What's new in Symbolic Summation

Manuel Kauers

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU)
Linz, Austria

|

- prehistory

Gosper's algorithm, Sister Celine's algorithm, Karr's algorithm, hypergeometric transformations (nonalgorithmic), table lookup.

- The 1990s: The stormy decade Z's theory, Z's algorithm, Almkvist-Zeilberger algorithm, Petkovšek's algorithm, WZ-pairs, $A=B$, GFF, q-generalizations, Wegschaider, Paule-Schorn package, gfun, Yen's bound, ...
- prehistory

Gosper's algorithm, Sister Celine's algorithm, Karr's algorithm, hypergeometric transformations (nonalgorithmic), table lookup.

- The 2000s: Extensions and generalizations Refined $\Pi \Sigma$-theory, Takayama, Ore algebras and Gröbner bases, Chyzak's algorithm, algorithms for identities involving Abeltype terms or Bernoulli numbers or Stirling numbers, ...
- The 1990s: The stormy decade

Z's theory, Z's algorithm, Almkvist-Zeilberger algorithm, Petkovšek's algorithm, WZ-pairs, $A=B$, GFF, q-generalizations, Wegschaider, Paule-Schorn package, gfun, Yen's bound, ...

- prehistory

Gosper's algorithm, Sister Celine's algorithm, Karr's algorithm, hypergeometric transformations (nonalgorithmic), table lookup.

- The 2010s: Efficiency and complexity applications with large input, rational integration exploiting fast arithmetic, worst case bounds on the run time complexity, sharp estimates on the output size, parallel algorithms, ...
- The 2000s: Extensions and generalizations Refined $\Pi \Sigma$-theory, Takayama, Ore algebras and Gröbner bases, Chyzak's algorithm, algorithms for identities involving Abeltype terms or Bernoulli numbers or Stirling numbers, ...
- The 1990s: The stormy decade Z's theory, Z's algorithm, Almkvist-Zeilberger algorithm, Petkovšek's algorithm, WZ-pairs, $A=B$, GFF, q-generalizations, Wegschaider, Paule-Schorn package, gfun, Yen's bound, ...
- prehistory

Gosper's algorithm, Sister Celine's algorithm, Karr's algorithm, hypergeometric transformations (nonalgorithmic), table lookup.

1990s
 2000s 2010s

1990s 2000s 2010s

Classics: explored • available • well-known

1990s
explored • available • well-known

2000s
2010s

Extensions:
Classics:
explored • available

1990s
explored • available • well-known
explored • available
explored
Classics: explored • available • well-known

Extensions:
High Performance:
explored • available
explored

Plan of this talk:

1990s
explored • available • well-known
explored • available explored

Plan of this talk:

- Address some developments which are now ready to use.
1990s 2000s 2010s

Classics: explored • available • well-known
Extensions: explored • available
High Performance:
explored

Plan of this talk:

- Address some developments which are now ready to use.
- Address some of the hot topics in the area.

A What's old?

- Hypergeometric creative telescoping

B What's new "on the market"?

- Techniques for nested sums and products
- Techniques for multivariate D-finite objects

C What's new "in the labs"?

- Speedup by trading order against degree

A What's old?

- Hypergeometric creative telescoping

B What's new "on the market"?

- Techniques for nested sums and products
- Techniques for multivariate D-finite objects

C What's new "in the labs"?

- Speedup by trading order against degree

Creative Telescoping

Creative Telescoping

INPUT: something like $f(n, k):=\binom{n}{k}^{2}\binom{n+k}{k}^{2}$

Creative Telescoping

INPUT: something like $f(n, k):=\binom{n}{k}^{2}\binom{n+k}{k}^{2}$
OUTPUT: something like

$$
\begin{gathered}
(n+1)^{3} f(n, k) \\
-(2 n+3)\left(17 n^{2}+51 n+39\right) f(n+1, k) \\
+(n+3)^{3} f(n+2, k)=g(n, k+1)-g(n, k)
\end{gathered}
$$

where $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

Creative Telescoping

INPUT: something like $f(n, k):=\binom{n}{k}^{2}\binom{n+k}{k}^{2}$
OUTPUT: something like

$$
\begin{aligned}
&(n+1)^{3} f(n, k) \\
&-(2 n+3)\left(17 n^{2}+\right.51 n+39) f(n+1, k) \\
&+(n+3)^{3} f(n+2, k)=g(n, k+1)-g(n, k)
\end{aligned}
$$

where $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

INPU polynomials in n only k) $:=\binom{n}{k}^{2}\binom{n+k}{k}^{2}$
OUTPUT: something like

$$
\begin{array}{r}
\left.(n+1)^{3}\right) f(n, k) \\
-(2 n+3)\left(17 n^{2}+51 n+39\right) f(n+1, k) \\
\left.+(n+3)^{3}\right) f(n+2, k)=g(n, k+1)-g(n, k)
\end{array}
$$

where $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

INPU polynomials in n only $\left.{ }^{k}\right):=\binom{n}{k}^{2}\left(\begin{array}{l}n+k \\ \text { shift(s) in } n \text { only } \\ 2\end{array}\right.$ OUTPUT: something like

$$
\begin{array}{r}
\left.(n+1)^{3}\right) f(n, k) \\
-(2 n+3)\left(17 n^{2}+51 n+39\right) f(n+1, k) \\
+(n+3)^{3} f(n+2, k)=g(n, k+1)-g(n, k)
\end{array}
$$

where $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

INPU polynomials in n only ${ }^{k}$) : $=\binom{n}{k}^{2}\left(^{n+k}\right)^{2}$ shift(s) in n only
OUTPUT: something like

$$
\left.\begin{array}{r}
(n+1)^{3}
\end{array}\right) f(n, k) \quad \underbrace{\downarrow} \begin{array}{r}
\square \\
-(2 n+3)\left(17 n^{2}+51 n+39\right) \\
+(n+3)^{3}
\end{array}) f(n+2, k)=\overbrace{g(n, k+1)-g(n, k)}
$$

where $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

INPU polynomials in n only ${ }^{k}$) : $=\binom{n}{k}^{2}\left(^{n+k}\right)^{2}$ shift(s) in n only
OUTPUT: something like

$$
\left.\begin{array}{r}
(n+1)^{3}
\end{array}\right) f(n, k), \underbrace{(2 n+3)\left(17 n^{2}+51 n+39\right)} \begin{array}{r}
f(n+1, k) \\
+(n+3)^{3}
\end{array} f(n+2, k)=\overbrace{g(n, k+1)-g(n, k)}^{\Sigma_{k}^{-1} g(n, k)}
$$

where $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

INPU polynomials in n only $\left.{ }^{k}\right):=\binom{n}{k}^{2} \underbrace{n+k} \operatorname{shift}^{2}$ s) in n only OUTPUT: something like

Creative Telescoping

INPUT: a hypergeometric term $f(n, k)$

Creative Telescoping

INPUT: a hypergeometric term $f(n, k)$

$$
\text { i.e., } \frac{f(n+1, k)}{f(n, k)} \in \mathbb{K}(n, k) \text { and } \frac{f(n, k+1)}{f(n, k)} \in \mathbb{K}(n, k)
$$

Creative Telescoping

INPUT: a hypergeometric term $f(n, k)$
OUTPUT: $T \in \mathbb{K}\left[n, S_{n}\right] \backslash\{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$
T \cdot f(n, k)=\left(S_{k}-1\right) \cdot Q f(n, k)
$$

Creative Telescoping
INPUT: "telescoper"
OUTPUT $T \in \mathbb{K}\left[n, S_{n}\right] \backslash\{0\}$ and $Q \in \mathbb{K}(n, k)$ such that
(T) $f(n, k)=\left(S_{k}-1\right) \cdot Q f(n, k)$

Creative Telescoping

Creative Telescoping

INPUT: a hypergeometric term $f(n, k)$
OUTPUT: $T \in \mathbb{K}\left[n, S_{n}\right] \backslash\{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$
T \cdot f(n, k)=\left(S_{k}-1\right) \cdot Q f(n, k)
$$

Creative Telescoping

INPUT: a hypergeometric term $f(n, k)$
OUTPUT: $T \in \mathbb{K}\left[n, S_{n}\right] \backslash\{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$
T \cdot f(n, k)=\left(S_{k}-1\right) \cdot Q f(n, k)
$$

Creative Telescoping

$$
T \cdot f(n, k)=\left(S_{k}-1\right) \cdot Q f(n, k)
$$

Creative Telescoping

$$
T \cdot f(n, k)=\left(S_{k}-1\right) \cdot Q f(n, k) \quad \mid \sum_{k}
$$

Creative Telescoping

$$
\sum_{k} T \cdot f(n, k)=\sum_{k}\left(S_{k}-1\right) \cdot Q f(n, k)
$$

Creative Telescoping

$$
T \cdot \sum_{k} f(n, k)=\sum_{k}\left(S_{k}-1\right) \cdot Q f(n, k)
$$

Creative Telescoping

$$
T \cdot \sum_{k} f(n, k)=\mathbf{0} \text { (usually) }
$$

Creative Telescoping

$$
T \cdot \sum_{k} f(n, k)=\mathbf{0}(\text { usually })
$$

A telescoper for $f(n, k)$ is (usually) an annihilator for $\sum_{k} f(n, k)$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2}$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{aligned}
& p_{0}(n) f(n, k) \\
- & p_{1}(n) f(n+1, k) \\
+ & p_{2}(n) f(n+2, k) \\
\quad= & g(n, k+1)-g(n, k)
\end{aligned}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{aligned}
& \sum_{k}\left(p_{0}(n) f(n, k)\right. \\
& \quad-p_{1}(n) f(n+1, k) \\
& \left.+p_{2}(n) f(n+2, k)\right) \\
& \quad=\sum_{k}(g(n, k+1)-g(n, k))
\end{aligned}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{aligned}
& \sum_{k}\left(p_{0}(n) f(n, k)\right) \\
&- \sum_{k}\left(p_{1}(n) f(n+1, k)\right) \\
&+ \sum_{k}\left(p_{2}(n) f(n+2, k)\right) \\
& \quad=\sum_{k}(g(n, k+1)-g(n, k))
\end{aligned}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{aligned}
& p_{0}(n) \sum_{k} f(n, k) \\
&- p_{1}(n) \sum_{k} f(n+1, k) \\
&+ p_{2}(n) \sum_{k} f(n+2, k) \\
& \quad=\sum_{k}(g(n, k+1)-g(n, k))
\end{aligned}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{aligned}
& p_{0}(n) F(n) \\
- & p_{1}(n) F(n+1) \\
+ & p_{2}(n) F(n+2) \\
& =\sum_{k}(g(n, k+1)-g(n, k))
\end{aligned}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{aligned}
& p_{0}(n) F(n) \\
- & p_{1}(n) F(n+1) \\
+ & p_{2}(n) F(n+2) \\
\quad & =g(n,+\infty)-g(n,-\infty)
\end{aligned}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{aligned}
& p_{0}(n) F(n) \\
- & p_{1}(n) F(n+1) \\
+ & p_{2}(n) F(n+2) \\
\quad= & g(n,+\infty)-0
\end{aligned}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{aligned}
& p_{0}(n) F(n) \\
- & p_{1}(n) F(n+1) \\
+ & p_{2}(n) F(n+2) \\
\quad= & g(n,+\infty)-0
\end{aligned}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} f(n, k)$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{aligned}
& p_{0}(n) F(n) \\
- & p_{1}(n) F(n+1) \\
+ & p_{2}(n) F(n+2) \\
\quad= & g(n,+\infty)-0
\end{aligned}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{aligned}
& p_{0}(n) F(n) \\
- & p_{1}(n) F(n+1) \\
+ & p_{2}(n) F(n+2) \\
\quad= & g(n,+\infty)-0
\end{aligned}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{aligned}
& p_{0}(n) F(n) \\
&- p_{1}(n) F(n+1) \\
&+ p_{2}(n) F(n+2) \\
& \quad=g(n,+\infty)-0
\end{aligned}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n-k+1)^{2}(n-k+2)^{2}} \frac{(n-k+1)^{2}(n-k+2)^{2}}{(n+1)^{2}(n+2)^{2}}\binom{n+2}{k}^{2}\binom{n+k}{k}^{2}$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{aligned}
& p_{0}(n) F(n) \\
&- p_{1}(n) F(n+1) \\
&+ p_{2}(n) F(n+2) \\
& \quad=g(n,+\infty)-0
\end{aligned}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n+1)^{2}(n+2)^{2}}\binom{n+2}{k}^{2}\binom{n+k}{k}^{2}$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{gathered}
p_{0}(n) F(n) \\
-p_{1}(n) F(n+1) \\
+p_{2}(n) F(n+2) \\
=0-0
\end{gathered}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n+1)^{2}(n+2)^{2}}\binom{n+2}{k}^{2}\binom{n+k}{k}^{2}$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{gathered}
\quad p_{0}(n) F(n) \\
-p_{1}(n) F(n+1) \\
+p_{2}(n) F(n+2) \\
=0
\end{gathered}
$$

with $g(n, k)=\frac{4 k^{4}(2 n+3)\left(4 n^{2}+12 n-2 k^{2}+3 k+8\right)}{(n+1)^{2}(n+2)^{2}}\binom{n+2}{k}^{2}\binom{n+k}{k}^{2}$.

Creative Telescoping

Example. $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2} . \quad F(n):=\sum_{k} f(n, k)$.
We have

$$
\begin{gathered}
p_{0}(n) f(n, k)+p_{1}(n) f(n+1, k)+p_{2}(n) f(n+2, k) \\
=g(n, k+1)-g(n, k) \\
\Downarrow \\
p_{0}(n) F(n)+p_{1}(n) F(n+1)+p_{2}(n) F(n+2)=0 .
\end{gathered}
$$

Creative Telescoping

The recurrence for the $F(n)=\sum_{k}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ plays a critical role in Apéry's proof of the irrationality of $\zeta(3)$.

The recurrence for the $F(n)=\sum_{k}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ plays a critical role in Apéry's proof of the irrationality of $\zeta(3)$.
van der Poorten on his struggles to check Apéry's argument:
"We were quite unable to prove that the sequence $F(n)$ defined above did satisfy the recurrence (Apéry rather tartly pointed out to me in Helsinki that he regarded this more a compliment than a criticism of his method). But empirically (numerically) the evidence in favour was utterly compelling."

Creative Telescoping

The recurrence for the $F(n)=\sum_{k}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ plays a critical role in Apéry's proof of the irrationality of $\zeta(3)$.

For Zeilberger's algorithm, this sum is a piece of cake.

The recurrence for the $F(n)=\sum_{k}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ plays a critical role in Apéry's proof of the irrationality of $\zeta(3)$.

For Zeilberger's algorithm, this sum is a piece of cake.
But Apéry needs a second sum:

$$
H(n)=\sum_{k}\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{i=1}^{n} \frac{1}{i^{3}}+\sum_{i=1}^{k} \frac{(-1)^{i-1}}{2 i^{3}\binom{n}{i}\binom{n+i}{i}}\right)
$$

The recurrence for the $F(n)=\sum_{k}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ plays a critical role in Apéry's proof of the irrationality of $\zeta(3)$.

For Zeilberger's algorithm, this sum is a piece of cake.
But Apéry needs a second sum:

$$
H(n)=\sum_{k}\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{i=1}^{n} \frac{1}{i^{3}}+\sum_{i=1}^{k} \frac{(-1)^{i-1}}{2 i^{3}\binom{n}{i}\binom{n+i}{i}}\right)
$$

Key step of his proof: $H(n)$ and $F(n)$ satisfy the same recurrence.

The recurrence for the $F(n)=\sum_{k}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ plays a critical role in Apéry's proof of the irrationality of $\zeta(3)$.

For Zeilberger's algorithm, this sum is a piece of cake.
But Apéry needs a second sum:

$$
H(n)=\sum_{k}\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{i=1}^{n} \frac{1}{i^{3}}+\sum_{i=1}^{k} \frac{(-1)^{i-1}}{2 i^{3}\binom{n}{i}\binom{n+i}{i}}\right)
$$

Key step of his proof: $H(n)$ and $F(n)$ satisfy the same recurrence.
Zeilberger's algorithm can't do this harder sum directly.

The recurrence for the $F(n)=\sum_{k}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ plays a critical role in Apéry's proof of the irrationality of $\zeta(3)$.

For Zeilberger's algorithm, this sum is a piece of cake.
But Apéry needs a second sum:

$$
H(n)=\sum_{k}\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{i=1}^{n} \frac{1}{i^{3}}+\sum_{i=1}^{k} \frac{(-1)^{i-1}}{2 i^{3}\binom{n}{i}\binom{n+i}{i}}\right)
$$

Key step of his proof: $H(n)$ and $F(n)$ satisfy the same recurrence.
Zeilberger's algorithm can't do this harder sum directly.
We need appropriate generalizations.

A What's old?

- Hypergeometric creative telescoping

B What's new "on the market"?

- Techniques for nested sums and products
- Techniques for multivariate D-finite objects

C What's new "in the labs"?

- Speedup by trading order against degree

A What's old?

- Hypergeometric creative telescoping

B What's new "on the market"?

- Techniques for nested sums and products
- Techniques for multivariate D-finite objects

C What's new "in the labs"?

- Speedup by trading order against degree

Outline
hypergeometric

Outline

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

- $\sum_{k=1}^{n} \frac{\sum_{i=1}^{k} \frac{1}{i}}{k}$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

- $\sum_{k=1}^{n} \frac{\sum_{i=1}^{k} \backslash \frac{1}{i}}{k}$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

- $\sum_{k=1}^{n} \frac{\sum_{i=1}^{k} \frac{1}{i}}{k}$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:
$-\sum_{k=1}^{n} \frac{\sum_{i=1}^{k} \frac{1}{i}}{\sqrt{k}}$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

- $\sum_{k=1}^{n} \frac{\sum_{i=1}^{k} \frac{1}{i}}{k}$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

$$
\sum_{k=1}^{n} \frac{\sum_{i=1}^{k} \frac{1}{i}}{k}
$$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

- $\sum_{k=1}^{n} \frac{\sum_{i=1}^{k} \frac{1}{i}}{k} \mathrm{OK}$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

$$
\begin{aligned}
& -\sum_{k=1}^{n} \frac{\sum_{i=1}^{k} \frac{1}{i}}{k} \mathrm{OK} \\
& -\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{1+i+n}
\end{aligned}
$$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

$$
\begin{aligned}
& \mathrm{>} \sum_{k=1}^{n} \frac{\sum_{i=1}^{k} \frac{1}{i}}{k} \mathrm{OK} \\
& >\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{1+i+n}
\end{aligned}
$$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

- $\sum_{k=1}^{n} \frac{\sum_{i=1}^{k} \frac{1}{i}}{k}$ OK
$-\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{1+i+n}$ not OK.

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

$$
\sum_{k=1}^{n} \frac{\prod_{i=1}^{k} \frac{i+\sum_{j=1}^{i} \frac{j^{6}+1}{j^{7}+1}}{2 i+7}+\sum_{i=1}^{k} \frac{5 i^{3}-3 i+2}{3 i^{2}+5 i+8}}{\left(\sum_{i=1}^{k} \frac{3 i^{2}+2 i+5}{4 i^{3}+3}\right)^{2}-\frac{5 k^{2}-3 k+5}{3 k+7} \prod_{i=1}^{k} \frac{5 i+3}{7 i-3}} \quad \text { OK }
$$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

$$
\begin{aligned}
& \text { } \sum_{k=1}^{n} \frac{\prod_{i=1}^{k} \frac{i+\sum_{j=1}^{i} \frac{j^{6}+1}{j^{7}+1}}{2 i+7}+\sum_{i=1}^{k} \frac{5 i^{3}-3 i+2}{3 i^{2}+5 i+8}}{\left(\sum_{i=1}^{k} \frac{3 i^{2}+3 i+5}{4 i^{3}+3}\right)^{2}-\frac{5 k^{2}-3 k+5}{3 k+7} \prod_{i=1}^{k} \frac{5 i+3}{7 i-3}} \quad \text { OK } \\
& \text { - } n!:=\prod_{k=1}^{n} k, \quad 2^{n}:=\prod_{k=1}^{n} 2, \quad H_{n}:=\sum_{k=1}^{n} \frac{1}{k} \quad \text { all OK }
\end{aligned}
$$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

- $\sum_{k=1}^{n} \frac{\prod_{i=1}^{k} \frac{i+\sum_{j=1}^{i} \frac{j^{6}+1}{j^{7}+1}}{2 i+7}+\sum_{i=1}^{k} \frac{5 i^{3}-3 i+2}{3 i^{2}+5 i+8}}{\left(\sum_{i=1}^{k} \frac{3 i^{2}+2 i+5}{4 i^{3}+3}\right)^{2}-\frac{5 k^{2}-3 k+5}{3 k+7} \prod_{i=1}^{k} \frac{5 i+3}{7 i-3}} \quad$ OK
- $n!:=\prod_{k=1}^{n} k, \quad 2^{n}:=\prod_{k=1}^{n} 2, \quad H_{n}:=\sum_{k=1}^{n} \frac{1}{k} \quad$ all OK
- $\binom{n}{k}$ not OK if both n and k are variables.

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Examples:

- $\sum_{k=1}^{n} \frac{\prod_{i=1}^{k} \frac{i+\sum_{j=1}^{i} \frac{j^{6}+1}{j^{7}+1}}{2 i+7}+\sum_{i=1}^{k} \frac{5 i^{3}-3 i+2}{3 i^{2}+5 i+8}}{\left(\sum_{i=1}^{k} \frac{3 i^{2}+2 i+5}{4 i^{3}+3}\right)^{2}-\frac{5 k^{2}-3 k+5}{3 k+7} \prod_{i=1}^{k} \frac{5 i+3}{7 i-3}} \quad$ OK
- $n!:=\prod_{k=1}^{n} k, \quad 2^{n}:=\prod_{k=1}^{n} 2, \quad H_{n}:=\sum_{k=1}^{n} \frac{1}{k} \quad$ all OK
- $\binom{n}{k}$ not OK if both n and k are variables.

OK if either of them is regarded as constant.

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Note: $\Pi \Sigma$-expressions can be easily shifted ($n \rightsquigarrow n+1$) using

$$
\sum_{k=1}^{n+1} a_{k}=\sum_{k=1}^{n} a_{k}+a_{n+1} \quad \prod_{k=1}^{n+1} a_{k}=a_{n+1} \prod_{k=1}^{n} a_{k}
$$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Note: $\Pi \Sigma$-expressions can be easily shifted ($n \rightsquigarrow n+1$) using

$$
\sum_{k=1}^{n+1} a_{k}=\sum_{k=1}^{n} a_{k}+a_{n+1} \quad \prod_{k=1}^{n+1} a_{k}=a_{n+1} \prod_{k=1}^{n} a_{k}
$$

Example:

$$
\sum_{k=1}^{n+1} \frac{H_{k}+k!}{2^{k}+k}
$$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Note: $\Pi \Sigma$-expressions can be easily shifted ($n \rightsquigarrow n+1$) using

$$
\sum_{k=1}^{n+1} a_{k}=\sum_{k=1}^{n} a_{k}+a_{n+1} \quad \prod_{k=1}^{n+1} a_{k}=a_{n+1} \prod_{k=1}^{n} a_{k}
$$

Example:

$$
\sum_{k=1}^{n+1} \frac{H_{k}+k!}{2^{k}+k}=\sum_{k=1}^{n} \frac{H_{k}+k!}{2^{k}+k}+\frac{H_{k+1}+(k+1)!}{2^{k+1}+(k+1)}
$$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Note: $\Pi \Sigma$-expressions can be easily shifted ($n \rightsquigarrow n+1$) using

$$
\sum_{k=1}^{n+1} a_{k}=\sum_{k=1}^{n} a_{k}+a_{n+1} \quad \prod_{k=1}^{n+1} a_{k}=a_{n+1} \prod_{k=1}^{n} a_{k}
$$

Example:

$$
\sum_{k=1}^{n+1} \frac{H_{k}+k!}{2^{k}+k}=\sum_{k=1}^{n} \frac{H_{k}+k!}{2^{k}+k}+\frac{H_{k}+\frac{1}{k+1}+(k+1) k!}{2 \cdot 2^{k}+(k+1)}
$$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Note: $\Pi \Sigma$-expressions can be easily shifted ($n \rightsquigarrow n+1$) using

$$
\sum_{k=1}^{n+1} a_{k}=\sum_{k=1}^{n} a_{k}+a_{n+1} \quad \prod_{k=1}^{n+1} a_{k}=a_{n+1} \prod_{k=1}^{n} a_{k}
$$

Example:

$$
\sum_{k=1}^{n+1} \frac{H_{k}+k!}{2^{k}+k}=\sum_{k=1}^{n} \frac{H_{k}+k!}{2^{k}+k}+\frac{1+(k+1) H_{k}+k!(k+1)^{2}}{(k+1)\left(k+1+2 \cdot 2^{k}\right)}
$$

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-, \cdot, /, \sum, \Pi$ in such a way that each subexpression has at most one free variable.

Note: $\Pi \Sigma$-expressions can be easily shifted ($n \rightsquigarrow n+1$) using

$$
\sum_{k=1}^{n+1} a_{k}=\sum_{k=1}^{n} a_{k}+a_{n+1} \quad \prod_{k=1}^{n+1} a_{k}=a_{n+1} \prod_{k=1}^{n} a_{k}
$$

Observation: The field generated by a $\Pi \Sigma$-expression and all its subexpressions is closed under shift.
$\Pi \Sigma$-expressions

More formal (but still somewhat oversimplified):

More formal (but still somewhat oversimplified):

- A difference field is a field \mathbb{F} together with a distinguished field automorphism $\sigma: \mathbb{F} \rightarrow \mathbb{F}$, called the shift of \mathbb{F}.

More formal (but still somewhat oversimplified):

- A difference field is a field \mathbb{F} together with a distinguished field automorphism $\sigma: \mathbb{F} \rightarrow \mathbb{F}$, called the shift of \mathbb{F}.
- A $\boldsymbol{\Pi} \boldsymbol{\Sigma}$-field is a difference field of the form

$$
\mathbb{F}=\mathbb{K}\left(t_{1}, t_{2}, \ldots, t_{r}\right)
$$

More formal (but still somewhat oversimplified):

- A difference field is a field \mathbb{F} together with a distinguished field automorphism $\sigma: \mathbb{F} \rightarrow \mathbb{F}$, called the shift of \mathbb{F}.
- A $\boldsymbol{\Pi} \boldsymbol{\Sigma}$-field is a difference field of the form

$$
\mathbb{F}=\mathbb{K}\left(t_{1}, t_{2}, \ldots, t_{r}\right)
$$

where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and each t_{i} satisfies an equation

$$
\sigma\left(t_{i}\right)=\alpha t_{i}+\beta
$$

for some $\alpha, \beta \in \mathbb{K}\left(t_{1}, t_{2}, \ldots, t_{i-1}\right)$

More formal (but still somewhat oversimplified):

- A difference field is a field \mathbb{F} together with a distinguished field automorphism $\sigma: \mathbb{F} \rightarrow \mathbb{F}$, called the shift of \mathbb{F}.
- A $\boldsymbol{\Pi} \boldsymbol{\Sigma}$-field is a difference field of the form

$$
\mathbb{F}=\mathbb{K}\left(t_{1}, t_{2}, \ldots, t_{r}\right)
$$

where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and each t_{i} satisfies an equation

$$
\sigma\left(t_{i}\right)=\alpha t_{i}+\beta
$$

for some $\alpha, \beta \in \mathbb{K}\left(t_{1}, t_{2}, \ldots, t_{i-1}\right)$ (plus some technical restrictions omitted here).

More formal (but still somewhat oversimplified):

- A difference field is a field \mathbb{F} together with a distinguished field automorphism $\sigma: \mathbb{F} \rightarrow \mathbb{F}$, called the shift of \mathbb{F}.
- A $\boldsymbol{\Pi} \boldsymbol{\Sigma}$-field is a difference field of the form

$$
\mathbb{F}=\mathbb{K}\left(t_{1}, t_{2}, \ldots, t_{r}\right)
$$

where $\sigma(c)=c$ for all $c \in \mathbb{K}$ and each t_{i} satisfies an equation

$$
\sigma\left(t_{i}\right)=\alpha t_{i}+\beta
$$

for some $\alpha, \beta \in \mathbb{K}\left(t_{1}, t_{2}, \ldots, t_{i-1}\right)$ (plus some technical restrictions omitted here).

- t_{i} represents a product if $\beta=0$
t_{i} represents a sum if $\alpha=1$
$\Pi \Sigma$-expressions

Example: To represent $\sum_{k=1}^{n} \frac{H_{k}+k!}{2^{k}+k}$, we can take the $\Pi \Sigma$-field
$\mathbb{F}=\mathbb{Q}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)$

Example: To represent $\sum_{k=1}^{n} \frac{H_{k}+k!}{2^{k}+k}$, we can take the $\Pi \Sigma$-field

$$
\mathbb{F}=\mathbb{Q}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)
$$

where $\sigma: \mathbb{F} \rightarrow \mathbb{F}$ is such that $\sigma(c)=c$ for all $c \in \mathbb{Q}$ and

Example: To represent $\sum_{k=1}^{n} \frac{H_{k}+k!}{2^{k}+k}$, we can take the $\Pi \Sigma$-field

$$
\mathbb{F}=\mathbb{Q}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)
$$

where $\sigma: \mathbb{F} \rightarrow \mathbb{F}$ is such that $\sigma(c)=c$ for all $c \in \mathbb{Q}$ and

$$
\sigma\left(t_{1}\right)=t_{1}+1 \quad t_{1} \sim n
$$

Example: To represent $\sum_{k=1}^{n} \frac{H_{k}+k!}{2^{k}+k}$, we can take the $\Pi \Sigma$-field

$$
\mathbb{F}=\mathbb{Q}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)
$$

where $\sigma: \mathbb{F} \rightarrow \mathbb{F}$ is such that $\sigma(c)=c$ for all $c \in \mathbb{Q}$ and

$$
\begin{array}{ll}
\sigma\left(t_{1}\right)=t_{1}+1 & t_{1} \sim n \\
\sigma\left(t_{2}\right)=2 t_{2} & t_{2} \sim 2^{n}
\end{array}
$$

Example: To represent $\sum_{k=1}^{n} \frac{H_{k}+k!}{2^{k}+k}$, we can take the $\Pi \Sigma$-field

$$
\mathbb{F}=\mathbb{Q}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)
$$

where $\sigma: \mathbb{F} \rightarrow \mathbb{F}$ is such that $\sigma(c)=c$ for all $c \in \mathbb{Q}$ and

$$
\begin{array}{ll}
\sigma\left(t_{1}\right)=t_{1}+1 & t_{1} \sim n \\
\sigma\left(t_{2}\right)=2 t_{2} & t_{2} \sim 2^{n} \\
\sigma\left(t_{3}\right)=t_{3}+\frac{1}{t_{1}+1} & t_{3} \sim H_{n}
\end{array}
$$

Example: To represent $\sum_{k=1}^{n} \frac{H_{k}+k!}{2^{k}+k}$, we can take the $\Pi \Sigma$-field

$$
\mathbb{F}=\mathbb{Q}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)
$$

where $\sigma: \mathbb{F} \rightarrow \mathbb{F}$ is such that $\sigma(c)=c$ for all $c \in \mathbb{Q}$ and

$$
\begin{array}{rlr}
\sigma\left(t_{1}\right)=t_{1}+1 & t_{1} \sim n \\
\sigma\left(t_{2}\right)=2 t_{2} & t_{2} \sim 2^{n} \\
\sigma\left(t_{3}\right)=t_{3}+\frac{1}{t_{1}+1} & t_{3} \sim H_{n} \\
\sigma\left(t_{4}\right)=\left(t_{1}+1\right) t_{4} & t_{4} \sim n!
\end{array}
$$

Example: To represent $\sum_{k=1}^{n} \frac{H_{k}+k \text { ! }}{2^{k}+k}$, we can take the $\Pi \Sigma$-field

$$
\mathbb{F}=\mathbb{Q}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)
$$

where $\sigma: \mathbb{F} \rightarrow \mathbb{F}$ is such that $\sigma(c)=c$ for all $c \in \mathbb{Q}$ and

$$
\begin{array}{ll}
\sigma\left(t_{1}\right)=t_{1}+1 & t_{1} \sim n \\
\sigma\left(t_{2}\right)=2 t_{2} & t_{2} \sim 2^{n} \\
\sigma\left(t_{3}\right)=t_{3}+\frac{1}{t_{1}+1} & t_{3} \sim H_{n} \\
\sigma\left(t_{4}\right)=\left(t_{1}+1\right) t_{4} & t_{4} \sim n! \\
\sigma\left(t_{5}\right)=t_{5}+\frac{1+\left(t_{1}+1\right) t_{3}+\left(t_{1}+1\right)^{2} t_{4}}{\left(t_{1}+1\right)\left(t_{1}+1+2 t_{2}\right)} & t_{5} \sim \sum_{k=1}^{n} \frac{H_{k}+k!}{2^{k}+k}
\end{array}
$$

Karr's algorithm (1982): Given a $\Pi \Sigma$-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g)-g=f$, or prove that no such element g exists in \mathbb{F}.

Karr's algorithm (1982): Given a $\Pi \Sigma$-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g)-g=f$, or prove that no such element g exists in \mathbb{F}.

Informally: Express, if at all possible, a given sum in terms of its subexpressions.

Karr's algorithm (1982): Given a $\Pi \Sigma$-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g)-g=f$, or prove that no such element g exists in \mathbb{F}.

Informally: Express, if at all possible, a given sum in terms of its subexpressions.

Examples:

Karr's algorithm (1982): Given a $\Pi \Sigma$-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g)-g=f$, or prove that no such element g exists in \mathbb{F}.

Informally: Express, if at all possible, a given sum in terms of its subexpressions.

Examples:

- $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$

Karr's algorithm (1982): Given a $\Pi \Sigma$-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g)-g=f$, or prove that no such element g exists in \mathbb{F}.

Informally: Express, if at all possible, a given sum in terms of its subexpressions.

Examples:

$$
\begin{aligned}
& >\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n \\
& >\sum_{k=1}^{n} H_{k}^{2}=2 n-(2 n+1) H_{n}+(n+1) H_{n}^{2}
\end{aligned}
$$

Karr's algorithm (1982): Given a $\Pi \Sigma$-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g)-g=f$, or prove that no such element g exists in \mathbb{F}.

Informally: Express, if at all possible, a given sum in terms of its subexpressions.

Examples:

- $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$
- $\sum_{k=1}^{n} H_{k}^{2}=2 n-(2 n+1) H_{n}+(n+1) H_{n}^{2}$
- $\sum_{k=1}^{n} H_{k}^{3}$ cannot be written as rational function of n and H_{n}.

Karr's algorithm (1982): Given a $\Pi \Sigma$-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g)-g=f$, or prove that no such element g exists in \mathbb{F}.

Vastly extended by Schneider since 2001. Some of the key features of his Mathematica package Sigma are:

Karr's algorithm (1982): Given a $\Pi \Sigma$-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g)-g=f$, or prove that no such element g exists in \mathbb{F}.

Vastly extended by Schneider since 2001. Some of the key features of his Mathematica package Sigma are:

- For a given $\Pi \Sigma$-expression, find an equivalent $\Pi \Sigma$-expression in which the nesting depth is as small as can be.

Karr's algorithm (1982): Given a $\Pi \Sigma$-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g)-g=f$, or prove that no such element g exists in \mathbb{F}.

Vastly extended by Schneider since 2001. Some of the key features of his Mathematica package Sigma are:

- For a given $\Pi \Sigma$-expression, find an equivalent $\Pi \Sigma$-expression in which the nesting depth is as small as can be.
- Find recurrence equations for definite sums involving $\Pi \Sigma$-expressions by creative telescoping.

Karr's algorithm (1982): Given a $\Pi \Sigma$-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g)-g=f$, or prove that no such element g exists in \mathbb{F}.

Vastly extended by Schneider since 2001. Some of the key features of his Mathematica package Sigma are:

- For a given $\Pi \Sigma$-expression, find an equivalent $\Pi \Sigma$-expression in which the nesting depth is as small as can be.
- Find recurrence equations for definite sums involving $\Pi \Sigma$-expressions by creative telescoping.
- Solve a given linear recurrence equation in terms of $\Pi \Sigma$-expressions.

For a given $\Pi \Sigma$-expression, find an equivalent $\Pi \Sigma$-expression in which the nesting depth is as small as can be.

For a given $\Pi \Sigma$-expression, find an equivalent $\Pi \Sigma$-expression in which the nesting depth is as small as can be.

Examples:

For a given $\Pi \Sigma$-expression, find an equivalent $\Pi \Sigma$-expression in which the nesting depth is as small as can be.

Examples:

- $\sum_{k=1}^{n} H_{k}^{3}=-6 n+\frac{3}{2}(2 n+1)\left(2 H_{n}-H_{n}^{2}\right)+(n+1) H_{n}^{3}+\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^{2}}$

For a given $\Pi \Sigma$-expression, find an equivalent $\Pi \Sigma$-expression in which the nesting depth is as small as can be.

Examples:

- $\sum_{k=1}^{n} H_{k}^{3}=-6 n+\frac{3}{2}(2 n+1)\left(2 H_{n}-H_{n}^{2}\right)+(n+1) H_{n}^{3}+\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^{2}}$

This new single sum is not
a subexpression of the left hand side

For a given $\Pi \Sigma$-expression, find an equivalent $\Pi \Sigma$-expression in which the nesting depth is as small as can be.

Examples:

- $\sum_{k=1}^{n} H_{k}^{3}=-6 n+\frac{3}{2}(2 n+1)\left(2 H_{n}-H_{n}^{2}\right)+(n+1) H_{n}^{3}+\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^{2}}$
- $\sum_{k=1}^{n} H_{k}^{4}$ cannot be expressed as at all in terms of single sums.

For a given $\Pi \Sigma$-expression, find an equivalent $\Pi \Sigma$-expression in which the nesting depth is as small as can be.

Examples:

- $\sum_{k=1}^{n} H_{k}^{3}=-6 n+\frac{3}{2}(2 n+1)\left(2 H_{n}-H_{n}^{2}\right)+(n+1) H_{n}^{3}+\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^{2}}$
- $\sum_{k=1}^{n} H_{k}^{4}$ cannot be expressed as at all in terms of single sums.

For a given $\Pi \Sigma$-expression, find an equivalent $\Pi \Sigma$-expression in which the nesting depth is as small as can be.

Examples:

- $\sum_{k=1}^{n} H_{k}^{3}=-6 n+\frac{3}{2}(2 n+1)\left(2 H_{n}-H_{n}^{2}\right)+(n+1) H_{n}^{3}+\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^{2}}$
- $\sum_{k=1}^{n} H_{k}^{4}$ cannot be expressed as at all in terms of single sums.
$-\sum_{k=1}^{n} \frac{\sum_{l=1}^{k} \frac{\sum_{m=1}^{l} \frac{\sum_{i=1}^{m} \frac{\sum_{j=1}^{i} \frac{1}{j}}{m^{2}}}{l}}{k}}{}$ also not. But in double sums...

For a given $\Pi \Sigma$-expression, find an equivalent $\Pi \Sigma$-expression in which the nesting depth is as small as can be.

Examples:

$$
\begin{aligned}
& \cdots=\frac{1}{4}\left(\frac{1}{3}\left(\sum_{k=1}^{n} \frac{1}{k^{2}}\right)^{3}+\left(\sum_{k=1}^{n} \frac{1}{k^{4}}+\sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i}\right)^{2}}{k^{2}}\right) \sum_{k=1}^{n} \frac{1}{k^{2}}+\frac{2}{3} \sum_{k=1}^{n} \frac{1}{k^{6}}-\right. \\
& \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i^{4}}\right) \sum_{i=1}^{k} \frac{1}{i}}{k}-\sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i^{2}}\right)^{2} \sum_{i=1}^{k} \frac{1}{i}}{k}+2 \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i}\right)^{2}}{k^{4}}+\sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i}\right)^{4}}{k^{2}}+ \\
& \left(\sum_{k=1}^{n} \frac{1}{k}\right)^{2} \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i}\right)^{2}}{k^{2}}-\sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i^{2}}\right)\left(\sum_{i=1}^{k} \frac{1}{i}\right)^{2}}{k^{2}}-2 \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i}\right)^{3}}{k^{3}}+ \\
& \left.\left(\sum_{k=1}^{n} \frac{1}{k}\right)\left(\sum_{k=1}^{n} \frac{\sum_{i=1}^{k} \frac{1}{i^{4}}}{k}+\sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i^{2}}\right)^{2}}{k}+2 \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i}\right)^{2}}{k^{3}}-2 \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i}\right)^{3}}{k^{2}}\right)\right)
\end{aligned}
$$

Find recurrence equations for definite sums involving $\Pi \Sigma$-expressions by creative telescoping.

Find recurrence equations for definite sums involving $\Pi \Sigma$-expressions by creative telescoping.
This requires that the summand $f(n, k)$ is such that $f(n, k)$, $f(n+1, k), f(n+2, k), \ldots$ all are $\Pi \Sigma$-expressions with respect to k when n is viewed as a (symbolic) constant.

Find recurrence equations for definite sums involving $\Pi \Sigma$-expressions by creative telescoping.

This requires that the summand $f(n, k)$ is such that $f(n, k)$, $f(n+1, k), f(n+2, k), \ldots$ all are $\Pi \Sigma$-expressions with respect to k when n is viewed as a (symbolic) constant.

Examples:

Find recurrence equations for definite sums involving $\Pi \Sigma$-expressions by creative telescoping.
This requires that the summand $f(n, k)$ is such that $f(n, k)$, $f(n+1, k), f(n+2, k), \ldots$ all are $\Pi \Sigma$-expressions with respect to k when n is viewed as a (symbolic) constant.

Examples:

- $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2}$

Find recurrence equations for definite sums involving $\Pi \Sigma$-expressions by creative telescoping.
This requires that the summand $f(n, k)$ is such that $f(n, k)$, $f(n+1, k), f(n+2, k), \ldots$ all are $\Pi \Sigma$-expressions with respect to k when n is viewed as a (symbolic) constant.

Examples:

- $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2}$
- $f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{i=1}^{n} \frac{1}{i^{3}}+\sum_{i=1}^{k} \frac{(-1)^{i+1}}{2 i^{3}\binom{n}{i}\binom{n+i}{i}}\right)$
$\Pi \Sigma$-expressions

Solve a given linear recurrence equation in terms of $\Pi \Sigma$-expressions.
$\Pi \Sigma$-expressions

Solve a given linear recurrence equation in terms of $\Pi \Sigma$-expressions.

Example.

Solve a given linear recurrence equation in terms of $\Pi \Sigma$-expressions.

Example

- $(n+1)^{3} F(n)-(2 n+3)\left(17 n^{2}+51 n+39\right) F(n+1)$ $+(n+3)^{3} F(n+2)=0$
\rightsquigarrow no non-constant $\Pi \Sigma$-solutions

Solve a given linear recurrence equation in terms of $\Pi \Sigma$-expressions.

Example.

- $(n+1)^{3} F(n)-(2 n+3)\left(17 n^{2}+51 n+39\right) F(n+1)$

$$
+(n+3)^{3} F(n+2)=0
$$

\rightsquigarrow no non-constant $\Pi \Sigma$-solutions

- $2(2 n+5)(3 n+5) F(n)-\left(6 n^{3}+49 n^{2}+124 n+98\right) F(n+1)$

$$
+(n+2)(2 n+3)(3 n+8) F(n+2)=0
$$

\rightsquigarrow solutions 1 and $8 \sum_{k=1}^{n} \prod_{i=1}^{k} \frac{2}{i}-\sum_{k=0}^{n} \frac{\prod_{i=1}^{k} \frac{2}{i}}{3 k+2}$

Solve a given linear recurrence equation in terms of $\Pi \Sigma$-expressions.

Example.

- $\left(n^{2} H_{n}+3 n H_{n}+2 H_{n}+2 n+3\right) F(n)$

$$
-\left(n^{3} H_{n}+6 n^{2} H_{n}+11 n H_{n}+6 H_{n}+n^{2}+6 n+7\right) F(n+1)
$$

$$
+(n+2)^{2}\left(n H_{n}+H_{n}+1\right) F(n+2)=0
$$

\rightsquigarrow solutions 1 and $\sum_{k=0}^{n} H_{k} \prod_{i=1}^{k} \frac{1}{i}$
$\Pi \Sigma$-expressions

Suggested workflow for iterated definite sums:

$$
\sum_{k_{1}} \sum_{k_{2}} \sum_{k_{3}} \begin{gathered}
\Pi \Sigma \text {-expression in } k_{3} \\
\text { with parameters } n, k_{1}, k_{2}
\end{gathered}
$$

$\Pi \Sigma$-expressions

Suggested workflow for iterated definite sums:

Suggested workflow for iterated definite sums:

$\xrightarrow{\text { creative telescoping }}$ linear recurrence with shifts in k_{2} and coefficients involving n, k_{1}, k_{2}

Suggested workflow for iterated definite sums:

$\xrightarrow{\text { creative telescoping }}$ linear recurrence with shifts in k_{2} and coefficients involving n, k_{1}, k_{2}
$\xrightarrow{\text { solve (if possible) }} \begin{aligned} & \Pi \sum \text {-expression in } k_{2} \\ & \text { with parameters } n, k_{1}\end{aligned}$

Suggested workflow for iterated definite sums:

$$
\begin{aligned}
& \sum_{k_{1}} \sum_{k_{2}} \sum_{k_{3}} \begin{array}{c}
\Pi \Sigma \text {-expression in } k_{3} \\
\text { with parameters } n, k_{1}, k_{2}
\end{array} \\
& \xrightarrow{\text { creative telescoping }} \text { linear recurrence with shifts in } k_{2} \\
& \text { and coefficients involving } n, k_{1}, k_{2} \\
& \text { with parameters } n, k_{1} \\
& \xrightarrow{\text { simplify }} \text { depth-optimal } \Pi \Sigma \text {-expression in } k_{2} \\
& \text { with parameters } n, k_{1}
\end{aligned}
$$

$\Pi \Sigma$-expressions

Suggested workflow for iterated definite sums:

$\Pi \Sigma$-expressions

Suggested workflow for iterated definite sums:

Suggested workflow for iterated definite sums:

$\xrightarrow{\text { creative telescoping }}$ linear recurrence with shifts in k_{1} and coefficients involving n, k_{1}
solve (if possible)
$\rightarrow \Pi \Sigma$-expression in k_{1} with parameter n $\xrightarrow{\text { simplify }}$ depth-optimal $\Pi \Sigma$-expression in k_{1} with parameter n
$\Pi \Sigma$-expressions

Suggested workflow for iterated definite sums:

$\Pi \Sigma$-expressions

Suggested workflow for iterated definite sums:

Suggested workflow for iterated definite sums:

$\xrightarrow{\text { creative telescoping }}$ linear recurrence with shifts in k_{1} and coefficients involving n, k_{1}
$\xrightarrow{\text { solve (if possible) }}$
$\Pi \Sigma$-expression in k_{1} with parameter n
simplify \rightarrow depth-optimal $\Pi \Sigma$-expression in k_{1} with parameter n
$\Pi \Sigma$-expressions

Suggested workflow for iterated definite sums:

$\square \Sigma$-expression in n

D-finite objects

Consider a product $\prod_{k=1}^{n} a_{k}$.

D-finite objects

Consider a product $\prod_{k=1}^{n} a_{k}$.
Observe that the shift $\prod_{k=1}^{n+1}=a_{n+1} \prod_{k=1}^{n} a_{k}$ is linear in the product.

Consider a product $\prod_{k=1}^{n} a_{k}$.
Observe that the shift $\prod_{k=1}^{n+1}=a_{n+1} \prod_{k=1}^{n} a_{k}$ is linear in the product.
Therefore, also the vector space generated by the product over some difference field for the subexpressions is closed under shift.

Consider a product $\prod_{k=1}^{n} a_{k}$.
Observe that the shift $\prod_{k=1}^{n+1}=a_{n+1} \prod_{k=1}^{n} a_{k}$ is linear in the product.
Therefore, also the vector space generated by the product over some difference field for the subexpressions is closed under shift.

It is a vector space of dimension 1.
D-finite objects

Consider a sum $\sum_{k=1}^{n} a_{k}$.

D-finite objects

Consider a sum $\sum_{k=1}^{n} a_{k}$.
Here we have $\sum_{k=1}^{n+1} a_{k}=\sum_{k=1}^{n} a_{k}+a_{n+1}$.

Consider a sum $\sum_{k=1}^{n} a_{k}$.
Here we have $\sum_{k=1}^{n+1} a_{k}=\sum_{k=1}^{n} a_{k}+a_{n+1}$.
Therefore, also the vector space generated by 1 and the sum over some difference field for the subexpressions is closed under shift.

Consider a sum $\sum_{k=1}^{n} a_{k}$.
Here we have $\sum_{k=1}^{n+1} a_{k}=\sum_{k=1}^{n} a_{k}+a_{n+1}$.
Therefore, also the vector space generated by 1 and the sum over some difference field for the subexpressions is closed under shift. It is a vector space of dimension (at most) 2.

D-finite objects

Consider a sum $\sum_{k=1}^{n} a_{k}$.
Alternative:

D-finite objects

Consider a sum $\sum_{k=1}^{n} a_{k}$.
Alternative:

$$
\sum_{k=1}^{n+1} a_{k}-\sum_{k=1}^{n} a_{k}=a_{n+1}
$$

D-finite objects

Consider a sum $\sum_{k=1}^{n} a_{k}$.
Alternative:

$$
\begin{aligned}
& \sum_{k=1}^{n+1} a_{k}-\sum_{k=1}^{n} a_{k}=a_{n+1} \\
& \sum_{k=1}^{n+2} a_{k}-\sum_{k=1}^{n+1} a_{k}=a_{n+2}
\end{aligned}
$$

D-finite objects

Consider a sum $\sum_{k=1}^{n} a_{k}$.
Alternative:

$$
\begin{aligned}
& \sum_{k=1}^{n+1} a_{k}-\sum_{k=1}^{n} a_{k}=a_{n+1} \\
& \sum_{k=1}^{n+2} a_{k}-\sum_{k=1}^{n+1} a_{k}=a_{n+2}
\end{aligned}
$$

$$
\left.\left|\cdot a_{n+2}\right| \begin{array}{l}
\mid \cdot a_{n+1}
\end{array}\right\}-
$$

D-finite objects

Consider a sum $\sum_{k=1}^{n} a_{k}$.
Alternative:

$$
\left.\begin{array}{ll}
\sum_{k=1}^{n+1} a_{k}-\sum_{k=1}^{n} a_{k}=a_{n+1} & \mid \cdot a_{n+2} \\
\frac{\sum_{k=1}^{n+2} a_{k}-\sum_{k=1}^{n+1} a_{k}=a_{n+2}}{} & \mid \cdot a_{n+1}
\end{array}\right\}-
$$

Consider a sum $\sum_{k=1}^{n} a_{k}$.
Therefore, also the vector space generated by $\sum_{k=1}^{n} a_{k}$ and $\sum_{k=1}^{n+1} a_{k}$ over some difference field for the subexpressions is closed under shift.

Consider a sum $\sum_{k=1}^{n} a_{k}$.
Therefore, also the vector space generated by $\sum_{k=1}^{n} a_{k}$ and $\sum_{k=1}^{n+1} a_{k}$ over some difference field for the subexpressions is closed under shift. It is a vector space of dimension (at most) 2.

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Equivalently: An object a_{n} is called D-finite if it satisfies a recurrence equation

$$
p_{0}(n) a_{n}+p_{1}(n) a_{n+1}+\cdots+p_{r}(n) a_{n+r}=0
$$

with polynomial coefficients $p_{i}(n) \in \mathbb{K}[n], p_{r}(n) \neq 0$.

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Equivalently: An object a_{n} is called D-finite if it satisfies a recurrence equation

$$
p_{0}(n) a_{n}+p_{1}(n) a_{n+1}+\cdots+p_{r}(n) a_{n+r}=0
$$

with polynomial coefficients $p_{i}(n) \in \mathbb{K}[n], p_{r}(n) \neq 0$.
Then a_{n}, \ldots, a_{n+r-1} generate the vector space. (Possibly fewer.)

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Examples:

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Examples:

- $a_{n}=2^{n} / n$! satisfies $2 a_{n}-(n+1) a_{n+1}=0$

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Examples:

- $a_{n}=2^{n} / n$! satisfies $2 a_{n}-(n+1) a_{n+1}=0$
- $a_{n}=H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ satisfies

$$
(n+1) a_{n}-(2 n+3) a_{n+1}+(n+2) a_{n+2}=0 .
$$

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Examples:

- $a_{n}=2^{n} / n$! satisfies $2 a_{n}-(n+1) a_{n+1}=0$
- $a_{n}=H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ satisfies

$$
(n+1) a_{n}-(2 n+3) a_{n+1}+(n+2) a_{n+2}=0
$$

- $a_{n}=\sum_{k}\binom{n}{k}^{2}\binom{n+k}{k}$ satisfies (less obviously)

$$
(n+1)^{3} a_{n}-(2 n+3)\left(17 n^{2}+51 n+39\right) a_{n+1}+(n+2)^{3} a_{n+2}=0
$$

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.
They are represented through the equations they satisfy, just like algebraic numbers:

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.
They are represented through the equations they satisfy, just like algebraic numbers:
Naive question: What are the roots of the polynomial $x^{5}-3 x+1$?

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.
They are represented through the equations they satisfy, just like algebraic numbers:
Naive question: What are the roots of the polynomial $x^{5}-3 x+1$?
Expert answer: $\operatorname{RootOf}\left(Z^{5}-3 _Z+1\right.$, index $\left.=1\right)$,
$\operatorname{RootOf}\left(-Z^{5}-3 _Z+1\right.$, index $\left.=2\right)$,
$\operatorname{RootOf}\left(Z^{5}-3 _Z+1\right.$, index $\left.=3\right)$,
$\operatorname{RootOf}\left(Z^{5}-3 _Z+1\right.$, index $\left.=4\right)$,
$\operatorname{RootOf}\left(Z^{5}-3 _Z+1\right.$, index $\left.=5\right)$.

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.
They are represented through the equations they satisfy, just like algebraic numbers:

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.
They are represented through the equations they satisfy, just like algebraic numbers:

Naive question: What are the solutions of the recurrence

$$
(3 n+2) a_{n+2}-2(n+3) a_{n+1}+(2 n-7) a_{n}=0 ?
$$

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.
They are represented through the equations they satisfy, just like algebraic numbers:

Naive question: What are the solutions of the recurrence

$$
(3 n+2) a_{n+2}-2(n+3) a_{n+1}+(2 n-7) a_{n}=0 ?
$$

Expert answer: The solutions form a \mathbb{K}-vector space V of dimension two. Each solution is uniquely determined by its first two terms, and each choice of two initial terms gives rise to a solution.

Definition. An object a_{n} is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.

> D-finite objects are represented in the computer through the equations they satisfy

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

Examples:

- $a_{n, k}=\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ is D-finite in n and k.

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

Examples:

- $a_{n, k}=\binom{n}{k}^{2}\binom{n+k}{k}$ is D-finite in n and k.
- $a_{n, k}=2^{k} H_{n+2 k}$ is D-finite in n and k.

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

Examples:

- $a_{n, k}=\binom{n}{k}^{2}\binom{n+k}{k}$ is D-finite in n and k.
- $a_{n, k}=2^{k} H_{n+2 k}$ is D-finite in n and k.
- $a_{n, k}=n^{k}$ is D-finite in n for every fixed choice $k \in \mathbb{Z}$, but it is not \mathbf{D}-finite in n and k.

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

$$
\begin{array}{ccccc}
a_{n, k+4} & a_{n+1, k+4} & a_{n+2, k+4} & a_{n+3, k+4} & a_{n+4, k+4} \\
a_{n, k+3} & a_{n+1, k+3} & a_{n+2, k+3} & a_{n+3, k+3} & a_{n+4, k+3} \\
a_{n, k+2} & a_{n+1, k+2} & a_{n+2, k+2} & a_{n+3, k+2} & a_{n+4, k+2} \\
a_{n, k+1} & a_{n+1, k+1} & a_{n+2, k+1} & a_{n+3, k+1} & a_{n+4, k+1} \\
a_{n, k} & a_{n+1, k} & a_{n+2, k} & a_{n+3, k} & a_{n+4, k}
\end{array}
$$

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

Examples:

- A Gröbner basis for $a_{n, k}=\binom{n}{k}^{2}\binom{n+k}{k}^{2}$:

$$
\begin{aligned}
\left\{a_{n+1, k}\right. & =\frac{(k+n+1)^{2}}{(n-k+1)^{2}} a_{n, k}, \\
a_{n, k+1} & \left.=\frac{(n-k)^{2}(k+n+1)^{2}}{(k+1)^{4}} a_{n, k}\right\}
\end{aligned}
$$

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

Examples:

- A Gröbner basis for $a_{n, k}=2^{k} H_{n+2 k}$:

$$
\begin{aligned}
\left\{a_{n, k+1}\right. & =-\frac{2(2 k+n+1)}{2 k+n+2} a_{n, k}+\frac{2(4 k+2 n+3)}{2 k+n+2} a_{n+1, k}, \\
a_{n+2, k} & \left.=-\frac{2 k+n+1}{2 k+n+2} a_{n, k}+\frac{4 k+2 n+3}{2 k+n+2} a_{n+1, k}\right\}
\end{aligned}
$$

Several variables: An object $a_{n_{1}, n_{2}, \ldots, n_{p}}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}\left(n_{1}, \ldots, n_{p}\right)$-vector space which is closed under shift for each variable.

More generally: An object $a\left(n_{1}, n_{2}, \ldots, n_{p}, x_{1}, x_{2}, \ldots, x_{r}\right)$ in p discrete (or q-discrete) variables n_{1}, \ldots, n_{p} and r continuous (or q continuous) variables x_{1}, \ldots, x_{r} is called \mathbf{D}-finite if all the infinitely many mixed (q-) shifts and (q-)derivatives

$$
S_{n_{1}}^{e_{1}} S_{n_{2}}^{e_{2}} \cdots S_{n_{p}}^{e_{p}} D_{x_{1}}^{f_{1}} D_{x_{2}}^{f_{2}} \cdots D_{x_{r}}^{f_{r}} \cdot a\left(n_{1}, \ldots, n_{p}, x_{1}, x_{2}, \ldots, x_{r}\right)
$$

$\left(e_{1}, \ldots, e_{p}, f_{1}, \ldots, f_{r} \in \mathbb{N}\right)$ generate only a finite dimensional vector space over $\mathbb{K}\left(n_{1}, \ldots, n_{p}, x_{1}, \ldots, x_{r}\right)$.

Closure properties: If $a\left(n_{1}, \ldots, n_{p}, x_{1}, \ldots, x_{r}\right)$ and $b\left(n_{1}, \ldots, n_{p}, x_{1}, \ldots, x_{r}\right)$ are D-finite, then so are

- their sum $a+b$ and product $a \cdot b$,
- their shifts $a\left(n_{1}+1, n_{2}, \ldots, n_{p}, x_{1}, \ldots, x_{r}\right)$,
- their derivatives $D_{x_{1}} \cdot a\left(n_{1}, \ldots, n_{p}, x_{1}, \ldots, x_{r}\right)$,
- translates $a\left(u_{1} n_{1}+u_{2} n_{2}+\cdots+u_{p} n_{p}, n_{2}, \ldots, n_{p}, x_{1}, \ldots, x_{r}\right)$ for any fixed integers $u_{1}, u_{2}, \ldots, u_{p} \in \mathbb{Z}, u_{1} \neq 0$.
- compositions $a\left(n_{1}, \ldots, n_{r}, u\left(x_{1}, \ldots, x_{r}\right), x_{2}, \ldots, x_{r}\right)$ with algebraic functions u free of n_{1}, \ldots, n_{r}, not free of x_{1}.
D-finite objects

Creative telescoping (Zeilberger's algorithm):
INPUT: a hypergeometric term $f(n, k)$
OUTPUT: $T \in \mathbb{K}\left[n, S_{n}\right] \backslash\{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$
T \cdot f(n, k)=\left(S_{k}-1\right) Q \cdot f(n, k)
$$

D-finite objects

Creative telescoping (Zeilberger's algorithm):

D-finite object

INPUT: a hypergeometric term $f(n, k)$
OUTPUT: $T \in \mathbb{K}\left[n, S_{n}\right] \backslash\{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$
T \cdot f(n, k)=\left(S_{k}-1\right) Q \cdot f(n, k)
$$

D-finite objects

Creative telescoping (Zeilberger's algorithm):

D-finite object

INPUT: a hypergeometric term $f(n, k)$

$$
Q \in \mathbb{K}(n, k)\left[S_{n}, S_{k}\right]
$$

OUTPUT: $T \in \mathbb{K}\left[n, S_{n}\right] \backslash\{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$
T \cdot f(n, k)=\left(S_{k}-1\right) Q \cdot f(n, k)
$$

D-finite objects

Chyzak's extension of Zeilberger's
Creative telescoping (Zeilberger's algorithm):

D-finite object

INPUT: a hypergeometric term $f(n, k)$

$$
Q \in \mathbb{K}(n, k)\left[S_{n}, S_{k}\right]
$$

OUTPUT: $T \in \mathbb{K}\left[n, S_{n}\right] \backslash\{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$
T \cdot f(n, k)=\left(S_{k}-1\right) Q \cdot f(n, k)
$$

Chyzak's extension of Zeilberger's

Creative telescoping (Zeilberger's algorithm):

D-finite object

INPUT: a hypergeometric term $f(n, k)$

$$
Q \in \mathbb{K}(n, k)\left[S_{n}, S_{k}\right]
$$

OUTPUT: $T \in \mathbb{K}\left[n, S_{n}\right] \backslash\{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$
T \cdot f(n, k)=\left(S_{k}-1\right) Q \cdot f(n, k)
$$

- If there are several free variables n_{1}, n_{2}, \ldots, we compute a Gröbner basis $\left\{T_{1}, T_{2}, \ldots\right\} \subseteq \mathbb{K}\left[n_{1}, n_{2}, \ldots\right]\left[S_{n_{1}}, S_{n_{2}}, \ldots\right]$ of telescopers, each of them coming with its own certificate $Q_{i} \in \mathbb{K}\left(k, n_{1}, n_{2}, \ldots\right)\left[S_{k}, S_{n_{1}}, S_{n_{2}}, \ldots\right]$.

Chyzak's extension of Zeilberger's

Creative telescoping (Zeilberger's algorithm):

D-finite object

INPUT: a hypergeometric term $f(n, k)$

$$
Q \in \mathbb{K}(n, k)\left[S_{n}, S_{k}\right]
$$

OUTPUT: $T \in \mathbb{K}\left[n, S_{n}\right] \backslash\{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$
T \cdot f(n, k)=\left(S_{k}-1\right) Q \cdot f(n, k)
$$

- If there are several free variables n_{1}, n_{2}, \ldots, we compute a Gröbner basis $\left\{T_{1}, T_{2}, \ldots\right\} \subseteq \mathbb{K}\left[n_{1}, n_{2}, \ldots\right]\left[S_{n_{1}}, S_{n_{2}}, \ldots\right]$ of telescopers, each of them coming with its own certificate $Q_{i} \in \mathbb{K}\left(k, n_{1}, n_{2}, \ldots\right)\left[S_{k}, S_{n_{1}}, S_{n_{2}}, \ldots\right]$.
- Existence of telescopers is guaranteed whenever input is not only D-finite but also "holonomic". This is usually the case.

D-finite objects

Example:

$$
f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{i=1}^{n} \frac{1}{i^{3}}+\sum_{i=1}^{k} \frac{(-1)^{i+1}}{2 i^{3}\binom{n}{i}\binom{n+i}{i}}\right)
$$

D-finite objects

Example:

$$
f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2}(\sum_{i=1}^{n} \underbrace{\frac{1}{i^{3}}}_{k \overleftarrow{ष}^{\text {®itit }_{i}}}+\sum_{i=1}^{k} \frac{(-1)^{i+1}}{2 i^{3}\binom{n}{i}\binom{n+i}{i}})
$$

D-finite objects

Example:

D-finite objects

Example:

D-finite objects

Example:
D-finite objects

Example:
D-finite objects

Example:

D-finite objects

Example:

Example:

$$
f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{i=1}^{n} \frac{1}{i^{3}}+\sum_{i=1}^{k} \frac{(-1)^{i+1}}{2 i^{3}\binom{n}{i}\binom{n+i}{i}}\right)
$$

- The packages of Koutschan (for Mathematica) and Chyzak (for Maple) can do these calculations for you.

Example:

$$
f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{i=1}^{n} \frac{1}{i^{3}}+\sum_{i=1}^{k} \frac{(-1)^{i+1}}{2 i^{3}\binom{n}{i}\binom{n+i}{i}}\right)
$$

- The packages of Koutschan (for Mathematica) and Chyzak (for Maple) can do these calculations for you.
- Note: Their outputs are not necessarily minimal.

Example:

$$
f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{i=1}^{n} \frac{1}{i^{3}}+\sum_{i=1}^{k} \frac{(-1)^{i+1}}{2 i^{3}\binom{n}{i}\binom{n+i}{i}}\right)
$$

- The packages of Koutschan (for Mathematica) and Chyzak (for Maple) can do these calculations for you.
- Note: Their outputs are not necessarily minimal.

For example, $f(n, k)$ satisfies the additional relation

$$
\begin{gathered}
2(k+2)(k+1)^{4} f(n, k+1) \\
-(\text { messy }) f(n, k) \\
(n+2)^{2}(k-n-1)^{2}(k-n) f(n+1, k)=0 .
\end{gathered}
$$

Example:

$$
f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{i=1}^{n} \frac{1}{i^{3}}+\sum_{i=1}^{k} \frac{(-1)^{i+1}}{2 i^{3}\binom{n}{i}\binom{n+i}{i}}\right)
$$

- The packages of Koutschan (for Mathematica) and Chyzak (for Maple) can do these calculations for you.
- Note: Their outputs are not necessarily minimal.

For example, $f(n, k)$ satisfies the additional relation

$$
\begin{gathered}
2(k+2)(k+1)^{4} f(n, k+1) \\
-(\text { messy }) f(n, k) \\
(n+2)^{2}(k-n-1)^{2}(k-n) f(n+1, k)=0 .
\end{gathered}
$$

Example:

$$
f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{i=1}^{n} \frac{1}{i^{3}}+\sum_{i=1}^{k} \frac{(-1)^{i+1}}{2 i^{3}\binom{n}{i}\binom{n+i}{i}}\right)
$$

- The packages of Koutschan (for Mathematica) and Chyzak (for Maple) can do these calculations for you.
- Note: Their outputs are not necessarily minimal.

For example, $f(n, k)$ satisfies the additional relation

$$
\begin{gathered}
2(k+2)(k+1)^{4} f(n, k+1) \\
-(\text { messy }) f(n, k) \\
(n+2)^{2}(k-n-1)^{2}(k-n) f(n+1, k)=0 .
\end{gathered}
$$

Such extra knowledge can make calculations much faster.

Example:

$$
f(n, k)=\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{i=1}^{n} \frac{1}{i^{3}}+\sum_{i=1}^{k} \frac{(-1)^{i+1}}{2 i^{3}\binom{n}{i}\binom{n+i}{i}}\right)
$$

- Computing a recurrence for $\sum_{k} f(n, k)$ not using the additional relation takes 40 sec and yields a recurrence of order 4.
- Computing a recurrence for $\sum_{k} f(n, k)$ using the additional relation takes 0.2 sec and yields a recurrence of order 2 .

A What's old?

- Hypergeometric creative telescoping

B What's new "on the market"?

- Techniques for nested sums and products
- Techniques for multivariate D-finite objects

C What's new "in the labs"?

- Speedup by trading order against degree

A What's old?

- Hypergeometric creative telescoping

B What's new "on the market"?

- Techniques for nested sums and products
- Techniques for multivariate D-finite objects

C What's new "in the labs"?

- Speedup by trading order against degree

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

\Leftarrow Okada's determinant formula

$$
\forall n \in \mathbb{N}: \operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=\prod_{k=1}^{n} b_{k}^{2}
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

\Leftarrow Okada's determinant formula

$$
\forall n \in \mathbb{N}: \operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=\prod_{k=1}^{n} b_{k}^{2}
$$

\Leftarrow a certain D-finite summation identity

$$
\forall i, n \in \mathbb{N}, 1 \leq i<n: \sum_{k=1}^{n} a_{i, k} c_{n, k}=0
$$

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

\Leftarrow Okada's determinant formula

$$
\forall n \in \mathbb{N}: \operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=\prod_{k=1}^{n} b_{k}^{2}
$$

\Leftarrow a certain D-finite summation identity

$$
\forall i, n \in \mathbb{N}, 1 \leq i<n: \sum_{k=1}^{n} a_{i, k} c_{n, k}=0
$$

Trading Order for Degree

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

\Leftarrow Okada's determinant formula

$$
\forall n \in \mathbb{N}: \operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=\prod_{k=1}^{n} b_{k}^{2}
$$

\Leftarrow a certain D-finite summation identity

$$
\forall i, n \in \mathbb{N}, 1 \leq i<n: \sum_{k=1}^{n} a_{i, k} c_{n, k}=0
$$

Andrews' and Robbins' qTSPP-formula

$$
\forall n \in \mathbb{N}: \sum_{m=0}^{\infty} R_{n, m} q^{m}=\prod_{k=1}^{n} b_{k}
$$

\Leftarrow Okada's determinant formula

$$
\forall n \in \mathbb{N}: \operatorname{det}\left(\left(a_{i, j}\right)\right)_{i, j=1}^{n}=\prod_{k=1}^{n} b_{k}^{2}
$$

\Leftarrow a certain D-finite summation identity

$$
\forall i, n \in \mathbb{N}, 1 \leq i<n: \sum_{k=1}^{n} a_{i, k} c_{n, k}=0
$$

\Leftarrow a creative telescoping relation with a
 certificate Q of size 7Gb. (Koutschan, MK, Zeilberger, PNAS 2011)

Why are these expressions so big?

How big are they actually?
Can we calculate them more efficiently?

Trading Order for Degree

Creative telescoping (Zeilberger's algorithm):
INPUT: a hypergeometric term $f(n, k)$
OUTPUT: $T \in \mathbb{K}\left[n, S_{n}\right] \backslash\{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$
T \cdot f(n, k)=\left(S_{k}-1\right) Q \cdot f(n, k)
$$

Trading Order for Degree

Focus on the Telescoper:

$$
\begin{aligned}
T & =\left(a_{0,0}+a_{0,1} n+a_{0,2} n^{2}+\cdots+a_{0, d} n^{d}\right) \\
& +\left(a_{1,0}+a_{1,1} n+a_{1,2} n^{2}+\cdots+a_{1, d} n^{d}\right) S_{n} \\
& +\left(a_{2,0}+a_{2,1} n+a_{2,2} n^{2}+\cdots+a_{2, d} n^{d}\right) S_{n}^{2} \\
& +\ldots \\
& +\left(a_{r, 0}+a_{r, 1} n+a_{r, 2} n^{2}+\cdots+a_{r, d} n^{d}\right) S_{n}^{r}
\end{aligned}
$$

Trading Order for Degree

Focus on the Telescoper:

$$
\left.\begin{array}{rl}
T & =\left(a_{0,0}+a_{0,1} n+a_{0,2} n^{2}+\cdots+a_{0, d} n^{d}\right) \\
& +\left(a_{1,0}+a_{1,1} n+a_{1,2} n^{2}+\cdots+a_{1, d} n^{d}\right) S_{n} \\
& +\left(a_{2,0}+a_{2,1} n+a_{2,2} n^{2}+\cdots+a_{2, d} n^{d}\right) S_{n}^{2} \\
& +\ldots \\
& +\left(a_{r, 0}+a_{r, 1} n+a_{r, 2} n^{2}+\cdots+a_{r, d} n^{d}\right) S_{n}^{r}
\end{array}\right\} \text { order } r
$$

Focus on the Telescoper: degree d

$$
\left.\begin{array}{rl}
T & =\left(a_{0,0}+a_{0,1} n+a_{0,2} n^{2}+\cdots+a_{0, d} n^{d}\right) \\
& +\left(a_{1,0}+a_{1,1} n+a_{1,2} n^{2}+\cdots+a_{1, d} n^{d}\right) S_{n} \\
& +\left(a_{2,0}+a_{2,1} n+a_{2,2} n^{2}+\cdots+a_{2, d} n^{d}\right) S_{n}^{2} \\
& +\ldots \\
& +\left(a_{r, 0}+a_{r, 1} n+a_{r, 2} n^{2}+\cdots+a_{r, d} n^{d}\right) S_{n}^{r}
\end{array}\right\} \text { order } r
$$

Question: For a given hypergeometric term $f(n, k)$, what are the order r and the degree d of the corresponding telescoper?

Question: For a given hypergeometric term $f(n, k)$, what are the order r and the degree d of the corresponding telescoper?

Answer: This is not a good question. "The" telescoper is not uniquely determined by $f(n, k)$!

Question: For a given hypergeometric term $f(n, k)$, what are the order r and the degree d of the corresponding telescoper?

Answer: This is not a good question. "The" telescoper is not uniquely determined by $f(n, k)$!
Instead, the set of all telescopers for a fixed term $f(n, k)$ forms a left ideal in the operator algebra $\mathbb{K}\left[n, S_{n}\right]$.

Trading Order for Degree

Trading Order for Degree
A telescoper of order r and degree d can be depicted like this.

Trading Order for Degree
A telescoper of order r and degree d can be depicted like this.

Trading Order for Degree
A telescoper of order r and degree d can be depicted like this.

Trading Order for Degree

We will however depict it just by its upper right corner (r, d).

Trading Order for Degree

We will however depict it just by its upper right corner (r, d).

Trading Order for Degree
Multiplication by powers of n gives further telescopers.

Trading Order for Degree

Multiplication by powers of S_{n} gives even more telescopers.

degree	

Trading Order for Degree
The set of all telescopers is still bigger.

degree	

Trading Order for Degree
Want: A curve describing the shape of the blue region.

degree	

Trading Order for Degree

Theorem (MK and Shaoshi Chen, 2012)

Trading Order for Degree

Theorem (MK and Shaoshi Chen, 2012)

- Consider a proper hypergeometric term

$$
f(n, k)=\operatorname{pol}(n, k) x^{n} y^{k} \prod_{m=1}^{M} \frac{\Gamma\left(a_{m} n+a_{m}^{\prime} k+a_{m}^{\prime \prime}\right) \Gamma\left(b_{m} n-b_{m}^{\prime} k+b_{m}^{\prime \prime}\right)}{\Gamma\left(u_{m} n+u_{m}^{\prime} k+u_{m}^{\prime \prime}\right) \Gamma\left(v_{m} n-v_{m}^{\prime} k+v_{m}^{\prime \prime}\right)} .
$$

Trading Order for Degree

Theorem (MK and Shaoshi Chen, 2012)

- Consider a proper hypergeometric term

$$
f(n, k)=\operatorname{pol}(n, k) x^{n} y^{k} \prod_{m=1}^{M} \frac{\Gamma\left(a_{m} n+a_{m}^{\prime} k+a_{m}^{\prime \prime}\right) \Gamma\left(b_{m} n-b_{m}^{\prime} k+b_{m}^{\prime \prime}\right)}{\Gamma\left(u_{m} n+u_{m}^{\prime} k+u_{m}^{\prime \prime}\right) \Gamma\left(v_{m} n-v_{m}^{\prime} k+v_{m}^{\prime \prime}\right)} .
$$

- There exists a telescoper of order r and degree d whenever

Trading Order for Degree

Theorem (MK and Shaoshi Chen, 2012)

- Consider a proper hypergeometric term

$$
f(n, k)=\operatorname{pol}(n, k) x^{n} y^{k} \prod_{m=1}^{M} \frac{\Gamma\left(a_{m} n+a_{m}^{\prime} k+a_{m}^{\prime \prime}\right) \Gamma\left(b_{m} n-b_{m}^{\prime} k+b_{m}^{\prime \prime}\right)}{\Gamma\left(u_{m} n+u_{m}^{\prime} k+u_{m}^{\prime \prime}\right) \Gamma\left(v_{m} n-v_{m}^{\prime} k+v_{m}^{\prime \prime}\right)}
$$

- There exists a telescoper of order r and degree d whenever

$$
d>\frac{A r+B}{r+C}
$$

where

Trading Order for Degree

Theorem (MK and Shaoshi Chen, 2012)

- Consider a proper hypergeometric term

$$
f(n, k)=\operatorname{pol}(n, k) x^{n} y^{k} \prod_{m=1}^{M} \frac{\Gamma\left(a_{m} n+a_{m}^{\prime} k+a_{m}^{\prime \prime}\right) \Gamma\left(b_{m} n-b_{m}^{\prime} k+b_{m}^{\prime \prime}\right)}{\Gamma\left(u_{m} n+u_{m}^{\prime} k+u_{m}^{\prime \prime}\right) \Gamma\left(v_{m} n-v_{m}^{\prime} k+v_{m}^{\prime \prime}\right)}
$$

- There exists a telescoper of order r and degree d whenever

$$
d>\frac{A r+B}{r+C}
$$

where

- $A=\vartheta \nu-1, \quad B=2 \operatorname{deg} p o l+|\mu|+3-(1+|\mu|) \nu, \quad C=1-\nu$.

Trading Order for Degree

Theorem (MK and Shaoshi Chen, 2012)

- Consider a proper hypergeometric term

$$
f(n, k)=\operatorname{pol}(n, k) x^{n} y^{k} \prod_{m=1}^{M} \frac{\Gamma\left(a_{m} n+a_{m}^{\prime} k+a_{m}^{\prime \prime}\right) \Gamma\left(b_{m} n-b_{m}^{\prime} k+b_{m}^{\prime \prime}\right)}{\Gamma\left(u_{m} n+u_{m}^{\prime} k+u_{m}^{\prime \prime}\right) \Gamma\left(v_{m} n-v_{m}^{\prime} k+v_{m}^{\prime \prime}\right)}
$$

- There exists a telescoper of order r and degree d whenever

$$
d>\frac{A r+B}{r+C}
$$

where

- $A=\vartheta \nu-1, \quad B=2 \operatorname{deg} p o l+|\mu|+3-(1+|\mu|) \nu, \quad C=1-\nu$.
- $\mu=\sum_{m=1}^{M}\left(a_{m}+b_{m}-u_{m}-v_{m}\right)$

Trading Order for Degree

Theorem (MK and Shaoshi Chen, 2012)

- Consider a proper hypergeometric term

$$
f(n, k)=\operatorname{pol}(n, k) x^{n} y^{k} \prod_{m=1}^{M} \frac{\Gamma\left(a_{m} n+a_{m}^{\prime} k+a_{m}^{\prime \prime}\right) \Gamma\left(b_{m} n-b_{m}^{\prime} k+b_{m}^{\prime \prime}\right)}{\Gamma\left(u_{m} n+u_{m}^{\prime} k+u_{m}^{\prime \prime}\right) \Gamma\left(v_{m} n-v_{m}^{\prime} k+v_{m}^{\prime \prime}\right)}
$$

- There exists a telescoper of order r and degree d whenever

$$
d>\frac{A r+B}{r+C}
$$

where

- $A=\vartheta \nu-1, \quad B=2 \operatorname{deg} p o l+|\mu|+3-(1+|\mu|) \nu, \quad C=1-\nu$.
- $\mu=\sum_{m=1}^{M}\left(a_{m}+b_{m}-u_{m}-v_{m}\right)$
- $\nu=\max \left\{\sum_{m=1}^{M}\left(a_{m}^{\prime}+v_{m}^{\prime}\right), \sum_{m=1}^{M}\left(u_{m}^{\prime}+b_{m}^{\prime}\right)\right\}$

Theorem (MK and Shaoshi Chen, 2012)

- Consider a proper hypergeometric term

$$
f(n, k)=\operatorname{pol}(n, k) x^{n} y^{k} \prod_{m=1}^{M} \frac{\Gamma\left(a_{m} n+a_{m}^{\prime} k+a_{m}^{\prime \prime}\right) \Gamma\left(b_{m} n-b_{m}^{\prime} k+b_{m}^{\prime \prime}\right)}{\Gamma\left(u_{m} n+u_{m}^{\prime} k+u_{m}^{\prime \prime}\right) \Gamma\left(v_{m} n-v_{m}^{\prime} k+v_{m}^{\prime \prime}\right)}
$$

- There exists a telescoper of order r and degree d whenever

$$
d>\frac{A r+B}{r+C}
$$

where

- $A=\vartheta \nu-1, \quad B=2 \operatorname{deg} p o l+|\mu|+3-(1+|\mu|) \nu, \quad C=1-\nu$.
- $\mu=\sum_{m=1}^{M}\left(a_{m}+b_{m}-u_{m}-v_{m}\right)$
- $\nu=\max \left\{\sum_{m=1}^{M}\left(a_{m}^{\prime}+v_{m}^{\prime}\right), \sum_{m=1}^{M}\left(u_{m}^{\prime}+b_{m}^{\prime}\right)\right\}$
- $\vartheta=\max \left\{\sum_{m=1}^{M}\left(a_{m}+b_{m}\right), \sum_{m=1}^{M}\left(u_{m}+v_{m}\right)\right\}$

Trading Order for Degree

Example 1: $\left(n^{2}+k^{2}+1\right) \frac{\Gamma(2 n+3 k)}{\Gamma(2 n-k)}$

Example 2: $\frac{\Gamma(2 n+k) \Gamma(n-k+2)}{\Gamma(2 n-k) \Gamma(n+2 k)}$

Trading Order for Degree

Example 1: $\left(n^{2}+k^{2}+1\right) \frac{\Gamma(2 n+3 k)}{\Gamma(2 n-k)}$

$$
d>\frac{7 r+5}{r-3}
$$

Example 2: $\frac{\Gamma(2 n+k) \Gamma(n-k+2)}{\Gamma(2 n-k) \Gamma(n+2 k)}$

$$
d>\frac{8 r-1}{r-2}
$$

Example 1: $\left(n^{2}+k^{2}+1\right) \frac{\Gamma(2 n+3 k)}{\Gamma(2 n-k)}$

$$
d>\frac{7 r+5}{r-3}
$$

Example 2: $\frac{\Gamma(2 n+k) \Gamma(n-k+2)}{\Gamma(2 n-k) \Gamma(n+2 k)}$

$$
d>\frac{8 r-1}{r-2}
$$

Example 1: $\left(n^{2}+k^{2}+1\right) \frac{\Gamma(2 n+3 k)}{\Gamma(2 n-k)}$

$$
d>\frac{7 r+5}{r-3}
$$

Example 2: $\frac{\Gamma(2 n+k) \Gamma(n-k+2)}{\Gamma(2 n-k) \Gamma(n+2 k)}$

$$
d>\frac{8 r-1}{r-2}
$$

Example 1: $\left(n^{2}+k^{2}+1\right) \frac{\Gamma(2 n+3 k)}{\Gamma(2 n-k)}$

$$
d>\frac{7 r+5}{r-3}
$$

Example 2: $\frac{\Gamma(2 n+k) \Gamma(n-k+2)}{\Gamma(2 n-k) \Gamma(n+2 k)}$

$$
d>\frac{8 r-1}{r-2}
$$

Trading Order for Degree

Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopers, before computing them.

Trading Order for Degree

Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopers, before computing them.

Trading Order for Degree

Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopers, before computing them.

Trading Order for Degree

Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopers, before computing them.

Trading Order for Degree

Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopers, before computing them.

Trading Order for Degree

Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopers, before computing them.

Trading Order for Degree

Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopers, before computing them.

- For currently feasible input sizes, the minimal cost telescoper agrees with minimal order telescoper.

Trading Order for Degree

- For currently feasible input sizes, the minimal cost telescoper agrees with minimal order telescoper.
- We expect that the separation becomes measurable within the coming few years.
- For currently feasible input sizes, the minimal cost telescoper agrees with minimal order telescoper.
- We expect that the separation becomes measurable within the coming few years.
- For asymptotically large input size, the difference is significant.
- For currently feasible input sizes, the minimal cost telescoper agrees with minimal order telescoper.
- We expect that the separation becomes measurable within the coming few years.
- For asymptotically large input size, the difference is significant. For $\tau \geq \max \{\vartheta, \nu\}$ and any fixed constant $\alpha>1$ we have:
- $\mathrm{O}^{\sim}\left(\tau^{9}\right) \ldots$ cost for telescoper of expected minimal order $r_{\text {min }}$
- For currently feasible input sizes, the minimal cost telescoper agrees with minimal order telescoper.
- We expect that the separation becomes measurable within the coming few years.
- For asymptotically large input size, the difference is significant. For $\tau \geq \max \{\vartheta, \nu\}$ and any fixed constant $\alpha>1$ we have:
- $\mathrm{O}^{\sim}\left(\tau^{9}\right) \ldots$ cost for telescoper of expected minimal order $r_{\text {min }}$
- $\mathrm{O}^{\sim}\left(\tau^{8}\right) \ldots \quad$ cost for telescoper of order $\alpha r_{\text {min }}$.
- For currently feasible input sizes, the minimal cost telescoper agrees with minimal order telescoper.
- We expect that the separation becomes measurable within the coming few years.
- For asymptotically large input size, the difference is significant. For $\tau \geq \max \{\vartheta, \nu\}$ and any fixed constant $\alpha>1$ we have:
- $\mathrm{O}^{\sim}\left(\tau^{9}\right) \ldots$ cost for telescoper of expected minimal order $r_{\text {min }}$
- $\mathrm{O}^{\sim}\left(\tau^{8}\right) \ldots \quad$ cost for telescoper of order $\alpha r_{\text {min }}$.
- Under appropriate assumptions, the optimal choice of α turns out to be 1.2.
- For currently feasible input sizes, the minimal cost telescoper agrees with minimal order telescoper.
- We expect that the separation becomes measurable within the coming few years.
- For asymptotically large input size, the difference is significant. For $\tau \geq \max \{\vartheta, \nu\}$ and any fixed constant $\alpha>1$ we have:
- $\mathrm{O}^{\sim}\left(\tau^{9}\right) \ldots$ cost for telescoper of expected minimal order $r_{\text {min }}$
- $\mathrm{O}^{\sim}\left(\tau^{8}\right) \ldots \quad$ cost for telescoper of order $\alpha r_{\text {min }}$.
- Under appropriate assumptions, the optimal choice of α turns out to be 1.2.
- Similar effects have already been reported in other circumstances.

Trading Order for Degree

Open Questions:

Trading Order for Degree

Open Questions:

- What is the smallest problem size for which it pays off to compute a non-minimal telescoper?

Open Questions:

- What is the smallest problem size for which it pays off to compute a non-minimal telescoper?
- What is the "true curve" which (generically) does not overshoot? Is it also a hyperbola?

Open Questions:

- What is the smallest problem size for which it pays off to compute a non-minimal telescoper?
- What is the "true curve" which (generically) does not overshoot? Is it also a hyperbola?
- What is the deeper reason behind all these order/degree phenomena discovered recently?

Open Questions:

- What is the smallest problem size for which it pays off to compute a non-minimal telescoper?
- What is the "true curve" which (generically) does not overshoot? Is it also a hyperbola?
- What is the deeper reason behind all these order/degree phenomena discovered recently?
- What is the right question to be asked in the case of several variables?

A What's old?

- Hypergeometric creative telescoping

B What's new "on the market"?

- Techniques for nested sums and products
- Techniques for multivariate D-finite objects

C What's new "in the labs"?

- Speedup by trading order against degree
- The 2010s: Efficiency and complexity applications with large input, rational integration exploiting fast arithmetic, worst case bounds on the run time complexity, sharp estimates on the output size, parallel algorithms, ...
- The 2000s: Extensions and generalizations Refined $\Pi \Sigma$-theory, Takayama, Ore algebras and Gröbner bases, Chyzak's algorithm, algorithms for identities involving Abeltype terms or Bernoulli numbers or Stirling numbers, ...
- The 1990s: The stormy decade Z's theory, Z's algorithm, Almkvist-Zeilberger algorithm, Petkovšek's algorithm, WZ-pairs, $A=B$, GFF, q-generalizations, Wegschaider, Paule-Schorn package, gfun, Yen's bound, ...
- prehistory

Gosper's algorithm, Sister Celine's algorithm, Karr's algorithm, hypergeometric transformations (nonalgorithmic), table lookup.

