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GIVEN: A linear ordinary differential equation with polynomial
coefficients.

I For example

(16x4 + 48x3 + 48x2 + 18x+ 2)f ′′(x)

− (16x4 + 48x3 + 52x2 + 32x+ 9)f ′(x)

+ (4x2 + 14x+ 7)f(x) = 0.

One independent
variable x

One unknown
function f(x)

FIND: closed form solutions f(x) of this equation.

I In the example: f(x) = exp(x) and f(x) =
√
1+3x+2x2

x+1 .
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Some possible meanings of “closed form”:

I polynomials e.g. 5x2 + 3x− 2

I rational functions e.g.
(
5x− 3

)
/
(
3x2 − x+ 5

)
I hyperexponential functions e.g. exp

(
2x+3

x2(x+1)

) (2x+5)1/3

(7x2+x−3)1/2

I algebraic functions e.g. x−
√
x2 + 1

I elementary functions e.g. sin(x)/
√
1 + log(1− ex)

I special functions e.g. J3(x
2+1)− 2F1(2, 3; 1)(

1
x)

I holonomic functions
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I Polynomial Solutions

GIVEN: A linear ordinary differential equation with polynomial
coefficients.

I For example

(2x3 − 9x2 − 5)f (3)(x)− (2x3 − 9x2 − 5)f ′′(x)

+ (6x2 − 24x+ 18)f ′(x) + (6− 6x)f(x) = 0

FIND: its polynomial solutions.

I In the example, a basis of the vector space of all polynomial
solutions is given by x− 3 and x3 + 5. (A third solution,
linearly independent of those two, is not polynomial.)
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I Polynomial Solutions

The problem is easy if we restrict to polynomials of fixed degree.

For example, suppose we are only interested in cubic polynomials.

The polynomial f(x) solves the differential equation iff
6 18 10 −30
−6 −18 36 30
0 24 0 0
0 2 0 0



c0
c1
c2
c3

 = 0
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I Polynomial Solutions

The problem is easy if we restrict to polynomials of fixed degree.

For example, suppose we are only interested in cubic polynomials.

The polynomial f(x) solves the differential equation iff
c0
c1
c2
c3

 = α


5
0
0
1

+ β


−3
1
0
0


for some constants α, β.
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I Polynomial Solutions

The problem is easy if we restrict to polynomials of fixed degree.

For example, suppose we are only interested in cubic polynomials.

The polynomial f(x) solves the differential equation iff

f(x) = α(5 + 1x3) + β(−3 + 1x) = (5α− 3β) + βx+ αx3

for some constants α, β.

At this point, we know all cubic polynomial solutions.

There could still be polynomial solutions of higher degree.
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I Polynomial Solutions

In order to find all polynomial solutions, we need to know in
advance how large their degree can get.
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d−1+ · · · , where
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f(x) = cd x
d + · · ·
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I Polynomial Solutions

In order to find all polynomial solutions, we need to know in
advance how large their degree can get.

If f(x) = cd x
d + · · · solves the differential equation, then(
−2cdd2 + 8cdd− 6cd

)
xd + · · · = 0
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I Polynomial Solutions

In order to find all polynomial solutions, we need to know in
advance how large their degree can get.

If f(x) = cd x
d + · · · solves the differential equation, then

2cd(d− 3)(d− 1)xd = 0
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I Polynomial Solutions

In order to find all polynomial solutions, we need to know in
advance how large their degree can get.

If f(x) = cd x
d + · · · solves the differential equation, then

d = 3 or d = 1.

In general, plugging xd with symbolic exponent d into an ODE gives
p(d)xd+i + · · · for some polynomial p (and some integer i).

The possible degrees are integer roots of this polynomial.

The polynomial p is called the indicial polynomial of the differential
equation.
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I Polynomial Solutions

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial
coefficients.

OUTPUT: A basis of the vector space of all its polynomial
solutions.

1. Determine the indicial polynomial p of the equation.

2. Let d be the greatest integer root of p.

3. Make an ansatz f(x) = c0 + c1x+ · · ·+ cdx
d.

4. Plug the ansatz into the equation and compare coefficients.

5. Solve the resulting linear system for c0, . . . , cd.

6. The solutions of the system correspond to polynomial
solutions of the equation.
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6. The solutions of the system correspond to polynomial
solutions of the equation.
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I Polynomial Solutions

Some possible meanings of “closed form”:

I polynomials e.g. 5x2 + 3x− 2

I rational functions e.g.
(
5x− 3

)
/
(
3x2 − x+ 5

)
I hyperexponential functions e.g. exp

(
2x+3

x2(x+1)

) (2x+5)1/3

(7x2+x−3)1/2

I algebraic functions e.g. x−
√
x2 + 1

I elementary functions e.g. sin(x)/
√
1 + log(1− ex)

I special functions e.g. J3(x
2+1)− 2F1(2, 3; 1)(

1
x)

I holonomic functions
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I Rational Solutions

Some possible meanings of “closed form”:

I polynomials e.g. 5x2 + 3x− 2
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I Rational Solutions

GIVEN: A linear ordinary differential equation with polynomial
coefficients.

I For example

(2x4 − x3 + 3x)f (3)(x)− (2x4 − 15x3 + 15x2 − 9x− 9)f ′′(x)

− (6x3 − 30x2 + 42x− 18)f ′(x) + (6x− 18)f(x) = 0

FIND: its rational solutions.

I In the example, a basis of the vector space of all rational
solutions is given by (3− x)/x and 1/(1 + x)2. (A third
solution, linearly independent of those two, is not a rational
function.)

10



I Rational Solutions

GIVEN: A linear ordinary differential equation with polynomial
coefficients.

I For example

(2x4 − x3 + 3x)f (3)(x)− (2x4 − 15x3 + 15x2 − 9x− 9)f ′′(x)

− (6x3 − 30x2 + 42x− 18)f ′(x) + (6x− 18)f(x) = 0

FIND: its rational solutions.

I In the example, a basis of the vector space of all rational
solutions is given by (3− x)/x and 1/(1 + x)2. (A third
solution, linearly independent of those two, is not a rational
function.)

10



I Rational Solutions

The problem is easy if we prescribe the denominator.

For example, suppose we are only interested in solutions of the
form f(x) = u(x)/x, where u(x) is a polynomial.
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I Rational Solutions

The problem is easy if we prescribe the denominator.

For example, suppose we are only interested in solutions of the
form f(x) = u(x)/x, where u(x) is a polynomial.

No matter what u(x) is, we have

f(x) =
u(x)

x

f ′(x) =
u′(x)

x
− u(x)

x2

f ′′(x) =
u′′(x)

x
− 2

u′(x)

x2
+ 2

u(x)

x3

f ′′′(x) =
u′′′(x)

x
− 3

u′′(x)

x2
+ 6

u′(x)

x3
− 6

u(x)

x4
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I Rational Solutions

The problem is easy if we prescribe the denominator.

For example, suppose we are only interested in solutions of the
form f(x) = u(x)/x, where u(x) is a polynomial.

Plug f(x) = u(x)/x into the differential equation. This gives

(2x7 − x6 + 3x4)u(3)(x)− (2x7 − 9x6 + 12x5 − 9x4)u′′(x)

− (2x6 − 12x5 + 18x4)u′(x) + (2x5 − 6x4)u(x) = 0.

Determine the polynomial solutions of this equation. This gives
u(x) = 3− x (up to constant multiples).

It follows that f(x) = (3 − x)/x is (up to constant multiples) the
only rational solution of the original equation with denominator x.
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I Rational Solutions

In order to find all rational solutions, we need to know which
factors can occur in a denominator, and with which multiplicity.

If f(x) = u
v pe is a rational function with gcd(p, u) = gcd(p, v) = 1

then

f ′(x)= �
� pe+1 , f

′′(x)= �
� pe+2 , f

′′′(x)= �
� pe+3 , etc.

It can be shown that there can be no cancellation between the
numerators and p.
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′′′(x)= �
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It can be shown that there can be no cancellation between the
numerators and p.

Therefore, if f(x) is a solution of a differential equation

a0f(x) + a1f
′(x) + a2f

′′(x) + a3f
′′′(x) = 0
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I Rational Solutions

In order to find all rational solutions, we need to know which
factors can occur in a denominator, and with which multiplicity.
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)
p = a3�

The factor p must divide the leading coefficient a3 of the ODE.
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I Rational Solutions

In order to find all rational solutions, we need to know which
factors can occur in a denominator, and with which multiplicity.

If f(x) = u
v pe is a rational function with gcd(p, u) = gcd(p, v) = 1

then

f ′(x)= �
� pe+1 , f

′′(x)= �
� pe+2 , f

′′′(x)= �
� pe+3 , etc.

It can be shown that there can be no cancellation between the
numerators and p.

I Suppose p is a factor of the leading coefficient of the ODE.

I Suppose f = u
v pe is a solution of the ODE.

I Without loss of generality, gcd(p, u) = gcd(p, v) = 1.

I Without loss of generality, p = x− α.

I Without loss of generality, α = 0, so that p = x.
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I Rational Solutions

In order to find all rational solutions, we need to know which
factors can occur in a denominator, and with which multiplicity.

If f(x) = u
v pe is a rational function with gcd(p, u) = gcd(p, v) = 1

then

f ′(x)= �
� pe+1 , f

′′(x)= �
� pe+2 , f

′′′(x)= �
� pe+3 , etc.

It can be shown that there can be no cancellation between the
numerators and p.

I Expand u
v as a power series c0 + c1x+ c2x

2 + · · · .

Then

f(x) = c0x
−e + · · ·

f ′(x) = c0 (−e)x−e−1 + · · ·
f ′′(x) = c0 (−e)(−e− 1)x−e−2 + · · ·
f ′′′(x) = c0 (−e)(−e− 1)(−e− 2)x−e−3 + · · · , etc.

I Looks familiar. . .
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I Rational Solutions

In order to find all rational solutions, we need to know which
factors can occur in a denominator, and with which multiplicity.

If f(x) = u
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It can be shown that there can be no cancellation between the
numerators and p.

I Plug x−e with symbolic exponent e into the equation.

I The trailing coefficient is a certain polynomial in e.

I If f = u
v xe is a rational solution, then −e is an integer root of

this polynomial.

I Also this polynomial is called indicial polynomial.
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I Rational Solutions

Algorithm summary.

INPUT: A linear ordinary differential equation with polynomial
coefficients.

OUTPUT: A basis of the vector space of all its rational function
solutions.

1. Determine the factors p1, . . . , pn of the leading coefficient.

2. For each pi, determine the maximum possible multiplicity ei.

3. Make an ansatz f(x) = u(x)
/(
pe11 p

e2
2 · · · penn

)
.

4. Determine an ODE for the numerator u(x).

5. Find the polynomial solutions u(x) of this equation.

6. Return the corresponding rational functions f(x).
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I Rational Solutions

Some possible meanings of “closed form”:

I polynomials e.g. 5x2 + 3x− 2

I rational functions e.g.
(
5x− 3

)
/
(
3x2 − x+ 5

)
I hyperexponential functions e.g. exp

(
2x+3

x2(x+1)

) (2x+5)1/3

(7x2+x−3)1/2

I algebraic functions e.g. x−
√
x2 + 1

I elementary functions e.g. sin(x)/
√
1 + log(1− ex)

I special functions e.g. J3(x
2+1)− 2F1(2, 3; 1)(

1
x)

I holonomic functions
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I Hyperexponential Solutions
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I Hyperexponential Solutions

Definition.
f(x) is called hyperexponential if there are polynomials p(x), q(x)
with

p(x)f ′(x)− q(x)f(x) = 0.

≈ exponential part ≈ rational part
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I Hyperexponential Solutions

More precisely:

Definition.

I Two hyperexponential terms f(x) and g(x) are called similar
if f(x)/g(x) is a rational function.

I The equivalence classes of hyperexponential terms under this
relation are called exponential parts.

Examples.

x
√
2(x+ 1) ∼ x

√
2+4(x+ 1)−3 x

√
2 6∼ x2 x2 6∼ exp(x).
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I Hyperexponential Solutions

GIVEN: A linear ordinary differential equation with polynomial
coefficients.

I For example

(6x5 − 60x4 + 225x3 − 386x2 + 301x− 84)f(x)

+ (x− 1)2(10x5 − 86x4 + 277x3 − 411x2 + 272x− 59)f ′(x)

+ (x− 2)2(x− 1)4(2x2 − 8x+ 7)f ′′(x) = 0.

FIND: its hyperexponential solutions.

I In the example, there are two hyperexponential solutions
exp

(
x−3

(x−1)(x−2)
)

and exp
(

1
x−1
)
x3−3x2+2x−1

(x−1)3 . (Here, all

solutions can be written as linear combinations of
hyperexponential terms. In general, this is not possible.)
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I Hyperexponential Solutions

The problem is easy if we prescribe a specific exponential part.

For example, suppose we want to find solutions of the form
f(x) = exp( 1

x−1)u(x), where u(x) is a rational function.
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For example, suppose we want to find solutions of the form
f(x) = exp( 1

x−1)u(x), where u(x) is a rational function.

No matter what u(x) is, we have

f(x) = u(x) exp
(

1
x−1
)

f ′(x) =
(
u′(x)− 1

(x−1)2u(x)
)
exp
(

1
x−1
)

f ′′(x) =
(
u′′(x)− 2

(x−1)2u
′(x) + 2x−1

(x−1)4u(x)
)
exp
(

1
x−1
)
, etc.
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f(x) = exp( 1

x−1)u(x), where u(x) is a rational function.

Plug f(x) = u(x) exp
(

1
x−1
)

into the differential equation, divide by

exp
(

1
x−1
)
, and clear denominators. This gives the equation

(x− 2)2(x− 1)4(2x2 − 8x+ 7)u′′(x)

+ (x− 1)2(10x5 − 90x4 + 309x3 − 505x2 + 392x− 115)u′(x)

− (8x3 − 50x2 + 92x− 53)(x− 1)u(x) = 0.

Find its rational solutions. This gives u(x) = x3−3x2+2x−1
(x−1)3 .
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I Hyperexponential Solutions

In order to find all hyperexponential solutions, we need to know
which exponential parts can occur.

Fact. There is a way to compute the “local solutions” of a given
ODE at a given point ξ.
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I Hyperexponential Solutions

In order to find all hyperexponential solutions, we need to know
which exponential parts can occur.

Fact. There is a way to compute the “local solutions” of a given
ODE at a given point ξ.

Example. For the ODE above and ξ = 1, we get

exp
(

2
x−1
)(

1 + (x− 1) + 3
2(x− 1)2 + 13

6 (x− 1)3 + · · ·
)

exp
(

1
x−1
)(

(x− 1)−3 + (x− 1)−2 − 1+
)
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Example. For the ODE above and ξ = 2, we get

exp
( −1
x−2
)(

1− 2(x− 2) + 4(x− 2)2 − 22
3 (x− 2)2 + · · ·

)
exp(0)
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1− 6(x− 2) + 31
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3 (x− 2)3 + · · ·

)
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I Hyperexponential Solutions

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial
coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ1, ξ2, . . . be the roots of the leading coefficient.

2. For each ξi, compute the exponential parts exp
( pj

(x−ξi)dj
)

(j = 1, 2, . . . ) of the local solutions at ξi.

3. For each combination E := exp
( pj1

(x−ξ1)
dj1

+
pj2

(x−ξ2)
dj2

+ · · ·
)

do:

4. Make an ansatz f(x) = u(x)E

5. Construct an auxiliary equation for u(x)

6. Find its rational solutions

7. For each solution u(x), output f(x) = u(x)E.

21
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I Hyperexponential Solutions
N

EW

Our contribution (Johansson, MK, Mezzarobba; ISSAC’13):

I An algorithm for quickly finding the relevant combinations.

I Returns at most r candidates (instead of rn).

I Needs at most n4r arithmetic operations to find them.

I Is based on the principle of dynamic programming.

I Also requires effective analytic continuation.
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N

EW

vector space of all
series solution at ξ1 with
a certain exponential part

vector space of all
series solution at ξ2 with
a certain exponential part

This edge can only be part of a relevant combination
if the intersection of the two vector spaces is nonempty

Fact. At most r
of these O(r2) inter-
sections can be
nonempty.

ξ1 :

ξ2 :

ξ1, ξ2 :

ξ3 :

ξ1, ξ2, ξ3 :

ξ4 :

ξ1, ξ2, ξ3, ξ4 :
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I Hyperexponential Solutions
N

EW
How to carry out the required vector space intersections?

A priori, spaces for different ξi are not comparable.

Example: What is[
exp
(

1
x−1
)
P1(x−1), exp

(
1

x−1
)
P2(x−1)

][
P̃1(x− 0), P̃2(x− 0)

][
R̃1(x− 0), R̃2(x− 0)

]
∩
[
exp
(

1
x−2
)
Q1(x−2), exp

(
1

x−2
)
Q2(x−2)

][
Q̃1(x− 0), Q̃2(x− 0)

]
supposed to mean?

Idea: Interpret the series as asymptotic expansions of actual
complex functions, and determine their expansions at some fixed
common reference point using certified numerical approximation.

This is not an easy thing to do, but efficient algorithms for this
task are known.
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I Hyperexponential Solutions
N

EW
Some possible meanings of “closed form”:

I polynomials e.g. 5x2 + 3x− 2

I rational functions e.g.
(
5x− 3

)
/
(
3x2 − x+ 5

)
I hyperexponential functions e.g. exp

(
2x+3

x2(x+1)

) (2x+5)1/3

(7x2+x−3)1/2

I algebraic functions e.g. x−
√
x2 + 1

I elementary functions e.g. sin(x)/
√
1 + log(1− ex)

I special functions e.g. J3(x
2+1)− 2F1(2, 3; 1)(

1
x)

I holonomic functions
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