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• The 2010s: Efficiency and complexity
applications with large input, rational integration exploiting fast
arithmetic, worst case bounds on the run time complexity, sharp
estimates on the output size, parallel algorithms, . . .

• The 2000s: Extensions and generalizations
Refined ΠΣ-theory, Takayama, Ore algebras and Gröbner bases,
Chyzak’s algorithm, algorithms for identities involving Abel-
type terms or Bernoulli numbers or Stirling numbers, . . .

• The 1990s: The stormy decade
Z’s theory, Z’s algorithm, Almkvist-Zeilberger algorithm, Pet-
kovšek’s algorithm, WZ-pairs, A = B, GFF, q-generalizations,
Wegschaider, Paule-Schorn package, gfun, Yen’s bound, . . .

• prehistory
Gosper’s algorithm, Sister Celine’s algorithm, Karr’s algorithm,
hypergeometric transformations (nonalgorithmic), table lookup.
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kovšek’s algorithm, WZ-pairs, A = B, GFF, q-generalizations,
Wegschaider, Paule-Schorn package, gfun, Yen’s bound, . . .

• prehistory
Gosper’s algorithm, Sister Celine’s algorithm, Karr’s algorithm,
hypergeometric transformations (nonalgorithmic), table lookup.

2



• The 2010s: Efficiency and complexity
applications with large input, rational integration exploiting fast
arithmetic, worst case bounds on the run time complexity, sharp
estimates on the output size, parallel algorithms, . . .

• The 2000s: Extensions and generalizations
Refined ΠΣ-theory, Takayama, Ore algebras and Gröbner bases,
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1990s 2000s 2010s

Classics: explored · available · well-known

Extensions: explored · available

High Performance: explored

Plan of this talk:

I Address some developments which are now ready to use.

I Address some of the hot topics in the area.
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Outline

A What’s old?
I Hypergeometric creative telescoping

B What’s new “on the market”?
I Techniques for nested sums and products
I Techniques for multivariate D-finite objects

C What’s new “in the labs”?
I Speedup by trading order against degree
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Creative Telescoping
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Creative Telescoping

INPUT: something like f(n, k) :=
(
n
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Creative Telescoping

INPUT: something like f(n, k) :=
(
n
k

)2(n+k
k

)2
OUTPUT: something like

(n+ 1)3f(n, k)

− (2n+ 3)(17n2 + 51n+ 39)f(n+ 1, k)

+ (n+ 3)3f(n+ 2, k) = g(n, k + 1)− g(n, k)

where g(n, k) = 4k4(2n+3)(4n2+12n−2k2+3k+8)
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Creative Telescoping

INPUT: a hypergeometric term f(n, k)

i.e., f(n+1,k)
f(n,k) ∈ K(n, k) and f(n,k+1)

f(n,k) ∈ K(n, k)
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Creative Telescoping

INPUT: a hypergeometric term f(n, k)

OUTPUT: T ∈ K[n, Sn] \ {0} and Q ∈ K(n, k) such that

T · f(n, k) = (Sk − 1) ·Qf(n, k)
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Creative Telescoping

OUTPUT: T ∈ K[n, Sn] \ {0} and Q ∈ K(n, k) such that

T ·
∑
k

f(n, k) = 0 (usually)

A telescoper for f(n, k) is (usually)

an annihilator for
∑

k f(n, k).
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Creative Telescoping

The recurrence for the F (n) =
∑

k

(
n
k

)2(n+k
k

)2
plays a critical role

in Apéry’s proof of the irrationality of ζ(3).
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(
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)2
plays a critical role

in Apéry’s proof of the irrationality of ζ(3).

van der Poorten on his struggles to check Apéry’s argument:

“We were quite unable to prove that the sequence F (n)
defined above did satisfy the recurrence (Apéry rather
tartly pointed out to me in Helsinki that he regarded this
more a compliment than a criticism of his method). But
empirically (numerically) the evidence in favour was utterly
compelling.”
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Creative Telescoping

The recurrence for the F (n) =
∑

k

(
n
k

)2(n+k
k

)2
plays a critical role

in Apéry’s proof of the irrationality of ζ(3).

For Zeilberger’s algorithm, this sum is a piece of cake.

But Apéry needs a second sum:

H(n) =
∑
k

(
n

k

)2(n+ k

k

)2( n∑
i=1

1

i3
+

k∑
i=1

(−1)i−1

2i3
(
n
i

)(
n+i
i

))
Key step of his proof: H(n) and F (n) satisfy the same recurrence.

Zeilberger’s algorithm can’t do this harder sum directly.

We need appropriate generalizations.
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Outline

A What’s old?
I Hypergeometric creative telescoping

B What’s new “on the market”?
I Techniques for nested sums and products
I Techniques for multivariate D-finite objects

C What’s new “in the labs”?
I Speedup by trading order against degree
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ΠΣ -expressions

Informal (and somewhat oversimplified): expressions which can be
formed from constants, variables, +, −, ·, /,

∑
,
∏

in such a way
that each subexpression has at most one free variable.

Examples:

I

n∑
k=1

k∑
i=1

1

i

k

OK

I

n∑
k=1

k∑
i=1

1

1 + i+ n

not OK.
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(k + 1)(k + 1 + 2 · 2k)
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ΠΣ -expressions

More formal (but still somewhat oversimplified):

I A difference field is a field F together with a distinguished
field automorphism σ : F→ F, called the shift of F.

I A ΠΣ-field is a difference field of the form

F = K(t1, t2, . . . , tr)

where σ(c) = c for all c ∈ K and each ti satisfies an equation

σ(ti) = αti + β

for some α, β ∈ K(t1, t2, . . . , ti−1) (plus some technical restrictions omitted here).

I ti represents a product if β = 0
ti represents a sum if α = 1
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ΠΣ -expressions

Example: To represent
n∑

k=1

Hk + k!

2k + k
, we can take the ΠΣ-field

F = Q(t1, t2, t3, t4, t5)

where σ : F→ F is such that σ(c) = c for all c ∈ Q and

σ(t1) = t1 + 1 t1 ∼ n
σ(t2) = 2t2 t2 ∼ 2n

σ(t3) = t3 + 1
t1+1 t3 ∼ Hn

σ(t4) = (t1 + 1)t4 t4 ∼ n!

σ(t5) = t5 + 1+(t1+1)t3+(t1+1)2t4
(t1+1)(t1+1+2t2) t5 ∼

∑n
k=1

Hk+k!
2k+k
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ΠΣ -expressions

Karr’s algorithm (1982): Given a ΠΣ-field F and an element
f ∈ F, find g ∈ F with σ(g)− g = f , or prove that no such
element g exists in F.

13
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ΠΣ -expressions

Karr’s algorithm (1982): Given a ΠΣ-field F and an element
f ∈ F, find g ∈ F with σ(g)− g = f , or prove that no such
element g exists in F.

Vastly extended by Schneider since 2001. Some of the key features
of his Mathematica package Sigma are:

I For a given ΠΣ-expression, find an equivalent ΠΣ-expression
in which the nesting depth is as small as can be.

I Find recurrence equations for definite sums involving
ΠΣ-expressions by creative telescoping.

I Solve a given linear recurrence equation in terms of
ΠΣ-expressions.
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Examples:

I
n∑

k=1

H3
k = −6n+ 3

2(2n+ 1)(2Hn−H2
n) + (n+ 1)H3

n + 1
2

This new single sum is not
a subexpression of the
left hand side

n∑
k=1

1
k2

I
n∑

k=1

H4
k cannot be expressed as at all in terms of single sums.

I
n∑

k=1

k∑
l=1

l∑
m=1

m∑
i=1

i∑
j=1

1
j

i

m2

l

k also not.

But in double sums. . .
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· · · = 1
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(
1
3(

n∑
k=1

1
k2

)3 + (
n∑

k=1

1
k4

+
n∑

k=1

(
k∑

i=1

1
i
)2

k2
)

n∑
k=1

1
k2

+ 2
3

n∑
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1
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−
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i=1

1
i4
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1
i

k −
n∑

k=1

(
k∑
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1
i2
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1
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1
i
)3
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1
k )
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1
i4

k +
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1
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)2

k + 2
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1
i
)2

k3
− 2

n∑
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(
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i=1

1
i
)3
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ΠΣ -expressions

Find recurrence equations for definite sums involving
ΠΣ-expressions by creative telescoping.

This requires that the summand f(n, k) is such that f(n, k),
f(n+ 1, k), f(n+ 2, k), . . . all are ΠΣ-expressions with respect
to k when n is viewed as a (symbolic) constant.

Examples:

I f(n, k) =
(
n
k

)2(n+k
k

)2
I f(n, k) =

(
n
k

)2(n+k
k

)2( n∑
i=1

1
i3

+
k∑

i=1

(−1)i+1

2i3(ni)(
n+i
i )

)

15
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ΠΣ -expressions

Solve a given linear recurrence equation in terms of
ΠΣ-expressions.

Example.
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ΠΣ -expressions

Solve a given linear recurrence equation in terms of
ΠΣ-expressions.

Example.

I (n+ 1)3F (n)− (2n+ 3)(17n2 + 51n+ 39)F (n+ 1)
+ (n+ 3)3F (n+ 2) = 0

 no non-constant ΠΣ-solutions

I 2(2n+ 5)(3n+ 5)F (n)− (6n3 + 49n2 + 124n+ 98)F (n+ 1)
+ (n+ 2)(2n+ 3)(3n+ 8)F (n+ 2) = 0

 solutions 1 and 8
n∑

k=1

k∏
i=1

2
i −

n∑
k=0

∏k
i=1

2
i

3k+2
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ΠΣ -expressions

Solve a given linear recurrence equation in terms of
ΠΣ-expressions.

Example.

I (n2Hn + 3nHn + 2Hn + 2n+ 3)F (n)
− (n3Hn + 6n2Hn + 11nHn + 6Hn +n2 + 6n+ 7)F (n+ 1)
+ (n+ 2)2(nHn +Hn + 1)F (n+ 2) = 0

 solutions 1 and
n∑

k=0

Hk

k∏
i=1

1
i

16



ΠΣ -expressions

Suggested workflow for iterated definite sums:

ΠΣ-expression in n

creative telescoping−−−−−−−−−−−−→ linear recurrence with shifts in k1

and coefficients involving n, k1

solve (if possible)−−−−−−−−−−−−→ ΠΣ-expression in k1

with parameter n
simplify−−−−−−−−−−−−→ depth-optimal ΠΣ-expression in k1

with parameter n

∑
k1

ΠΣ-expression in k1

with parameter n

creative telescoping−−−−−−−−−−−−→ linear recurrence with shifts in k1

and coefficients involving n, k1

solve (if possible)−−−−−−−−−−−−→ ΠΣ-expression in k1

with parameter n
simplify−−−−−−−−−−−−→ depth-optimal ΠΣ-expression in k1

with parameter n

∑
k2

ΠΣ-expression in k2

with parameters n, k1

creative telescoping−−−−−−−−−−−−→ linear recurrence with shifts in k2

and coefficients involving n, k1, k2

solve (if possible)−−−−−−−−−−−−→ ΠΣ-expression in k2

with parameters n, k1

simplify−−−−−−−−−−−−→ depth-optimal ΠΣ-expression in k2

with parameters n, k1

∑
k3

ΠΣ-expression in k3

with parameters n, k1, k2

17
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D-finite objects

Consider a product
n∏

k=1

ak.

Observe that the shift
n+1∏
k=1

= an+1

n∏
k=1

ak is linear in the product.

Therefore, also the vector space generated by the product over
some difference field for the subexpressions is closed under shift.

It is a vector space of dimension 1.
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D-finite objects

Consider a sum
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ak.

Here we have
n+1∑
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ak =
n∑

k=1

ak + an+1.

Therefore, also the vector space generated by 1 and the sum over
some difference field for the subexpressions is closed under shift.

It is a vector space of dimension (at most) 2.

19



D-finite objects

Consider a sum
n∑

k=1

ak.

Here we have
n+1∑
k=1

ak =
n∑

k=1

ak + an+1.

Therefore, also the vector space generated by 1 and the sum over
some difference field for the subexpressions is closed under shift.

It is a vector space of dimension (at most) 2.

19



D-finite objects

Consider a sum
n∑

k=1

ak.

Here we have
n+1∑
k=1

ak =
n∑

k=1

ak + an+1.

Therefore, also the vector space generated by 1 and the sum over
some difference field for the subexpressions is closed under shift.

It is a vector space of dimension (at most) 2.

19



D-finite objects

Consider a sum
n∑

k=1

ak.

Here we have
n+1∑
k=1

ak =
n∑

k=1

ak + an+1.

Therefore, also the vector space generated by 1 and the sum over
some difference field for the subexpressions is closed under shift.

It is a vector space of dimension (at most) 2.

19



D-finite objects

Consider a sum
n∑

k=1

ak.

Alternative:

n+1∑
k=1

ak −
n∑

k=1

ak = an+1

∣∣∣ · an+2

n+2∑
k=1

ak −
n+1∑
k=1

ak = an+2

∣∣∣ · an+1

−

an+1

n+2∑
k=1

ak −
(
an+1 + an+2

) n+1∑
k=1

ak + an+2

n∑
k=1

ak = 0

19



D-finite objects

Consider a sum
n∑

k=1

ak.

Alternative:

n+1∑
k=1

ak −
n∑

k=1

ak = an+1

∣∣∣ · an+2

n+2∑
k=1

ak −
n+1∑
k=1

ak = an+2

∣∣∣ · an+1

−

an+1

n+2∑
k=1

ak −
(
an+1 + an+2

) n+1∑
k=1

ak + an+2

n∑
k=1

ak = 0

19



D-finite objects

Consider a sum
n∑

k=1

ak.

Alternative:

n+1∑
k=1

ak −
n∑

k=1

ak = an+1

∣∣∣ · an+2

n+2∑
k=1

ak −
n+1∑
k=1

ak = an+2

∣∣∣ · an+1

−

an+1

n+2∑
k=1

ak −
(
an+1 + an+2

) n+1∑
k=1

ak + an+2

n∑
k=1

ak = 0

19



D-finite objects

Consider a sum
n∑

k=1

ak.

Alternative:

n+1∑
k=1

ak −
n∑

k=1

ak = an+1

∣∣∣ · an+2

n+2∑
k=1

ak −
n+1∑
k=1

ak = an+2

∣∣∣ · an+1

−

an+1

n+2∑
k=1

ak −
(
an+1 + an+2

) n+1∑
k=1

ak + an+2

n∑
k=1

ak = 0

19



D-finite objects

Consider a sum
n∑

k=1

ak.

Alternative:

n+1∑
k=1

ak −
n∑

k=1

ak = an+1

∣∣∣ · an+2

n+2∑
k=1

ak −
n+1∑
k=1

ak = an+2

∣∣∣ · an+1

−

an+1

n+2∑
k=1

ak −
(
an+1 + an+2

) n+1∑
k=1

ak + an+2

n∑
k=1

ak = 0

19



D-finite objects

Consider a sum
n∑

k=1

ak.

Therefore, also the vector space generated by
n∑

k=1

ak and
n+1∑
k=1

ak

over some difference field for the subexpressions is closed under shift.

It is a vector space of dimension (at most) 2.

19



D-finite objects

Consider a sum
n∑

k=1

ak.

Therefore, also the vector space generated by
n∑

k=1

ak and
n+1∑
k=1

ak

over some difference field for the subexpressions is closed under shift.

It is a vector space of dimension (at most) 2.

19



D-finite objects

Definition. An object an is called D-finite (or P-recursive or
holonomic) if it lives in some finite-dimensional K(n)-vector
space which is closed under shift.
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Definition. An object an is called D-finite (or P-recursive or
holonomic) if it lives in some finite-dimensional K(n)-vector
space which is closed under shift.

Equivalently: An object an is called D-finite if it satisfies a recur-
rence equation

p0(n)an + p1(n)an+1 + · · ·+ pr(n)an+r = 0

with polynomial coefficients pi(n) ∈ K[n], pr(n) 6= 0.

Then an, . . . , an+r−1 generate the vector space. (Possibly fewer.)
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D-finite objects

Definition. An object an is called D-finite (or P-recursive or
holonomic) if it lives in some finite-dimensional K(n)-vector
space which is closed under shift.

Examples:

I an = 2n/n! satisfies 2an − (n+ 1)an+1 = 0

I an = Hn =
n∑

k=1

1
k satisfies

(n+ 1)an − (2n+ 3)an+1 + (n+ 2)an+2 = 0.

I an =
∑

k

(
n
k

)2(n+k
k

)2
satisfies (less obviously)

(n+1)3an−(2n+3)(17n2+51n+39)an+1+(n+2)3an+2 = 0.
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D-finite objects

Definition. An object an is called D-finite (or P-recursive or
holonomic) if it lives in some finite-dimensional K(n)-vector
space which is closed under shift.

Warning: D-finite objects may not have a closed form.

They are represented through the equations they satisfy, just like
algebraic numbers:

Naive question: What are the roots of the polynomial x5− 3x+ 1 ?

Expert answer: RootOf( Z5 − 3 Z + 1, index = 1),
RootOf( Z5 − 3 Z + 1, index = 2),
RootOf( Z5 − 3 Z + 1, index = 3),
RootOf( Z5 − 3 Z + 1, index = 4),
RootOf( Z5 − 3 Z + 1, index = 5).
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(3n+ 2)an+2 − 2(n+ 3)an+1 + (2n− 7)an = 0 ?

Expert answer: The solutions form a K-vector space V of dimension
two. Each solution is uniquely determined by its first two terms, and
each choice of two initial terms gives rise to a solution.
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D-finite objects

Several variables: An object an1,n2,...,np in p variables is D-finite if
it lives in some finite-dimensional K(n1, . . . , np)-vector space
which is closed under shift for each variable.
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Examples:

I an,k =
(
n
k

)2(n+k
k

)2
is D-finite in n and k.

I an,k = 2kHn+2k is D-finite in n and k.

I an,k = nk is D-finite in n for every fixed choice k ∈ Z, but it
is not D-finite in n and k.
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D-finite objects

Several variables: An object an1,n2,...,np in p variables is D-finite if
it lives in some finite-dimensional K(n1, . . . , np)-vector space
which is closed under shift for each variable.

an,k+4 an+1,k+4 an+2,k+4 an+3,k+4 an+4,k+4

an,k+3 an+1,k+3 an+2,k+3 an+3,k+3 an+4,k+3

an,k+2 an+1,k+2 an+2,k+2 an+3,k+2 an+4,k+2

an,k+1 an+1,k+1 an+2,k+1 an+3,k+1 an+4,k+1

an,k an+1,k an+2,k an+3,k an+4,k
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D-finite objects

Several variables: An object an1,n2,...,np in p variables is D-finite if
it lives in some finite-dimensional K(n1, . . . , np)-vector space
which is closed under shift for each variable.

It is enough to know how to
reduce the corner points.
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D-finite objects

Several variables: An object an1,n2,...,np in p variables is D-finite if
it lives in some finite-dimensional K(n1, . . . , np)-vector space
which is closed under shift for each variable.

The corresponding equations
are called a Gröbner basis.
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Several variables: An object an1,n2,...,np in p variables is D-finite if
it lives in some finite-dimensional K(n1, . . . , np)-vector space
which is closed under shift for each variable.

Examples:

I A Gröbner basis for an,k =
(
n
k

)2(n+k
k

)2
:{

an+1,k = (k+n+1)2

(n−k+1)2
an,k,

an,k+1 = (n−k)2(k+n+1)2

(k+1)4
an,k

}
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it lives in some finite-dimensional K(n1, . . . , np)-vector space
which is closed under shift for each variable.

Examples:

I A Gröbner basis for an,k = 2kHn+2k:{
an,k+1 = −2(2k+n+1)

2k+n+2 an,k + 2(4k+2n+3)
2k+n+2 an+1,k,

an+2,k = −2k+n+1
2k+n+2an,k + 4k+2n+3

2k+n+2 an+1,k

}
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D-finite objects

Several variables: An object an1,n2,...,np in p variables is D-finite if
it lives in some finite-dimensional K(n1, . . . , np)-vector space
which is closed under shift for each variable.

More generally: An object a(n1, n2, . . . , np, x1, x2, . . . , xr) in p dis-
crete (or q-discrete) variables n1, . . . , np and r continuous (or q-
continuous) variables x1, . . . , xr is called D-finite if all the infinitely
many mixed (q-)shifts and (q-)derivatives

Se1
n1
Se2
n2
· · ·Sep

npD
f1
x1
Df2

x2
· · ·Dfr

xr
· a(n1, . . . , np, x1, x2, . . . , xr)

(e1, . . . , ep, f1, . . . , fr ∈ N) generate only a finite dimensional vec-
tor space over K(n1, . . . , np, x1, . . . , xr).
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D-finite objects

Closure properties: If a(n1, . . . , np, x1, . . . , xr) and
b(n1, . . . , np, x1, . . . , xr) are D-finite, then so are

I their sum a+ b and product a · b,
I their shifts a(n1 + 1, n2, . . . , np, x1, . . . , xr),

I their derivatives Dx1 · a(n1, . . . , np, x1, . . . , xr),

I translates a(u1n1 + u2n2 + · · ·+ upnp, n2, . . . , np, x1, . . . , xr)
for any fixed integers u1, u2, . . . , up ∈ Z, u1 6= 0.

I compositions a(n1, . . . , nr, u(x1, . . . , xr), x2, . . . , xr) with
algebraic functions u free of n1, . . . , nr, not free of x1.
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D-finite objects

Creative telescoping (

Chyzak’s extension of Zeilberger’s

Zeilberger’s algorithm):

INPUT: a

D-finite object

hypergeometric term f(n, k)

OUTPUT: T ∈ K[n, Sn] \ {0} and

Q ∈ K(n, k)[Sn, Sk]

Q ∈ K(n, k) such that

T · f(n, k) = (Sk − 1)Q · f(n, k)

I If there are several free variables n1, n2, . . . , we compute a
Gröbner basis {T1, T2, . . . } ⊆ K[n1, n2, . . . ][Sn1 , Sn2 , . . . ] of
telescopers, each of them coming with its own certificate
Qi ∈ K(k, n1, n2, . . . )[Sk, Sn1 , Sn2 , . . . ].

I Existence of telescopers is guaranteed whenever input is not
only D-finite but also “holonomic”. This is usually the case.
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D-finite objects

Example:

f(n, k) =

(
n

k

)2(n+ k

k

)2( n∑
i=1

1

i3
+

k∑
i=1

(−1)i+1

2i3
(
n
i

)(
n+i
i

) )
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I The packages of Koutschan (for Mathematica) and Chyzak

(for Maple) can do these calculations for you.

I Note: Their outputs are not necessarily minimal.

For example, f(n, k) satisfies the additional relation

2(k+2)(k+1)4f(n, k + 1)

−(messy)f(n, k)

(n+2)2(k−n−1)2(k−n)f(n+ 1, k) = 0.

Such extra knowledge can make calculations much faster.
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I Computing a recurrence for

∑
k

f(n, k) not using the additional

relation takes 40sec and yields a recurrence of order 4.

I Computing a recurrence for
∑
k

f(n, k) using the additional

relation takes 0.2sec and yields a recurrence of order 2.
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Outline

nested sums
and products

D-finite/
holonomic

hypergeometric
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Outline

A What’s old?
I Hypergeometric creative telescoping

B What’s new “on the market”?
I Techniques for nested sums and products
I Techniques for multivariate D-finite objects

C What’s new “in the labs”?
I Speedup by trading order against degree
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Trading Order for Degree

Andrews’ and Robbins’ qTSPP-formula

∀ n ∈ N :

∞∑
m=0

Rn,mq
m =

n∏
k=1

bk

⇐ Okada’s determinant formula

∀ n ∈ N : det((ai,j))
n
i,j=1 =

n∏
k=1

b2k

⇐ a certain D-finite summation identity

∀ i, n ∈ N, 1 ≤ i < n :
n∑

k=1

ai,kcn,k = 0

⇐ a creative telescoping relation with a
certificate Q of size 7Gb. (Koutschan, MK, Zeilberger, PNAS 2011)
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Trading Order for Degree

Why are these expressions so big?

How big are they actually?

Can we calculate them more efficiently?

28



Trading Order for Degree

Creative telescoping (Zeilberger’s algorithm):

INPUT: a hypergeometric term f(n, k)

OUTPUT: T ∈ K[n, Sn] \ {0} and Q ∈ K(n, k) such that

T · f(n, k) = (Sk − 1)Q · f(n, k)

29



Trading Order for Degree

Focus on the Telescoper:

T =

degree d︷ ︸︸ ︷

(
a0,0 + a0,1n+ a0,2n

2 + · · ·+ a0,dn
d
)

+
(
a1,0 + a1,1n+ a1,2n

2 + · · ·+ a1,dn
d
)
Sn

+
(
a2,0 + a2,1n+ a2,2n

2 + · · ·+ a2,dn
d
)
S2
n

+ . . .

+
(
ar,0 + ar,1n+ ar,2n

2 + · · ·+ ar,dn
d
)
Sr
n


order r
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Trading Order for Degree

Question: For a given hypergeometric term f(n, k), what are the
order r and the degree d of the corresponding telescoper?

Answer: This is not a good question. “The” telescoper is not
uniquely determined by f(n, k)!

Instead, the set of all telescopers for a fixed term f(n, k) forms a
left ideal in the operator algebra K[n, Sn].
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Trading Order for Degree

order

degree
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A telescoper of order r and degree d can be depicted like this.

T

order

degree
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Trading Order for Degree

We will however depict it just by its upper right corner (r, d).

order

degree
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Trading Order for Degree

Multiplication by powers of n gives further telescopers.

order

degree

32



Trading Order for Degree

Multiplication by powers of Sn gives even more telescopers.

order

degree
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Trading Order for Degree

The set of all telescopers is still bigger.

order

degree
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Trading Order for Degree

Want: A curve describing the shape of the blue region.

order

degree
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Trading Order for Degree

Theorem (MK and Shaoshi Chen, 2012)

I Consider a proper hypergeometric term

f(n, k) = pol(n, k)xnyk
M∏

m=1

Γ(amn+a′mk+a′′m)Γ(bmn−b′mk+b′′m)
Γ(umn+u′

mk+u′′
m)Γ(vmn−v′mk+v′′m) .

I There exists a telescoper of order r and degree d whenever

d >
Ar +B

r + C

where
I A = ϑν − 1, B = 2 deg pol + |µ|+ 3− (1 + |µ|)ν, C = 1− ν.
I µ =

∑M
m=1(am + bm − um − vm)

I ν = max
{∑M

m=1(a′m + v′m),
∑M

m=1(u′m + b′m)
}

I ϑ = max
{∑M

m=1(am + bm),
∑M

m=1(um + vm)
}
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Trading Order for Degree

Example 1: (n2+k2+1)Γ(2n+3k)
Γ(2n−k)

d >
7r + 5

r − 3

Example 2: Γ(2n+k)Γ(n−k+2)
Γ(2n−k)Γ(n+2k)

d >
8r − 1

r − 2
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Example 1: (n2+k2+1)Γ(2n+3k)
Γ(2n−k)

d >
7r + 5

r − 3

5 10 15
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20

30

sometimes tight

Example 2: Γ(2n+k)Γ(n−k+2)
Γ(2n−k)Γ(n+2k)

d >
8r − 1

r − 2

5 10 15

10

20

30

sometimes not
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Trading Order for Degree

Even if may not be accurate, we can use the curve to estimate the
shapes of the most interesting telescopers, before computing them.

order

degree
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Trading Order for Degree

I For currently feasible input sizes, the minimal cost telescoper
agrees with minimal order telescoper.

I We expect that the separation becomes measurable within the
coming few years.

I For asymptotically large input size, the difference is significant.

For τ ≥ max{ϑ, ν} and any fixed constant α > 1 we have:
I O∼(τ9). . . cost for telescoper of expected minimal order rmin

I O∼(τ8). . . cost for telescoper of order α rmin.

I Under appropriate assumptions, the optimal choice of α turns
out to be 1.2.

I Similar effects have already been reported in other
circumstances.
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Trading Order for Degree

Open Questions:

I What is the smallest problem size for which it pays off to
compute a non-minimal telescoper?

I What is the “true curve” which (generically) does not
overshoot? Is it also a hyperbola?

I What is the deeper reason behind all these order/degree
phenomena discovered recently?

I What is the right question to be asked in the case of several
variables?
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Outline

A What’s old?
I Hypergeometric creative telescoping

B What’s new “on the market”?
I Techniques for nested sums and products
I Techniques for multivariate D-finite objects

C What’s new “in the labs”?
I Speedup by trading order against degree
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• The 2010s: Efficiency and complexity
applications with large input, rational integration exploiting fast
arithmetic, worst case bounds on the run time complexity, sharp
estimates on the output size, parallel algorithms, . . .

• The 2000s: Extensions and generalizations
Refined ΠΣ-theory, Takayama, Ore algebras and Gröbner bases,
Chyzak’s algorithm, algorithms for identities involving Abel-
type terms or Bernoulli numbers or Stirling numbers, . . .

• The 1990s: The stormy decade
Z’s theory, Z’s algorithm, Almkvist-Zeilberger algorithm, Pet-
kovšek’s algorithm, WZ-pairs, A = B, GFF, q-generalizations,
Wegschaider, Paule-Schorn package, gfun, Yen’s bound, . . .

• prehistory
Gosper’s algorithm, Sister Celine’s algorithm, Karr’s algorithm,
hypergeometric transformations (nonalgorithmic), table lookup.
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