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ABSTRACT
We investigate which polynomials can possibly occur as fac-
tors in the denominators of rational solutions of a given par-
tial linear difference equation (PLDE). Two kinds of polyno-
mials are to be distinguished, we call them periodic and ape-
riodic. The main result is a generalization of a well-known
denominator bounding technique for univariate equations to
PLDEs. This generalization is able to find all the aperiodic
factors of the denominators for a given PLDE.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Difference Equations, Rational Solutions

1. INTRODUCTION
Several algorithms in symbolic computation depend on a

subroutine for finding the rational solutions of an ordinary
linear difference (or differential) equation (OLDE), and sev-
eral algorithms are known for implementing such a subrou-
tine [1, 2, 4, 11, 13, 14, 6, 8, 9]. On a conceptual level, the
typical approach for finding rational solutions can be divided
into three steps. In the first step, one constructs a polyno-
mial Q such that the denominator q of any potential solution
p/q must divide Q. This polynomial Q is called universal de-
nominator or denominator bound. In the second step, the
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universal denominator is used to transform the given equa-
tion into a new equation such that P is a polynomial solution
of the new equation if and only if P/Q is a rational solution
of the original one. In the third and final step, the polyno-
mial solutions P of the transformed equation are determined.

The first algorithm for computing universal denominators
in the case of OLDEs with polynomial coefficients was pro-
posed in 1971 by Abramov [1] (see Section 2 below for a sum-
mary). It has been generalized to q-difference equations [3],
to matrix equations [5], and also to equations whose coef-
ficients belong to domains other than polynomials. For ex-
ample, Bronstein [7] and Schneider [12] have observed that
a universal denominator can be constructed also when the
coefficient domains are difference fields which can be used
for representing nested sums and products (ΠΣ-fields). For
such domains, the situation is more involved. There is a
need to distinguish between “normal” factors of the univer-
sal denominator which can be found very much like in the
usual polynomial case, and “special” factors which have to
be constructed by some other means.

In the present article, we consider partial (i.e., multivari-
ate) linear difference equations with polynomial coefficients
(PLDEs). Our ultimate goal is the construction of a univer-
sal denominator for potential rational solutions of a given
PLDE. Like in the univariate case with sophisticated coef-
ficient domains, there are two kinds of factors to be distin-
guished. As a matter of fact, some parts of the denominator
cannot be bound at all. For example, the equation

f(n + 1, k) = f(n, k + 1)

has (n+k)−α as a rational solution, for any α ∈ N, and there
is obviously no finite polynomial Q that would be a multiple
of (n + k)α for all α ∈ N. We will call factors that may
exhibit such “special” behaviour periodic. Our main result
is that we can construct for any given PLDE a polynomial
d such that every aperiodic factor of any potential solution
p/q must divide d.

Such a bound on the aperiodic factors of the denominators
does not directly give rise to a full algorithm for finding ra-
tional solutions of PLDEs, but it can be considered as a step
in this direction. For a full algorithm, besides of the bound-
ing of the periodic parts of the denominator, also the entire
question of how to find (all) polynomial solutions of a PLDE
in the third step is wide open and far from being settled. But
even if these parts have to remain open for now, our aperi-
odic denominator bound is useful in practice. When it comes
to solving an actual equation, possible periodic factors in a



solution can often be guessed by inspection, their multiplici-
ties can be determined by trial and error, and degree bounds
for polynomial solutions can be established heuristically. A
reasonably tight universal denominator, on the other hand,
cannot be as easily obtained on heuristic grounds.

2. THE UNIVARIATE CASE
Before entering the multivariate setting, let us summa-

rize Abramov’s classical denominator bound for univariate
equations. We will introduce on the fly some notions and
notations needed later.

Let K be a field of characteristic zero and let K[n] andK(n) denote the ring of univariate polynomials and the field
of rational functions in n with coefficients in K, respectively.
Write N for the shift operator acting on K[n] and K(n) via

Nq(n) := q(n + 1).

The objects of interest are difference equations of the form

a0y + a1Ny + · · · + amNmy = f (1)

where a0, . . . , am, f ∈ K[n] (a0, am 6= 0) are given and y ∈K(n) is unknown.
The denominator bounding problem is as follows: given

a0, . . . , am, f ∈ K[n], find Q ∈ K[n] \ {0} such that the
denominator of any solution y ∈ K(n) of (1) divides Q.
Abramov’s denominator bounding algorithm [1] is an effi-
cient way of computing

gcd(
s

Y

i=0

N ia0,
s

Y

i=0

N−m−iam), (2)

where

s := max{ i ≥ 0 : gcd(N ia0, N
−mam) 6= 1 } (3)

is the dispersion of a0 and N−mam. It is efficient in the sense
that the gcd is constructed without explicitly calculating the
products.

To see that this bound is correct, write (1) in the form

Nmy =
1

am

“

f −
X

i<m

aiN
iy

”

.

Shifting this equation by s gives

Nm+sy =
1

Nsam

“

Nsf −
X

i<m

(Nsai)(N
i+sy)

”

.

By repeatedly using the recurrence, the terms N i+sy appear-
ing on the right hand side can be reduced to smaller shifts
of y so that for certain polynomials b, b0, . . . , bm−1 we have

Nm+sy =
b − P

i<m biN
iy

Qs
i=0 N iam

.

At this point we rely on the following result.

Theorem 1. [1] For any solution y = p
q
∈ K(n) of (1),

max{i ≥ 0 : gcd(q, N iq) 6= 1} ≤ s.

This theorem ensures that the denominator of a solution
y cannot contain two factors u, v with u = Ns+1v, and this
in turn implies that no denominator of any of the N iy on
the right can have a common factor with the denominator
of Nm+sy. Therefore the denominator of Nm+sy must be

a divisor of
Qs

i=0 N iam, and therefore the denominator of y
must be a divisor of

s
Y

i=0

N i−m−sam =

s
Y

i=0

N−m−iam. (4)

By an analogous argument, now rewriting y in terms of
higher shifts, it can be shown that the denominator of y
must divide

Qs
i=0 N ia0. As both bounds must hold simulta-

neously, the correctness of Abramov’s bound is established.
The argument given here is not exactly Abramov’s origi-
nal one, but follows a proof which to our knowledge first
appeared in [5]. The equivalence of the two approaches is
shown in [8].

3. THE MULTIVARIATE CASE
For the rest of this article we will be concerned with adapt-

ing the univariate reasoning sketched in the previous sec-
tion to the multivariate setting. From now on, we consider
polynomials and rational functions in r variables n1, . . . , nr.
Wherever it seems appropriate, we will use multiindex nota-
tion, writing for instance n for n1, . . . , nr, etc.

We define shift operators N1, . . . , Nr acting on K[n] andK(n) in the obvious way:

Niq(n1, . . . , nr)

= q(n1, . . . , ni−1, ni + 1, ni+1, . . . , nr).

For i = (i1, . . . , ir) ∈ Zr we will abbreviate

N iq := N i1
1 N i2

2 · · ·N ir
r q.

A partial linear difference equation (PLDE) is an equation
of the form

X

s∈S

asN
sy = f, (5)

where S ⊆ Zr is finite and nonempty (called the support or
the shift set or the structure set of the equation), f ∈ K[n]
and as ∈ K[n] \ {0} (s ∈ S) are explicitly given polynomi-
als, and y ∈ K(n) is an unknown rational function. The
polynomial as is called the coefficient of Ns (or simply of s).

In the following section, we generalize the notion of dis-
persion to multivariate polynomials, and we will define the
notions of periodic and aperiodic polynomials. After that,
in Section 5, we will show how to predict all the aperiodic
factors of a rational solution y of (5).

4. SPREAD AND DISPERSION
The notions of spread and dispersion are related to the

question whether two polynomials can be mapped to one
another by a shift. In the multivariate case, we now allow
independent shifts in all directions.

Given two polynomials p, q ∈ K[n], we say that they are
shift equivalent if there exists i = (i1, . . . , ir) ∈ Zr such that
p(n) = q(n + i). In operator notation, p and q are shift
equivalent iff p = N iq.

Definition 1. Let p, q ∈ K[n]. The set

Spread(p, q) := { (i1, . . . , ir) ∈ Zr :

gcd(p,N i1
1 · · ·N ir

r q) 6= 1 }
is called the spread of p and q. The number

Dispk(p, q) := max
˘

|ik| : (i1, . . . , ir) ∈ Spread(p, q)
¯



is called the dispersion of p and q w.r.t. k ∈ {1, . . . , r}, and

Disp(p, q) := max(Disp1(p, q), . . . , Dispr(p, q))

is called dispersion of p and q. (By convention, max A :=
−∞ if A is empty and maxA := ∞ if A is unbounded.)

The polynomial p is called periodic if Spread(p, p) is infi-
nite and aperiodic otherwise.

Note that this definition does not exactly correspond to
the definition stated before for the univariate case. While
there, the definition depends on whether one shifts to the left
or to the right [1, 7], our definition takes all directions into
account. This makes the reasoning below a little simpler.

Example 1. Let

p =
`

n2 + k2
´`

(n + 1)2 + (k − 3)2
´`

k − n + 3
´

,

q =
`

(n + 2)2 + (k − 1)2
´`

(n − 2)2 + (k + 7)2
´`

2k − 3n
´

.

Then, by inspection,

Spread(p, q) = {(2,−1), (−2, 7), (1, 2), (−3, 10)},
Disp(p, q) = 10.

Both p and q are aperiodic. An example for a periodic poly-
nomial is n − k, because, again by inspection,

Spread(n − k, n − k) = { (i, i) : i ∈ Z }
= {. . . , (−1,−1), (0, 0), (1, 1), (2, 2), . . . }

is infinite.

In the univariate case, the spread of two polynomials can
be found as the set of all integer roots of the polynomial
resn(p(n), q(n + i)) ∈ K[i]. This is no longer possible in the
multivariate setting, for in the case of several variables, com-
mon roots no longer correspond to common factors. Never-
theless, it turns out that the multivariate spread as defined
as above can be effectively computed. Let us consider the
somewhat simpler situation of irreducible polynomials first.
In this situation the spread cannot take on any cardinality:

Lemma 1. Let p, q ∈ K[n] be irreducible and aperiodic.
Then |Spread(p, q)| ≤ 1.

Proof. Suppose p and q are such that |Spread(p, q)| > 1.
Then there exist two different multiindices (i1, . . . , ir) and
(j1, . . . , jr) with

gcd(p, N i1
1 · · ·N ir

r q) 6= 1 and gcd(p, Nj1
1 · · ·Njr

r q) 6= 1.

As p and q are irreducible and irreducibility is preserved
under the shifts ni 7→ ni + 1, we have in fact

cp = N i1
1 · · ·N ir

r q = Nj1
1 · · ·Njr

r q

for some c ∈ K \ {0}, hence

q = N i1−j1
1 · · ·N ir−jr

r q,

in contradiction to the assumption that q is aperiodic.

It is not essential for the lemma that we consider only
shifts of integer distance. More generally, if p and q are two
irreducible polynomials, then, by the same argument, the
number of vectors i ∈ K̄r with p(n) = q(n + i) is either
0 or 1 or infinite (K̄ refers to the algebraic closure of K).

These vectors i ∈ K̄ can be found by making a brute force
ansatz. For a variable vector i = (i1, . . . , ir), force

p(n) − q(n + i)
!
= 0

and compare coefficients with respect to n to obtain an alge-
braic system of equations in i1, . . . , ir over K. The solutions
will form an affine linear space overK, for whenever i, j ∈ K̄r

are such that p(n) = q(n + i) and p(n) = q(n + j), then

p(n) = q(n + i + α(i − j)) for all α ∈ Z,

and since the solution set is Zariski-closed, what is true for
all α ∈ Z must also be true for all α ∈ K.

The spread of two irreducible polynomials can therefore
be computed by first determining a basis of the affine lin-
ear space of all possible shifts i ∈ K̄r mapping one given
polynomial to the other. By taking the radical to remove
nontrivial multiplicities, it is ensured that a basis of the lin-
ear space can be read off from a Gröbner basis. In a second
step, we filter out from this affine space the vectors which
have integral coordinates only:

Algorithm 1. Input: p, q ∈ K[n] irreducible
Output: Spread(p, q)

1 S := Coefficients(p(n) − q(n + i), {n}) ⊆ K[i]
2 G := GröbnerBasis(Radical(S), degrevlex(i))
3 Choose a basis B of the Q vector space generated by

the coefficients of the elements of G, say B =
{b1, . . . , bd} ⊆ K.

4 For each g ∈ G, let g(1), . . . , g(d) ∈ Q[i] be such that

g = b1g
(1) + b2g

(2) + · · · + bdg(d). (Note: At this

point all g ∈ G are linear, and so are all the g(k).)

5 S :=
[

g∈G

˘

g(1), g(2), . . . , g(d)¯

6 return kerZ(S)

Note that the algorithm avoids the need of solving systems
of diophantine equations by exploiting a priori knowledge on
the structure of the solution set.

The case of non-irreducible polynomials is easily reduced
to the former case by considering all pairs of factors. To be
precise, let p, q ∈ K[n] \ {0} be any polynomials, and let

p = pu1

1 pu2

2 · · · pur
r , q = qv1

1 qv2

2 · · · qvs
s

be their factorization into irreducible factors. Then

Spread(p, q) =
r

[

i=1

s
[

j=1

Spread(pi, qj).

In short, given p, q ∈ K[n]\{0} we can compute Spread(p, q)
and therefore also Dispi(p, q) and Disp(p, q).

Every given polynomial p can be split uniquely (up to
constant multiples) into a factorization p = uv where u is
periodic and v is aperiodic. We call u and v the periodic
and aperiodic part of p, respectively. As we can factor poly-
nomials and compute, as described above, their spread, this
decomposition can be computed.

Example 2. 1. p = n + k, q = n + 2k. Here we have

p(n, k) − q(n + i, k + j) = (−i + 2j) − k

and G = {1}, hence Spread(p, q) = ∅.



2. p = n +
√

2k, q = n +
√

2k + 3 − 2
√

2. Here we have

p(n, k) − q(n + i, k + j) = −i −
√

2j − 3 + 2
√

2

and G = {−i−
√

2j − 3+2
√

2}. With B = {1,
√

2} we
get S = {−i − 3,−j + 2}, from which we obtain

Spread(p, q) = {(−3, 2)}.

3. p = 3k2 + 6kn − 7k + 3n2 − 7n + 1, q = 3k2 + 6kn −
13k + 3n2 − 13n + 11. Here we have

p(n, k) − q(n + i, k + j) = −(i + j − 1)(3i + 3j − 10)

− 6(i + j − 1)k + 6(i + j − 1)n

and G = {i + j − 1}. With B = {1}, we get S = G
from which we obtain

Spread(p, q) =

„

1
0

«

+ Z„

1
−1

«

.

5. APERIODIC FACTORS IN DENOMINA-
TORS OF SOLUTIONS

In this section we solve the following problem. Given

a nonempty finite shift set S ⊆ Zr with coefficients as ∈K[n] \ {0} (s ∈ S), find a polynomial d ∈ K[n] \ {0} such
that for any solution y = p

u q
of (5) with p, q, u ∈ K[n] where

q is aperiodic and u is periodic, we have

q | d.

Such a d is called an aperiodic universal denominator (or
aperiodic denominator bound) of (5).

First we generalize Theorem 1, i.e., for any solution y ∈K(n) of (5) we bound the dispersion of the aperiodic de-
nominator part of y. To be more precise, we first bound the
dispersion w.r.t. one component ni in n.

Lemma 2. Let S ⊆ Zr be finite and nonempty and let
as ∈ K[n] \ {0} for s ∈ S, and f ∈ K[n]; let a′

s be the
aperiodic part of as. Let i ∈ {1, . . . , r}. Define

k := max{|ai − bi| : (a1, . . . , ar), (b1 . . . , br) ∈ S}

and let

A ={(s1, . . . , sr) : (s1, . . . , sr) ∈ S and

∃(t1, . . . , tr) ∈ S s.t. ti − si = k},
B ={(s1, . . . , sr) : (s1, . . . , sr) ∈ S and

∃(t1, . . . , tr) ∈ S s.t. si − ti = k}.

Define

si := max{Dispi(a
′
s, N

−k
i a′

t) : s ∈ A and t ∈ B}.

Then for any solution y = p
u q

∈ K(n) of (5) with periodic
part u and aperiodic part q we have

Dispi(q) = Dispi(q, q) ≤ si.

Proof. Suppose that d := Dispi(q) > si. Then we find
irreducible factors u and v of q such that

Neu = v (6)

for some e = (e1, . . . , er) ∈ Zr with ei = d. Consider all the
factors Nuu and Nvv occurring in q where the ith entries in
u and v are 0. We choose now those factors from q where u

and v are maximal w.r.t. lexicographic order; these factors
are denoted by u′ and v′, respectively.
First suppose that u′ divides one of the polynomials as with
s ∈ A. As S is not empty, B is not empty. Therefore, we
can choose that polynomial aw with w = (w1, . . . , wr) ∈
B such that (w1, . . . , wi−1, wi+1, . . . , wr) is maximal w.r.t.
lexicographic order. By (5) we can write

Nwy =
1

aw

“

f −
X

s∈S\{w}

asN
sy

”

. (7)

Now observe that the factor Nwv′ does not occur in the
denominator of any Nsy with s ∈ S \ {w}: if Nwv′ oc-
curred in such a denominator, s ∈ B by construction (recall
that u′ and v′ have maximal distance d in the i-coordinate
among all factors in q and that v′ with Nwv′ is shifted
maximally by k among all possible choices from S in di-
rection of the i-coordinate since w ∈ B; so only if s ∈ B
is necessary to guarantee that Nwv′ is a factor of Nsq and
hence of the denominator of Nsy). But then by the as-
sumption that (w1, . . . , wi−1, wi+1, . . . , wr) is maximal w.r.t.
lexicographic order (among all possible choices) and that
v′ = Nvv with v = (v1, . . . , vi−1, 0, vi+1, . . . , vr) is maximal
w.r.t. lexicographical order, it follows that Nwv′ can only
occur in the denominator of Nwy. Summarizing, the factor
Nwv′ does not occur in the denominators of Nsy for any
s ∈ S \ {w}, and since f, as ∈ K[n], the common denom-
inator of f − P

s∈S\{w} asN
sy does not contain the factor

Nwv′. Moreover, since u′ is a factor of as for some s ∈ A,
and since w ∈ B and d > si, Nwv′ cannot be a factor of
as for any s ∈ B. In particular, our aw is not divisible by
Nwv′. Overall, the common denominator of the right hand
side of (7) cannot contain the factor Nwv′ which implies that
the denominator of Nwy is not divisible by Nwv′. Thus the
denominator of y, in particular q is not divisible by v′; a
contradiction.

Conversely, suppose that u′ does not divide any of the
polynomials as with s ∈ A. Then by similar arguments as
above (the roles of A and B exchanged), we derive again a
contradiction. Therefore si ≤ Dispi(q).

Example 3. In the generic univariate case (1) (r = i =
1) the shift set is S = {0, 1, . . . , m} ⊆ Z1 and for the sets A
and B from Lemma 2 we have A = {0} and B = {m}. In
this particular instance, Lemma 2 corresponds to Theorem 1.

A bound of the dispersion for the multivariate case is given
in the next theorem.

Theorem 2. Let S ⊆ Zr be finite and nonempty and let
as ∈ K[n] \ {0} for s ∈ S, and f ∈ K[n]. Then one can
compute an s ∈ N ∪ {−∞} with the following property: For
any solution y = p

u q
∈ K(n) of (5) with periodic part u and

aperiodic part q we have

Disp(q) = Disp(q, q) ≤ s. (8)



Proof. Compute the values si for i ∈ {1, . . . , r} as de-
scribed in Lemma 2; the spread can be computed with Al-
gorithm 1. By taking s = max(s1, . . . , sr) the property
Disp(q) = Disp(q, q) ≤ s is guaranteed.

In order to derive an aperiodic denominator bound, we
adapt the idea presented in Section 2. Namely, we will
choose an appropriate point p ∈ S and express Npy for
any solution y ∈ K(n) of (5) in terms of Nsy for points
s ∈ S′ which are sufficiently far away from p. To be more
precise, for any s > 0 we can explicitly write

Npy =
b +

P

i∈S′ biN
iy

Q

i∈W−p
N iap

(9)

for some polynomials b, bi ∈ K[n] and for finite sets W, S′ ⊆Zr with the following property: the distance of the points S′

to p is at least s. Then by taking s as in Theorem 2, we will
be able to conclude that

Q

i∈W−p
N iap is an aperiodic de-

nominator bound of Npy, and consequently
Q

i∈W N i−2pap

is an aperiodic denominator bound of y.
Such appropriate points p from S can be chosen as follows.

Let S ⊆ Zr be a finite set. A point p ∈ S is called a
corner point (or extreme point) of S, if there exists an affine
hyperplane H (codimension 1) which contains p and where
all other points S \ {p} are situated in one of the two open
half spaces determined by the hyperplane.

Such an affine hyperplane H is called border plane of S for
p, and a vector being orthogonal to H and directing to the
half space of the points S \ {p} is called inner vector.

Note that the corner points are the extreme points of the
convex hull generated by S, and they can be computed by
simple linear algebra; for further details see, e.g., [10].

Example 4. In the generic univariate case (1) (r = 1
and S = {0, 1, . . . , m}) the corner points are 0 and m, and
the border planes are {0} and {m} with inner vectors 1 and
−1, respectively.

More generally, if we are given a finite set S ⊆ Zr with
(0, . . . , 0) ∈ S and max{di : (d1, . . . , dr) ∈ S} > 0 for each
1 ≤ i ≤ r, there are at least r + 1 corner points.

For our denominator bound construction we start with the
following simple lemma.

Lemma 3. Let S ⊆ Zr be a nonempty finite set and let
p ∈ S be a corner point together with a border plane H and
inner vector v. Consider any hyperplane H ′ which is parallel
to H. Then for any p′ ∈ H ′∩Zr the points S+(p′−p)\{p′}
are all outside of H ′ in the half space determined by the
direction of v.

Proof. Since H + (p′ −p) = H ′, H ′ is a border plane of
S + (p′ − p) for p′. This proves the lemma.

By iterative application of the previous lemma we obtain
the following theorem.

Theorem 3. Let S ⊆ Zr be nonempty and finite, and let
as ∈ K[n] \ {0} for s ∈ S, and f ∈ K[n]. Let p be a corner
point of S with a border plane H and inner vector v. Then
for every s > 0 there exist finite sets

W ⊆ Zr ∩
[

0≤e≤s

(H + ev) and (10)

S′ ⊆ Zr ∩
[

e>0

(H + (s + e)v), (11)

and polynomials b, bi ∈ K[n] such that for any solution y ∈K(n) of (5) the relation (9) holds.

Proof. We show the theorem for a generic solution y ∈K(n) of (5). Hence the ingredients b, bi ∈ K[n] and W, S′ un-
der consideration will hold for any specific solution as stated
in the theorem. For S̃ := S \ {p} we have

Npy =
f − P

s∈S̃ asN
sy

ap

by (5). If S̃ = {}, take S′ = {} and W = {p} and we are

done. Otherwise, let p′ ∈ S̃ be such that the distance to H is
minimal. Define H ′ := H +(p′−p). If H ′ ⊆ {H +(s+e)v :
e > 0}, we are again done with W = {p} and S′ = S \ {p}.
Now suppose that H ′ ⊆ {H + ev : 0 ≤ e ≤ s}, and let

{p1, . . . ,pk} = H ′ ∩ S̃ (by construction p′ ∈ H ′ ∩ S̃) and

define S1 = S̃ \ {p1, . . . , pk}. Then we can write

Npy =
f − P

s∈S1
asN

sy − P

s∈{p1,...,pk} asN
sy

ap

. (12)

By (5)

Np1y =
Np1−pf − P

s∈S̃+(p1−p) asN
sy

Np1−pap

. (13)

In particular, by Lemma 3 the points from S̃+(p1−p) are all
outside of H ′ in the half space determined by the direction



of v. Thus we substitute (13) into (12) and can express Npy
in the form

Npy =
f ′ − P

s∈S′

1

a′
sN

sy − P

s∈{p2,...,pk} asN
sy

apNp1−pap

for some f ′ ∈ K[n] and a′
s ∈ K[n] with S′

1 = S1∪(S̃+p1−p).
After k − 1 further reductions, we end up at the form

Npy =
b − P

s∈S′′

1

bsN
sy

Q

i∈W1−p
N iap

for some b, bs ∈ K[n] and with W1 = {p, p1, . . . ,pk} and

S′′
1 = S1∪

S

1≤i≤k S̃+(pi−p). Note that all points p1, . . . ,pk

which are closest to H have been eliminated. Now we re-
peat the construction from above until we enter in the base
case given in the beginning of the proof. This completes the
proof.

Note that all the ingredients W , S′, b ∈ K[n] and the bs for
s ∈ W can be computed explicitly. However, for getting an
aperiodic denominator bound, we only need W . The proof
of Theorem 3 delivers the following simple algorithm.

Algorithm 2. Input: A finite nonempty set S ⊆ Zr and
a corner point p of S with a border plane H and inner vector
v; s > 0.
Output: A finite set W ⊆ Zr with (10) such that there are
S′ with (11) and b, bi ∈ K[n] such that (9) holds for any
solution y ∈ K(n) of (5).

1 S̃ := S \ {p}; S′ := S \ {p}; W := {p}
2 while

[

0≤e≤s

(H + ev) ∩ S′ 6= {} do

3 Let {p1, . . . ,pk} be the points in S′ which have min-
imal distance to H.

4 W := W ∪ {p1, . . . ,pk}
5 S′ := S′ \ {p1, . . . ,pk}
6 S′ := S′ ∪

[

1≤i≤k

S̃ + (pi − p)

7 enddo

8 return W

Finally, we end up at the following theorem which tells us
how we can compute an aperiodic denominator bound.

Theorem 4. Let S ⊆ Zr be finite and nonempty, and let
as ∈ K[n] \ {0} for s ∈ S, and f ∈ K[n]; let a′

s be the
aperiodic part of as.
Take s ∈ N ∪ {−∞} s.t. for any solution y = p

u q
∈ K(n)

of (5) with periodic part u and aperiodic part q we have (8).
Let p be a corner point of S with a border plane H and inner
vector v with |v| ≥ 1. Let W be the output of Algorithm 2
with input H, p and s. Then

Y

s∈W−2p

Nsa′
p

is an aperiodic universal denominator of (5).

Proof. Let y = p
u q

∈ K(n) be a solution of (5) with pe-
riodic part u and aperiodic part q. By construction of W it
follows that there are S′ and b, bi ∈ K[n] with (11) and (9).
Since |v| ≥ 1, the distance of the points S′ to p is larger than
s. Observe that Npq must occur in the denominator of the
right hand side of (9). Using (8), the aperiodic denominator

parts in Nsq with s ∈ S′ cannot contribute to the aperi-
odic denominator part of Npq. Hence only the polynomial
Q

s∈W−p
Nsap is responsible for Npq, i.e.,

Npq |
Y

s∈W−p

Nsap.

Thus
Q

s∈W−2p Nsap is a universal denominator of (5).

Example 5. In the generic univariate case (1) (r = 1
and S = {0, . . . , m}) the coefficients are given by ai for 0 ≤
i ≤ m. First, we take the corner point m with the border
plane H = {m} and inner vector −1. Note that with (3) it
follows that (8) holds for any solution y = p

q
∈ K(n); see

also Example 3. Applying Algorithm 2 with the input S, m,
H, −1, we get W = {m, m−1, . . . , m−s}. Hence Theorem 4
delivers the universal denominator bound (here we have only
aperiodic factors)

Y

s∈W−2m

Nsam

which agrees with (4). Similarly, if we take the corner point 0
with the inner vector 1, we get W = {0, 1, . . . , s} and obtain
the universal denominator bound

Y

s∈W−2·0

Nsa0 =
s

Y

i=0

N ia0.

Combining these two estimates produces (2).

From the point of view of application the following re-
marks are in place.

1. s ∈ N∪{−∞} can be computed by Theorem 2 and by
applying Algorithm 1.

2. Applying Algorithm 2 we can compute the finite set
W ⊆ Zr; here we remark that different choices of the
border plane H might lead to sets W of different size.
Exploiting the particular structure of S gives room for
improvement.

3. Suppose that we are given k corner points with corre-
sponding border planes. Then by Theorem 4 we end
up at different aperiodic universal denominators, say
d1, . . . , dk ∈ K[n]. Then taking

gcd(d1, . . . , dk)

leads to a sharper universal bound.

4. The coefficients as with s ∈ S are often available in
factorized form. Then also the dis are obtained in fac-
torized form, and the gcd-computations boil down to
comparisons of these factors and bookkeeping of their
multiplicities.

Combining the aperiodic denominator bounds for different
corner points gives the following result.

Theorem 5. Let S ⊆ Zr be finite and nonempty and let
as ∈ K[n] \ {0} for s ∈ S, and f ∈ K[n]. Let p1, . . . ,pk ∈
S be corner points of S. If the denominator of a ratio-
nal solution of (5) contains an aperiodic irreducible factor,
then shift equivalent factors occur in each of the coefficients
ap1

, . . . , apk
.



Proof. By Theorem 4 aperiodic denominator bounds can
be derived by the corner points pj in the form

Q

i
N iapj

,
respectively. Hence an aperiodic denominator bound of (5)
can be written in the form

d = gcd(
Y

i

N iap1
, . . . ,

Y

i

N iapk
).

If a rational solution contains an aperiodic irreducible factor
h, then h is also contained in d. Hence h or a shift equivalent
factor occurs in each of the ap1

, . . . , apk
.

The following special cases are immediate.

Corollary 1. Let S ⊆ Zr be finite and nonempty, and
let as ∈ K[n] \ {0} for s ∈ S, and f ∈ K[n]. Let s, t ∈ S
be two corner points and let a′

s and a′
t be the aperiodic parts

of the coefficients as and at, respectively. If Disp(a′
s, a

′
t) =

−∞, then the aperiodic denominator part of any rational
solution of (5) is 1.

Corollary 2. Let S ⊆ Zr be finite and nonempty, and
let as ∈ K[n] \ {0} for s ∈ S, and f ∈ K[n]. If there is a
corner point of S whose coefficient has no aperiodic factor,
then the aperiodic denominator part of any rational solution
of (5) is 1.

Besides these structural consequences, Theorem 5 pro-
vides the following improvement of our aperiodic denomi-
nator bound algorithm. To be more precise, Lemma 2 and
thus Theorem 2 can be improved in the following way. In
the proof of Lemma 2 we assume that there are irreducible
factors u and v in the denominator of the solution y ∈ K(n)
of (5) such that (6) for some e = (e1, . . . er) ∈ Zr with
ei = d where d is larger than si. By the choice of si this
leads to a contradiction. Now we exploit in addition Theo-
rem 5: the factors u and v can be only factors that occur –up
to shift equivalence– in each coefficient of the corner points
p1, . . . ,pk. Hence it suffices to choose si as summarized in
the following proposition.

Proposition 1. Let S ⊆ Zr be finite and nonempty, and
let as ∈ K[n] \ {0} for s ∈ S, and f ∈ K[n]. Let p1, . . . ,pk

be corner points of S, and let a′
s be the aperiodic part of as

whose factors are present –up to shift equivalence– in each
coefficient of the corner points. Let i ∈ {1, . . . , r}. Define

k := max{|ai − bi| : (a1, . . . , ar), (b1 . . . , br) ∈ S}

and let

A ={(s1, . . . , sr) : (s1, . . . , sr) ∈ S and

∃(t1, . . . , tr) ∈ S s.t. ti − si = k}
B ={(s1, . . . , sr) : (s1, . . . , sr) ∈ S and

∃(t1, . . . , tr) ∈ S s.t. si − ti = k}.

Define

si := max{Dispi(a
′
s, N

−k
i a′

t) : s ∈ A and t ∈ B}.

Then for any solution y = p
u q

∈ K(n) of (5) with periodic
part u and aperiodic part q we have

Dispi(q) = Dispi(q, q) ≤ si.

6. EXAMPLES

Example 6. Consider the recurrence

(2kn + 1)(6k2 + 12k − 4n2 − 4n + 5)f(n, k)

+ (2kn + 4k + 1)(6k2 + 10k + 4n2 + 8n − 7)f(n + 1, k)

− (2kn + 8n + 1)(6k2 + 24k + 4n2 − 20n − 7)f(n, k + 2)

− (2kn + 4k + 8n + 17)

× (6k2 + 22k − 4n2 + 16n + 45)f(n + 1, k + 2) = 0.

The maximum spread among the coefficients of this recur-
rence is s = 4.

Every point in the shift set {(0, 0), (1, 0), (0, 2), (1, 2)} qual-
ifies as a corner point. We choose p = (0, 0) as corner point
and let H be the plane through p orthogonal to v = (1, 1).

Algorithm 2 delivers the set

{(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0),

(0, 2), (1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2)

(0, 4), (1, 4), (2, 4), (3, 4), (4, 4),

(0, 6), (1, 6), (2, 6),

(0, 8)}
as W , from which by Theorem 4 it follows that

8
Y

i=0

4−⌈i/2⌉
Y

j=0

N iK2j(2kn + 1)(6k2 + 12k − 4n2 − 4n + 5)

is a universal aperiodic denominator.
Taking instead (1, 2) as corner point gives the aperiodic

denominator bound

0
Y

i=−8

0
Y

j=−4−⌊i/2⌋

N i−1K2j−2
`

(2kn + 4k + 8n + 17)

× (6k2 + 22k − 4n2 + 16n + 45)
´

.

The greatest common divisor of the two polynomials is

(2kn + 1)(2(k + 2)n + 1)(2k(n + 1) + 1)(2(k + 2)(n +1) +1).

This is exactly the denominator of the actual solution

3k+n
(2kn+1)(2(k+2)n+1)(2k(n+1)+1)(2(k+2)(n+1)+1)

of the recurrence.
The computation could have been simplified by disregarding

the factors p = 6k2 +12k−4n2−4n+5 and q = 6k2 +22k−
4n2 + 16n + 45. Because of

Spread(p, q) = {},
they cannot contribute to the universal denominator (com-
pare Theorem 5).

Example 7. Some corner points may be easier to handle
than others. As an example, consider the equation

(k2 + n2 + 1)(2k4 + 4k3 + 4k2n2 + 4k2n + 6k2 + 4kn2

+ 8kn + 9k + 2n4 + 4n3 + 6n2 + 3n + 4)f(n, k)

− (k2 + 4k + n2 + 5)(2k4 + 4k3 + 4k2n2 + 4k2n + 6k2 − 1

+ 4kn2 − 2kn − k + 2n4 + 4n3 + 6n2 − 2n)f(n, k + 1)

− (2k + 1)(n + 1)(k2 + n2 + 4n + 5)f(n + 1, k) = 0.

Without any computation, it can be deduced that any poten-
tial aperiodic factor in a denominator must be a shifted copy



of k2 + n2 + 4n + 5 = (n + 2)2 + k2 + 1. Indeed, a rational
solution of the equation is given by

k2 + n2

(k2 + n2 + 1) ((k + 1)2 + n2 + 1) (k2 + (n + 1)2 + 1)
.

Example 8. Theorem 4 is not sufficient for predicting pe-
riodic factors of a denominator. As an example, consider the
equation

2(k + n + 1)f(n, k) − (k + 3n + 8)f(n, k + 1)

− (5k + 3n + 12)f(n + 1, k) + 3(k + n + 5)f(n + 1, k + 1)

+ (k + n + 5)f(n + 2, k) = 0.

Possible choices for corner points are (0, 0), (0, 1), (1, 1) and
(2, 0). Because of

Spread(k + n + 1, 3n + k + 8) = {},
one might be tempted to believe that only trivial denomina-
tors can occur in a solution. However, the equation admits
the nontrivial rational function solution

n2 + k2

(k + n + 1)(k + n + 2)(k + n + 3)
.

Observe that although not every corner point contains a
shifted copy of k + n + 1, there is still some corner point
which does.

This need not be the case, as indicated by the example

f(n + 1, k) − f(n, k + 1) = 0

already mentioned in the introduction. This example, how-
ever, is special because the shift set {(0, 1), (1, 0)} belongs
to a proper affine subspace of Zr, and whenever this is the
case, say the shift set belongs to a subspace L ( Zr, then
for every vector v = (v1, . . . , vr) ∈ L⊥ \ {0} the polynomial
p = v1n1 + · · · + vrnr has the property that f is a rational
solution of the equation if and only if fpα is, for any α ∈ Z.
In particular, if there exists a rational solution at all, then
there also exists one whose denominator does not contain p.

Apart from this exceptional situation, we observed on all
the examples we considered that periodic factors of a denom-
inator appeared (possibly as a shifted copy) in at least one of
the coefficients corresponding to some corner point of the
shift set. This at least suggests the periodic factors of these
coefficients as plausible guesses for the periodic part of the
denominator bound.

7. CONCLUSION
There are polynomials in several variables which may have

an infinite spread. Such polynomials are called periodic,
while polynomials that cannot have infinite spread are called
aperiodic. Each polynomial can be split into a periodic and
an aperiodic part.

We have shown that for partial linear difference equations
with polynomial coefficients it is possible to determine all
the factors that may possibly occur in the aperiodic part of
the denominator of a rational function solution. The con-
struction is a generalization of the corresponding result for
univariate equations. It probably admits further generaliza-
tion to q-equations or equations whose coefficients belong to
a ΠΣ-field. As it stands, Theorem 4 will tend to produce
only a rough bound for the aperiodic part of the denomina-
tor, but we have pointed out several refinements for improv-
ing the efficiency of the computation on concrete examples.

Eventually, it would be interesting to see whether it is possi-
ble to come up with an Abramov-style algorithm for directly
computing the greatest common divisor of all the individual
bounds obtained from each corner point. Until now, we have
not succeeded in constructing such an algorithm.

It also remains open how to bound periodic factors of the
denominator. The situation illustrated in Example 8, which
seems to be typical both for random equations and for equa-
tions coming from applications, indicates that our result for
aperiodic factors does not directly extend to periodic ones.
On the other hand, it also indicates that an equation typi-
cally provides some hints for the periodic factors in the de-
nominators of its rational solutions. This is useful for making
plausible heuristic guesses. It also gives some hope that at
least for certain types of equations the periodic part of a de-
nominator can be found algorithmically. This needs further
investigation.
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