."
*) If $f_{n, k}$ is D-finite then

$$
\operatorname{pol} A(f)=1 \quad \Longleftrightarrow \quad f_{n, k} \text { is holonomic }
$$

: "We always have pol $A(f)=1$, except for counterexamples."
\because When $\operatorname{pol} A(f)=1$, the bound for $\operatorname{dim} A\left(\sum_{-\infty}^{\infty} f\right)$ is nice.
*) If $f_{n, k}$ is D-finite then

$$
\operatorname{pol} A(f)=1 \quad \Longleftrightarrow \quad f_{n, k} \text { is holonomic }
$$

: "We always have pol $A(f)=1$, except for counterexamples."
ت) When $\operatorname{pol} A(f)=1$, the bound for $\operatorname{dim} A\left(\sum_{-\infty}^{\infty} f\right)$ is nice.
-. But pol $A(f)$ can be larger than expected if $\operatorname{dim} A(f)>0$.
*) If $f_{n, k}$ is D-finite then

$$
\operatorname{pol} A(f)=1 \quad \Longleftrightarrow \quad f_{n, k} \text { is holonomic }
$$

: "We always have pol $A(f)=1$, except for counterexamples."
ت) When $\operatorname{pol} A(f)=1$, the bound for $\operatorname{dim} A\left(\sum_{-\infty}^{\infty} f\right)$ is nice.
-. But pol $A(f)$ can be larger than expected if $\operatorname{dim} A(f)>0$.
*) And the definition of pol $A(f)$ is awefully technical.

ت) If $f_{n, k}$ is D-finite then

$$
\operatorname{pol} A(f)=1 \quad \Longleftrightarrow \quad f_{n, k} \text { is holonomic }
$$

: "We always have pol $A(f)=1$, except for counterexamples."
ت) When pol $A(f)=1$, the bound for $\operatorname{dim} A\left(\sum_{-\infty}^{\infty} f\right)$ is nice.
-. But pol $A(f)$ can be larger than expected if $\operatorname{dim} A(f)>0$.
(.) And the definition of pol $A(f)$ is awefully technical.
(-) And the computation of pol $A(f)$ is awefully complicated.

ت) If $f_{n, k}$ is D-finite then

$$
\operatorname{pol} A(f)=1 \quad \Longleftrightarrow \quad f_{n, k} \text { is holonomic }
$$

: "We always have pol $A(f)=1$, except for counterexamples."
ت) When pol $A(f)=1$, the bound for $\operatorname{dim} A\left(\sum_{-\infty}^{\infty} f\right)$ is nice.
-. But pol $A(f)$ can be larger than expected if $\operatorname{dim} A(f)>0$.
(.) And the definition of pol $A(f)$ is awefully technical.
(-) And the computation of pol $A(f)$ is awefully complicated.
-. And the motivation for pol $A(f)$ is awefully weak.

ت) If $f_{n, k}$ is D-finite then

$$
\operatorname{pol} A(f)=1 \quad \Longleftrightarrow \quad f_{n, k} \text { is holonomic }
$$

: "We always have pol $A(f)=1$, except for counterexamples."
ت) When pol $A(f)=1$, the bound for $\operatorname{dim} A\left(\sum_{-\infty}^{\infty} f\right)$ is nice.
-. But pol $A(f)$ can be larger than expected if $\operatorname{dim} A(f)>0$.
(.) And the definition of pol $A(f)$ is awefully technical.
(-) And the computation of pol $A(f)$ is awefully complicated.
(-) And the motivation for pol $A(f)$ is awefully weak.
(.) And the intuition behind pol $A(f)$ is awefully poor.
$\ddot{6}$ If $f_{n, k}$ is D-finite then

$$
\operatorname{pol} A(f)=1 \quad \Longleftrightarrow \quad f_{n, k} \text { is holonomic }
$$

: "We always have pol $A(f)=1$, except for counterexamples."
ت) When pol $A(f)=1$, the bound for $\operatorname{dim} A\left(\sum_{-\infty}^{\infty} f\right)$ is nice.
-. But pol $A(f)$ can be larger than expected if $\operatorname{dim} A(f)>0$.
(.) And the definition of pol $A(f)$ is awefully technical.
(-) And the computation of pol $A(f)$ is awefully complicated.
(2) And the motivation for pol $A(f)$ is awefully weak.
(.) And the intuition behind pol $A(f)$ is awefully poor.
(2) This is not the end of the story.
$\ddot{6}$ If $f_{n, k}$ is D-finite then

$$
\operatorname{pol} A(f)=1 \quad \Longleftrightarrow \quad f_{n, k} \text { is holonomic }
$$

: "We always have pol $A(f)=1$, except for counterexamples."
ت) When pol $A(f)=1$, the bound for $\operatorname{dim} A\left(\sum_{-\infty}^{\infty} f\right)$ is nice.
-. But pol $A(f)$ can be larger than expected if $\operatorname{dim} A(f)>0$.

- And the definition of pol $A(f)$ is awefully technical.
(2) And the computation of pol $A(f)$ is awefully complicated.
(2) And the motivation for pol $A(f)$ is awefully weak.
(.) And the intuition behind pol $A(f)$ is awefully poor.
: This is not the end of the story. But it is the end of the talk.

