Finding closed form solutions of differential equations

Manuel Kauers

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU)
Linz, Austria

GIVEN: A linear ordinary differential equation with polynomial coefficients.

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(16 x^{4}+48 x^{3}+48 x^{2}+18 x+2\right) f^{\prime \prime}(x) \\
& \quad-\left(16 x^{4}+48 x^{3}+52 x^{2}+32 x+9\right) f^{\prime}(x) \\
& \quad+\left(4 x^{2}+14 x+7\right) f(x)=0
\end{aligned}
$$

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

One independent
variable x

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(16 x^{4}+48 x^{3}+48 x^{2}+18 x+2\right) f^{\prime \prime}(x) \\
& \quad-\left(16 x^{4}+48 x^{3}+52 x^{2}+32 x+9\right) f^{\prime}(x) \\
& \quad+\left(4 x^{2}+14 x+7\right) f(x)=0
\end{aligned}
$$

FIND: closed form solutions $f(x)$ of this equation.

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(16 x^{4}+48 x^{3}+48 x^{2}+18 x+2\right) f^{\prime \prime}(x) \\
& \quad-\left(16 x^{4}+48 x^{3}+52 x^{2}+32 x+9\right) f^{\prime}(x) \\
& \quad+\left(4 x^{2}+14 x+7\right) f(x)=0
\end{aligned}
$$

FIND: closed form solutions $f(x)$ of this equation.

- In the example: $f(x)=\exp (x)$ and $f(x)=\frac{\sqrt{1+3 x+2 x^{2}}}{x+1}$.

Some possible meanings of "closed form":

Some possible meanings of "closed form":

- polynomials

$$
\text { e.g. } 5 x^{2}+3 x-2
$$

Some possible meanings of "closed form":

- polynomials
- rational functions
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions
- algebraic functions
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
e.g. $x-\sqrt{x^{2}+1}$

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions
- algebraic functions
- elementary functions
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
e.g. $x-\sqrt{x^{2}+1}$
e.g. $\sin (x) / \sqrt{1+\log \left(1-\mathrm{e}^{x}\right)}$

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions
- algebraic functions
- elementary functions
- special functions
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
e.g. $x-\sqrt{x^{2}+1}$
e.g. $\sin (x) / \sqrt{1+\log \left(1-\mathrm{e}^{x}\right)}$
e.g. $J_{3}\left(x^{2}+1\right)-{ }_{2} \mathrm{~F}_{1}(2,3 ; 1)\left(\frac{1}{x}\right)$

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions
- algebraic functions
- elementary functions
- special functions
- holonomic functions
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
e.g. $x-\sqrt{x^{2}+1}$
e.g. $\sin (x) / \sqrt{1+\log \left(1-\mathrm{e}^{x}\right)}$
e.g. $J_{3}\left(x^{2}+1\right)-{ }_{2} \mathrm{~F}_{1}(2,3 ; 1)\left(\frac{1}{x}\right)$

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
- algeraic functions
- elementary functions
- speeial functions
- holonomic functions

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
- algetraic functions
- elementary functions
- special functions
- holonomic functions

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
- algetraic functions
- elementary functions
- special functions
- holonomic functions \boldsymbol{l}

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
- algetraic functions
- elementary functions
- speeial functions
- holonomic functions $\sqrt{ }$

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(2 x^{3}-9 x^{2}-5\right) f^{(3)}(x)-\left(2 x^{3}-9 x^{2}-5\right) f^{\prime \prime}(x) \\
& \quad+\left(6 x^{2}-24 x+18\right) f^{\prime}(x)+(6-6 x) f(x)=0
\end{aligned}
$$

FIND: its polynomial solutions.

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(2 x^{3}-9 x^{2}-5\right) f^{(3)}(x)-\left(2 x^{3}-9 x^{2}-5\right) f^{\prime \prime}(x) \\
& \quad+\left(6 x^{2}-24 x+18\right) f^{\prime}(x)+(6-6 x) f(x)=0
\end{aligned}
$$

FIND: its polynomial solutions.

- In the example, a basis of the vector space of all polynomial solutions is given by $x-3$ and $x^{3}+5$. (A third solution, linearly independent of those two, is not polynomial.)

The problem is easy if we restrict to polynomials of fixed degree.

The problem is easy if we restrict to polynomials of fixed degree.
For example, suppose we are only interested in cubic polynomials.

The problem is easy if we restrict to polynomials of fixed degree.
For example, suppose we are only interested in cubic polynomials.
They all have the form $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$ for some constants $c_{0}, c_{1}, c_{2}, c_{3}$.

The problem is easy if we restrict to polynomials of fixed degree.
For example, suppose we are only interested in cubic polynomials.
They all have the form $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$ for some constants $c_{0}, c_{1}, c_{2}, c_{3}$.

No matter what these constants are, we have

$$
\begin{aligned}
f^{\prime}(x) & =c_{1}+2 c_{2} x+3 c_{3} x^{2} \\
f^{\prime \prime}(x) & =2 c_{2}+6 c_{3} x \\
f^{\prime \prime \prime}(x) & =6 c_{3}
\end{aligned}
$$

The problem is easy if we restrict to polynomials of fixed degree.
For example, suppose we are only interested in cubic polynomials.
The polynomial $f(x)$ solves the differential equation iff

$$
\begin{gathered}
\quad\left(2 x^{3}-9 x^{2}-5\right) f^{(3)}(x) \\
-\left(2 x^{3}-9 x^{2}-5\right) f^{\prime \prime}(x) \\
+\left(6 x^{2}-24 x+18\right) f^{\prime}(x) \\
+(6-6 x) f(x)=0
\end{gathered}
$$

The problem is easy if we restrict to polynomials of fixed degree.
For example, suppose we are only interested in cubic polynomials.
The polynomial $f(x)$ solves the differential equation iff

$$
\begin{aligned}
& \quad\left(2 x^{3}-9 x^{2}-5\right) 6 c_{3} \\
& -\left(2 x^{3}-9 x^{2}-5\right)\left(2 c_{2}+6 c_{3} x\right) \\
& +\left(6 x^{2}-24 x+18\right)\left(c_{1}+2 c_{2} x+3 c_{3} x^{2}\right) \\
& \quad+(6-6 x)\left(c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}\right)=0
\end{aligned}
$$

The problem is easy if we restrict to polynomials of fixed degree.
For example, suppose we are only interested in cubic polynomials.
The polynomial $f(x)$ solves the differential equation iff

$$
\begin{aligned}
& \quad\left(2 x^{3}-9 x^{2}-5\right) 6 c_{3} \\
& -\left(2 x^{3}-9 x^{2}-5\right)\left(2 c_{2}+6 c_{3} x\right) \\
& +\left(6 x^{2}-24 x+18\right)\left(c_{1}+2 c_{2} x+3 c_{3} x^{2}\right) \\
& \quad+(6-6 x)\left(c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}\right)=0
\end{aligned}
$$

The problem is easy if we restrict to polynomials of fixed degree.
For example, suppose we are only interested in cubic polynomials.
The polynomial $f(x)$ solves the differential equation iff

$$
\begin{aligned}
&\left(6 c_{0}+18 c_{1}+10 c_{2}-30 c_{3}\right) \\
&\left(-6 c_{0}-18 c_{1}+36 c_{2}+30 c_{3}\right) x \\
&-24 c_{2} x^{2} \\
&+2 c_{2} x^{3}=0
\end{aligned}
$$

The problem is easy if we restrict to polynomials of fixed degree.
For example, suppose we are only interested in cubic polynomials.
The polynomial $f(x)$ solves the differential equation iff

$$
\begin{aligned}
\left(6 c_{0}+18 c_{1}+10 c_{2}-30 c_{3}\right) & =0 \\
\left(-6 c_{0}-18 c_{1}+36 c_{2}+30 c_{3}\right) & =0 \\
-24 c_{2} & =0 \\
+2 c_{2} & =0
\end{aligned}
$$

The problem is easy if we restrict to polynomials of fixed degree.
For example, suppose we are only interested in cubic polynomials.
The polynomial $f(x)$ solves the differential equation iff

$$
\left(\begin{array}{cccc}
6 & 18 & 10 & -30 \\
-6 & -18 & 36 & 30 \\
0 & 24 & 0 & 0 \\
0 & 2 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=0
$$

The problem is easy if we restrict to polynomials of fixed degree.
For example, suppose we are only interested in cubic polynomials.
The polynomial $f(x)$ solves the differential equation iff

$$
\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\alpha\left(\begin{array}{l}
5 \\
0 \\
0 \\
1
\end{array}\right)+\beta\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right)
$$

for some constants α, β.

The problem is easy if we restrict to polynomials of fixed degree.
For example, suppose we are only interested in cubic polynomials.
The polynomial $f(x)$ solves the differential equation iff

$$
f(x)=\alpha\left(5+1 x^{3}\right)+\beta(-3+1 x)=(5 \alpha-3 \beta)+\beta x+\alpha x^{3}
$$

for some constants α, β.

The problem is easy if we restrict to polynomials of fixed degree.
For example, suppose we are only interested in cubic polynomials.
The polynomial $f(x)$ solves the differential equation iff

$$
f(x)=\alpha\left(5+1 x^{3}\right)+\beta(-3+1 x)=(5 \alpha-3 \beta)+\beta x+\alpha x^{3}
$$

for some constants α, β.
At this point, we know all cubic polynomial solutions.

The problem is easy if we restrict to polynomials of fixed degree.
For example, suppose we are only interested in cubic polynomials.
The polynomial $f(x)$ solves the differential equation iff

$$
f(x)=\alpha\left(5+1 x^{3}\right)+\beta(-3+1 x)=(5 \alpha-3 \beta)+\beta x+\alpha x^{3}
$$

for some constants α, β.
At this point, we know all cubic polynomial solutions.
There could still be polynomial solutions of higher degree.

In order to find all polynomial solutions, we need to know in advance how large their degree can get.

In order to find all polynomial solutions, we need to know in advance how large their degree can get.
Every polynomial has the form $f(x)=c_{d} x^{d}+c_{d-1} x^{d-1}+\cdots$, where $c_{d} \neq 0$ and the \cdots represent lower order terms.

In order to find all polynomial solutions, we need to know in advance how large their degree can get.
Every polynomial has the form $f(x)=c_{d} x^{d}+c_{d-1} x^{d-1}+\cdots$, where $c_{d} \neq 0$ and the \cdots represent lower order terms.

No matter what the d and c_{d}, c_{d-1}, \ldots are, we have

$$
\begin{aligned}
f(x) & =c_{d} x^{d}+\cdots \\
f^{\prime}(x) & =c_{d} d x^{d-1}+\cdots \\
f^{\prime \prime}(x) & =c_{d} d(d-1) x^{d-2}+\cdots \\
f^{\prime \prime \prime}(x) & =c_{d} d(d-1)(d-2) x^{d-3}+\cdots
\end{aligned}
$$

In order to find all polynomial solutions, we need to know in advance how large their degree can get.
If $f(x)=c_{d} x^{d}+\cdots$ solves the differential equation, then

$$
\begin{gathered}
\quad\left(2 x^{3}-9 x^{2}-5\right) f^{(3)}(x) \\
-\left(2 x^{3}-9 x^{2}-5\right) f^{\prime \prime}(x) \\
+\left(6 x^{2}-24 x+18\right) f^{\prime}(x) \\
\quad+(6-6 x) f(x)=0
\end{gathered}
$$

In order to find all polynomial solutions, we need to know in advance how large their degree can get.
If $f(x)=c_{d} x^{d}+\cdots$ solves the differential equation, then

$$
\begin{aligned}
& \quad\left(2 x^{3}-9 x^{2}-5\right)\left(c_{d} d(d-1)(d-2) x^{d-3}+\cdots\right) \\
& -\left(2 x^{3}-9 x^{2}-5\right)\left(c_{d} d(d-1) x^{d-2}+\cdots\right) \\
& +\left(6 x^{2}-24 x+18\right)\left(c_{d} d x^{d-1}+\cdots\right) \\
& \quad+(6-6 x)\left(c_{d} x^{d}+\cdots\right)=0
\end{aligned}
$$

In order to find all polynomial solutions, we need to know in advance how large their degree can get.
If $f(x)=c_{d} x^{d}+\cdots$ solves the differential equation, then

$$
\begin{aligned}
& \quad\left(2 x^{3}-9 x^{2}-5\right)\left(c_{d} d(d-1)(d-2) x^{d-3}+\cdots\right) \\
& -\left(2 x^{3}-9 x^{2}-5\right)\left(c_{d} d(d-1) x^{d-2}+\cdots\right) \\
& +\left(6 x^{2}-24 x+18\right)\left(c_{d} d x^{d-1}+\cdots\right) \\
& \quad+(6-6 x)\left(c_{d} x^{d}+\cdots\right)=0
\end{aligned}
$$

In order to find all polynomial solutions, we need to know in advance how large their degree can get.

If $f(x)=c_{d} x^{d}+\cdots$ solves the differential equation, then

$$
\left(-2 c_{d} d^{2}+8 c_{d} d-6 c_{d}\right) x^{d}+\cdots=0
$$

In order to find all polynomial solutions, we need to know in advance how large their degree can get.

If $f(x)=c_{d} x^{d}+\cdots$ solves the differential equation, then

$$
2 c_{d}(d-3)(d-1) x^{d}=0
$$

In order to find all polynomial solutions, we need to know in advance how large their degree can get.

If $f(x)=c_{d} x^{d}+\cdots$ solves the differential equation, then

$$
d=3 \quad \text { or } \quad d=1
$$

In order to find all polynomial solutions, we need to know in advance how large their degree can get.

If $f(x)=c_{d} x^{d}+\cdots$ solves the differential equation, then

$$
d=3 \quad \text { or } \quad d=1
$$

In general, plugging x^{d} with symbolic exponent d into an ODE gives $p(d) x^{d+i}+\cdots$ for some polynomial p (and some integer i).

In order to find all polynomial solutions, we need to know in advance how large their degree can get.
If $f(x)=c_{d} x^{d}+\cdots$ solves the differential equation, then

$$
d=3 \quad \text { or } \quad d=1 .
$$

In general, plugging x^{d} with symbolic exponent d into an ODE gives $p(d) x^{d+i}+\cdots$ for some polynomial p (and some integer i).

The possible degrees are integer roots of this polynomial.

In order to find all polynomial solutions, we need to know in advance how large their degree can get.

If $f(x)=c_{d} x^{d}+\cdots$ solves the differential equation, then

$$
d=3 \quad \text { or } \quad d=1
$$

In general, plugging x^{d} with symbolic exponent d into an ODE gives $p(d) x^{d+i}+\cdots$ for some polynomial p (and some integer i).

The possible degrees are integer roots of this polynomial.
The polynomial p is called the indicial polynomial of the differential equation.

Algorithm summary

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its polynomial solutions.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its polynomial solutions.

1. Determine the indicial polynomial p of the equation.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its polynomial solutions.

1. Determine the indicial polynomial p of the equation.
2. Let d be the greatest integer root of p.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its polynomial solutions.

1. Determine the indicial polynomial p of the equation.
2. Let d be the greatest integer root of p.
3. Make an ansatz $f(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its polynomial solutions.

1. Determine the indicial polynomial p of the equation.
2. Let d be the greatest integer root of p.
3. Make an ansatz $f(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$.
4. Plug the ansatz into the equation and compare coefficients.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its polynomial solutions.

1. Determine the indicial polynomial p of the equation.
2. Let d be the greatest integer root of p.
3. Make an ansatz $f(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$.
4. Plug the ansatz into the equation and compare coefficients.
5. Solve the resulting linear system for c_{0}, \ldots, c_{d}.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its polynomial solutions.

1. Determine the indicial polynomial p of the equation.
2. Let d be the greatest integer root of p.
3. Make an ansatz $f(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$.
4. Plug the ansatz into the equation and compare coefficients.
5. Solve the resulting linear system for c_{0}, \ldots, c_{d}.
6. The solutions of the system correspond to polynomial solutions of the equation.

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
- algetraic functions
- elementary functions
- special functions
- holonomic functions $\sqrt{ }$
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $x-\sqrt{x^{2}-1}$
e.g. $\sin (x) / \sqrt{1+\log \left(1-\mathrm{e}^{x}\right)}$
e.g. $J_{3}\left(x^{2}+1\right)-{ }_{2} \mathrm{~F}_{1}(2,3 ; 1)\left(\frac{1}{x}\right)$

Some possible meanings of "closed form":

- polynomials $\sqrt{ }$
- rational functions
- hyperexponential functions
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
- algetraic functions
- elementary functions
- special functions
- holonomic functions $\boldsymbol{\checkmark}$

Some possible meanings of "closed form":

- polynomials $\sqrt{ }$
- rational functions
- hyperexponential functions
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
- algetraic functions
- elementary functions
- special functions
- holonomic functions $\boldsymbol{\checkmark}$
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $x-\sqrt{x^{2}-1}$
e.g. $\sin (x) / \sqrt{1+\log \left(1-\mathrm{e}^{x}\right)}$
e.g. $J_{3}\left(x^{2}+1\right)-{ }_{2} \mathrm{~F}_{1}(2,3 ; 1)\left(\frac{1}{x}\right)$

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(2 x^{4}-x^{3}+3 x\right) f^{(3)}(x)-\left(2 x^{4}-15 x^{3}+15 x^{2}-9 x-9\right) f^{\prime \prime}(x) \\
& \quad-\left(6 x^{3}-30 x^{2}+42 x-18\right) f^{\prime}(x)+(6 x-18) f(x)=0
\end{aligned}
$$

FIND: its rational solutions.

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(2 x^{4}-x^{3}+3 x\right) f^{(3)}(x)-\left(2 x^{4}-15 x^{3}+15 x^{2}-9 x-9\right) f^{\prime \prime}(x) \\
& \quad-\left(6 x^{3}-30 x^{2}+42 x-18\right) f^{\prime}(x)+(6 x-18) f(x)=0
\end{aligned}
$$

FIND: its rational solutions.

- In the example, a basis of the vector space of all rational solutions is given by $(3-x) / x$ and $1 /(1+x)^{2}$. (A third solution, linearly independent of those two, is not a rational function.)

The problem is easy if we prescribe the denominator.

The problem is easy if we prescribe the denominator.
For example, suppose we are only interested in solutions of the form $f(x)=u(x) / x$, where $u(x)$ is a polynomial.

The problem is easy if we prescribe the denominator.
For example, suppose we are only interested in solutions of the form $f(x)=u(x) / x$, where $u(x)$ is a polynomial.

No matter what $u(x)$ is, we have

$$
\begin{aligned}
f(x) & =\frac{u(x)}{x} \\
f^{\prime}(x) & =\frac{u^{\prime}(x)}{x}-\frac{u(x)}{x^{2}} \\
f^{\prime \prime}(x) & =\frac{u^{\prime \prime}(x)}{x}-2 \frac{u^{\prime}(x)}{x^{2}}+2 \frac{u(x)}{x^{3}} \\
f^{\prime \prime \prime}(x) & =\frac{u^{\prime \prime \prime}(x)}{x}-3 \frac{u^{\prime \prime}(x)}{x^{2}}+6 \frac{u^{\prime}(x)}{x^{3}}-6 \frac{u(x)}{x^{4}}
\end{aligned}
$$

The problem is easy if we prescribe the denominator.
For example, suppose we are only interested in solutions of the form $f(x)=u(x) / x$, where $u(x)$ is a polynomial.

Plug $f(x)=u(x) / x$ into the differential equation. This gives

$$
\begin{gathered}
\left(2 x^{7}-x^{6}+3 x^{4}\right) u^{(3)}(x)-\left(2 x^{7}-9 x^{6}+12 x^{5}-9 x^{4}\right) u^{\prime \prime}(x) \\
\quad-\left(2 x^{6}-12 x^{5}+18 x^{4}\right) u^{\prime}(x)+\left(2 x^{5}-6 x^{4}\right) u(x)=0
\end{gathered}
$$

The problem is easy if we prescribe the denominator.
For example, suppose we are only interested in solutions of the form $f(x)=u(x) / x$, where $u(x)$ is a polynomial.

Plug $f(x)=u(x) / x$ into the differential equation. This gives

$$
\begin{gathered}
\left(2 x^{7}-x^{6}+3 x^{4}\right) u^{(3)}(x)-\left(2 x^{7}-9 x^{6}+12 x^{5}-9 x^{4}\right) u^{\prime \prime}(x) \\
\quad-\left(2 x^{6}-12 x^{5}+18 x^{4}\right) u^{\prime}(x)+\left(2 x^{5}-6 x^{4}\right) u(x)=0
\end{gathered}
$$

Determine the polynomial solutions of this equation. This gives $u(x)=3-x$ (up to constant multiples).

The problem is easy if we prescribe the denominator.
For example, suppose we are only interested in solutions of the form $f(x)=u(x) / x$, where $u(x)$ is a polynomial.

Plug $f(x)=u(x) / x$ into the differential equation. This gives

$$
\begin{gathered}
\left(2 x^{7}-x^{6}+3 x^{4}\right) u^{(3)}(x)-\left(2 x^{7}-9 x^{6}+12 x^{5}-9 x^{4}\right) u^{\prime \prime}(x) \\
\quad-\left(2 x^{6}-12 x^{5}+18 x^{4}\right) u^{\prime}(x)+\left(2 x^{5}-6 x^{4}\right) u(x)=0
\end{gathered}
$$

Determine the polynomial solutions of this equation. This gives $u(x)=3-x$ (up to constant multiples).
It follows that $f(x)=(3-x) / x$ is (up to constant multiples) the only rational solution of the original equation with denominator x.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

If $f(x)=\frac{u}{v p^{e}}$ is a rational function with $\operatorname{gcd}(p, u)=\operatorname{gcd}(p, v)=1$ then

$$
f^{\prime}(x)=\frac{\mathbf{\square}}{\mathbf{m}^{e+1}}, f^{\prime \prime}(x)=\frac{\square}{\mathbf{\square}^{e+2}}, f^{\prime \prime \prime}(x)=\frac{\square}{\mathbf{m}^{e+3}}, \text { etc. }
$$

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.
If $f(x)=\frac{u}{v p^{e}}$ is a rational function with $\operatorname{gcd}(p, u)=\operatorname{gcd}(p, v)=1$ then

$$
f^{\prime}(x)=\frac{\square}{\mathbf{m}^{e+1}}, f^{\prime \prime}(x)=\frac{\mathbf{m}_{p^{e+2}}}{\mathbf{m}^{\prime}}, f^{\prime \prime \prime}(x)=\frac{\square}{\mathbf{m}^{e+3}}, \text { etc. }
$$

It can be shown that there can be no cancellation between the numerators and p.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

If $f(x)=\frac{u}{v p^{e}}$ is a rational function with $\operatorname{gcd}(p, u)=\operatorname{gcd}(p, v)=1$ then

$$
f^{\prime}(x)=\frac{\square}{\square p^{e+1}}, f^{\prime \prime}(x)=\underset{\mathbf{p}^{e+2}}{\square}, f^{\prime \prime \prime}(x)=\frac{\square}{\square p^{e+3}}, \text { etc. }
$$

It can be shown that there can be no cancellation between the numerators and p.

Therefore, if $f(x)$ is a solution of a differential equation

$$
a_{0} f(x)+a_{1} f^{\prime}(x)+a_{2} f^{\prime \prime}(x)+a_{3} f^{\prime \prime \prime}(x)=0
$$

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

If $f(x)=\frac{u}{v p^{e}}$ is a rational function with $\operatorname{gcd}(p, u)=\operatorname{gcd}(p, v)=1$ then

$$
f^{\prime}(x)=\frac{\square}{\square p^{e+1}}, f^{\prime \prime}(x)=\underset{\mathbf{p}^{e+2}}{\square}, f^{\prime \prime \prime}(x)=\frac{\square}{\square p^{e+3}}, \text { etc. }
$$

It can be shown that there can be no cancellation between the numerators and p.

Therefore, if $f(x)$ is a solution of a differential equation

$$
a_{0} \frac{\square}{\square p^{e}}+a_{1} \frac{\square}{\mathbf{m}^{e+1}}+a_{2} \frac{\square}{\mathbf{m}^{e+2}}+a_{3} \frac{\square}{\mathbf{m}^{e+3}}=0
$$

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

If $f(x)=\frac{u}{v p^{e}}$ is a rational function with $\operatorname{gcd}(p, u)=\operatorname{gcd}(p, v)=1$ then

$$
f^{\prime}(x)=\frac{\square}{\square p^{e+1}}, f^{\prime \prime}(x)=\frac{\square}{\mathbf{m}^{e+2}}, f^{\prime \prime \prime}(x)=\frac{\square}{\square p^{e+3}}, \text { etc. }
$$

It can be shown that there can be no cancellation between the numerators and p.

Therefore, if $f(x)$ is a solution of a differential equation

$$
a_{0} \frac{\square}{\square p^{e}}+a_{1} \frac{\square}{\mathbf{m}^{e+1}}+a_{2} \frac{\square}{\mathbf{m}^{e+2}}+a_{3} \frac{\square}{\mathbf{p}^{e+3}}=0
$$

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

If $f(x)=\frac{u}{v p^{e}}$ is a rational function with $\operatorname{gcd}(p, u)=\operatorname{gcd}(p, v)=1$ then

$$
f^{\prime}(x)=\frac{\square}{\square p^{e+1}}, f^{\prime \prime}(x)=\frac{\square}{\mathbf{m}^{e+2}}, f^{\prime \prime \prime}(x)=\frac{\square}{\square p^{e+3}}, \text { etc. }
$$

It can be shown that there can be no cancellation between the numerators and p.

Therefore, if $f(x)$ is a solution of a differential equation

$$
\left.a_{0} \frac{\square}{\square}+a_{1} \frac{\square}{\boldsymbol{p}^{e}+1}+a_{2} \frac{\square}{\mathbf{p}^{e+2}}+a_{3} \frac{\square}{\mathbf{p}^{e+3}}=0 \quad \right\rvert\, \cdot \boldsymbol{\square} p^{e+3}
$$

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

If $f(x)=\frac{u}{v p^{e}}$ is a rational function with $\operatorname{gcd}(p, u)=\operatorname{gcd}(p, v)=1$ then

$$
f^{\prime}(x)=\underset{p^{e+1}}{\square}, f^{\prime \prime}(x)=\underset{\mathbf{m}^{e+2}}{\square}, f^{\prime \prime \prime}(x)=\frac{\square}{\square p^{e+3}}, \text { etc. }
$$

It can be shown that there can be no cancellation between the numerators and p.

Therefore, if $f(x)$ is a solution of a differential equation

$$
a_{0} p^{3} \square+a_{1} p^{2} \square+a_{2} p \square+a_{3} \square=0
$$

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

If $f(x)=\frac{u}{v p^{e}}$ is a rational function with $\operatorname{gcd}(p, u)=\operatorname{gcd}(p, v)=1$ then

$$
f^{\prime}(x)=\underset{\square}{\square p^{e+1}}, f^{\prime \prime}(x)=\underset{\mathbf{m}^{e+2}}{\boldsymbol{\square}}, f^{\prime \prime \prime}(x)=\frac{\square}{\mathbf{m}^{e+3}}, \text { etc. }
$$

It can be shown that there can be no cancellation between the numerators and p.

Therefore, if $f(x)$ is a solution of a differential equation

$$
\left(a_{0} p^{2} \square+a_{1} p \square+a_{2} \square\right) p=a_{3} \square
$$

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

If $f(x)=\frac{u}{v p^{e}}$ is a rational function with $\operatorname{gcd}(p, u)=\operatorname{gcd}(p, v)=1$ then

$$
f^{\prime}(x)=\underset{p^{e+1}}{\square}, f^{\prime \prime}(x)=\underset{\mathbf{m}^{e+2}}{\square}, f^{\prime \prime \prime}(x)=\frac{\square}{\square p^{e+3}}, \text { etc. }
$$

It can be shown that there can be no cancellation between the numerators and p.

Therefore, if $f(x)$ is a solution of a differential equation

$$
\left(a_{0} p^{2} \square+a_{1} p \square+a_{2} \square\right) p=a_{3} \square
$$

The factor p must divide the leading coefficient a_{3} of the ODE.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

- Suppose p is a factor of the leading coefficient of the ODE.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

- Suppose p is a factor of the leading coefficient of the ODE.
- Suppose $f=\frac{u}{v p^{e}}$ is a solution of the ODE.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

- Suppose p is a factor of the leading coefficient of the ODE.
- Suppose $f=\frac{u}{v p^{e}}$ is a solution of the ODE.
- Without loss of generality, $\operatorname{gcd}(p, u)=\operatorname{gcd}(p, v)=1$.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

- Suppose p is a factor of the leading coefficient of the ODE.
- Suppose $f=\frac{u}{v p^{e}}$ is a solution of the ODE.
- Without loss of generality, $\operatorname{gcd}(p, u)=\operatorname{gcd}(p, v)=1$.
- Without loss of generality, $p=x-\alpha$.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

- Suppose p is a factor of the leading coefficient of the ODE.
- Suppose $f=\frac{u}{v p^{e}}$ is a solution of the ODE.
- Without loss of generality, $\operatorname{gcd}(p, u)=\operatorname{gcd}(p, v)=1$.
- Without loss of generality, $p=x-\alpha$.
- Without loss of generality, $\alpha=0$, so that $p=x$.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

- Expand $\frac{u}{v}$ as a power series $c_{0}+c_{1} x+c_{2} x^{2}+\cdots$.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

- Expand $\frac{u}{v}$ as a power series $c_{0}+c_{1} x+c_{2} x^{2}+\cdots$. Then

$$
\begin{aligned}
f(x) & =c_{0} x^{-e}+\cdots \\
f^{\prime}(x) & =c_{0}(-e) x^{-e-1}+\cdots \\
f^{\prime \prime}(x) & =c_{0}(-e)(-e-1) x^{-e-2}+\cdots \\
f^{\prime \prime \prime}(x) & =c_{0}(-e)(-e-1)(-e-2) x^{-e-3}+\cdots, \text { etc. }
\end{aligned}
$$

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

- Expand $\frac{u}{v}$ as a power series $c_{0}+c_{1} x+c_{2} x^{2}+\cdots$. Then

$$
\begin{aligned}
f(x) & =c_{0} x^{-e}+\cdots \\
f^{\prime}(x) & =c_{0}(-e) x^{-e-1}+\cdots \\
f^{\prime \prime}(x) & =c_{0}(-e)(-e-1) x^{-e-2}+\cdots \\
f^{\prime \prime \prime}(x) & =c_{0}(-e)(-e-1)(-e-2) x^{-e-3}+\cdots, \text { etc. }
\end{aligned}
$$

- Looks familiar...

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

- Plug x^{-e} with symbolic exponent e into the equation.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

- Plug x^{-e} with symbolic exponent e into the equation.
- The trailing coefficient is a certain polynomial in e.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

- Plug x^{-e} with symbolic exponent e into the equation.
- The trailing coefficient is a certain polynomial in e.
- If $f=\frac{u}{v x^{e}}$ is a rational solution, then $-e$ is an integer root of this polynomial.

In order to find all rational solutions, we need to know which factors can occur in a denominator, and with which multiplicity.

- Plug x^{-e} with symbolic exponent e into the equation.
- The trailing coefficient is a certain polynomial in e.
- If $f=\frac{u}{v x^{e}}$ is a rational solution, then $-e$ is an integer root of this polynomial.
- Also this polynomial is called indicial polynomial.

Algorithm summary.

Algorithm summary.

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its rational function solutions.

Algorithm summary.

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its rational function solutions.

1. Determine the factors p_{1}, \ldots, p_{n} of the leading coefficient.

Algorithm summary.

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its rational function solutions.

1. Determine the factors p_{1}, \ldots, p_{n} of the leading coefficient.
2. For each p_{i}, determine the maximum possible multiplicity e_{i}.

Algorithm summary.

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its rational function solutions.

1. Determine the factors p_{1}, \ldots, p_{n} of the leading coefficient.
2. For each p_{i}, determine the maximum possible multiplicity e_{i}.
3. Make an ansatz $f(x)=u(x) /\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}\right)$.

Algorithm summary.

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its rational function solutions.

1. Determine the factors p_{1}, \ldots, p_{n} of the leading coefficient.
2. For each p_{i}, determine the maximum possible multiplicity e_{i}.
3. Make an ansatz $f(x)=u(x) /\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}\right)$.
4. Determine an ODE for the numerator $u(x)$.

Algorithm summary.

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its rational function solutions.

1. Determine the factors p_{1}, \ldots, p_{n} of the leading coefficient.
2. For each p_{i}, determine the maximum possible multiplicity e_{i}.
3. Make an ansatz $f(x)=u(x) /\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}\right)$.
4. Determine an ODE for the numerator $u(x)$.
5. Find the polynomial solutions $u(x)$ of this equation.

Algorithm summary.

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A basis of the vector space of all its rational function solutions.

1. Determine the factors p_{1}, \ldots, p_{n} of the leading coefficient.
2. For each p_{i}, determine the maximum possible multiplicity e_{i}.
3. Make an ansatz $f(x)=u(x) /\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}\right)$.
4. Determine an ODE for the numerator $u(x)$.
5. Find the polynomial solutions $u(x)$ of this equation.
6. Return the corresponding rational functions $f(x)$.

Some possible meanings of "closed form":

- polynomials $\sqrt{ }$
- rational functions
- hyperexponential functions
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
- algetraic functions
- elementary functions
- special functions
- holonomic functions $\sqrt{ }$

Some possible meanings of "closed form":

- polynomials $\boldsymbol{\checkmark}$
- rational functions \boldsymbol{l}
- hyperexponential functions
- algetrazic functions
- elementary functions
- special functions
- holonomic functions \boldsymbol{l}
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $x-\sqrt{x^{2}+1}$
e.g. $\sin (x) / \sqrt{1+\log \left(1-\mathrm{e}^{x}\right)}$
e.g. $J_{3}\left(x^{2}+1\right)-{ }_{2} \mathrm{~F}_{1}(2,3 ; 1)\left(\frac{1}{x}\right)$

Some possible meanings of "closed form":

- polynomials $\boldsymbol{\checkmark}$
- rational functions \boldsymbol{l}
- hyperexponential functions
- algetraic functions
- elementary functions
- special functions
- holonomic functions \boldsymbol{l}
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $x-\sqrt{x^{2}-1}$
e.g. $\sin (x) / \sqrt{1+\log \left(1-\mathrm{e}^{x}\right)}$
e.g. $J_{3}\left(x^{2}+1\right)-{ }_{2} \mathrm{~F}_{1}(2,3 ; 1)\left(\frac{1}{x}\right)$

Definition.

$f(x)$ is called hyperexponential if there are polynomials $p(x), q(x)$ with

$$
p(x) f^{\prime}(x)-q(x) f(x)=0
$$

Definition.

$f(x)$ is called hyperexponential if there are polynomials $p(x), q(x)$ with

$$
p(x) f^{\prime}(x)-q(x) f(x)=0 .
$$

Hyperexponential terms can be written in the form

$$
f(x)=\exp \left(\int \frac{q(x)}{p(x)}\right)
$$

Definition.

$f(x)$ is called hyperexponential if there are polynomials $p(x), q(x)$ with

$$
p(x) f^{\prime}(x)-q(x) f(x)=0 .
$$

Hyperexponential terms can be written in the form

$$
f(x)=\exp \left(\operatorname{rat}(x)+\sum_{i=1}^{k} \gamma_{i} \log \left(\operatorname{pol}_{i}(x)\right)\right)
$$

Definition.

$f(x)$ is called hyperexponential if there are polynomials $p(x), q(x)$ with

$$
p(x) f^{\prime}(x)-q(x) f(x)=0 .
$$

Hyperexponential terms can be written in the form

$$
f(x)=\exp (\operatorname{rat}(x)) \prod_{i=1}^{k} \operatorname{pol}_{i}(x)^{\gamma_{i}}
$$

Definition.

$f(x)$ is called hyperexponential if there are polynomials $p(x), q(x)$ with

$$
p(x) f^{\prime}(x)-q(x) f(x)=0 .
$$

Hyperexponential terms can be written in the form

$$
f(x)=\exp (\operatorname{rat}(x)) \prod_{i=1}^{k} \operatorname{pol}_{i}(x)^{\gamma_{i}}
$$

Definition.

$f(x)$ is called hyperexponential if there are polynomials $p(x), q(x)$ with

$$
p(x) f^{\prime}(x)-q(x) f(x)=0
$$

Hyperexponential terms can be written in the form

More precisely:

More precisely:

Definition.

- Two hyperexponential terms $f(x)$ and $g(x)$ are called similar if $f(x) / g(x)$ is a rational function.

More precisely:

Definition.

- Two hyperexponential terms $f(x)$ and $g(x)$ are called similar if $f(x) / g(x)$ is a rational function.
- The equivalence classes of hyperexponential terms under this relation are called exponential parts.

More precisely:

Definition.

- Two hyperexponential terms $f(x)$ and $g(x)$ are called similar if $f(x) / g(x)$ is a rational function.
- The equivalence classes of hyperexponential terms under this relation are called exponential parts.

Examples.

$$
x^{\sqrt{2}}(x+1) \sim x^{\sqrt{2}+4}(x+1)^{-3} \quad x^{\sqrt{2}} \nsim x^{2} \quad x^{2} \nsim \exp (x) .
$$

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(6 x^{5}-60 x^{4}+225 x^{3}-386 x^{2}+301 x-84\right) f(x) \\
& \quad+(x-1)^{2}\left(10 x^{5}-86 x^{4}+277 x^{3}-411 x^{2}+272 x-59\right) f^{\prime}(x) \\
& \quad+(x-2)^{2}(x-1)^{4}\left(2 x^{2}-8 x+7\right) f^{\prime \prime}(x)=0
\end{aligned}
$$

FIND: its hyperexponential solutions.

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(6 x^{5}-60 x^{4}+225 x^{3}-386 x^{2}+301 x-84\right) f(x) \\
& \quad+(x-1)^{2}\left(10 x^{5}-86 x^{4}+277 x^{3}-411 x^{2}+272 x-59\right) f^{\prime}(x) \\
& \quad+(x-2)^{2}(x-1)^{4}\left(2 x^{2}-8 x+7\right) f^{\prime \prime}(x)=0
\end{aligned}
$$

FIND: its hyperexponential solutions.

- In the example, there are two hyperexponential solutions $\exp \left(\frac{x-3}{(x-1)(x-2)}\right)$ and $\exp \left(\frac{1}{x-1}\right) \frac{x^{3}-3 x^{2}+2 x-1}{(x-1)^{3}}$. (Here, all solutions can be written as linear combinations of hyperexponential terms. In general, this is not possible.)

The problem is easy if we prescribe a specific exponential part.

The problem is easy if we prescribe a specific exponential part.
For example, suppose we want to find solutions of the form $f(x)=\exp \left(\frac{1}{x-1}\right) u(x)$, where $u(x)$ is a rational function.

The problem is easy if we prescribe a specific exponential part.
For example, suppose we want to find solutions of the form $f(x)=\exp \left(\frac{1}{x-1}\right) u(x)$, where $u(x)$ is a rational function.

No matter what $u(x)$ is, we have

$$
\begin{aligned}
f(x) & =u(x) \exp \left(\frac{1}{x-1}\right) \\
f^{\prime}(x) & =\left(u^{\prime}(x)-\frac{1}{(x-1)^{2}} u(x)\right) \exp \left(\frac{1}{x-1}\right) \\
f^{\prime \prime}(x) & =\left(u^{\prime \prime}(x)-\frac{2}{(x-1)^{2}} u^{\prime}(x)+\frac{2 x-1}{(x-1)^{4}} u(x)\right) \exp \left(\frac{1}{x-1}\right), \text { etc. }
\end{aligned}
$$

The problem is easy if we prescribe a specific exponential part.
For example, suppose we want to find solutions of the form $f(x)=\exp \left(\frac{1}{x-1}\right) u(x)$, where $u(x)$ is a rational function.

Plug $f(x)=u(x) \exp \left(\frac{1}{x-1}\right)$ into the differential equation, divide by $\exp \left(\frac{1}{x-1}\right)$, and clear denominators. This gives the equation

$$
\begin{aligned}
& (x-2)^{2}(x-1)^{4}\left(2 x^{2}-8 x+7\right) u^{\prime \prime}(x) \\
& +(x-1)^{2}\left(10 x^{5}-90 x^{4}+309 x^{3}-505 x^{2}+392 x-115\right) u^{\prime}(x) \\
& -\left(8 x^{3}-50 x^{2}+92 x-53\right)(x-1) u(x)=0 .
\end{aligned}
$$

The problem is easy if we prescribe a specific exponential part.
For example, suppose we want to find solutions of the form $f(x)=\exp \left(\frac{1}{x-1}\right) u(x)$, where $u(x)$ is a rational function.

Plug $f(x)=u(x) \exp \left(\frac{1}{x-1}\right)$ into the differential equation, divide by $\exp \left(\frac{1}{x-1}\right)$, and clear denominators. This gives the equation

$$
\begin{aligned}
& (x-2)^{2}(x-1)^{4}\left(2 x^{2}-8 x+7\right) u^{\prime \prime}(x) \\
& +(x-1)^{2}\left(10 x^{5}-90 x^{4}+309 x^{3}-505 x^{2}+392 x-115\right) u^{\prime}(x) \\
& -\left(8 x^{3}-50 x^{2}+92 x-53\right)(x-1) u(x)=0 .
\end{aligned}
$$

Find its rational solutions. This gives $u(x)=\frac{x^{3}-3 x^{2}+2 x-1}{(x-1)^{3}}$.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

These are series expansions of the form

$$
\exp \left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right)
$$

where $d \in \mathbb{N}, p(x)$ is a polynomial of degree $<d$, and $\alpha, c_{1}, c_{2}, \ldots$ are constants.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

These are series expansions of the form

$$
\exp \left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right)
$$

where $d \in \mathbb{N}, p(x)$ is a polynomial of degree $<d$, and $\alpha, c_{1}, c_{2}, \ldots$ are constants.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

These are series expansions of the form

$$
\exp \left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right)
$$

where $d \in \mathbb{N}, p(x)$ is a polynomial of degree $<d$, and $\alpha, c_{1}, c_{2}, \ldots$ are constants.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

These are series expansions of the form

$$
\exp \left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right)
$$

where $d \in \mathbb{N}, p(x)$ is a polynomial of degree $<d$, and $\alpha, c_{1}, c_{2}, \ldots$ are constants.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

These are series expansions of the form

$$
\exp \left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right)
$$

where $d \in \mathbb{N}, p(x)$ is a polynomial of degree $<d$, and $\alpha, c_{1}, c_{2}, \ldots$ are constants.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

These are series expansions of the form

$$
\exp \left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right)
$$

where $d \in \mathbb{N}, p(x)$ is a polynomial of degree $<d$, and $\alpha, c_{1}, c_{2}, \ldots$ are constants.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.
Example. For the ODE above and $\xi=1$, we get

$$
\begin{aligned}
& \exp \left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\frac{13}{6}(x-1)^{3}+\cdots\right) \\
& \exp \left(\frac{1}{x-1}\right)\left((x-1)^{-3}+(x-1)^{-2}-1+\right)
\end{aligned}
$$

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.
Example. For the ODE above and $\xi=2$, we get

$$
\begin{aligned}
& \exp \left(\frac{-1}{x-2}\right)\left(1-2(x-2)+4(x-2)^{2}-\frac{22}{3}(x-2)^{2}+\cdots\right) \\
& \quad \exp (0)\left(1-6(x-2)+\frac{31}{2}(x-2)^{2}-\frac{98}{3}(x-2)^{3}+\cdots\right)
\end{aligned}
$$

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.
Fact. The exponential parts of a hyperexponential solution are combinations of exponential parts of local solutions at roots of the leading coefficient of the equation.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

Fact. The exponential parts of a hyperexponential solution are combinations of exponential parts of local solutions at roots of the leading coefficient of the equation.

Example. For the ODE above, there are four candidates:

$$
\begin{array}{ll}
\exp \left(\frac{2}{x-1}-\frac{1}{x-2}\right) & \exp \left(\frac{2}{x-1}+0\right) \\
\exp \left(\frac{1}{x-1}-\frac{1}{x-2}\right) & \exp \left(\frac{1}{x-1}+0\right)
\end{array}
$$

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

Fact. The exponential parts of a hyperexponential solution are combinations of exponential parts of local solutions at roots of the leading coefficient of the equation.

Example. For the ODE above, there are four candidates:

$$
\begin{array}{ll}
\exp \left(\frac{2}{x-1}-\frac{1}{x-2}\right) & \exp \left(\frac{2}{x-1}+0\right) \\
\exp \left(\frac{1}{x-1}-\frac{1}{x-2}\right) & \exp \left(\frac{1}{x-1}+0\right)
\end{array}
$$

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

Fact. The exponential parts of a hyperexponential solution are combinations of exponential parts of local solutions at roots of the leading coefficient of the equation.

Example. For the ODE above, there are four candidates:

$$
\begin{array}{ll}
\exp \left(\frac{2}{x-1}-\frac{1}{x-2}\right) & \exp \left(\frac{2}{x-1}+0\right) \\
\exp \left(\frac{1}{x-1}-\frac{1}{x-2}\right) & \exp \left(\frac{1}{x-1}+0\right)
\end{array}
$$

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

Fact. The exponential parts of a hyperexponential solution are combinations of exponential parts of local solutions at roots of the leading coefficient of the equation.

Example. For the ODE above, there are four candidates:

$$
\begin{array}{ll}
\exp \left(\frac{2}{x-1}-\frac{1}{x-2}\right) & \exp \left(\frac{2}{x-1}+0\right) \\
\exp \left(\frac{1}{x-1}-\frac{1}{x-2}\right) & \exp \left(\frac{1}{x-1}+0\right)
\end{array}
$$

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

Fact. The exponential parts of a hyperexponential solution are combinations of exponential parts of local solutions at roots of the leading coefficient of the equation.

Example. For the ODE above, there are four candidates:

$$
\begin{array}{ll}
\exp \left(\frac{2}{x-1}-\frac{1}{x-2}\right) & \exp \left(\frac{2}{x-1}+0\right) \\
\exp \left(\frac{1}{x-1}-\frac{1}{x-2}\right) & \exp \left(\frac{1}{x-1}+0\right)
\end{array}
$$

Algorithm summary

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $\exp \left(\frac{p_{j}}{\left(x-\xi_{i}\right)^{d_{j}}}\right)$ $(j=1,2, \ldots)$ of the local solutions at ξ_{i}.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $\exp \left(\frac{p_{j}}{\left(x-\xi_{i}\right)^{d_{j}}}\right)$
$(j=1,2, \ldots)$ of the local solutions at ξ_{i}.
3. For each combination $E:=\exp \left(\frac{p_{j_{1}}}{\left(x-\xi_{1}\right)^{d_{j_{1}}}}+\frac{p_{j_{2}}}{\left(x-\xi_{2}\right)^{d_{j_{2}}}}+\cdots\right)$ do:

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $\exp \left(\frac{p_{j}}{\left(x-\xi_{i}\right)^{d_{j}}}\right)$
$(j=1,2, \ldots)$ of the local solutions at ξ_{i}.
3. For each combination $E:=\exp \left(\frac{p_{j_{1}}}{\left(x-\xi_{1}\right)^{d_{j_{1}}}}+\frac{p_{j_{2}}}{\left(x-\xi_{2}\right)^{d_{j_{2}}}}+\cdots\right)$ do:
4. \quad Make an ansatz $f(x)=u(x) E$

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $\exp \left(\frac{p_{j}}{\left(x-\xi_{i}\right)^{d_{j}}}\right)$
$(j=1,2, \ldots)$ of the local solutions at ξ_{i}.
3. For each combination $E:=\exp \left(\frac{p_{j_{1}}}{\left(x-\xi_{1}\right)^{d_{j_{1}}}}+\frac{p_{j_{2}}}{\left(x-\xi_{2}\right)^{d_{j_{2}}}}+\cdots\right)$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $\exp \left(\frac{p_{j}}{\left(x-\xi_{i}\right)^{d_{j}}}\right)$
$(j=1,2, \ldots)$ of the local solutions at ξ_{i}.
3. For each combination $E:=\exp \left(\frac{p_{j_{1}}}{\left(x-\xi_{1}\right)^{d_{j_{1}}}}+\frac{p_{j_{2}}}{\left(x-\xi_{2}\right)^{d_{j_{2}}}}+\cdots\right)$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $\exp \left(\frac{p_{j}}{\left(x-\xi_{i}\right)^{d_{j}}}\right)$
$(j=1,2, \ldots)$ of the local solutions at ξ_{i}.
3. For each combination $E:=\exp \left(\frac{p_{j_{1}}}{\left(x-\xi_{1}\right)^{d_{j_{1}}}}+\frac{p_{j_{2}}}{\left(x-\xi_{2}\right)^{d_{j_{2}}}}+\cdots\right)$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

- Hyperexponential Solutions

- Hyperexponential Solutions

- Hyperexponential Solutions

- Hyperexponential Solutions

- Hyperexponential Solutions

- Hyperexponential Solutions

- Hyperexponential Solutions

- Hyperexponential Solutions

For an order r equation with n singular points, there are r^{n} combinations.

For an order r equation with n singular points, there are r^{n} combinations. That's a lot.

Our contribution (Johansson, MK, Mezzarobba; ISSAC'13):

Our contribution (Johansson, MK, Mezzarobba; ISSAC'13):

- An algorithm for quickly finding the relevant combinations.

Our contribution (Johansson, MK, Mezzarobba; ISSAC'13):

- An algorithm for quickly finding the relevant combinations.
- Returns at most r candidates (instead of r^{n}).

Our contribution (Johansson, MK, Mezzarobba; ISSAC'13):

- An algorithm for quickly finding the relevant combinations.
- Returns at most r candidates (instead of r^{n}).
- Needs at most $n^{4} r$ arithmetic operations to find them.

Our contribution (Johansson, MK, Mezzarobba; ISSAC'13):

- An algorithm for quickly finding the relevant combinations.
- Returns at most r candidates (instead of r^{n}).
- Needs at most $n^{4} r$ arithmetic operations to find them.
- Is based on the principle of dynamic programming.

Our contribution (Johansson, MK, Mezzarobba; ISSAC'13):

- An algorithm for quickly finding the relevant combinations.
- Returns at most r candidates (instead of r^{n}).
- Needs at most $n^{4} r$ arithmetic operations to find them.
- Is based on the principle of dynamic programming.
- Also requires effective analytic continuation.

$$
\begin{aligned}
& \xi_{1} \text { : } \\
& \xi_{2}: \\
& \xi_{3}: \\
& \xi_{4}:
\end{aligned}
$$

vector space of all
series solution at ξ_{1} with
a certain exponential part

This edge can only be part of a relevant combination if the intersection of the two vector spaces is nonempty

Fact. At most r of these $O\left(r^{2}\right)$ intersections can be nonempty.
$\xi_{3}:$

$\xi_{4}:$

Fact. At most r of these $O\left(r^{2}\right)$ intersections can be nonempty.
$\xi_{3}:$

$\xi_{4}:$

$$
\begin{array}{ccc}
\xi_{1}, \xi_{2}: & \bigcirc \\
\xi_{3}: & \bigcirc & \bigcirc \\
\xi_{4}: & & O
\end{array}
$$

- Hyperexponential Solutions

- Hyperexponential Solutions
$\xi_{1}, \xi_{2}, \xi_{3}:$
$\xi_{4}:$

- Hyperexponential Solutions
$\xi_{1}, \xi_{2}, \xi_{3}:$
$\xi_{4}:$

- Hyperexponential Solutions

$$
\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}:
$$

How to carry out the required vector space intersections?

How to carry out the required vector space intersections?
A priori, spaces for different ξ_{i} are not comparable.

How to carry out the required vector space intersections?
A priori, spaces for different ξ_{i} are not comparable.
Example: What is

$$
\begin{aligned}
& {\left[\exp \left(\frac{1}{x-1}\right) P_{1}(x-1), \exp \left(\frac{1}{x-1}\right) P_{2}(x-1)\right] } \\
\cap & {\left[\exp \left(\frac{1}{x-2}\right) Q_{1}(x-2), \exp \left(\frac{1}{x-2}\right) Q_{2}(x-2)\right] }
\end{aligned}
$$

supposed to mean?

How to carry out the required vector space intersections?
A priori, spaces for different ξ_{i} are not comparable.
Example: What is

$$
\begin{aligned}
& {\left[\exp \left(\frac{1}{x-1}\right) P_{1}(x-1), \exp \left(\frac{1}{x-1}\right) P_{2}(x-1)\right] } \\
\cap & {\left[\exp \left(\frac{1}{x-2}\right) Q_{1}(x-2), \exp \left(\frac{1}{x-2}\right) Q_{2}(x-2)\right] }
\end{aligned}
$$

supposed to mean?
Idea: Interpret the series as asymptotic expansions of actual complex functions, and determine their expansions at some fixed common reference point using certified numerical approximation.

How to carry out the required vector space intersections?
A priori, spaces for different ξ_{i} are not comparable.
Example: What is

$$
\begin{aligned}
& {\left[\tilde{P}_{1}(x-0), \tilde{P}_{2}(x-0)\right] } \\
\cap & {\left[\tilde{Q}_{1}(x-0), \tilde{Q}_{2}(x-0)\right] }
\end{aligned}
$$

supposed to mean?
Idea: Interpret the series as asymptotic expansions of actual complex functions, and determine their expansions at some fixed common reference point using certified numerical approximation.

How to carry out the required vector space intersections?
A priori, spaces for different ξ_{i} are not comparable.
Example: What is

$$
\left[\tilde{R}_{1}(x-0), \tilde{R}_{2}(x-0)\right]
$$

supposed to mean?
Idea: Interpret the series as asymptotic expansions of actual complex functions, and determine their expansions at some fixed common reference point using certified numerical approximation.

How to carry out the required vector space intersections?
A priori, spaces for different ξ_{i} are not comparable.
Example: What is

$$
\left[\tilde{R}_{1}(x-0), \tilde{R}_{2}(x-0)\right]
$$

supposed to mean?
Idea: Interpret the series as asymptotic expansions of actual complex functions, and determine their expansions at some fixed common reference point using certified numerical approximation.

This is not an easy thing to do, but efficient algorithms for this task are known.

Some possible meanings of "closed form":

- polynomials $\sqrt{ }$
- rational functions \boldsymbol{J}
- hyperexponential functions
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
- algetraic functions
- elementary functions
- special functions
- holonomic functions $\sqrt{ }$

Some possible meanings of "closed form":

- polynomials $\sqrt{ }$
- rational functions \boldsymbol{J}
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
- hyperexponential functions $\sqrt{ }$ e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
- algetraic functions
- elementary functions
- special functions
- holonomic functions $\sqrt{ }$

