Finding hyperexponential solutions of differential equations

Manuel Kauers

Research Institute for Symbolic Computation (RISC) Johannes Kepler University (JKU) Linz, Austria

Joint work with Fredrik Johansson and Marc Mezzarobba

GIVEN: A linear ordinary differential equation with polynomial coefficients.

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(16 x^{4}+48 x^{3}+48 x^{2}+18 x+2\right) f^{\prime \prime}(x) \\
& \quad-\left(16 x^{4}+48 x^{3}+52 x^{2}+32 x+9\right) f^{\prime}(x) \\
& \quad+\left(4 x^{2}+14 x+7\right) f(x)=0
\end{aligned}
$$

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

One independent
variable x

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(16 x^{4}+48 x^{3}+48 x^{2}+18 x+2\right) f^{\prime \prime}(x) \\
& \quad-\left(16 x^{4}+48 x^{3}+52 x^{2}+32 x+9\right) f^{\prime}(x) \\
& \quad+\left(4 x^{2}+14 x+7\right) f(x)=0
\end{aligned}
$$

FIND: closed form solutions $f(x)$ of this equation.

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(16 x^{4}+48 x^{3}+48 x^{2}+18 x+2\right) f^{\prime \prime}(x) \\
& \quad-\left(16 x^{4}+48 x^{3}+52 x^{2}+32 x+9\right) f^{\prime}(x) \\
& \quad+\left(4 x^{2}+14 x+7\right) f(x)=0
\end{aligned}
$$

FIND: closed form solutions $f(x)$ of this equation.

- In the example: $f(x)=\exp (x)$ and $f(x)=\frac{\sqrt{1+3 x+2 x^{2}}}{x+1}$.

Some possible meanings of "closed form":

Some possible meanings of "closed form":

- polynomials
e.g. $5 x^{2}+3 x-2$

Some possible meanings of "closed form":

- polynomials
- rational functions
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions
- algebraic functions
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
e.g. $x-\sqrt{x^{2}+1}$

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions
- algebraic functions
- elementary functions
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
e.g. $x-\sqrt{x^{2}+1}$
e.g. $\sin (x) / \sqrt{1+\log \left(1-\mathrm{e}^{x}\right)}$

Some possible meanings of "closed form":

- polynomials
- rational functions
- hyperexponential functions
- algebraic functions
- elementary functions
- special functions
e.g. $5 x^{2}+3 x-2$
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
e.g. $x-\sqrt{x^{2}+1}$
e.g. $\sin (x) / \sqrt{1+\log \left(1-\mathrm{e}^{x}\right)}$
e.g. $J_{3}\left(x^{2}+1\right)-{ }_{2} \mathrm{~F}_{1}(2,3 ; 1)\left(\frac{1}{x}\right)$

Some possible meanings of "closed form":

- polynomials
e.g. $5 x^{2}+3 x-2$
- rational functions
e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
- hyperexponential functions
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
- algerzic functions
- elementary functions e.g.
- special functions

Some possible meanings of "closed form":

- hyperexponential functions
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
- algetraic functions
e.g. $x-\sqrt{x^{2}-1}$
- elementary functions
- special functions

Some possible meanings of "closed form":
polynomials_e.e. $5 x^{2}+3 x-2$

- eational functions \quad e.g. $(5 x-3) /\left(3 x^{2}-x+5\right)$
- hyperexponential functions
e.g. $\exp \left(\frac{2 x+3}{x^{2}(x+1)}\right) \frac{(2 x+5)^{1 / 3}}{\left(7 x^{2}+x-3\right)^{1 / 2}}$
- algetrazic functions
e.g. $x-\sqrt{x^{2}+1}$
- elementary functions
- special functions

Definition.

$f(x)$ is called hyperexponential if there are polynomials $p(x), q(x)$ with

$$
p(x) f^{\prime}(x)-q(x) f(x)=0 .
$$

Definition.

$f(x)$ is called hyperexponential if there are polynomials $p(x), q(x)$ with

$$
p(x) f^{\prime}(x)-q(x) f(x)=0
$$

Hyperexponential terms can be written in the form

$$
f(x)=\exp \left(\int \frac{q(x)}{p(x)}\right)
$$

Definition.

$f(x)$ is called hyperexponential if there are polynomials $p(x), q(x)$ with

$$
p(x) f^{\prime}(x)-q(x) f(x)=0 .
$$

Hyperexponential terms can be written in the form

$$
f(x)=\exp \left(\operatorname{rat}(x)+\sum_{i=1}^{k} \gamma_{i} \log \left(\operatorname{pol}_{i}(x)\right)\right)
$$

Definition.

$f(x)$ is called hyperexponential if there are polynomials $p(x), q(x)$ with

$$
p(x) f^{\prime}(x)-q(x) f(x)=0 .
$$

Hyperexponential terms can be written in the form

$$
f(x)=\exp (\operatorname{rat}(x)) \prod_{i=1}^{k} \operatorname{pol}_{i}(x)^{\gamma_{i}}
$$

Definition.

$f(x)$ is called hyperexponential if there are polynomials $p(x), q(x)$ with

$$
p(x) f^{\prime}(x)-q(x) f(x)=0 .
$$

Hyperexponential terms can be written in the form

$$
f(x)=\exp (\operatorname{rat}(x)) \prod_{i=1}^{k} \operatorname{pol}_{i}(x)^{\gamma_{i}}
$$

Definition.

$f(x)$ is called hyperexponential if there are polynomials $p(x), q(x)$ with

$$
p(x) f^{\prime}(x)-q(x) f(x)=0 .
$$

Hyperexponential terms can be written in the form

More precisely:

More precisely:

Definition.

- Two hyperexponential terms $f(x)$ and $g(x)$ are called similar if $f(x) / g(x)$ is a rational function.

More precisely:

Definition.

- Two hyperexponential terms $f(x)$ and $g(x)$ are called similar if $f(x) / g(x)$ is a rational function.
- The equivalence classes of hyperexponential terms under this relation are called exponential parts.

More precisely:

Definition.

- Two hyperexponential terms $f(x)$ and $g(x)$ are called similar if $f(x) / g(x)$ is a rational function.
- The equivalence classes of hyperexponential terms under this relation are called exponential parts.

Examples.

$$
x^{\sqrt{2}}(x+1) \sim x^{\sqrt{2}+4}(x+1)^{-3} \quad x^{\sqrt{2}} \nsim x^{2} \quad x^{2} \nsim \exp (x) .
$$

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(6 x^{5}-60 x^{4}+225 x^{3}-386 x^{2}+301 x-84\right) f(x) \\
& \quad+(x-1)^{2}\left(10 x^{5}-86 x^{4}+277 x^{3}-411 x^{2}+272 x-59\right) f^{\prime}(x) \\
& \quad+(x-2)^{2}(x-1)^{4}\left(2 x^{2}-8 x+7\right) f^{\prime \prime}(x)=0
\end{aligned}
$$

FIND: its hyperexponential solutions.

GIVEN: A linear ordinary differential equation with polynomial coefficients.

- For example

$$
\begin{aligned}
& \left(6 x^{5}-60 x^{4}+225 x^{3}-386 x^{2}+301 x-84\right) f(x) \\
& \quad+(x-1)^{2}\left(10 x^{5}-86 x^{4}+277 x^{3}-411 x^{2}+272 x-59\right) f^{\prime}(x) \\
& \quad+(x-2)^{2}(x-1)^{4}\left(2 x^{2}-8 x+7\right) f^{\prime \prime}(x)=0
\end{aligned}
$$

FIND: its hyperexponential solutions.

- In the example, there are two hyperexponential solutions $\exp \left(\frac{x-3}{(x-1)(x-2)}\right)$ and $\exp \left(\frac{1}{x-1}\right) \frac{x^{3}-3 x^{2}+2 x-1}{(x-1)^{3}}$. (Here, all solutions can be written as linear combinations of hyperexponential terms. In general, this is not possible.)

The problem is easy if we prescribe a specific exponential part.

The problem is easy if we prescribe a specific exponential part.
For example, suppose we want to find solutions of the form $f(x)=\exp \left(\frac{1}{x-1}\right) u(x)$, where $u(x)$ is a rational function.

The problem is easy if we prescribe a specific exponential part.
For example, suppose we want to find solutions of the form $f(x)=\exp \left(\frac{1}{x-1}\right) u(x)$, where $u(x)$ is a rational function.
No matter what $u(x)$ is, we have

$$
\begin{aligned}
f(x) & =u(x) \exp \left(\frac{1}{x-1}\right) \\
f^{\prime}(x) & =\left(u^{\prime}(x)-\frac{1}{(x-1)^{2}} u(x)\right) \exp \left(\frac{1}{x-1}\right) \\
f^{\prime \prime}(x) & =\left(u^{\prime \prime}(x)-\frac{2}{(x-1)^{2}} u^{\prime}(x)+\frac{2 x-1}{(x-1)^{4}} u(x)\right) \exp \left(\frac{1}{x-1}\right), \text { etc. }
\end{aligned}
$$

The problem is easy if we prescribe a specific exponential part.
For example, suppose we want to find solutions of the form $f(x)=\exp \left(\frac{1}{x-1}\right) u(x)$, where $u(x)$ is a rational function.
Plug $f(x)=u(x) \exp \left(\frac{1}{x-1}\right)$ into the differential equation, divide by $\exp \left(\frac{1}{x-1}\right)$, and clear denominators.

The problem is easy if we prescribe a specific exponential part.
For example, suppose we want to find solutions of the form $f(x)=\exp \left(\frac{1}{x-1}\right) u(x)$, where $u(x)$ is a rational function.
Plug $f(x)=u(x) \exp \left(\frac{1}{x-1}\right)$ into the differential equation, divide by $\exp \left(\frac{1}{x-1}\right)$, and clear denominators. This gives the equation

$$
\begin{aligned}
& (x-2)^{2}(x-1)^{4}\left(2 x^{2}-8 x+7\right) u^{\prime \prime}(x) \\
& +(x-1)^{2}\left(10 x^{5}-90 x^{4}+309 x^{3}-505 x^{2}+392 x-115\right) u^{\prime}(x) \\
& -\left(8 x^{3}-50 x^{2}+92 x-53\right)(x-1) u(x)=0
\end{aligned}
$$

The problem is easy if we prescribe a specific exponential part.
For example, suppose we want to find solutions of the form $f(x)=\exp \left(\frac{1}{x-1}\right) u(x)$, where $u(x)$ is a rational function.
Plug $f(x)=u(x) \exp \left(\frac{1}{x-1}\right)$ into the differential equation, divide by $\exp \left(\frac{1}{x-1}\right)$, and clear denominators. This gives the equation

$$
\begin{aligned}
& (x-2)^{2}(x-1)^{4}\left(2 x^{2}-8 x+7\right) u^{\prime \prime}(x) \\
& +(x-1)^{2}\left(10 x^{5}-90 x^{4}+309 x^{3}-505 x^{2}+392 x-115\right) u^{\prime}(x) \\
& -\left(8 x^{3}-50 x^{2}+92 x-53\right)(x-1) u(x)=0
\end{aligned}
$$

Find its rational solutions. This gives $u(x)=\frac{x^{3}-3 x^{2}+2 x-1}{(x-1)^{3}}$.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.
These are series expansions of the form

$$
\exp \left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right)
$$

where $d \in \mathbb{N}, p(x)$ is a polynomial of degree $<d$, and $\alpha, c_{1}, c_{2}, \ldots$ are constants.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.
These are series expansions of the form

$$
\exp \left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right)
$$

where $d \in \mathbb{N}, p(x)$ is a polynomial of degree $<d$, and $\alpha, c_{1}, c_{2}, \ldots$ are constants.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

These are series expansions of the form

$$
\exp \left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right)
$$

where $d \in \mathbb{N}, p(x)$ is a polynomial of degree $<d$, and $\alpha, c_{1}, c_{2}, \ldots$ are constants.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

These are series expansions of the form

$$
\exp \left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right)
$$

where $d \in \mathbb{N}, p(x)$ is a polynomial of degree $<d$, and $\alpha, c_{1}, c_{2}, \ldots$ are constants.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

These are series expansions of the form

$$
\exp \left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right)
$$

where $d \in \mathbb{N}, p(x)$ is a polynomial of degree $<d$, and $\alpha, c_{1}, c_{2}, \ldots$ are constants.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.
These are series expansions of the form

$$
\exp \left(\frac{p(x)}{(x-\xi)^{d}}\right)(x-\xi)^{\alpha}\left(1+c_{1}(x-\xi)+c_{2}(x-\xi)^{2}+\cdots\right)
$$

where $d \in \mathbb{N}, p(x)$ is a polynomial of degree $<d$, and $\alpha, c_{1}, c_{2}, \ldots$ are constants.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

Example. For the ODE above and $\xi=1$, we get

$$
\begin{aligned}
& \exp \left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\frac{13}{6}(x-1)^{3}+\cdots\right) \\
& \exp \left(\frac{1}{x-1}\right)\left((x-1)^{-3}+(x-1)^{-2}-1+\cdots\right)
\end{aligned}
$$

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

Example. For the ODE above and $\xi=2$, we get

$$
\begin{aligned}
& \exp \left(\frac{-1}{x-2}\right)\left(1-2(x-2)+4(x-2)^{2}-\frac{22}{3}(x-2)^{2}+\cdots\right) \\
& \quad \exp (0)\left(1-6(x-2)+\frac{31}{2}(x-2)^{2}-\frac{98}{3}(x-2)^{3}+\cdots\right)
\end{aligned}
$$

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

Fact. The exponential parts of a hyperexponential solution are combinations of exponential parts of local solutions at roots of the leading coefficient of the equation.

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

Fact. The exponential parts of a hyperexponential solution are combinations of exponential parts of local solutions at roots of the leading coefficient of the equation.

Example. For the solution of the ODE above, we have
$\exp \left(\frac{x-3}{(x-1)(x-2)}\right)$

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

Fact. The exponential parts of a hyperexponential solution are combinations of exponential parts of local solutions at roots of the leading coefficient of the equation.

Example. For the solution of the ODE above, we have

$$
\exp \left(\frac{x-3}{(x-1)(x-2)}\right)=\mathrm{e} \exp \left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\cdots\right)
$$

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.

Fact. The exponential parts of a hyperexponential solution are combinations of exponential parts of local solutions at roots of the leading coefficient of the equation.

Example. For the solution of the ODE above, we have

$$
\begin{aligned}
\exp \left(\frac{x-3}{(x-1)(x-2)}\right) & =\mathrm{e} \exp \left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\cdots\right) \\
& =\mathrm{e}^{2} \exp \left(-\frac{1}{x-2}\right)\left(1-2(x-2)+4(x-2)^{2}+\cdots\right)
\end{aligned}
$$

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.
Fact. The exponential parts of a hyperexponential solution are combinations of exponential parts of local solutions at roots of the leading coefficient of the equation.

Example. For the solution of the ODE above, we have

$$
\begin{aligned}
& \exp \left(\begin{array}{l}
\left.\frac{x-3}{(x-1)(x-2)}\right)
\end{array}=\mathrm{e} \exp \left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\cdots\right)\right. \\
& \quad \frac{\downarrow}{x-1}-\frac{\overline{\overline{1}}}{x-2} \mathrm{e}^{2} \exp \left(-\frac{1}{x-2}\right)\left(1-2(x-2)+4(x-2)^{2}+\cdots\right)
\end{aligned}
$$

In order to find all hyperexponential solutions, we need to know which exponential parts can occur.

Fact. There is a way to compute the "local solutions" of a given ODE at a given point ξ.
Fact. The exponential parts of a hyperexponential solution are combinations of exponential parts of local solutions at roots of the leading coefficient of the equation.

Example. For the solution of the ODE above, we have

$$
\begin{aligned}
& \exp (\underbrace{}_{\left.\frac{x-3}{(x-1)(x-2)}\right)}=\mathrm{e} \exp \left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\cdots\right) \\
& \quad=\frac{2}{x-1}-\frac{1}{x-2} \mathrm{e}^{2} \exp \left(-\frac{1}{x-2}\right)\left(1-2(x-2)+4(x-2)^{2}+\cdots\right)
\end{aligned}
$$

Idea: Test all the combinations of local exponential parts.

Idea: Test all the combinations of local exponential parts.
Fact. Nontrivial local exponential parts can only appear at points ξ where the leading coefficient of the differential equation is zero (aka "singularities").

Idea: Test all the combinations of local exponential parts.
Example. For the ODE above we consider $\xi=1$ and $\xi=2$:

Idea: Test all the combinations of local exponential parts.
Example. For the ODE above we consider $\xi=1$ and $\xi=2$:

- Solutions at $\xi=1$:

$$
\begin{aligned}
& \exp \left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\frac{13}{6}(x-1)^{3}+\cdots\right) \\
& \exp \left(\frac{1}{x-1}\right)\left((x-1)^{-3}+(x-1)^{-2}-1+\cdots\right)
\end{aligned}
$$

Idea: Test all the combinations of local exponential parts.
Example. For the ODE above we consider $\xi=1$ and $\xi=2$:

- Solutions at $\xi=1$:

$$
\begin{aligned}
& \exp \left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\frac{13}{6}(x-1)^{3}+\cdots\right) \\
& \exp \left(\frac{1}{x-1}\right)\left((x-1)^{-3}+(x-1)^{-2}-1+\cdots\right)
\end{aligned}
$$

- Solutions at $\xi=2$:

$$
\begin{aligned}
& \exp \left(\frac{-1}{x-2}\right)\left(1-2(x-2)+4(x-2)^{2}-\frac{22}{3}(x-2)^{2}+\cdots\right) \\
& \quad \exp (0)\left(1-6(x-2)+\frac{31}{2}(x-2)^{2}-\frac{98}{3}(x-2)^{3}+\cdots\right)
\end{aligned}
$$

Idea: Test all the combinations of local exponential parts.
Example. For the ODE above we consider $\xi=1$ and $\xi=2$:

- Solutions at $\xi=1$:

$$
\begin{aligned}
& \exp \left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\frac{13}{6}(x-1)^{3}+\cdots\right) \\
& \exp \left(\frac{1}{x-1}\right)\left((x-1)^{-3}+(x-1)^{-2}-1+\cdots\right)
\end{aligned}
$$

- Solutions at $\xi=2$:

$$
\begin{aligned}
& \exp \left(\frac{-1}{x-2}\right)\left(1-2(x-2)+4(x-2)^{2}-\frac{22}{3}(x-2)^{2}+\cdots\right) \\
& \quad \exp (0)\left(1-6(x-2)+\frac{31}{2}(x-2)^{2}-\frac{98}{3}(x-2)^{3}+\cdots\right)
\end{aligned}
$$

- Candidate exponential parts:

$$
\exp \left(\frac{2}{x-1}+\frac{-1}{x-2}\right), \exp \left(\frac{2}{x-1}+0\right), \exp \left(\frac{1}{x-1}+\frac{-1}{x-2}\right), \exp \left(\frac{1}{x-1}+0\right)
$$

Idea: Test all the combinations of local exponential parts.
Example. For the ODE above we consider $\xi=1$ and $\xi=2$:

- Solutions at $\xi=1$:
- Solutions at ξ 2:
- Candidate exponential parts: $\exp \left(\frac{2}{x-1}+\frac{-1}{x-2}\right), \exp \left(\frac{2}{x-1}+0\right), \exp \left(\frac{1}{x-1}+\frac{-1}{x-2}\right), \exp \left(\frac{1}{x-1}+0\right)$.

Idea: Test all the combinations of local exponential parts.
Example. For the ODE above we consider $\xi=1$ and $\xi=2$:

- Solutions at $\xi=1$:

$$
\begin{aligned}
& \exp \left(\frac{2}{x-1}\right)\left(1+(x-1)+\frac{3}{2}(x-1)^{2}+\frac{13}{6}(x-1)^{3}+\cdots\right) \\
& \exp \left(\frac{1}{x-1}\right)\left((x-1)^{-3}+(x-1)^{-2}-1+\cdots\right)
\end{aligned}
$$

- Solutions at $\xi=2$:
- Candidate exporlential part:

$$
\exp \left(\frac{-1}{x-2}\right)\left(\frac{\left.\left.1-2(x-2)+4(x-2)^{2}-\frac{22}{3}(x-2)^{2}+\cdots\right)\right)}{}\right.
$$

$$
\exp (0)\left(1-\frac{\left.\left.6(x-2)+\frac{31}{2}(x-2)^{2}-\frac{98}{3}(x-2)^{3}+\cdots\right)\right)}{}\right.
$$ $\exp \left(\frac{2}{x-1}+\frac{-1}{x-2}\right), \exp \left(\frac{2}{x-1}+0\right), \exp \left(\frac{1}{x-1}+\frac{-1}{x-2}\right), \exp \left(\frac{1}{x-1}+0\right)$.

Algorithm summary

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $\exp \left(\frac{p_{j}}{\left(x-\xi_{i}\right)^{d_{j}}}\right)$ $(j=1,2, \ldots)$ of the local solutions at ξ_{i}.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $\exp \left(\frac{p_{j}}{\left(x-\xi_{i}\right)^{d_{j}}}\right)$ $(j=1,2, \ldots)$ of the local solutions at ξ_{i}.
3. For each combination $E:=\exp \left(\frac{p_{j_{1}}}{\left(x-\xi_{1}\right)^{d_{j_{1}}}}+\frac{p_{j_{2}}}{\left(x-\xi_{2}\right)^{d_{j_{2}}}}+\cdots\right)$ do:

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $\exp \left(\frac{p_{j}}{\left(x-\xi_{i}\right)^{d_{j}}}\right)$ $(j=1,2, \ldots)$ of the local solutions at ξ_{i}.
3. For each combination $E:=\exp \left(\frac{p_{j_{1}}}{\left(x-\xi_{1}\right)^{d_{j_{1}}}}+\frac{p_{j_{2}}}{\left(x-\xi_{2}\right)^{d_{j_{2}}}}+\cdots\right)$ do:
4. \quad Make an ansatz $f(x)=u(x) E$

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $\exp \left(\frac{p_{j}}{\left(x-\xi_{i}\right)^{d_{j}}}\right)$ $(j=1,2, \ldots)$ of the local solutions at ξ_{i}.
3. For each combination $E:=\exp \left(\frac{p_{j_{1}}}{\left(x-\xi_{1}\right)^{d_{j_{1}}}}+\frac{p_{j_{2}}}{\left(x-\xi_{2}\right)^{d_{j_{2}}}}+\cdots\right)$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $\exp \left(\frac{p_{j}}{\left(x-\xi_{i}\right)^{d_{j}}}\right)$ $(j=1,2, \ldots)$ of the local solutions at ξ_{i}.
3. For each combination $E:=\exp \left(\frac{p_{j_{1}}}{\left(x-\xi_{1}\right)^{d_{j_{1}}}}+\frac{p_{j_{2}}}{\left(x-\xi_{2}\right)^{d_{j_{2}}}}+\cdots\right)$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $\exp \left(\frac{p_{j}}{\left(x-\xi_{i}\right)^{d_{j}}}\right)$ $(j=1,2, \ldots)$ of the local solutions at ξ_{i}.
3. For each combination $E:=\exp \left(\frac{p_{j_{1}}}{\left(x-\xi_{1}\right)^{d_{j_{1}}}}+\frac{p_{j_{2}}}{\left(x-\xi_{2}\right)^{d_{j_{2}}}}+\cdots\right)$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.
$\xi_{1}:$

- \quad -
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

\square
$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

-

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$
-

-
$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

\bigcirc
-

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$
-

-
-
$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$
$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$
-

-
\bigcirc
$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$
\bullet

-
-

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

-

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$
${ }^{-}$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

ξ_{1} :
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

-
$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

\bullet

-
-

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

-

$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

-

$\xi_{1}:$

- \quad -
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

\square
ξ_{1} :

$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

For an order r equation with n singular points, there are r^{n} combinations.

$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$

For an order r equation with n singular points, there are r^{n} combinations. That's a lot.

Our contribution (Johansson, MK, Mezzarobba; ISSAC'13):

Our contribution (Johansson, MK, Mezzarobba; ISSAC'13):

- An algorithm for quickly finding the relevant combinations.

Our contribution (Johansson, MK, Mezzarobba; ISSAC'13):

- An algorithm for quickly finding the relevant combinations.
- Returns at most r candidates (instead of r^{n}).

Our contribution (Johansson, MK, Mezzarobba; ISSAC'13):

- An algorithm for quickly finding the relevant combinations.
- Returns at most r candidates (instead of r^{n}).
- Needs at most $n^{4} r$ arithmetic operations to find them.

Our contribution (Johansson, MK, Mezzarobba; ISSAC'13):

- An algorithm for quickly finding the relevant combinations.
- Returns at most r candidates (instead of r^{n}).
- Needs at most $n^{4} r$ arithmetic operations to find them.
- Is based on the principle of dynamic programming.

Our contribution (Johansson, MK, Mezzarobba; ISSAC'13):

- An algorithm for quickly finding the relevant combinations.
- Returns at most r candidates (instead of r^{n}).
- Needs at most $n^{4} r$ arithmetic operations to find them.
- Is based on the principle of dynamic programming.
- Also makes use of effective analytic continuation.
$\xi_{1}:$
$\xi_{2}:$
$\xi_{3}:$
$\xi_{4}:$
-
-

-

○
\square
vector space of all
series solution at ξ_{1} with
a certain exponential part

$$
\xi_{1}:
$$

$$
\xi_{2}:
$$

$\xi_{3}:$

$\xi_{4}:$

\bigcirc

This edge can only be part of a relevant combination if the intersection of the two vector spaces is nonempty

Fact. At most r
$\xi_{1}:$
$\xi_{2}:$

\bigcirc
of these $O\left(r^{2}\right)$ intersections can be nonempty.
\bigcirc
$\xi_{4}:$

Fact. At most r
$\xi_{1}:$
$\xi_{2}:$

$\xi_{3}:$
$\xi_{4}:$

of these $O\left(r^{2}\right)$ intersections can be nonempty.
\bigcirc

$$
\begin{array}{ccccc}
\xi_{1}, \xi_{2}: & 9 & 9 & 9 & \oint \\
\xi_{3}: & 0 & 0 & 0 & 0 \\
\xi_{4}: & & 0 & & 0
\end{array}
$$

! !

How to carry out the required vector space intersections?

How to carry out the required vector space intersections?
A priori, spaces for different ξ_{i} are not comparable.

How to carry out the required vector space intersections?
A priori, spaces for different ξ_{i} are not comparable.
Example: What is

$$
\left.\begin{array}{rl}
& {\left[\exp \left(\frac{1}{x-1}\right) P_{1}(x-1),\right.} \\
\cap & \left.\exp \left(\frac{1}{x-1}\right) P_{2}(x-1)\right] \\
\cap & {\left[\exp \left(\frac{1}{x-2}\right) Q_{1}(x-2),\right.}
\end{array} \quad \exp \left(\frac{1}{x-2}\right) Q_{2}(x-2)\right] .
$$

supposed to mean?

How to carry out the required vector space intersections?
A priori, spaces for different ξ_{i} are not comparable.
Example: What is

$$
\left.\begin{array}{rl}
& {\left[\exp \left(\frac{1}{x-1}\right) P_{1}(x-1),\right.} \\
\cap & \left.\exp \left(\frac{1}{x-1}\right) P_{2}(x-1)\right] \\
\cap & {\left[\exp \left(\frac{1}{x-2}\right) Q_{1}(x-2),\right.}
\end{array} \quad \exp \left(\frac{1}{x-2}\right) Q_{2}(x-2)\right] .
$$

supposed to mean?
The (formal) series expansions at $\xi=1$ and those at $\xi=2$ don't live in the same ring.

Idea: Interpret the series as asymptotic expansions of actual complex functions, and determine their expansions at some fixed common reference point using effective analytic continuation and certified numerical approximation.

Idea: Interpret the series as asymptotic expansions of actual complex functions, and determine their expansions at some fixed common reference point using effective analytic continuation and certified numerical approximation.

Fact. There is an algorithm for doing this.

Idea: Interpret the series as asymptotic expansions of actual complex functions, and determine their expansions at some fixed common reference point using effective analytic continuation and certified numerical approximation.

More precisely (but still slightly oversimplified):

Idea: Interpret the series as asymptotic expansions of actual complex functions, and determine their expansions at some fixed common reference point using effective analytic continuation and certified numerical approximation.

More precisely (but still slightly oversimplified):

- For every generalized series solution $F(x-\xi)$ at ξ and (almost) every open sector $S \subseteq \mathbb{C}$ with vertex ξ there exist $r>0$ and a unique analytic function $f: S \cap U_{r}(\xi) \rightarrow \mathbb{C}$ so that F is the asymptotic expansion of f for $x \rightarrow \xi$ within S.

Idea: Interpret the series as asymptotic expansions of actual complex functions, and determine their expansions at some fixed common reference point using effective analytic continuation and certified numerical approximation.

More precisely (but still slightly oversimplified):

- For every generalized series solution $F(x-\xi)$ at ξ and (almost) every open sector $S \subseteq \mathbb{C}$ with vertex ξ there exist $r>0$ and a unique analytic function $f: S \cap U_{r}(\xi) \rightarrow \mathbb{C}$ so that F is the asymptotic expansion of f for $x \rightarrow \xi$ within S.
- Given F, S, a path P from ξ to some $z \in \mathbb{C}$ leaving ξ through S, and $N \in \mathbb{N}$, there is an algorithm due to J . van der Hoeven which computes the first N digits of the analytic continuation along P of f evaluated at z.

${ }_{\xi}$

$$
\begin{aligned}
& {\left[\exp \left(\frac{1}{x-1}\right) P_{1}(x-1),\right.} \\
& \cap\left.\exp \left(\frac{1}{x-1}\right) P_{2}(x-1)\right] \\
& \cap {\left[\exp \left(\frac{1}{x-2}\right) Q_{1}(x-2),\right.} \\
&\left.\exp \left(\frac{1}{x-2}\right) Q_{2}(x-2)\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\tilde{P}_{1}(x-0), & \tilde{P}_{2}(x-0)
\end{array}\right.} \\
& \cap {\left[\tilde{Q}_{1}(x-0),\right.} \\
& \tilde{Q}_{2}(x-0)
\end{aligned}
$$

$$
\left[\begin{array}{l}
{\left[\tilde{i}_{1}(x-0)\right]} \\
\hline
\end{array}\right.
$$

$$
\left[\tilde{R}_{1}(x-0)\right]
$$

Use interval arithmetic to do the linear algebra. Then:

$$
\left[\tilde{R}_{1}(x-0)\right]
$$

Use interval arithmetic to do the linear algebra. Then:

- If $V \cap W$ appears to be empty, then it is really empty. The corresponding edge can be safely discarded.

$$
\left[\tilde{R}_{1}(x-0)\right]
$$

Use interval arithmetic to do the linear algebra. Then:

- If $V \cap W$ appears to be empty, then it is really empty. The corresponding edge can be safely discarded.
- If $V \cap W$ appears to be non-empty, then it may be really empty or the precision was too low. Keep the corresponding edge, to be on the safe side.

Algorithm summary

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A short list of candidates for the exponential parts of its hyperexponential solutions.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A short list of candidates for the exponential parts of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A short list of candidates for the exponential parts of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the generalized series solutions $F_{i, j}\left(x-\xi_{i}\right)(j=1,2, \ldots)$ to some order.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A short list of candidates for the exponential parts of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the generalized series solutions $F_{i, j}\left(x-\xi_{i}\right)(j=1,2, \ldots)$ to some order.
3. Choose an ordinary point ξ_{0} and determine the expansions of the functions $f_{i, j}$ corresponding to $F_{i, j}$ at ξ_{0} numerically.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A short list of candidates for the exponential parts of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the generalized series solutions $F_{i, j}\left(x-\xi_{i}\right)(j=1,2, \ldots)$ to some order.
3. Choose an ordinary point ξ_{0} and determine the expansions of the functions $f_{i, j}$ corresponding to $F_{i, j}$ at ξ_{0} numerically.
4. Use these to determine possible candidates as described above. If during the algorithm, the number of partial candidates exceeds $2 r$, say, abort and try again with higher precision.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A short list of candidates for the exponential parts of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the generalized series solutions $F_{i, j}\left(x-\xi_{i}\right)(j=1,2, \ldots)$ to some order.
3. Choose an ordinary point ξ_{0} and determine the expansions of the functions $f_{i, j}$ corresponding to $F_{i, j}$ at ξ_{0} numerically.
4. Use these to determine possible candidates as described above. If during the algorithm, the number of partial candidates exceeds $2 r$, say, abort and try again with higher precision.
5. Return the resulting list of candidates.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \ldots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$2 \frac{1}{2}$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$2 \frac{1}{2}$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$21 / 2$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$2 \frac{1}{2}$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$2 \frac{1}{2}$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$2 \frac{1}{2}$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$2 \frac{1}{2}$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$2 \frac{1}{2}$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$2 \frac{1}{2}$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$21 / 2$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \ldots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$2 \frac{1}{2}$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \ldots$ do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$2 \frac{1}{2}$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$2 \frac{1}{2}$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ do:
4. Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.

Algorithm summary

INPUT: A linear ordinary differential equation with polynomial coefficients.

OUTPUT: A list of its hyperexponential solutions.

1. Let ξ_{1}, ξ_{2}, \ldots be the roots of the leading coefficient.
2. For each ξ_{i}, compute the exponential parts $E_{i, 1}, E_{i, 2}, \ldots$ of the local solutions at ξ_{i}.
$21 / 2$. Use the algorithm from the previous slide to produce a short list of tuples $\left(j_{1}, j_{2}, \ldots\right)$.
3. For each combination $E:=E_{1, j_{1}} E_{2, j_{2}} \cdots$ with $\left(j_{1}, j_{2}, \ldots\right)$ from this list do:
4. \quad Make an ansatz $f(x)=u(x) E$
5. Construct an auxiliary equation for $u(x)$
6. Find its rational solutions
7. For each solution $u(x)$, output $f(x)=u(x) E$.
