How a Hard Conjecture in Number Theory was Knocked out with Symbolic Analysis

Manuel Kauers RISC

on a collaboration with

Christoph Koutschan RISC

Doron Zeilberger
Rutgers

The main ingredients of this story

The main ingredients of this story

For the Mass Media:

The main ingredients of this story

For the Mass Media:

- The last surviving entry of a famous list of open problems

The main ingredients of this story

For the Mass Media:

- The last surviving entry of a famous list of open problems
- can be explained with colourful pictures

The main ingredients of this story

For the Mass Media:

- The last surviving entry of a famous list of open problems
- can be explained with colourful pictures
- seems totally pointless to non-specialists

The main ingredients of this story

For the Mass Media:

- The last surviving entry of a famous list of open problems
- can be explained with colourful pictures
- seems totally pointless to non-specialists
- was finally proved by a computer

The main ingredients of this story

For the Mass Media:

- The last surviving entry of a famous list of open problems
- can be explained with colourful pictures
- seems totally pointless to non-specialists
- was finally proved by a computer
- The proof exceeds 1 Mio printed pages in size

The main ingredients of this story

For the Mass Media:

- The last surviving entry of a famous list of open problems
- can be explained with colourful pictures
- seems totally pointless to non-specialists
- was finally proved by a computer
- The proof exceeds 1 Mio printed pages in size

For the Math Expert:

The main ingredients of this story

For the Mass Media:

- The last surviving entry of a famous list of open problems
- can be explained with colourful pictures
- seems totally pointless to non-specialists
- was finally proved by a computer
- The proof exceeds 1 Mio printed pages in size

For the Math Expert:

- nice (for number theorists) because of the result itself

The main ingredients of this story

For the Mass Media:

- The last surviving entry of a famous list of open problems
- can be explained with colourful pictures
- seems totally pointless to non-specialists
- was finally proved by a computer
- The proof exceeds 1 Mio printed pages in size

For the Math Expert:

- nice (for number theorists) because of the result itself
- nice (for computer algebraists) because of the methods used

Partitions

Ways of writing positive integers as sums of positive integers.

Partitions

Ways of writing positive integers as sums of positive integers.

$$
5=1+1+1+1+1
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
\begin{aligned}
5 & =1+1+1+1+1 \\
& =2+1+1+1
\end{aligned}
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
\begin{aligned}
5 & =1+1+1+1+1 \\
& =2+1+1+1 \\
& =2+2+1
\end{aligned}
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
\begin{aligned}
5 & =1+1+1+1+1 \\
& =2+1+1+1 \\
& =2+2+1 \\
& =3+1+1
\end{aligned}
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
\begin{aligned}
5 & =1+1+1+1+1 \\
& =2+1+1+1 \\
& =2+2+1 \\
& =3+1+1 \\
& =3+2
\end{aligned}
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
\begin{aligned}
5 & =1+1+1+1+1 \\
& =2+1+1+1 \\
& =2+2+1 \\
& =3+1+1 \\
& =3+2 \\
& =4+1
\end{aligned}
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
\begin{aligned}
5 & =1+1+1+1+1 \\
& =2+1+1+1 \\
& =2+2+1 \\
& =3+1+1 \\
& =3+2 \\
& =4+1 \\
& =5
\end{aligned}
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
\left.\begin{array}{rl}
5 & =1+1+1+1+1 \\
& =2+1+1+1 \\
& =2+2+1 \\
& =3+1+1 \\
& =3+2 \\
& =4+1 \\
& =5
\end{array}\right\} \quad \text { " } 5 \text { has } 7 \text { partitions" }
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
p(5)=7
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
\begin{aligned}
& p(1)=1, \\
& p(2)=2, \\
& p(3)=3, \\
& p(4)=5, \\
& p(5)=7, \\
& p(6)=11, \\
& p(7)=15, \\
& p(8)=22, \\
& p(9)=30, \\
& p(10)=42
\end{aligned}
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
p(n)=?
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
p(n)=?
$$

Bad news: There is no closed form for $p(n)$.

Partitions

Ways of writing positive integers as sums of positive integers.

$$
p(n)=?
$$

Bad news: There is no closed form for $p(n)$.
Good news: There is sort of a closed form for its generating function:

Partitions

Ways of writing positive integers as sums of positive integers.

$$
p(n)=?
$$

Bad news: There is no closed form for $p(n)$.
Good news: There is sort of a closed form for its generating function:

$$
p(n)
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
p(n)=?
$$

Bad news: There is no closed form for $p(n)$.
Good news: There is sort of a closed form for its generating function:

$$
p(n) q^{n}
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
p(n)=?
$$

Bad news: There is no closed form for $p(n)$.
Good news: There is sort of a closed form for its generating function:

$$
\sum_{n=0}^{\infty} p(n) q^{n}
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
p(n)=?
$$

Bad news: There is no closed form for $p(n)$.
Good news: There is sort of a closed form for its generating function:

$$
\sum_{n=0}^{\infty} p(n) q^{n}=
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
p(n)=?
$$

Bad news: There is no closed form for $p(n)$.
Good news: There is sort of a closed form for its generating function:

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{k=0}^{\infty} \frac{1}{1-q^{k}}
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
p(n)=?
$$

Bad news: There is no closed form for $p(n)$.
Good news: There is sort of a closed form for its generating function:

$$
\begin{aligned}
\sum_{n=0}^{\infty} p(n) q^{n} & =\prod_{k=0}^{\infty} \frac{1}{1-q^{k}} \\
& =\frac{1}{(1-q)} \frac{1}{\left(1-q^{2}\right)} \frac{1}{\left(1-q^{3}\right)} \frac{1}{\left(1-q^{4}\right)} \frac{1}{\left(1-q^{5}\right)} \cdots
\end{aligned}
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
p(n)=?
$$

Bad news: There is no closed form for $p(n)$.
Good news: There is sort of a closed form for its generating function:

$$
\begin{aligned}
\sum_{n=0}^{\infty} p(n) q^{n} & =\prod_{k=0}^{\infty} \frac{1}{1-q^{k}} \\
& =\frac{1}{(1-q)} \frac{1}{\left(1-q^{2}\right)} \frac{1}{\left(1-q^{3}\right)} \frac{1}{\left(1-q^{4}\right)} \frac{1}{\left(1-q^{5}\right)} \cdots \\
& =1+1 q+2 q^{2}+3 q^{3}+5 q^{4}+7 q^{5}+\cdots
\end{aligned}
$$

Partitions

Ways of writing positive integers as sums of positive integers.

$$
p(n)=?
$$

Bad news: There is no closed form for $p(n)$.
Good news: There is sort of a closed form for its generating function:

$$
\begin{aligned}
\sum_{n=0}^{\infty} p(n) q^{n} & =\prod_{k=0}^{\infty} \frac{1}{1-q^{k}} \\
& =\frac{1}{(1-q)} \frac{1}{\left(1-q^{2}\right)} \frac{1}{\left(1-q^{3}\right)} \frac{1}{\left(1-q^{4}\right)} \frac{1}{\left(1-q^{5}\right)} \cdots \\
& =1+1 q+2 q^{2}+3 q^{3}+5 q^{4}+7 q^{5}+\cdots
\end{aligned}
$$

Many further features of $p(n)$ have been discovered since the times of Euler.

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

Example: A plane partition of size $n=5$:

5	3	3	2	1
4	3	2	2	0
3	3	2	1	0
3	2	1	0	0
1	1	1	0	0

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

There are $p p(5)=267227532$ plane partitions of size $n=5$.

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

There are $p p(5)=267227532$ plane partitions of size $n=5$.
There are

$$
p p(n)=\prod_{i, j, k=1}^{n} \frac{i+j+k-1}{i+j+k-2}
$$

plane partitions of size n.

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

There are $p p(5)=267227532$ plane partitions of size $n=5$.
There are

$$
p p(n)=\prod_{i, j, k=1}^{n} \frac{i+j+k-1}{i+j+k-2}
$$

plane partitions of size n.
This is nontrivial but classic.

Plane Partitions

$n \times n$ matrices of nonnegative integers $\leq n$, decreasing along all rows and all columns.

There are $p p(5)=267227532$ plane partitions of size $n=5$.
There are

$$
p p(n)=\prod_{i, j, k=1}^{n} \frac{i+j+k-1}{i+j+k-2}
$$

plane partitions of size n.
This is nontrivial but classic.
In the 1980s, harder questions about plane partitions came up.

Plane Partitions

Richard P. Stazley* Department of Hathen

Many rearkable coojectures have beell nade recently concerniar the explicit enumoration of cortain clasees of tablesux. Wast of these are
 Were we will survey the sost proninest of these conjectures (onitting sone ratber techalcal refisenents). Ke will for the ront part not dis. cuas the background of these conjectures and their connoctions with symatric functions and rapresentation theory. We will also for the nost part $\mathrm{t}_{\mathrm{g}} \mathrm{more}$ a host of kown results wich are very sialiar to wning of the conjectures and which nake the conjectures consiberably nore tartalizing. The reader should consult the references cited below for further informaties.
 an array : - $\left(n_{i j}\right)_{i, j \geq 1}$ of aonnegative lategery $y_{i j}$ with finite sum
 nonzero if are called the parti of \%, and nornally shen writing exanplos only the parts are dimplsyed. Such corsinotery as "nubber of rows of $\mathrm{r}^{\prime \prime}$ refers only to the parts of 0 . Thas, for exiople,

443211 43121 371 22

Is 4 plane partitien , with |\% - 38, and with 17 parth, 5 rows, and 6
columes. We sow $115 t$ sume spectal classes of plane partitions.
colom htriet: the parts strictly decrease in each colum.
rew-atriet: the parts strictly dacreaso in each row.
synmetzie: ${ }^{\text {ij }}$ " " j for all $1, j$.
cyclacaliy bymetrie: the 1 -th rov of 7 , Fegarded as an ordinary
partition, is coajugate (in the sense of $14, \mathrm{D}, \mathrm{211}$) to the $1-$ th col ump for sll i .
tolalix synnetric: symetric and crelically symutale.

*Fartisily supported by xsF firant \% B204085.MCS

In 1985, Richard Stanley composed a list of 13 circulating open conjectures about plane partitions with certain symmetries.

Plane Partitions

Richard P. Stazley* Departheni of

Many resarkable coojectures have been nade recently concerniag the explicit enuneration of cortain clasees of tableaux. Wast of these are Whe to or arise froe the work of K. Mills, D. Mobsins, and It. finasey. Bere we will sorvey the nost pronineat of these conjectures (onitting sone rather techalcal refisments). Ke will for the rost part not dis. cuas the background of these conjectures and their connoctions with symastric functions and rapresentation theory. We will also for the most part f_{g} more a host of kown results wich are very sialiar to wany of the canjectures asd which nake the conjectures consiberably more tantalising. The reader should consult the references cited belom for further informaties.
 an array x - $\left(n_{i j}\right)_{i, j \geq 1}$ of sonnegative istegery 'ij with finite sum $|\gamma|-t$ "iy. Which is venily decreasing is rows and colums [101. The nonzero nif are called the parti of \%, and nornally shen writing exanplos only the parta are dimplsyed. Such corrinotery as "number of rows of r" refers only to the parts of 7 . Thus, for exiapte,

443211 33121 371 22

Is a plane partition , with $|=|$ - 38, and with 17 parth, 5 rows, aad 6
columes. Ne sow $115 t$ suee spectal classes of plane partitiens.
colom htriet: the parts strictly decrease in each colum.
row-atrict: the parts strictly dacreaso in each row.
synmetrie: ${ }^{\text {ij }}$ " " ${ }_{j i}$ for all $1, j$.
eyeldeally pymetric: the j-th rov of 7 , Fegarded ss me ordinary partition, is coajuqate (in the sense of (4, D. 211) to the 1-th colum. for sll it.
tataliz synnetric: symetric and crelically symatile.

partisily supported by XSE firant \& B2040s5 ucs

In 1985, Richard Stanley composed a list of 13 circulating open conjectures about plane partitions with certain symmetries.

Twelve of them are settled for a while.

Plane Partitions

Richard P. Stanley*

Many resarkable coojectures have been nade recently concerniag the explicit enuneration of cortain clasees of tableaux. Wast of these are due to or arise froe the work of W. Mills, D. Nobsins, asd It. Aussey. Bere we will sorvey the most pronineat of these conjectures (onitting sone rather techalcal refisments). Ke will for the rost part not dis. cuas the background of these conjectures and their connoctions with symastric functions and rapresentation theory. We will also for the most part f_{g} more a host of kown results wich are very sialiar to wany of the canjectures asd which nake the conjectures consiberably more tantalising. The reader should consult the references cited belom for further informaties.
 an array x - $\left(n_{i j}\right)_{i, j \geq 1}$ of sonnegative istegery 'ij with finite sum
 nonzero sif are called the parti of \%, and nornally shen writing exanplos only the parts are displsyed. Such torpinotery as "nubber of rows of r" refers only to the parts of 0 . Thas, for exiapte,

443211 4311 371 22 1

Is a plane partition , with $|=|$ - 38, and with 17 parth, 5 rows, aad 6
columes. Ne sow $115 t$ suee spectal classes of plane partitiens.
colom-htriet: the parts strietly decrease in each columa
row-atrict: the parts strictly dacreaso in each row.
synmetrie: " ij " ${ }^{2 j}$ for all $1, j$.
cyctacally spmetric: the j-th rov of 7 , Fegarded se an ordinary
partition, is coajugate (in the sense of 14, D. 211) to the 1-th columg.
for sll it.
soasiay symetric: syanctric and crelically symatile.
$(r, 5, t)-s 01 f$-corgleasentary ${ }^{1}$, has $\leq r$ rows, \leq, celums. largest
part ≤ 1, and " $1 y^{*}{ }^{*}{ }_{r-i+1, s-j+1^{*}}$ \& for all $1 \leq 1 \leq \mathrm{x}, 1 \leq 3 \leq \mathrm{B}$.
FFartisilly supported by NsF Girant \% B2040ss.acs

In 1985, Richard Stanley composed a list of 13 circulating open conjectures about plane partitions with certain symmetries.

Twelve of them are settled for a while.
We have proved the remaining 13th.

Plane Partitions with Symmetries

1. Symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions invariant under $\langle(1,2)\rangle \triangleleft S_{3}$
2. Cyclic plane partitions
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions invariant under $\langle(1,2)\rangle \triangleleft S_{3}$
2. Cyclic plane partitions invariant under $\langle(1,2,3)\rangle \triangleleft S_{3}$
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions invariant under $\langle(1,2)\rangle \triangleleft S_{3}$
2. Cyclic plane partitions invariant under $\langle(1,2,3)\rangle \triangleleft S_{3}$
3. Totally symmetric plane partitions

Plane Partitions with Symmetries

1. Symmetric plane partitions invariant under $\langle(1,2)\rangle \triangleleft S_{3}$
2. Cyclic plane partitions invariant under $\langle(1,2,3)\rangle \triangleleft S_{3}$
3. Totally symmetric plane invariant under $\langle(1,2),(1,2,3)\rangle=S_{3}$ partitions

The last conjecture from Stanley's list is about
Totally Symmetric Plane Partitions (TSPPs).

Totally Symmetric Plane Partitions

There are 16 TSPPs of size $n=3$:

Totally Symmetric Plane Partitions

There are 16 TSPPs of size $n=3$:

Totally Symmetric Plane Partitions

There are 16 TSPPs of size $n=3$:

There are

$$
\operatorname{tspp}(n)=\prod_{1 \leq i \leq j \leq k \leq n} \frac{i+j+k-1}{i+j+k-2}
$$

TSPPs of size n.

Totally Symmetric Plane Partitions

There are 16 TSPPs of size $n=3$:

There are

$$
\operatorname{tspp}(n)=\prod_{1 \leq i \leq j \leq k \leq n} \frac{i+j+k-1}{i+j+k-2}
$$

TSPPs of size n. (Stembridge, 1995 and Andrews, Paule, Schneider, 2005)

Totally Symmetric Plane Partitions

Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into orbits:

Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into orbits:

Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into orbits:

Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into orbits:

Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into orbits:

Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into orbits:

Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into orbits:

Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into orbits:

Want: Number of TSPPs of size n with exactly m orbits

Totally Symmetric Plane Partitions

Example: $n=3$. There are 16 TSPPs altogether.

Totally Symmetric Plane Partitions

Example: $n=3$. There are 16 TSPPs altogether.
Let's group them according to their number m of orbits:

Totally Symmetric Plane Partitions

Example: $n=3$. There are $\mathbf{1 6}$ TSPPs altogether.
Let's group them according to their number m of orbits:

0	1	2	3	4	5	6	7	8	9	10
	-	1	4	4	4	14	84	48	4	5

Totally Symmetric Plane Partitions

Example: $n=3$. There are 16 TSPPs altogether.
Let's group them according to their number m of orbits:

0	1	2	3	4	5	6	7	8	9	10
	-	2	4	4	4	14	48	48	4	5

Encode this statistics in the coefficients of a polynomial:

$$
1+q+q^{2}+2 q^{3}+2 q^{4}+2 q^{5}+2 q^{6}+2 q^{7}+q^{8}+q^{9}+q^{10}
$$

Totally Symmetric Plane Partitions

Example: $n=3$. There are 16 TSPPs altogether.
Let's group them according to their number m of orbits:

0	1	2	3	4	5	6	7	8	9	10
	-	2	4	4	5	14	48	48	4	5

Encode this statistics in the coefficients of a polynomial:

$$
1+q+q^{2}+2 q^{3}+2 q^{4}+2 q^{5}+2 q^{6}+2 q^{7}+q^{8}+q^{9}+q^{10}
$$

Totally Symmetric Plane Partitions

Example: $n=3$. There are $\mathbf{1 6}$ TSPPs altogether.
Let's group them according to their number m of orbits:

0	1	2	3	4	5	6	7	8	9	10
	-	1	14	4	4	14	4	48	4	5

Encode this statistics in the coefficients of a polynomial:

$$
1+q+q^{2}+2 q^{3}+2 q^{4}+2 q^{5}+2 q^{6}+2 q^{7}+q^{8}+q^{9}+q^{10}
$$

Cross check: Setting $q=1$ gives back the total number 16 .

The Last Conjecture from Stanley's List

Let $R_{n, m}$ denote the number of totally symmetric plane partitions of size n with exactly m orbits.

The Last Conjecture from Stanley's List

Let $R_{n, m}$ denote the number of totally symmetric plane partitions of size n with exactly m orbits.

Then, for all $n \geq 1$,

The Last Conjecture from Stanley's List

Let $R_{n, m}$ denote the number of totally symmetric plane partitions of size n with exactly m orbits.

Then, for all $n \geq 1$,

$$
\sum_{m=0}^{\infty} R_{n, m} q^{m}
$$

The Last Conjecture from Stanley's List

Let $R_{n, m}$ denote the number of totally symmetric plane partitions of size n with exactly m orbits.

Then, for all $n \geq 1$,

$$
\sum_{m=0}^{\infty} R_{n, m} q^{m} \stackrel{?}{=} \prod_{1 \leq i \leq j \leq k \leq n} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

The Last Conjecture from Stanley's List

Let $R_{n, m}$ denote the number of totally symmetric plane partitions of size n with exactly m orbits.

Then, for all $n \geq 1$,

$$
\sum_{m=0}^{\infty} R_{n, m} q^{m} \stackrel{?}{=} \prod_{1 \leq i \leq j \leq k \leq n} \frac{\left(1-q^{i+j+k-1}\right) /(1-q)}{\left(1-q^{i+j+k-2}\right) /(1-q)}
$$

The Last Conjecture from Stanley's List

Let $R_{n, m}$ denote the number of totally symmetric plane partitions of size n with exactly m orbits.

Then, for all $n \geq 1$,

$$
\sum_{m=0}^{\infty} R_{n, m} q^{m} \stackrel{?}{=} \prod_{1 \leq i \leq j \leq k \leq n} \frac{1+q+q^{2}+\cdots+q^{i+j+k-2}}{1+q+q^{2}+\cdots+q^{i+j+k-3}}
$$

The Last Conjecture from Stanley's List

Let $R_{n, m}$ denote the number of totally symmetric plane partitions of size n with exactly m orbits.

Then, for all $n \geq 1$,

$$
\sum_{m=0}^{\infty} R_{n, m} q^{m} \stackrel{?}{=} \prod_{1 \leq i \leq j \leq k \leq n} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

The Last Conjecture from Stanley's List

Let $R_{n, m}$ denote the number of totally symmetric plane partitions of size n with exactly m orbits.

Then, for all $n \geq 1$,

$$
\sum_{m=0}^{\infty} R_{n, m} q^{m} \stackrel{?}{=} \prod_{1 \leq i \leq j \leq k \leq n} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

Example: For $n=3$ the product evaluates to

The Last Conjecture from Stanley's List

Let $R_{n, m}$ denote the number of totally symmetric plane partitions of size n with exactly m orbits.

Then, for all $n \geq 1$,

$$
\sum_{m=0}^{\infty} R_{n, m} q^{m} \stackrel{?}{=} \prod_{1 \leq i \leq j \leq k \leq n} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

Example: For $n=3$ the product evaluates to

$$
\frac{\left(1-q^{2}\right)\left(1-q^{3}\right)\left(1-q^{4}\right)^{2}\left(1-q^{5}\right)^{2}\left(1-q^{6}\right)^{2}\left(1-q^{7}\right)\left(1-q^{8}\right)}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)^{2}\left(1-q^{4}\right)^{2}\left(1-q^{5}\right)^{2}\left(1-q^{6}\right)\left(1-q^{7}\right)}
$$

The Last Conjecture from Stanley's List

Let $R_{n, m}$ denote the number of totally symmetric plane partitions of size n with exactly m orbits.

Then, for all $n \geq 1$,

$$
\sum_{m=0}^{\infty} R_{n, m} q^{m} \stackrel{?}{=} \prod_{1 \leq i \leq j \leq k \leq n} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

Example: For $n=3$ the product evaluates to

$$
\frac{\left(1-q^{6}\right)\left(1-q^{8}\right)}{(1-q)\left(1-q^{3}\right)}
$$

The Last Conjecture from Stanley's List

Let $R_{n, m}$ denote the number of totally symmetric plane partitions of size n with exactly m orbits.

Then, for all $n \geq 1$,

$$
\sum_{m=0}^{\infty} R_{n, m} q^{m} \stackrel{?}{=} \prod_{1 \leq i \leq j \leq k \leq n} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

Example: For $n=3$ the product evaluates to

$$
(1+q)^{2}\left(1-q+q^{2}\right)\left(1+q^{2}+q^{4}+q^{6}\right)
$$

The Last Conjecture from Stanley's List

Let $R_{n, m}$ denote the number of totally symmetric plane partitions of size n with exactly m orbits.

Then, for all $n \geq 1$,

$$
\sum_{m=0}^{\infty} R_{n, m} q^{m} \stackrel{?}{=} \prod_{1 \leq i \leq j \leq k \leq n} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

Example: For $n=3$ the product evaluates to

$$
1+q+q^{2}+2 q^{3}+2 q^{4}+2 q^{5}+2 q^{6}+2 q^{7}+q^{8}+q^{9}+q^{10}
$$

The Last Conjecture from Stanley's List

Let $R_{n, m}$ denote the number of totally symmetric plane partitions of size n with exactly m orbits.

Then, for all $n \geq 1$,

$$
\sum_{m=0}^{\infty} R_{n, m} q^{m} \stackrel{?}{=} \prod_{1 \leq i \leq j \leq k \leq n} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}
$$

Example: For $n=3$ the product evaluates to

$$
1+q+q^{2}+2 q^{3}+2 q^{4}+2 q^{5}+2 q^{6}+2 q^{7}+q^{8}+q^{9}+q^{10}
$$

Next: How to prove the conjecture using symbolic analysis.

Okada's Lemma

It is sufficient to show

$$
\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=\prod_{1 \leq i \leq j \leq k \leq n}\left(\frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}\right)^{2} \quad(n \geq 1)
$$

where

$$
a_{i, j}=\frac{q^{i+j}+q^{i}-q-1}{q^{1-i-j}\left(q^{i}-1\right)} \prod_{k=1}^{i-1} \frac{1-q^{k+j-2}}{1-q^{k}}+\left(1+q^{i}\right) \delta_{i, j}-\delta_{i, j+1} .
$$

$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,4}$	$a_{1,5}$	$a_{1,6}$	$a_{1,7}$	$a_{1,8}$	\cdots
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$	$a_{2,6}$	$a_{2,7}$	$a_{2,8}$	\cdots
$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{3,5}$	$a_{3,6}$	$a_{3,7}$	$a_{3,8}$	\cdots
$a_{4,1}$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$	$a_{4,6}$	$a_{4,7}$	$a_{4,8}$	\cdots
$a_{5,1}$	$a_{5,2}$	$a_{5,3}$	$a_{5,4}$	$a_{5,5}$	$a_{5,6}$	$a_{5,7}$	$a_{5,8}$	\ldots
$a_{6,1}$	$a_{6,2}$	$a_{6,3}$	$a_{6,4}$	$a_{6,5}$	$a_{6,6}$	$a_{6,7}$	$a_{6,8}$	\ldots
$a_{7,1}$	$a_{7,2}$	$a_{7,3}$	$a_{7,4}$	$a_{7,5}$	$a_{7,6}$	$a_{7,7}$	$a_{7,8}$	\cdots
$a_{8,1}$	$a_{8,2}$	$a_{8,3}$	$a_{8,4}$	$a_{8,5}$	$a_{8,6}$	$a_{8,7}$	$a_{8,8}$	\cdots
$a_{9,1}$	$a_{9,2}$	$a_{9,3}$	$a_{9,4}$	$a_{9,5}$	$a_{9,6}$	$a_{9,7}$	$a_{9,8}$	\cdots
$a_{10,1}$	$a_{10,2}$	$a_{10,3}$	$a_{10,4}$	$a_{10,5}$	$a_{10,6}$	$a_{10,7}$	$a_{10,8}$	\cdots
$a_{11,1}$	$a_{11,2}$	$a_{11,3}$	$a_{11,4}$	$a_{11,5}$	$a_{11,6}$	$a_{11,7}$	$a_{11,8}$	\cdots
$a_{12,1}$	$a_{12,2}$	$a_{12,3}$	$a_{12,4}$	$a_{12,5}$	$a_{12,6}$	$a_{12,7}$	$a_{12,8}$	\cdots

$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,4}$	$a_{1,5}$	$a_{1,6}$	$a_{1,7}$	$a_{1,8}$	\cdots
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$	$a_{2,6}$	$a_{2,7}$	$a_{2,8}$	\ldots
$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{3,5}$	$a_{3,6}$	$a_{3,7}$	$a_{3,8}$	\ldots
$a_{4,1}$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$	$a_{4,6}$	$a_{4,7}$	$a_{4,8}$	\ldots
$a_{5,1}$	$a_{5,2}$	$a_{5,3}$	$a_{5,4}$	$a_{5,5}$	$a_{5,6}$	$a_{5,7}$	$a_{5,8}$	\ldots
$a_{6,1}$	$a_{6,2}$	$a_{6,3}$	$a_{6,4}$	$a_{6,5}$	$a_{6,6}$	$a_{6,7}$	$a_{6,8}$	\ldots
$a_{7,1}$	$a_{7,2}$	$a_{7,3}$	$a_{7,4}$	$a_{7,5}$	$a_{7,6}$	$a_{7,7}$	$a_{7,8}$	\cdots
$a_{8,1}$	$a_{8,2}$	$a_{8,3}$	$a_{8,4}$	$a_{8,5}$	$a_{8,6}$	$a_{8,7}$	$a_{8,8}$	\cdots
$a_{9,1}$	$a_{9,2}$	$a_{9,3}$	$a_{9,4}$	$a_{9,5}$	$a_{9,6}$	$a_{9,7}$	$a_{9,8}$	\cdots
$a_{10,1}$	$a_{10,2}$	$a_{10,3}$	$a_{10,4}$	$a_{10,5}$	$a_{10,6}$	$a_{10,7}$	$a_{10,8}$	\cdots
$a_{11,1}$	$a_{11,2}$	$a_{11,3}$	$a_{11,4}$	$a_{11,5}$	$a_{11,6}$	$a_{11,7}$	$a_{11,8}$	\cdots
$a_{12,1}$	$a_{12,2}$	$a_{12,3}$	$a_{12,4}$	$a_{12,5}$	$a_{12,6}$	$a_{12,7}$	$a_{12,8}$	\cdots
\vdots	\cdots							

$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,4}$	$a_{1,5}$	$a_{1,6}$	$a_{1,7}$	$a_{1,8}$
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$	$a_{2,6}$	$a_{2,7}$	$a_{2,8}$
$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{3,5}$	$a_{3,6}$	$a_{3,7}$	$a_{3,8}$
$a_{4,1}$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$	$a_{4,6}$	$a_{4,7}$	$a_{4,8}$
$a_{5,1}$	$a_{5,2}$	$a_{5,3}$	$a_{5,4}$	$a_{5,5}$	$a_{5,6}$	$a_{5,7}$	$a_{5,8}$
$a_{6,1}$	$a_{6,2}$	$a_{6,3}$	$a_{6,4}$	$a_{6,5}$	$a_{6,6}$	$a_{6,7}$	$a_{6,8}$
$a_{7,1}$	$a_{7,2}$	$a_{7,3}$	$a_{7,4}$	$a_{7,5}$	$a_{7,6}$	$a_{7,7}$	$a_{7,8}$
$a_{8,1}$	$a_{8,2}$	$a_{8,3}$	$a_{8,4}$	$a_{8,5}$	$a_{8,6}$	$a_{8,7}$	$a_{8,8}$
$a_{9,1}$	$a_{9,2}$	$a_{9,3}$	$a_{9,4}$	$a_{9,5}$	$a_{9,6}$	$a_{9,7}$	$a_{9,8}$
$a_{10,1}$	$a_{10,2}$	$a_{10,3}$	$a_{10,4}$	$a_{10,5}$	$a_{10,6}$	$a_{10,7}$	$a_{10,8}$
$a_{11,1}$	$a_{11,2}$	$a_{11,3}$	$a_{11,4}$	$a_{11,5}$	$a_{11,6}$	$a_{11,7}$	$a_{11,8}$
$a_{12,1}$	$a_{12,2}$	$a_{12,3}$	$a_{12,4}$	$a_{12,5}$	$a_{12,6}$	$a_{12,7}$	$a_{12,8}$
:	:	:	:	:	:	:	:

$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,4}$	$a_{1,5}$	$a_{1,6}$	$a_{1,7}$	$a_{1,8}$.
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$	$a_{2,6}$	$a_{2,7}$	$a_{2,8}$	-••
$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{3,5}$	$a_{3,6}$	$a_{3,7}$	$a_{3,8}$	-••
$a_{4,1}$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$	$a_{4,6}$	$a_{4,7}$	$a_{4,8}$	
$a_{5,1}$	$a_{5,2}$	$a_{5,3}$	$a_{5,4}$	$a_{5,5}$	$a_{5,6}$	$a_{5,7}$	$a_{5,8}$	
$a_{6,1}$	$a_{6,2}$	$a_{6,3}$	$a_{6,4}$	$a_{6,5}$	$a_{6,6}$	$a_{6,7}$	$a_{6,8}$	
$a_{7,1}$	$a_{7,2}$	$a_{7,3}$	$a_{7,4}$	$a_{7,5}$	$a_{7,6}$	$a_{7,7}$	$a_{7,8}$. .
$a_{8,1}$	$a_{8,2}$	$a_{8,3}$	$a_{8,4}$	$a_{8,5}$	$a_{8,6}$	$a_{8,7}$	$a_{8,8}$	
$a_{9,1}$	$a_{9,2}$	$a_{9,3}$	$a_{9,4}$	$a_{9,5}$	$a_{9,6}$	$a_{9,7}$	$a_{9,8}$	
$a_{10,1}$	$a_{10,2}$	$a_{10,3}$	$a_{10,4}$	$a_{10,5}$	$a_{10,6}$	$a_{10,7}$	$a_{10,8}$	
$a_{11,1}$	$a_{11,2}$	$a_{11,3}$	$a_{11,4}$	$a_{11,5}$	$a_{11,6}$	$a_{11,7}$	$a_{11,8}$	
$a_{12,1}$	$a_{12,2}$	$a_{12,3}$	$a_{12,4}$	$a_{12,5}$	$a_{12,6}$	$a_{12,7}$	$a_{12,8}$	
:	:	:	:	:	:	:	:	

$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,4}$	$a_{1,5}$	$a_{1,6}$	$a_{1,7}$	$a_{1,8}$
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$	$a_{2,6}$	$a_{2,7}$	$a_{2,8}$
$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{3,5}$	$a_{3,6}$	$a_{3,7}$	$a_{3,8}$
$a_{4,1}$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$	$a_{4,6}$	$a_{4,7}$	$a_{4,8}$
$a_{5,1}$	$a_{5,2}$	$a_{5,3}$	$a_{5,4}$	$a_{5,5}$	$a_{5,6}$	$a_{5,7}$	$a_{5,8}$
$a_{6,1}$	$a_{6,2}$	$a_{6,3}$	$a_{6,4}$	$a_{6,5}$	$a_{6,6}$	$a_{6,7}$	$a_{6,8}$
$a_{7,1}$	$a_{7,2}$	$a_{7,3}$	$a_{7,4}$	$a_{7,5}$	$a_{7,6}$	$a_{7,7}$	$a_{7,8}$
$a_{8,1}$	$a_{8,2}$	$a_{8,3}$	$a_{8,4}$	$a_{8,5}$	$a_{8,6}$	$a_{8,7}$	$a_{8,8}$
$a_{9,1}$	$a_{9,2}$	$a_{9,3}$	$a_{9,4}$	$a_{9,5}$	$a_{9,6}$	$a_{9,7}$	$a_{9,8}$
$a_{10,1}$	$a_{10,2}$	$a_{10,3}$	$a_{10,4}$	$a_{10,5}$	$a_{10,6}$	$a_{10,7}$	$a_{10,8}$
$a_{11,1}$	$a_{11,2}$	$a_{11,3}$	$a_{11,4}$	$a_{11,5}$	$a_{11,6}$	$a_{11,7}$	$a_{11,8}$
$a_{12,1}$	$a_{12,2}$	$a_{12,3}$	$a_{12,4}$	$a_{12,5}$	$a_{12,6}$	$a_{12,7}$	$a_{12,8}$
:	:	:			:	:	:

$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,4}$	$a_{1,5}$	$a_{1,6}$	$a_{1,7}$	$a_{1,8}$
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$	$a_{2,6}$	$a_{2,7}$	$a_{2,8}$
$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{3,5}$	$a_{3,6}$	$a_{3,7}$	$a_{3,8}$
$a_{4,1}$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$	$a_{4,6}$	$a_{4,7}$	$a_{4,8}$
$a_{5,1}$	$a_{5,2}$	$a_{5,3}$	$a_{5,4}$	$a_{5,5}$	$a_{5,6}$	$a_{5,7}$	$a_{5,8}$
$a_{6,1}$	$a_{6,2}$	$a_{6,3}$	$a_{6,4}$	$a_{6,5}$	$a_{6,6}$	$a_{6,7}$	$a_{6,8}$
$a_{7,1}$	$a_{7,2}$	$a_{7,3}$	$a_{7,4}$	$a_{7,5}$	$a_{7,6}$	$a_{7,7}$	$a_{7,8}$
$a_{8,1}$	$a_{8,2}$	$a_{8,3}$	$a_{8,4}$	$a_{8,5}$	$a_{8,6}$	$a_{8,7}$	$a_{8,8}$
$a_{9,1}$	$a_{9,2}$	$a_{9,3}$	$a_{9,4}$	$a_{9,5}$	$a_{9,6}$	$a_{9,7}$	$a_{9,8}$
$a_{10,1}$	$a_{10,2}$	$a_{10,3}$	$a_{10,4}$	$a_{10,5}$	$a_{10,6}$	$a_{10,7}$	$a_{10,8}$
$a_{11,1}$	$a_{11,2}$	$a_{11,3}$	$a_{11,4}$	$a_{11,5}$	$a_{11,6}$	$a_{11,7}$	$a_{11,8}$
$a_{12,1}$	$a_{12,2}$	$a_{12,3}$	$a_{12,4}$	$a_{12,5}$	$a_{12,6}$	$a_{12,7}$	$a_{12,8}$
:	:	:	:	:	:	:	:

$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,4}$	$a_{1,5}$	$a_{1,6}$	$a_{1,7}$	$a_{1,8}$	\ldots
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$	$a_{2,6}$	$a_{2,7}$	$a_{2,8}$	\ldots
$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{3,5}$	$a_{3,6}$	$a_{3,7}$	$a_{3,8}$	\cdots
$a_{4,1}$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$	$a_{4,6}$	$a_{4,7}$	$a_{4,8}$	\ldots
$a_{5,1}$	$a_{5,2}$	$a_{5,3}$	$a_{5,4}$	$a_{5,5}$	$a_{5,6}$	$a_{5,7}$	$a_{5,8}$	\ldots
$a_{6,1}$	$a_{6,2}$	$a_{6,3}$	$a_{6,4}$	$a_{6,5}$	$a_{6,6}$	$a_{6,7}$	$a_{6,8}$	\cdots
$a_{7,1}$	$a_{7,2}$	$a_{7,3}$	$a_{7,4}$	$a_{7,5}$	$a_{7,6}$	$a_{7,7}$	$a_{7,8}$	\cdots
$a_{8,1}$	$a_{8,2}$	$a_{8,3}$	$a_{8,4}$	$a_{8,5}$	$a_{8,6}$	$a_{8,7}$	$a_{8,8}$	\cdots
$a_{9,1}$	$a_{9,2}$	$a_{9,3}$	$a_{9,4}$	$a_{9,5}$	$a_{9,6}$	$a_{9,7}$	$a_{9,8}$	\cdots
$a_{10,1}$	$a_{10,2}$	$a_{10,3}$	$a_{10,4}$	$a_{10,5}$	$a_{10,6}$	$a_{10,7}$	$a_{10,8}$	\cdots
$a_{11,1}$	$a_{11,2}$	$a_{11,3}$	$a_{11,4}$	$a_{11,5}$	$a_{11,6}$	$a_{11,7}$	$a_{11,8}$	\cdots
$a_{12,1}$	$a_{12,2}$	$a_{12,3}$	$a_{12,4}$	$a_{12,5}$	$a_{12,6}$	$a_{12,7}$	$a_{12,8}$	\cdots
\vdots	\vdots	\vdots	$:$	\vdots	\vdots	\vdots	\vdots	\cdots

$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,4}$	$a_{1,5}$	$a_{1,6}$	$a_{1,7}$	$a_{1,8}$
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$	$a_{2,6}$	$a_{2,7}$	$a_{2,8}$
$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{3,5}$	$a_{3,6}$	$a_{3,7}$	$a_{3,8}$
$a_{4,1}$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$	$a_{4,6}$	$a_{4,7}$	$a_{4,8}$
$a_{5,1}$	$a_{5,2}$	$a_{5,3}$	$a_{5,4}$	$a_{5,5}$	$a_{5,6}$	$a_{5,7}$	$a_{5,8}$
$a_{6,1}$	$a_{6,2}$	$a_{6,3}$	$a_{6,4}$	$a_{6,5}$	$a_{6,6}$	$a_{6,7}$	$a_{6,8}$
$a_{7,1}$	$a_{7,2}$	$a_{7,3}$	$a_{7,4}$	$a_{7,5}$	$a_{7,6}$	$a_{7,7}$	$a_{7,8}$
$a_{8,1}$	$a_{8,2}$	$a_{8,3}$	$a_{8,4}$	$a_{8,5}$	$a_{8,6}$	$a_{8,7}$	$a_{8,8}$
$a_{9,1}$	$a_{9,2}$	$a_{9,3}$	$a_{9,4}$	$a_{9,5}$	$a_{9,6}$	$a_{9,7}$	$a_{9,8}$
$a_{10,1}$	$a_{10,2}$	$a_{10,3}$	$a_{10,4}$	$a_{10,5}$	$a_{10,6}$	$a_{10,7}$	$a_{10,8}$
$a_{11,1}$	$a_{11,2}$	$a_{11,3}$	$a_{11,4}$	$a_{11,5}$	$a_{11,6}$	$a_{11,7}$	$a_{11,8}$
$a_{12,1}$	$a_{12,2}$	$a_{12,3}$	$a_{12,4}$	$a_{12,5}$	$a_{12,6}$	$a_{12,7}$	$a_{12,8}$
:	:	:	:	:	:	:	:

$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,4}$	$a_{1,5}$	$a_{1,6}$	$a_{1,7}$	$a_{1,8}$
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$	$a_{2,6}$	$a_{2,7}$	$a_{2,8}$
$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{3,5}$	$a_{3,6}$	$a_{3,7}$	$a_{3,8}$
$a_{4,1}$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$	$a_{4,6}$	$a_{4,7}$	$a_{4,8}$
$a_{5,1}$	$a_{5,2}$	$a_{5,3}$	$a_{5,4}$	$a_{5,5}$	$a_{5,6}$	$a_{5,7}$	$a_{5,8}$
$a_{6,1}$	$a_{6,2}$	$a_{6,3}$	$a_{6,4}$	$a_{6,5}$	$a_{6,6}$	$a_{6,7}$	$a_{6,8}$
$a_{7,1}$	$a_{7,2}$	$a_{7,3}$	$a_{7,4}$	$a_{7,5}$	$a_{7,6}$	$a_{7,7}$	$a_{7,8}$
$a_{8,1}$	$a_{8,2}$	$a_{8,3}$	$a_{8,4}$	$a_{8,5}$	$a_{8,6}$	$a_{8,7}$	$a_{8,8}$
$a_{9,1}$	$a_{9,2}$	$a_{9,3}$	$a_{9,4}$	$a_{9,5}$	$a_{9,6}$	$a_{9,7}$	$a_{9,8}$
$a_{10,1}$	$a_{10,2}$	$a_{10,3}$	$a_{10,4}$	$a_{10,5}$	$a_{10,6}$	$a_{10,7}$	$a_{10,8}$
$a_{11,1}$	$a_{11,2}$	$a_{11,3}$	$a_{11,4}$	$a_{11,5}$	$a_{11,6}$	$a_{11,7}$	$a_{11,8}$
$a_{12,1}$	$a_{12,2}$	$a_{12,3}$	$a_{12,4}$	$a_{12,5}$	$a_{12,6}$	$a_{12,7}$	$a_{12,8}$
:	:	:	:	:	:	:	.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

Assume that $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n} \stackrel{?}{=} b_{n}(\neq 0)$ is indeed true.

How to certify a determinant identity

The normalized cofactors $c_{n, j}$ satisfy the linear system

$$
\left(\begin{array}{cccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} \\
\vdots & \ddots & \vdots & \vdots \\
a_{n-1,1} & \cdots & a_{n-1, n-1} & a_{n-1, n} \\
0 & \cdots & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c_{n, 1} \\
\vdots \\
c_{n, n-1} \\
c_{n, n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

How to certify a determinant identity

The normalized cofactors $c_{n, j}$ satisfy the linear system

$$
\left(\begin{array}{cccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} \\
\vdots & \ddots & \vdots & \vdots \\
a_{n-1,1} & \cdots & a_{n-1, n-1} & a_{n-1, n} \\
0 & \cdots & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c_{n, 1} \\
\vdots \\
c_{n, n-1} \\
c_{n, n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

This system has a unique solution.

How to certify a determinant identity

The normalized cofactors $c_{n, j}$ satisfy the linear system

$$
\left(\begin{array}{cccc}
a_{1,1} & \cdots & a_{1, n-1} & a_{1, n} \\
\vdots & \ddots & \vdots & \vdots \\
a_{n-1,1} & \cdots & a_{n-1, n-1} & a_{n-1, n} \\
0 & \cdots & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c_{n, 1} \\
\vdots \\
c_{n, n-1} \\
c_{n, n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

This system has a unique solution.
The reasoning can therefore be put upside down:

How to certify a determinant identity

If $c_{n, j}$ is such that

How to certify a determinant identity

If $c_{n, j}$ is such that (1) $c_{n, n}=1$ and (2) $\sum_{j=1}^{n} a_{i, j} c_{n, j}=0(i<n)$,

How to certify a determinant identity

If $c_{n, j}$ is such that (1) $c_{n, n}=1$ and (2$) \sum_{j=1}^{n} a_{i, j} c_{n, j}=0(i<n)$,
then

$$
c_{n, j}=(-1)^{n+j} \frac{\sum_{n}^{\mid}}{\left.\right|_{n}} \quad(j=1, \ldots, n)
$$

How to certify a determinant identity

If $c_{n, j}$ is such that (1) $c_{n, n}=1$ and (2) $\sum_{j=1}^{n} a_{i, j} c_{n, j}=0(i<n)$,
then

If in addition

$$
\text { (3) } \sum_{j=1}^{n} a_{n, j} c_{n, j}=\frac{b_{n}}{b_{n-1}} \text {, }
$$

How to certify a determinant identity

If $c_{n, j}$ is such that (1) $c_{n, n}=1$ and (2) $\sum_{j=1}^{n} a_{i, j} c_{n, j}=0(i<n)$,
then

If in addition

$$
\text { (3) } \sum_{j=1}^{n} a_{n, j} c_{n, j}=\frac{b_{n}}{b_{n-1}}
$$

then $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=b_{n}$.

How to certify a determinant identity

A function $c_{n, j}$ satisfying (1), (2), (3) is a certificate for the determinant identity $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=b_{n}$.

How to certify a determinant identity

A function $c_{n, j}$ satisfying (1), (2), (3) is a certificate for the determinant identity $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=b_{n}$. Idea:

How to certify a determinant identity

A function $c_{n, j}$ satisfying (1), (2), (3) is a certificate for the determinant identity $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=b_{n}$.
Idea:

- Compute $c_{n, j}$ for $0 \leq j \leq n \leq 500$, say.

How to certify a determinant identity

A function $c_{n, j}$ satisfying (1), (2), (3) is a certificate for the determinant identity $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=b_{n}$.
Idea:

- Compute $c_{n, j}$ for $0 \leq j \leq n \leq 500$, say.
- Then guess a recursive description for the $c_{n, j}$.

How to certify a determinant identity

A function $c_{n, j}$ satisfying (1), (2), (3) is a certificate for the determinant identity $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=b_{n}$.
Idea:

- Compute $c_{n, j}$ for $0 \leq j \leq n \leq 500$, say.
- Then guess a recursive description for the $c_{n, j}$.
- Then offer these equations as a definition of $c_{n, j}$.

How to certify a determinant identity

A function $c_{n, j}$ satisfying (1), (2), (3) is a certificate for the determinant identity $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=b_{n}$.
Idea:

- Compute $c_{n, j}$ for $0 \leq j \leq n \leq 500$, say.
- Then guess a recursive description for the $c_{n, j}$.
- Then offer these equations as a definition of $c_{n, j}$.
- Then prove that $c_{n, j}$ defined in this way satisfies (1), (2), (3).

How to certify a determinant identity

A function $c_{n, j}$ satisfying (1), (2), (3) is a certificate for the determinant identity $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=b_{n}$.
Idea:

- Compute $c_{n, j}$ for $0 \leq j \leq n \leq 500$, say.
- Then guess a recursive description for the $c_{n, j}$.
- Then offer these equations as a definition of $c_{n, j}$.
- Then prove that $c_{n, j}$ defined in this way satisfies (1), (2), (3).

A priori, there is no reason for $c_{n, j}$ to have a recursive description.

How to certify a determinant identity

A function $c_{n, j}$ satisfying (1), (2), (3) is a certificate for the determinant identity $\operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=b_{n}$.
Idea:

- Compute $c_{n, j}$ for $0 \leq j \leq n \leq 500$, say.
- Then guess a recursive description for the $c_{n, j}$.
- Then offer these equations as a definition of $c_{n, j}$.
- Then prove that $c_{n, j}$ defined in this way satisfies (1), (2), (3).

A priori, there is no reason for $c_{n, j}$ to have a recursive description.
But it turns out to have one.

The Equations Describing the Certificate

Let S_{n} and S_{j} be the shift operators which map $c_{n, j}$ to

$$
S_{n} \cdot c_{n, j}=c_{n+1, j} \quad \text { and } \quad S_{j} \cdot c_{n, j}=c_{n, j+1}
$$

respectively.

The Equations Describing the Certificate

Let S_{n} and S_{j} be the shift operators which map $c_{n, j}$ to

$$
S_{n} \cdot c_{n, j}=c_{n+1, j} \quad \text { and } \quad S_{j} \cdot c_{n, j}=c_{n, j+1}
$$

respectively.
Then a multivariate recurrence for $c_{n, j}$ corresponds to an annihilating operator

The Equations Describing the Certificate

Let S_{n} and S_{j} be the shift operators which map $c_{n, j}$ to

$$
S_{n} \cdot c_{n, j}=c_{n+1, j} \quad \text { and } \quad S_{j} \cdot c_{n, j}=c_{n, j+1}
$$

respectively.
Then a multivariate recurrence for $c_{n, j}$ corresponds to an annihilating operator

$$
\begin{aligned}
& \left(\operatorname{poly}\left(q, q^{n}, q^{j}\right)+\operatorname{poly}\left(q, q^{n}, q^{j}\right) S_{n}+\operatorname{poly}\left(q, q^{n}, q^{j}\right) S_{j}\right. \\
& \left.\quad+\cdots+\operatorname{poly}\left(q, q^{n}, q^{j}\right) S_{n}^{5} S_{j}^{7}\right) \cdot c_{n, j}=0
\end{aligned}
$$

The Equations Describing the Certificate

Let S_{n} and S_{j} be the shift operators which map $c_{n, j}$ to

$$
S_{n} \cdot c_{n, j}=c_{n+1, j} \quad \text { and } \quad S_{j} \cdot c_{n, j}=c_{n, j+1}
$$

respectively.
Then a multivariate recurrence for $c_{n, j}$ corresponds to an annihilating operator

$$
\begin{aligned}
& \left(\operatorname{poly}\left(q, q^{n}, q^{j}\right)+\operatorname{poly}\left(q, q^{n}, q^{j}\right) S_{n}+\operatorname{poly}\left(q, q^{n}, q^{j}\right) S_{j}\right. \\
& \left.\quad+\cdots+\operatorname{poly}\left(q, q^{n}, q^{j}\right) S_{n}^{5} S_{j}^{7}\right) \cdot c_{n, j}=0
\end{aligned}
$$

All annihilating operators of $c_{n, j}$ form a left ideal in the operator algebra $\mathbb{Q}(n, j)\left\langle S_{n}, S_{j}\right\rangle$.

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

HIII

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

HIVI

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

Most of the pain is caused by the coefficients.

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

Most of the pain is caused by the coefficients.
Total size of the basis, including coefficients: $\approx 300 \mathrm{Mb}$.

The Equations Describing the Certificate

The Gröbner basis of this ideal contains 5 elements.
They involve the following shift monomials $S_{n}^{u} S_{j}^{v}$:

Most of the pain is caused by the coefficients.
Total size of the basis, including coefficients: $\approx 300 \mathrm{Mb}$.
Key property: Together with a some finitely many initial values, the Gröbner basis fixes the sequence $c_{n, j}$ uniquely.

Prove that the Certificate is a Certificate

To show: (1) $c_{n, n}=1$ for all $n \geq 0$.

Prove that the Certificate is a Certificate

To show: (1) $c_{n, n}=1$ for all $n \geq 0$.
Idea: Deduce from the Gröbner basis an annihilating operator of the form

$$
\begin{aligned}
& \operatorname{pol}\left(q, q^{n}, q^{j}\right)+\operatorname{pol}\left(q, q^{n}, q^{j}\right) S_{n}^{1} S_{j}^{1}+\operatorname{pol}\left(q, q^{n}, q^{j}\right) S_{n}^{r} S_{j}^{r} \\
& \quad-\left(q^{n}-q^{j}\right) \operatorname{pol}\left(q, q^{n}, q^{j}, S_{n}, S_{j}\right)
\end{aligned}
$$

Prove that the Certificate is a Certificate

To show: (1) $c_{n, n}=1$ for all $n \geq 0$.
Idea: Deduce from the Gröbner basis an annihilating operator of the form

$$
\begin{aligned}
& \operatorname{pol}\left(q, q^{n}, q^{j}\right)+\operatorname{pol}\left(q, q^{n}, q^{j}\right) S_{n}^{1} S_{j}^{1}+\operatorname{pol}\left(q, q^{n}, q^{j}\right) S_{n}^{r} S_{j}^{r} \\
& \quad-\left(q^{n}-q^{j}\right) \operatorname{pol}\left(q, q^{n}, q^{j}, S_{n}, S_{j}\right)
\end{aligned}
$$

Prove that the Certificate is a Certificate

To show: (1) $c_{n, n}=1$ for all $n \geq 0$.
Idea: Deduce from the Gröbner basis an annihilating operator of the form

$$
\begin{aligned}
& \operatorname{pol}\left(q, q^{n}, q^{j}\right)+\operatorname{pol}\left(q, q^{n}, q^{j}\right) S_{n}^{1} S_{j}^{1}+\operatorname{pol}\left(q, q^{n}, q^{j}\right) S_{n}^{r} S_{j}^{r} \\
& \quad-\left(q^{n}-q^{j}\right) \operatorname{pol}\left(q, q^{n}, q^{j}, S_{n}, S_{j}\right)
\end{aligned}
$$

Prove that the Certificate is a Certificate

To show: (1) $c_{n, n}=1$ for all $n \geq 0$.
Idea: Deduce from the Gröbner basis an annihilating operator of the form

$$
\begin{aligned}
& \operatorname{pol}\left(q, q^{n}, q^{j}\right)+\operatorname{pol}\left(q, q^{n}, q^{j}\right) S_{n}^{1} S_{j}^{1}+\operatorname{pol}\left(q, q^{n}, q^{j}\right) S_{n}^{r} S_{j}^{r} \\
& \quad-\left(q^{n}-q^{j}\right) \operatorname{pol}\left(q, q^{n}, q^{j}, S_{n}, S_{j}\right)
\end{aligned}
$$

Prove that the Certificate is a Certificate

To show: (1) $c_{n, n}=1$ for all $n \geq 0$.
Idea: Deduce from the Gröbner basis an annihilating operator of the form

$$
\begin{aligned}
& \operatorname{pol}\left(q, q^{n}, q^{j}\right)+\operatorname{pol}\left(q, q^{n}, q^{j}\right) S_{n}^{1} S_{j}^{1}+\operatorname{pol}\left(q, q^{n}, q^{j}\right) S_{n}^{r} S_{j}^{r} \\
& \quad-\left(q^{n}-q^{j}\right) \operatorname{pol}\left(q, q^{n}, q^{j}, S_{n}, S_{j}\right)
\end{aligned}
$$

Then set $n=j$ to obtain a recurrence for $c_{n, n}$ of order r.

Prove that the Certificate is a Certificate

To show: (1) $c_{n, n}=1$ for all $n \geq 0$.
Idea: Deduce from the Gröbner basis an annihilating operator of the form

$$
\begin{aligned}
& \operatorname{pol}\left(q, q^{n}, q^{j}\right)+\operatorname{pol}\left(q, q^{n}, q^{j}\right) S_{n}^{1} S_{j}^{1}+\operatorname{pol}\left(q, q^{n}, q^{j}\right) S_{n}^{r} S_{j}^{r} \\
& \quad-\left(q^{n}-q^{j}\right) \operatorname{pol}\left(q, q^{n}, q^{j}, S_{n}, S_{j}\right)
\end{aligned}
$$

Then set $n=j$ to obtain a recurrence for $c_{n, n}$ of order r.
Then check that 1 is a solution of this recurrence and that $c_{n, n}=1$ for $n \leq r$.

Prove that the Certificate is a Certificate

To show: (3) $\sum_{j=1}^{n} a_{n, j} c_{n, j}=\frac{b_{n}}{b_{n-1}}$.

Prove that the Certificate is a Certificate

To show: (3) $\sum_{j=1}^{n} a_{n, j} c_{n, j}=\frac{b_{n}}{b_{n-1}}$.
Idea: Construct an annihilating operator for $a_{n, j} c_{n, j}$ of the form

$$
\begin{aligned}
& \operatorname{pol}\left(q, q^{n}\right)+\operatorname{pol}\left(q, q^{n}\right) S_{n}+\cdots+\operatorname{pol}\left(q, q^{n}\right) S_{n}^{r} \\
& \quad-\left(S_{j}-1\right) \operatorname{pol}\left(q, q^{n}, q^{j}, S_{n}, S_{j}\right)
\end{aligned}
$$

Prove that the Certificate is a Certificate

To show: (3) $\sum_{j=1}^{n} a_{n, j} c_{n, j}=\frac{b_{n}}{b_{n-1}}$.
Idea: Construct an annihilating operator for $a_{n, j} c_{n, j}$ of the form

$$
\begin{aligned}
& \operatorname{pol}\left(q, q^{n}\right)+\operatorname{pol}\left(q, q^{n}\right) S_{n}+\cdots+\operatorname{pol}\left(q, q^{n}\right) S_{n}^{r} \\
& \quad-\left(S_{j}-1\right) \operatorname{pol}\left(q, q^{n}, q^{j}, S_{n}, S_{j}\right)
\end{aligned}
$$

Prove that the Certificate is a Certificate

To show: (3) $\sum_{j=1}^{n} a_{n, j} c_{n, j}=\frac{b_{n}}{b_{n-1}}$.
Idea: Construct an annihilating operator for $a_{n, j} c_{n, j}$ of the form

$$
\begin{aligned}
& \operatorname{pol}\left(q, q^{n}\right)+\operatorname{pol}\left(q, q^{n}\right) S_{n}+\cdots+\operatorname{pol}\left(q, q^{n}\right) S_{n}^{r} \\
& \quad-\left(S_{j}-1\right) \operatorname{pol}\left(q, q^{n}, q^{j}, S_{n}, S_{j}\right)
\end{aligned}
$$

Prove that the Certificate is a Certificate

To show: (3) $\sum_{j=1}^{n} a_{n, j} c_{n, j}=\frac{b_{n}}{b_{n-1}}$.
Idea: Construct an annihilating operator for $a_{n, j} c_{n, j}$ of the form

$$
\begin{aligned}
& \operatorname{pol}\left(q, q^{n}\right)+\operatorname{pol}\left(q, q^{n}\right) S_{n}+\cdots+\operatorname{pol}\left(q, q^{n}\right) S_{n}^{r} \\
& \quad-\left(S_{j}-1\right) \operatorname{pol}\left(q, q^{n}, q^{j}, S_{n}, S_{j}\right)
\end{aligned}
$$

Then summing over j yields a recurrence of order r for the sum.

Prove that the Certificate is a Certificate

To show: (3) $\sum_{j=1}^{n} a_{n, j} c_{n, j}=\frac{b_{n}}{b_{n-1}}$.
Idea: Construct an annihilating operator for $a_{n, j} c_{n, j}$ of the form

$$
\begin{aligned}
& \operatorname{pol}\left(q, q^{n}\right)+\operatorname{pol}\left(q, q^{n}\right) S_{n}+\cdots+\operatorname{pol}\left(q, q^{n}\right) S_{n}^{r} \\
& \quad-\left(S_{j}-1\right) \operatorname{pol}\left(q, q^{n}, q^{j}, S_{n}, S_{j}\right)
\end{aligned}
$$

Then summing over j yields a recurrence of order r for the sum.
Then check that b_{n} / b_{n-1} is a solution of this recurrence and that the identity is true for $n \leq r$.

Prove that the Certificate is a Certificate

To show: (2) $\sum_{j=1}^{n} a_{i, j} c_{n, j}=0$ for all $i<n$.

Prove that the Certificate is a Certificate

To show: (2) $\sum_{j=1}^{n} a_{i, j} c_{n, j}=0$ for all $i<n$.

Prove that the Certificate is a Certificate

To show: (2) $\sum_{j=1}^{n} a_{i, j} c_{n, j}=0$ for all $i<n$.
Idea: Construct annihilating operators for $a_{i, j} c_{n, j}$ of the form

$$
\operatorname{pol}\left(q, q^{n}, q^{i}, S_{i}, S_{n}\right)-\left(S_{j}-1\right) \operatorname{pol}\left(q, q^{n}, q^{i}, q^{j}, S_{n}, S_{i}, S_{j}\right)
$$

Prove that the Certificate is a Certificate

To show: (2) $\sum_{j=1}^{n} a_{i, j} c_{n, j}=0$ for all $i<n$.
Idea: Construct annihilating operators for $a_{i, j} c_{n, j}$ of the form

$$
\operatorname{pol}\left(q, q^{n}, q^{i}, S_{i}, S_{n}\right)-\left(S_{j}-1\right) \operatorname{pol}\left(q, q^{n}, q^{i}, q^{j}, S_{n}, S_{i}, S_{j}\right)
$$

Prove that the Certificate is a Certificate

To show: (2) $\sum_{j=1}^{n} a_{i, j} c_{n, j}=0$ for all $i<n$.
Idea: Construct annihilating operators for $a_{i, j} c_{n, j}$ of the form

$$
\operatorname{pol}\left(q, q^{n}, q^{i}, S_{i}, S_{n}\right)-\left(S_{j}-1\right) \operatorname{pol}\left(q, q^{n}, q^{i}, q^{j}, S_{n}, S_{i}, S_{j}\right)
$$

Prove that the Certificate is a Certificate

To show: (2) $\sum_{j=1}^{n} a_{i, j} c_{n, j}=0$ for all $i<n$.
Idea: Construct annihilating operators for $a_{i, j} c_{n, j}$ of the form

$$
\operatorname{pol}\left(q, q^{n}, q^{i}, S_{i}, S_{n}\right)-\left(S_{j}-1\right) \operatorname{pol}\left(q, q^{n}, q^{i}, q^{j}, S_{n}, S_{i}, S_{j}\right)
$$

Then summing over j yields recurrences with respect to i and n for the sum.

Prove that the Certificate is a Certificate

To show: (2) $\sum_{j=1}^{n} a_{i, j} c_{n, j}=0$ for all $i<n$.
Idea: Construct annihilating operators for $a_{i, j} c_{n, j}$ of the form

$$
\operatorname{pol}\left(q, q^{n}, q^{i}, S_{i}, S_{n}\right)-\left(S_{j}-1\right) \operatorname{pol}\left(q, q^{n}, q^{i}, q^{j}, S_{n}, S_{i}, S_{j}\right)
$$

Then summing over j yields recurrences with respect to i and n for the sum.

Checking the claim for some finitely many initial values completes the proof.

Prove that the Certificate is a Certificate

In short: We prove (1), (2), (3) by constructing witness recurrences which imply the truth of the identities.

Prove that the Certificate is a Certificate

In short: We prove (1), (2), (3) by constructing witness recurrences which imply the truth of the identities.

- Their mere existence follows from a general theory.

Prove that the Certificate is a Certificate

In short: We prove (1), (2), (3) by constructing witness recurrences which imply the truth of the identities.

- Their mere existence follows from a general theory.
- But for a rigorous proof, we need to know them explicitly.

Prove that the Certificate is a Certificate

In short: We prove (1), (2), (3) by constructing witness recurrences which imply the truth of the identities.

- Their mere existence follows from a general theory.
- But for a rigorous proof, we need to know them explicitly.
- Several algorithms are known for computing such recurrences.

Prove that the Certificate is a Certificate

In short: We prove (1), (2), (3) by constructing witness recurrences which imply the truth of the identities.

- Their mere existence follows from a general theory.
- But for a rigorous proof, we need to know them explicitly.
- Several algorithms are known for computing such recurrences.
- But they were not conceived for 300 Mb input. . .

Prove that the Certificate is a Certificate

In short: We prove (1), (2), (3) by constructing witness recurrences which imply the truth of the identities.

- Their mere existence follows from a general theory.
- But for a rigorous proof, we need to know them explicitly.
- Several algorithms are known for computing such recurrences.
- But they were not conceived for 300 Mb input. . .
- Note: the output is usually much bigger than the input.

Prove that the Certificate is a Certificate

In short: We prove (1), (2), (3) by constructing witness recurrences which imply the truth of the identities.

- Their mere existence follows from a general theory.
- But for a rigorous proof, we need to know them explicitly.
- Several algorithms are known for computing such recurrences.
- But they were not conceived for 300 Mb input. . .
- Note: the output is usually much bigger than the input.
- Several new algorithmic improvements had to be invented.

Prove that the Certificate is a Certificate

In short: We prove (1), (2), (3) by constructing witness recurrences which imply the truth of the identities.

- Their mere existence follows from a general theory.
- But for a rigorous proof, we need to know them explicitly.
- Several algorithms are known for computing such recurrences.
- But they were not conceived for 300 Mb input. . .
- Note: the output is usually much bigger than the input.
- Several new algorithmic improvements had to be invented.
- And a careful implementation had to be produced.

Prove that the Certificate is a Certificate

In short: We prove (1), (2), (3) by constructing witness recurrences which imply the truth of the identities.

- Their mere existence follows from a general theory.
- But for a rigorous proof, we need to know them explicitly.
- Several algorithms are known for computing such recurrences.
- But they were not conceived for 300 Mb input. . .
- Note: the output is usually much bigger than the input.
- Several new algorithmic improvements had to be invented.
- And a careful implementation had to be produced.
- And some powerful computers had to be employed.

Prove that the Certificate is a Certificate

Eventually, after several weeks of computation, we found:

Prove that the Certificate is a Certificate

Eventually, after several weeks of computation, we found:

- An explicit witness recurrence for (1) of size 13 Mb .

Prove that the Certificate is a Certificate

Eventually, after several weeks of computation, we found:

- An explicit witness recurrence for (1) of size 13 Mb .
- An explicit witness recurrence for (2) of size 1480 Mb .

Prove that the Certificate is a Certificate

Eventually, after several weeks of computation, we found:

- An explicit witness recurrence for (1) of size 13 Mb .
- An explicit witness recurrence for (2) of size 1480 Mb .
- An explicit witness recurrence for (3) of size 7227 Mb .

Prove that the Certificate is a Certificate

Eventually, after several weeks of computation, we found:

- An explicit witness recurrence for (1) of size 13 Mb .
- An explicit witness recurrence for (2) of size 1480 Mb .
- An explicit witness recurrence for (3) of size 7227 Mb .

This completed the proof of the qTSPP conjecture.

Prove that the Certificate is a Certificate

Eventually, after several weeks of computation, we found:

- An explicit witness recurrence for (1) of size 13 Mb .
- An explicit witness recurrence for (2) of size 1480 Mb .
- An explicit witness recurrence for (3) of size 7227 Mb .

This completed the proof of the qTSPP conjecture.

For data and further details, see
http://www.risc.jku.at/people/ckoutsch/qtspp/

