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tions of its building blocks.
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Definition: A function f(x) is D-finite if it satisfies a linear
differential equation with polynomial coefficients:

pr(x) dr

dxr f(x) + · · · + p1(x) d
dx

f(x) + p0(x)f(x) = 0.

Main consequence: If f(x) and g(x) are D-finite then so are

f(x) + g(x), f(x)g(x),
∫

x
f(x), . . .

Equations for each of those can be computed from equations for
f(x) and g(x).
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Also a multivariate recurrence for fn,k like

p2,2(n, k)fn+2,k+2 + p0,3(n, k)fn,k+3 + p1,2(n, k)fn+1,k+2

+ p1,0(n, k)fn+1,k + p3,1(n, k)fn+3,k+1 = 0

can be used for reducing a term fn+U,k+V to “smaller” ones.
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How about multivariate sequences fn,k?

◮ A single bivariate recurrence

◮ A system of bivariate recurrences

Further reduction may be possible by using suitable
combinations of the recurrences in the system.

◮ If not, we say the system is a Gröbner basis.

◮ From now on, all systems are assumed to be Gröbner bases.
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f(x, y) is D-finite if it satisfies a system of multivariate differential
equations with polynomial coefficients of this form.
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Main feature: If fn,k and gn,k are D-finite then so are

fn,k + gn,k, fn,kgn,k,
n∑

i=0
fi,k, . . .

If f(x, y) and g(x, y) are D-finite then so are

f(x, y) + g(x, y), f(x, y)g(x, y),
∫

x
f(x, y),

∫
∞

−∞
f(x, y)dy, . . .

Defining systems for all these can be computed from defining
systems of f and g.
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The results generalize to functions

fn1,n2,...,ns
(x1, x2, . . . , xr)

depending on any number s of discrete and any number r of
continuous variables.

The only requirement is to have enough equations that there are
only finitely many points under the stairs.

Question: Is this requirement really necessary?

Answer: No!

We can exploit that in general ∞ 6= ∞.
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For fixed d ∈ N, count the number of points (i, j) with i + j ≤ d

under the stairs.

How does this number grow when d → ∞?

O(d2)

⇓

dimension 2

O(d1)

⇓

dimension 1

O(d0)

⇓

dimension 0
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For a function f , let A(f) be a system of equations it satisfies.

Theorem (C.K.S. ISSAC’09):

◮ dim A(f + g) ≤ max(dim A(f),dim A(g))

◮ dim A(fg) ≤ dimA(f) + dimA(g)

◮ dim A(
∑

k f) ≤ dim A(f)

◮ dim A(
∫

x
f) ≤ dim A(f)

◮ dim A(
∫
∞

−∞
f) ≤ dimA(f)

◮ dim A(
∑

∞

−∞
f) ≤ dim A(f) + polA(f) − 1

What the hell means polA(f)?

Answer: It’s a number we call the polynomial growth of A(f).
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For fixed d ∈ N, consider some point (i, j) with i + j < d.

◮ Reduce fn+i,k+j to under the stairs.

◮ This corresponds to a representation

• =
poly(n, k)• + · · · + poly(n, k)•

denom(n, k)

◮ Find this denom(n, k) for each (i, j) with i + j < d.

◮ Their least common multiple is a certain polynomial Pd(n, k).

◮ If deg Pd(n, k) = O(dp) (d → ∞), then the system is said to
have polynomial growth p.



If fn,k is hypergeometric then

polA(f) = 1 ⇐⇒ fn,k is proper



If fn,k is D-finite then

polA(f) = 1 ⇐⇒ fn,k is holonomic



If fn,k is D-finite then

polA(f) = 1 ⇐⇒ fn,k is holonomic

“We always have polA(f) = 1, except for counterexamples.”



If fn,k is D-finite then

polA(f) = 1 ⇐⇒ fn,k is holonomic

“We always have polA(f) = 1, except for counterexamples.”

When polA(f) = 1, the bound for dimA(
∑

∞

−∞
f) is nice.



If fn,k is D-finite then

polA(f) = 1 ⇐⇒ fn,k is holonomic

“We always have polA(f) = 1, except for counterexamples.”

When polA(f) = 1, the bound for dimA(
∑

∞

−∞
f) is nice.

But polA(f) can be larger than expected if dimA(f) > 0.



If fn,k is D-finite then

polA(f) = 1 ⇐⇒ fn,k is holonomic

“We always have polA(f) = 1, except for counterexamples.”

When polA(f) = 1, the bound for dimA(
∑

∞

−∞
f) is nice.

But polA(f) can be larger than expected if dimA(f) > 0.

And the definition of polA(f) is awefully technical.



If fn,k is D-finite then

polA(f) = 1 ⇐⇒ fn,k is holonomic

“We always have polA(f) = 1, except for counterexamples.”

When polA(f) = 1, the bound for dimA(
∑

∞

−∞
f) is nice.

But polA(f) can be larger than expected if dimA(f) > 0.

And the definition of polA(f) is awefully technical.

And the computation of polA(f) is awefully complicated.



If fn,k is D-finite then

polA(f) = 1 ⇐⇒ fn,k is holonomic

“We always have polA(f) = 1, except for counterexamples.”

When polA(f) = 1, the bound for dimA(
∑

∞

−∞
f) is nice.

But polA(f) can be larger than expected if dimA(f) > 0.

And the definition of polA(f) is awefully technical.

And the computation of polA(f) is awefully complicated.

And the motivation for polA(f) is awefully weak.



If fn,k is D-finite then

polA(f) = 1 ⇐⇒ fn,k is holonomic

“We always have polA(f) = 1, except for counterexamples.”

When polA(f) = 1, the bound for dimA(
∑

∞

−∞
f) is nice.

But polA(f) can be larger than expected if dimA(f) > 0.

And the definition of polA(f) is awefully technical.

And the computation of polA(f) is awefully complicated.

And the motivation for polA(f) is awefully weak.

And the intuition behind polA(f) is awefully poor.



If fn,k is D-finite then

polA(f) = 1 ⇐⇒ fn,k is holonomic

“We always have polA(f) = 1, except for counterexamples.”

When polA(f) = 1, the bound for dimA(
∑

∞

−∞
f) is nice.

But polA(f) can be larger than expected if dimA(f) > 0.

And the definition of polA(f) is awefully technical.

And the computation of polA(f) is awefully complicated.

And the motivation for polA(f) is awefully weak.

And the intuition behind polA(f) is awefully poor.

This is not the end of the story.



If fn,k is D-finite then

polA(f) = 1 ⇐⇒ fn,k is holonomic

“We always have polA(f) = 1, except for counterexamples.”

When polA(f) = 1, the bound for dimA(
∑

∞

−∞
f) is nice.

But polA(f) can be larger than expected if dimA(f) > 0.

And the definition of polA(f) is awefully technical.

And the computation of polA(f) is awefully complicated.

And the motivation for polA(f) is awefully weak.

And the intuition behind polA(f) is awefully poor.

This is not the end of the story. But it is the end of the talk.


