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Solution: Consider algorithms for suitably defined classes of
functions.

A suitably defined class of functions should be

◮ not too big, because we want to be able to write down each
function in the class with a finite amount of data only, and we
want to compute with these.

◮ not too small, because we want the class to contain as many
functions as possible of those which appear in applications
(e. g. in particle physics).

Deciding on the right function class is the first step in algorithmic
problem solving.
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p0(x)f(x) + p1(x)f
′(x) + p2(x)f
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Approximately 60% of the
functions in Abramowitz
and Stegun’s handbook
fall into this category.
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Consequence: A holonomic function f is uniquely determined by

◮ The differential equation

◮ A finite number of initial values f(0), f ′(0), f ′′(0), . . . , f (k)(0)
(Usually, k = r suffices.)

Consequence: A holonomic function can be represented exactly by
a finite amount of data.
(assuming that the constants appearing in equation and initial
values belong to a suitable subfield of C, e.g., to Q.)
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p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Approximately 25% of
the sequences in
Sloane’s Online
Encyclopedia of Integer
Sequences fall into this
category.



Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.



Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.

Consequence: A holonomic sequence (an)
∞
n=0 is uniquely

determined by



Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.

Consequence: A holonomic sequence (an)
∞
n=0 is uniquely

determined by

◮ The recurrence equation



Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.

Consequence: A holonomic sequence (an)
∞
n=0 is uniquely

determined by

◮ The recurrence equation

◮ A finite number of initial values a0, a1, a2, . . . , ak



Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.

Consequence: A holonomic sequence (an)
∞
n=0 is uniquely

determined by

◮ The recurrence equation

◮ A finite number of initial values a0, a1, a2, . . . , ak
(Usually, k = r suffices.)



Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.

Consequence: A holonomic sequence (an)
∞
n=0 is uniquely

determined by

◮ The recurrence equation

◮ A finite number of initial values a0, a1, a2, . . . , ak
(Usually, k = r suffices.)

Consequence: A holonomic sequence can be represented exactly by
a finite amount of data.



Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r

is a vector space of dimension s+ r.

Consequence: A holonomic sequence (an)
∞
n=0 is uniquely

determined by

◮ The recurrence equation

◮ A finite number of initial values a0, a1, a2, . . . , ak
(Usually, k = r suffices.)

Consequence: A holonomic sequence can be represented exactly by
a finite amount of data.
(assuming that the constants appearing in equation and initial
values belong to a suitable subfield of C, e.g., to Q.)
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Examples.

◮ an = 2n

⇐⇒ an+1 − 2an = 0, a0 = 1

◮ an = n!
⇐⇒ an+1 − (n+ 1)an = 0, a0 = 1

◮ an =
∑n

k=0
(−1)k

k!
⇐⇒ (n+ 2)an+2 − (n+ 1)an+1 − an = 0,

a0 = 1, a1 = 0

◮ an = the number of involutions of n letters
⇐⇒ an+3 + nan+2 − (3n+ 6)an+1 − (n+ 1)(n+ 2)an = 0,

a0 = 1, a1 = 1, a2 = 2

◮ . . .
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Examples.
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Theorem (Conversion). Let a(x) =
∞∑

n=0
anx

n. Then:

a(x) is holonomic as function

⇐⇒ (an)
∞
n=0 is holonomic as sequence.

Examples.

INPUT: 2an+3 + nan+2 − 3(n+ 2)an+1 − (n+ 1)(n+ 2)an = 0

OUTPUT: x5a(5)(x) + (19x2 + 3x− 1)x2a(4)(x)
+ 2(55x3 + 15x2 − 2x− 1)a(3)(x) + 6(37x+ 12)xa′′(x)
+ 12(11x+ 3)a′(x) + 12a(x) = 0
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Theorem (Asymptotics).

◮ If a(x) is holonomic and has a singularity at ζ, then

a(x) ∼ c eP ((ζ−x)−1/r)(ζ − x)α log(ζ − x)β (x → ζ)

where c is a constant, P is a polynomial, r ∈ N, α is a
constant, and β ∈ N.

◮ If (an)
∞
n=0 is holonomic, then

an ∼ c eP (n1/r)nγnφnnα log(n)β (n → ∞)

where c is a constant, P is a polynomial, r ∈ N, φ, α, γ are
constants, and β ∈ N.
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◮ More terms of the asymptotic expansion can be computed.

Example.
INPUT:
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Algorithms.

◮ ζ, φ, P, r, α, β, γ can be computed exactly and explicitly.

◮ c can be computed approximately to any desired accurracy.

◮ More terms of the asymptotic expansion can be computed.

Example.
INPUT:
2an+3+nan+2−3(n+2)an+1− (n+1)(n+2)an = 0, a0 = a1 = 1

OUTPUT:
c e

√
n−n

2 nn/2
(
1− 119

1152n
−1 + 7

24n
−1/2 + 1967381

39813120n
−2 +O(n−3/2)

)

with c ≈ 0.55069531490318374761598106274964784671382 . . .
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Theorem (closure properties I). Let a(x) and b(x) be holonomic
functions. Then:

◮ a(x) + b(x) is holonomic.

◮ a(x)b(x) is holonomic.

◮ a′(x) is holonomic.

◮

∫ x
0 a(t)dt is holonomic.

◮ if b(x) is algebraic and b(0) = 0, then a(b(x)) is holonomic.

The theorem is algorithmic:

◮ Differential equations for all these functions can be computed
from given defining equations of a(x) and b(x).
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Theorem (closure properties II). Let (an)
∞
n=0 and (bn)

∞
n=0 be

holonomic sequences. Then:

◮ (an + bn)
∞
n=0 is holonomic.

◮ (anbn)
∞
n=0 is holonomic.

◮ (an+1)
∞
n=0 is holonomic.

◮ (
∑n

k=0 ak)
∞
n=0 is holonomic.

◮ if u, v ∈ Q are positive, then (a⌊un+v⌋)
∞
n=0 is holonomic.

The theorem is algorithmic:

◮ Recurrence equations for all these sequences can be computed
from given defining equations of (an)

∞
n=0 and (bn)

∞
n=0.
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Examples.

INPUT:
a′(x)− a(x) = 0, a(0) = 1 (i.e., a(x) = exp(x))
(1− x)b′′(x)− b′(x) = 0, b(0) = 0, b′(0) = −1

(i.e., b(x) = log(1− x))

(c(x) = a(x)b(x))

OUTPUT:
(x− 1)c′′(x) + (3− 2x)c′(x) + (x− 2)c(x), c(0) = 0, c′(0) = −1.
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Examples.

INPUT:
(n+ 2)an+2 − (2n+ 3)an+1 + (n+ 1)an = 0, a1 = 1, a2 =

3
2

(i.e., an =
∑n

k=1
1
k )

(cn =
∑n

k=0 ak)

OUTPUT:
(n2 + 4n+ 4)cn+2 − (2n2 + 9n+ 9)cn+1 + (n2 + 5n+ 6)cn = 0,
c0 = 2, c1 =

9
2
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INPUT:
a′(x)− a(x) = 0, a(0) = 1 (i.e. a(x) = exp(x))
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Examples.

INPUT:
a′(x)− a(x) = 0, a(0) = 1 (i.e. a(x) = exp(x))
(1− 4x)b(x)2 − x2 = 0 (i.e. b(x) = x√

1−4x
)

(c(x) = a(b(x)))

OUTPUT:
(4x−1)3(2x−1)c′′(x)+4(x−1)(4x−1)2c′(x)+(2x−1)3c(x) = 0,
c(0) = 1, c′(0) = 1
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available from the RISC combinatorics software website.

Example (for Mathematica)

In[1]:= << GeneratingFunctions.m
GeneratingFunctions Package by Christian Mallinger – (c) RISC
Linz – V 0.68 (07/17/03)

In[2]:= DEPlus[a′[x] − a[x], a′[x] + 2a[x], a[x]]



Implementations.

◮ For Maple: gfun by Salvy and Zimmermann, distributed
together with Maple.

◮ For Mathematica: GeneratingFunctions.m by Mallinger,
available from the RISC combinatorics software website.

Example (for Mathematica)

In[1]:= << GeneratingFunctions.m
GeneratingFunctions Package by Christian Mallinger – (c) RISC
Linz – V 0.68 (07/17/03)

In[2]:= DEPlus[a′[x] − a[x], a′[x] + 2a[x], a[x]]

Out[2]= −2(−1 + x+ 2x2)a[x] + (4x2 − 3)a′[x] + (2x+ 1)a′′[x] == 0



Implementations.

◮ For Maple: gfun by Salvy and Zimmermann, distributed
together with Maple.

◮ For Mathematica: GeneratingFunctions.m by Mallinger,
available from the RISC combinatorics software website.

Example (for Mathematica)

In[1]:= << GeneratingFunctions.m
GeneratingFunctions Package by Christian Mallinger – (c) RISC
Linz – V 0.68 (07/17/03)

In[2]:= DEPlus[a′[x] − a[x], a′[x] + 2a[x], a[x]]

Out[2]= −2(−1 + x+ 2x2)a[x] + (4x2 − 3)a′[x] + (2x+ 1)a′′[x] == 0

These packages are particularly useful for proving identities.
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0.5

1.0

◮ P0(x) = 1

◮ P1(x) = x

◮ P2(x) =
1
2(3x

2 − 1)

◮ P3(x) =
1
2(5x

3 − 3x)



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

◮ P1(x) = x

◮ P2(x) =
1
2(3x

2 − 1)

◮ P3(x) =
1
2(5x

3 − 3x)

◮ P4(x) =
1
8(35x

4 − 30x2 + 3)



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

◮ P1(x) = x

◮ P2(x) =
1
2(3x

2 − 1)

◮ P3(x) =
1
2(5x

3 − 3x)

◮ P4(x) =
1
8(35x

4 − 30x2 + 3)

◮ P5(x) =
1
8(15x− 70x3 + 63x5)

◮ · · ·



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

Pn+2(x) = −n+ 1

n+ 2
Pn(x) +

2n+ 3

n+ 2
xPn+1(x)



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

Pn+2(x) = −n+ 1

n+ 2
Pn(x) +

2n+ 3

n+ 2
xPn+1(x)

P0(x) = 1

P1(x) = x



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

◮ P
(1,−1)
2 (x) = 3

2(x+ x2)



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

◮ P
(1,−1)
2 (x) = 3

2(x+ x2)

◮ P
(1,−1)
3 (x) = 1

2(−1− x+ 5x2 + 5x3)



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

◮ P
(1,−1)
2 (x) = 3

2(x+ x2)

◮ P
(1,−1)
3 (x) = 1

2(−1− x+ 5x2 + 5x3)

◮ P
(1,−1)
4 (x) = 5

8(−3x− 3x2 + 7x3 + 7x4)



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

◮ P
(1,−1)
2 (x) = 3

2(x+ x2)

◮ P
(1,−1)
3 (x) = 1

2(−1− x+ 5x2 + 5x3)

◮ P
(1,−1)
4 (x) = 5

8(−3x− 3x2 + 7x3 + 7x4)

◮ P
(1,−1)
5 (x) = 3

8(1 + x− 14x2 − 14x3 + 21x4 + 21x5)

◮ · · ·



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

P
(1,−1)
n+2 (x) = − n

n+ 1
P (1,−1)
n (x) +

2n+ 3

n+ 2
xP

(1,−1)
n+1 (x)



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

P
(1,−1)
n+2 (x) = − n

n+ 1
P (1,−1)
n (x) +

2n+ 3

n+ 2
xP

(1,−1)
n+1 (x)

P
(1,−1)
0 (x) = 1

P
(1,−1)
1 (x) = 1 + x



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

How to prove this identity?



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

How to prove this identity? −→ By induction!



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0

How to prove this identity? −→ By induction!



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0

How to prove this identity? −→ By induction!

Compute a recurrence for the left hand side from the defining equa-
tions of its building blocks.



n∑

k=0
︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
P

(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0



n∑

k=0
︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0



n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0



︸ ︷︷ ︸

recurrence of order 5

n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0



︸ ︷︷ ︸

recurrence of order 5

n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) − 1

1− x

(

2−
︸ ︷︷ ︸
recurrence
of order 2

Pn(x)− Pn+1(x)
)

= 0



︸ ︷︷ ︸

recurrence of order 5

n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) − 1

1− x

(

2−
︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−
︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)

= 0



︸ ︷︷ ︸

recurrence of order 5

n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) − 1

1− x

(

2−

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−
︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)

= 0



︸ ︷︷ ︸

recurrence of order 5

n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) −

︸ ︷︷ ︸

recurrence of order 3

1

1− x

(

2−

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−
︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)

= 0



︸ ︷︷ ︸

recurrence of order 7

︸ ︷︷ ︸

recurrence of order 5

n∑

k=0

︸ ︷︷ ︸

recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1
︸ ︷︷ ︸

recurrence
of order 2

P
(1,−1)
k (x) −

︸ ︷︷ ︸

recurrence of order 3

1

1− x

(

2−

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−
︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)

= 0



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0

lhsn+7 = (· · ·messy · · · ) lhsn+6

+ (· · ·messy · · · ) lhsn+5

+ (· · ·messy · · · ) lhsn+4

+ (· · ·messy · · · ) lhsn+3

+ (· · ·messy · · · ) lhsn+2

+ (· · ·messy · · · ) lhsn+1

+ (· · ·messy · · · ) lhsn



n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) − 1

1− x

(

2− Pn(x)− Pn+1(x)
)

= 0

lhsn+7 = (· · ·messy · · · ) lhsn+6

+ (· · ·messy · · · ) lhsn+5

+ (· · ·messy · · · ) lhsn+4

+ (· · ·messy · · · ) lhsn+3

+ (· · ·messy · · · ) lhsn+2

+ (· · ·messy · · · ) lhsn+1

+ (· · ·messy · · · ) lhsn

Therefore the identity holds for all n ∈ N

if and only if it holds for n = 0, 1, 2, . . . , 6.



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100

◮ H0(x) = 1



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100

◮ H0(x) = 1

◮ H1(x) = 2x



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100

◮ H0(x) = 1

◮ H1(x) = 2x

◮ H2(x) = 4x2 − 2



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100

◮ H0(x) = 1

◮ H1(x) = 2x

◮ H2(x) = 4x2 − 2

◮ H3(x) = 8x3 − 12x



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100

◮ H0(x) = 1

◮ H1(x) = 2x

◮ H2(x) = 4x2 − 2

◮ H3(x) = 8x3 − 12x

◮ H4(x) = 16x4 − 48x2 + 12



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

-3 -2 -1 1 2 3

-100

-50

50

100

◮ H0(x) = 1

◮ H1(x) = 2x

◮ H2(x) = 4x2 − 2

◮ H3(x) = 8x3 − 12x

◮ H4(x) = 16x4 − 48x2 + 12

◮ H5(x) = 32x5 − 160x3 + 120x

◮ · · ·



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

Hn+2(x) = 2xHn+1(x)− 2(n+ 1)Hn(x)



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

Hermite polynomials:

Hn+2(x) = 2xHn+1(x)− 2(n+ 1)Hn(x)

H0(x) = 1

H1(x) = 2x



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

This is an identity among analytic functions.



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

This is an identity among analytic functions.

Consider x and y as fixed parameters.



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

This is an identity among analytic functions.

Consider x and y as fixed parameters.

Then both sides are functions in t.



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn =

1√
1− 4t2

exp
(4t(xy − t(x2 + y2))

1− 4t2

)

This is an identity among analytic functions.

Consider x and y as fixed parameters.

Then both sides are functions in t.

Idea: Compute a recurrence for the series coefficients of LHS−RHS



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

This is an identity among analytic functions.

Consider x and y as fixed parameters.

Then both sides are functions in t.

Idea: Compute a recurrence for the series coefficients of LHS−RHS



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

This is an identity among analytic functions.

Consider x and y as fixed parameters.

Then both sides are functions in t.

Idea: Compute a recurrence for the series coefficients of LHS−RHS

Then prove by induction that they are all zero.



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0

This is an identity among analytic functions.

Consider x and y as fixed parameters.

Then both sides are functions in t.

Idea: Compute a recurrence for the series coefficients of LHS−RHS

Then prove by induction that they are all zero.

Then the function is identically zero.



∞∑

n=0

Hn(x)Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0



∞∑

n=0
︸ ︷︷ ︸

rec. of
ord. 2

Hn(x)Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0



∞∑

n=0
︸ ︷︷ ︸

rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0



∞∑

n=0

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)
1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0



∞∑

n=0

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)

︸︷︷︸
rec. of
ord. 1

1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0



∞∑

n=0

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)

︸︷︷︸
rec. of
ord. 1

1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0



︸ ︷︷ ︸

differential equation of order 5

∞∑

n=0

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸

rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)

︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)

︸︷︷︸
rec. of
ord. 1

1

n!
tn − 1√

1− 4t2
exp

(4t(xy − t(x2 + y2))

1− 4t2

)

= 0



︸ ︷︷ ︸

differential equation of order 5

∞∑

n=0

︸ ︷︷ ︸

recurrence of order 4

︸ ︷︷ ︸
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The identity is proved as soon as it is checked for the first 7 terms.
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◮ Of course, this particular example can be done easily with
Zeilberger’s algorithm.

◮ Of course, the the holonomic machinary is more general than
the hypergeometric one.

◮ Of course, a good implementation will do the whole
computation in one stroke.
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Algorithms for executing closure properties are rigorous.

Their output constitutes a formal mathematical proof.
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We have (2 + n)an+1 − (4n+ 2)an = 0 for n = 0, . . . , 7

A program can find this.

If the recurrence is also true for n > 7, then the next terms should
be 4862, 16796, . . .

Whether the recurrence is also true for n > 7, this cannot be
judged by looking at any finite amount of data.

But the more data we check, the more “likely” it becomes.
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?

◮ It is clear by closure properties that a recurrence exist.

◮ It might still be hard to actually compute it.

◮ Efficient shortcut: Evaluate the sum for n = 0, . . . , 500, say,
and compute a recurrence from this data.

◮ Result (with high probability): A recurrence of order 6 with
polynomial coefficients of degree 94.
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◮ Holonomic means to satisfy a linear differential/recurrence
equation with polynomial coefficients.

◮ Equation plus initial values characterize a holonomic
function/sequence uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Many more can be composed out of known ones by applying
holonomic closure properties.

◮ Many questions about holonomic functions can be answered
computationally (rigorously or not).

◮ Software packages for Maple and Mathematical are available
for these tasks.
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Examples.
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(
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)
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◮ Pn(x) 1 continuous and 1 discrete variable.
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We now consider functions f(x1, . . . , xp, n1, . . . , nq) where

◮ x1, . . . , xp are continuous variables (p ∈ N fixed), and

◮ n1, . . . , nq are discrete variables (q ∈ N fixed).

We want to differentiate the xi and to shift the nj :

∂5

∂x5
∂3

∂y3
f(x, y, n+ 4, k + 23)

Compact notation:
D5

xD
3
yS

4
nS

23
k f
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◮ For every k = 1, . . . , p there exist polynomials p0, . . . , pr in
the variables x1, . . . , xp, n1, . . . , nq, not all zero, such that

p0f + p1Dxk
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◮ For every k = 1, . . . , p there exist polynomials p0, . . . , pr in
the variables x1, . . . , xp, n1, . . . , nq, not all zero, such that

p0f + p1Snk
f + p2S

2
nk
f + · · ·+ prS

r
nk
f = 0.

Warning! This is just a somewhat oversimplified
approximation to the official definition
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Counterexamples.

◮ f(x, n) =
√
x+ n is not holonomic.

It satisfies a differential equation in x, but no recurrence in n.

◮ f(x, n) =
(
x
n

)
is not holonomic.

It satisfies a recurrence in n, but no differential equation in x.

◮ f(n, k) = S1(n, k) [Stirling numbers] is not holonomic.

It satisfies the recurrence

SnSkf + nSnf − f = 0,

but no “pure” recurrence in Sk or Sn.
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◮ Consider the equations

(. . . )S2
nf + (. . . )Snf + (. . . )f = 0
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Simiarly for differential equations and for systems containing mixed
equations.
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Holonomy requires for every variable a pure equation.

But if there are mixed equations in addition, they are welcome.

Example.

◮ f(x, n) = Pn(x) satisfies

(x2 − 1)D2
xf + 2xDxf − n(n+ 1)f = 0 and

(n+ 2)S2
nf − (2nx− 3x)Snf + (n+ 1)f = 0 and

(x2 − 1)Dxf − (n+ 1)Snf + (n+ 1)xf = 0.

In this case, any two equations imply the other.

In general, mixed equations may contain additional information.

A system of equations is called holonomic if it implies for every
variable a pure equation.
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Have:

◮ Finite data structure for representing holonomic objects

◮ Coverage of many important examples

Want:

◮ Structural properties of the class of holonomic objects

◮ Algorithms for doing explicit computations with them
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Theorem (closure properties). Let f and g be holonomic functions.
Then:

◮ f + g is holonomic

◮ fg is holonomic

◮ Dxf is holonomic for every continuous variable x

◮

∫

x f is holonomic for every continuous variable x

◮ Snf is holonomic for every discrete variable n

◮

∑n
k=0 f(. . . , k, . . . ) is holonomic for every discrete variable n

◮ If h1, . . . , hp are algebraic functions in x1, . . . , xp, free of
n1, . . . , nq, then f(h1, . . . , hp, n1, . . . , nq) is holonomic.

◮ If h1, . . . , hq are integer-linear functions in n1, . . . , nq, free of
x1, . . . , xp, then f(x1, . . . , xp, h1, . . . , hq) is holonomic.
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The theorem is algorithmic:

◮ Holonomic systems for all these functions can be computed
from given holonomic systems of f and g.

There is software available for this.

◮ For Maple: mgfun by Chyzak, distributed together with
Maple.

◮ For Mathematica: HolonomicFunctions.m by Koutschan,
available from the RISC combinatorics software website.
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◮ f(x, n) = n!xn exp(x)P2n+3(
√
1− x2)

In[1]:= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.4 (10.11.2010) –> Type ?HolonomicFunctions for help

In[2]:= Annihilator[n!xnExp[x]LegendreP[2n + 3, Sqrt[1 − x2]],
{Der[x], S[n]}]

Out[2]=

{

(−9x2 − . . . )Dx + (4n2 + . . . )Sn + (13nx4 + . . . ),
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◮ f(n, k) =
(
n
k

)
+
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k=0
1
k!

In[3]:= Annihilator[Binomial[n, k] +
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Example.

◮ f(n, k) =
(
n
k

)
+
∑n

k=0
1
k!

In[3]:= Annihilator[Binomial[n, k] +
Sum[1/k!, {k, 0, n}], {S[n], S[k]}]

Out[3]=

{

(2k2 + . . . )S2
k + (n2 + · · · )Sk + (3kn+ · · · ),

(n2 + · · · )SnSk + (3kn+ · · · )Sn + (2kn+ · · · )Sk + (n2 + · · · ),
(4kn3 + · · · )S2

n + (n4 + · · · )Sn + (k2n2 + · · · )Sk − (n3 + · · · )
}
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Example.

◮ f(x, n) =
∫ x
0 Pn(t)dt

In[4]:= Annihilator[Integrate[LegendreP[n, t], {t, 0, x}],
{Der[x], S[n]}]



Example.

◮ f(x, n) =
∫ x
0 Pn(t)dt

In[4]:= Annihilator[Integrate[LegendreP[n, t], {t, 0, x}],
{Der[x], S[n]}]

Out[4]=

{

(2n5x2 + · · · )S3
n + · · · · · · , (2n3x2 + · · · )DxSn + · · · · · · ,

(2n2x5 + · · · )D2
xSn + · · · · · · , (nx7 + · · · )D3

x + · · · · · ·
}
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Low-level commands for executing closure properties “by hand”:

◮ DFinitePlus

◮ DFiniteTimes

◮ DFiniteSubstitute

◮ DFiniteOreAction

◮ DFiniteDE2RE

◮ DFiniteRE2DE

Use this commands for functions whose definition is not known to
Annihilator or for expressions where the Annihilator
command takes a long time.
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OreAlgebra[Der[x], S[n]]];
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+ (x+nx), (n+2)S[n]2 − (2nx+3x)S[n] + (n+1)},
OreAlgebra[Der[x], S[n]]];

In[6]:= annE = OreGroebnerBasis[{xDer[x] − (n + x),
S[n] − x},OreAlgebra[Der[x], S[n]]];

In[7]:= DFinitePlus[annP , annE ]



Example.

◮ Pn(x) + xn exp(x)

In[5]:= annP = OreGroebnerBasis[{(x2 − 1)Der[x]− (n+1)S[n]
+ (x+nx), (n+2)S[n]2 − (2nx+3x)S[n] + (n+1)},
OreAlgebra[Der[x], S[n]]];

In[6]:= annE = OreGroebnerBasis[{xDer[x] − (n + x),
S[n] − x},OreAlgebra[Der[x], S[n]]];

In[7]:= DFinitePlus[annP , annE ]

Out[7]= {Dx(nx
3−nx+x3−x)+Sn(−3n2x−2nx2−5nx−3x2−x)+S2

n
(n2+nx+2n+2x)+

n2x2+n2+2nx2+nx+n+x2+x,DxSn(nx
2−n+x3−x)+(x2−x4)Dx+Sn(n

2(−x)−

nx)+n2−nx3+nx+n−x3+x,Dx(n
2x2−n2−2nx5+2nx4+4nx3−3nx2−2nx+n−

x6+2x4−x2)+D2

x
(nx5−2nx3+nx+x6−2x4+x2)−n3x3+2n3x−3n2x4−n2x3+

3n2x2+n2x+Sn(−n3+2n2x3−2n2x+nx4+4nx3−nx2−2nx+n+x4+2x3−x2)−

nx5−5nx4+nx3+3nx2−nx−x5−2x4+x3}
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Theorem (Summation/Integration).

◮ If f is holonomic, then so is

∫ ∞

−∞
f(t, x2, . . . , xp, n1, . . . , nq)dt,

provided that this integral exists.

◮ If f is holonomic, then so is

∞∑

k=−∞
f(x1, . . . , xp, k, n2, . . . , nq),

provided that this sum exists.

Warning! Strictly speaking, this item only holds
for the official definition of holonomic.
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Note the difference between indefinite and definite summation and
integration:

Indefinite:

g(x, y) =

∫ x

0
f(t, y) dt.

Sum and summand have the
same number of variables.

w
�

easy

Definite:

g(y) =

∫ ∞

−∞
f(t, y) dt.

The sum has one variable less
than the summand.

w
�

hard

The situation for integration is fully analogous.
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◮ f(x) =
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0 t2

√
t+ 1 exp(−xt2)dt satisfies

16x2D3
xf + (16x2 + 96x)D2

xf + (72x+ 99)Dxf + 48f = 0.

◮ f(x, t) =
∑∞

n=0 Pn(t)x
n satisfies

(x2−2tx+1)Dtf−xf=0 and (x2−2tx+1)Dxf+(x−t)f=0.
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Examples.

◮ f(n) =
∫ 1
0

∫ 1
0

w−1−ǫ/2(1−z)ǫ/2z−ǫ/2

(z+w−wz)1−ǫ (1−wn+1−(1−w)n+1)dw dz

satisfies

(8ǫn7 + · · · )S3
nf − (24ǫn7 + · · · )S2

nf

− (24ǫn7 + · · · )Snf + (8ǫn7 + · · · )f = 0.

◮ f(x) =

∫ 1

0
t2(1− t)22F1

(
a b

c

∣
∣
∣xt

)

dt satisfies

x2(x− 1)D3
xf + (. . . )D2

xf + (. . . )Dxf + 3abf = 0.
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How does this work?

Basic principle: Assume we have f(x, 0) = f(x, 1) = 0 and we
want to find an equation for F (x) =

∫ 1
0 f(x, y)dy.

Suppose f satisfies an equation of the form

a(x)f + b(x)Dxf + c(x)D2
xf = Dy

(
h(x, y)f

)

Then integrating both sides gives

a(x)F (x) + b(x)DxF (x) + c(x)D2
xF (x) = 0
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◮ f(t, x) = t2
√
t+ 1 exp(−xt2). F (x) =

∫∞
0 f(x, t)dt

2t(t+ 1)Dtf + (4t3x+ 4t2x− 5t− 4)f = 0,

Dxf + t2f = 0.

=⇒
“Telescoper”: free of t

︷ ︸︸ ︷

16x2D3
xf + (16x2 + 96x)D2

xf + (72x+ 99)Dxf + 48f

= Dt

(

︸ ︷︷ ︸

“Certificate”

−2(4t5x− 4t3x− 9t3 − t2 + 8t)f
)

=⇒ 16x2D3
xF + (16x2 + 96x)D2

xF + (72x+ 99)DxF + 48F = 0
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How to construct a creative telescoping relation?

There are algorithms for this task.

◮ Algorithms based on Gröbner basis technology

◮ Algorithms based on linear algebra

◮ Chyzak’s algorithm (generalizing Zeilberger’s algorithm)

◮ Takayama’s algorithm

Depending on the problem at hand, any of these algorithms may
be much more efficient than the others.



Koutschan’s package provides the command
FindCreativeTelescoping.



Koutschan’s package provides the command
FindCreativeTelescoping.

Examples



Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x) =
∫∞
0 t2

√
t+ 1 exp(−xt2)



Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x) =
∫∞
0 t2

√
t+ 1 exp(−xt2)

In[1]:= << HolonomicFunctions.m



Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x) =
∫∞
0 t2

√
t+ 1 exp(−xt2)

In[1]:= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.4 (10.11.2010) –> Type ?HolonomicFunctions for help



Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x) =
∫∞
0 t2

√
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Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x) =
∫∞
0 t2

√
t+ 1 exp(−xt2)

In[1]:= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.4 (10.11.2010) –> Type ?HolonomicFunctions for help

In[2]:= FindCreativeTelescoping[t2Sqrt[t + 1]Exp[−xt2],
{Der[t]}, {Der[x]}]

Out[2]=

{{
16x2D3

x + (16x2 + 96x)D2
x + (72x+ 99)Dxf + 48

}
,

{
{−2(4t5x− 4t3x− 9t3 − t2 + 8t)}

}}
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Koutschan’s package provides the command
FindCreativeTelescoping.

Examples

◮ F (x, t) =
∑∞

n=0 Pn(x)t
n

In[3]:= FindCreativeTelescoping[LegendreP[n, x]tn, {S[n] − 1},
{Der[x],Der[t]}]

Out[3]=

{{
(1 + t2 − 2tx)Dt + (t− x), (−1− t2 + 2tx)Dx + t

}
,

{
{(−1 + x2)Dx − n(tx−1)

t
}, {(−1 + tx)Dx − nt}

}}
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◮ Holonomic means to satisfy a holonomic system of linear
differential/recurrence equations with polynomial coefficients.

◮ A holonomic system is one which implies a pure relation for
every variable.

◮ Holonomic system plus initial values characterize a holonomic
function uniquely by a finite amount of data.

◮ Many functions and sequences arising in physics (and
elsewhere) turn out to be holonomic.

◮ Many more can be composed out of known ones by applying
holonomic closure properties.

◮ In particular, summation and integration preserves holonomy.

◮ Software packages for Maple and Mathematical are available
for computing with holonomic functions.




