Ore Polynomials in Sage

Manuel Kauers
joint work with
Maximilian Jaroschek and Fredrik Johansson RISC, JKU.

Ore Polynomials in Sage

Manuel Kauers
joint work with
Maximilian Jaroschek and Fredrik Johansson RISC, JKU.

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Computation Speed Comparison

Multiplication time for dense polynomials with integer coefficients in Mathematica and Sage (Flint)

A Programming Speed Comparison

A Pr申g Code Length

Code Length

Find a polynomial solution of prescribed degree of a given recurrence.

A Pr申g 1 dmprying／\＄p申申d Comparison Code Length

Find a polynomial solution of prescribed degree of a given recurrence．

Code Length

Find a polynomial solution of prescribed degree of a given recurrence.

Ore Polynomials in Sage

Manuel Kauers
joint work with
Maximilian Jaroschek and Fredrik Johansson RISC, JKU.

Ore Polynomials in Sage

Manuel Kauers

joint work with
Maximilian Jaroschek and Fredrik Johansson RISC, JKU.

- Idea: Represent a "function" or a "sequence" f by an equation of which it is a solution.
- Idea: Represent a "function" or a "sequence" f by an equation of which it is a solution.
- Represent an "equation" for f by an "operator" which maps this function to zero.
- Idea: Represent a "function" or a "sequence" f by an equation of which it is a solution.
- Represent an "equation" for f by an "operator" which maps this function to zero.
- Examples:
- $\mathrm{e}^{2 x}$ is killed by $L=D-2$, where $D=\frac{d}{d x}$.
- Idea: Represent a "function" or a "sequence" f by an equation of which it is a solution.
- Represent an "equation" for f by an "operator" which maps this function to zero.
- Examples:
- $\mathrm{e}^{2 x}$ is killed by $L=D-2$, where $D=\frac{d}{d x}$.
- 2^{n} is killed by $L=E-2$, where $E \equiv n \rightsquigarrow n+1$
- Idea: Represent a "function" or a "sequence" f by an equation of which it is a solution.
- Represent an "equation" for f by an "operator" which maps this function to zero.
- Examples:
- $\log (1-\sqrt{x})$ is killed by

$$
L=2 x(x-1) D^{3}+(7 x-3) D^{2}+3 D .
$$

- Idea: Represent a "function" or a "sequence" f by an equation of which it is a solution.
- Represent an "equation" for f by an "operator" which maps this function to zero.
- Examples:
- $\log (1-\sqrt{x})$ is killed by

$$
L=2 x(x-1) D^{3}+(7 x-3) D^{2}+3 D .
$$

- $\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{i+k}$ is killed by

$$
\begin{aligned}
L= & (2 n+7)(n+4) E^{3}-\left(6 n^{2}-41 n-71\right) E^{2} \\
& +\left(6 n^{2}+37 n+58\right) E-(n+3)(2 n+5)
\end{aligned}
$$

- These operators are called Ore Polynomials.
- These operators are called Ore Polynomials.
- They live in an Ore Algebra.
- These operators are called Ore Polynomials.
- They live in an Ore Algebra.
- They act on a "Function Space."

Definition (Ore Algebra)

Definition (Ore Algebra)

- Let R be a ring

Definition (Ore Algebra)

- Let R be a ring
- Let $\sigma: R \rightarrow R$ be an endomorphism, i.e.,

$$
\sigma(a+b)=\sigma(a)+\sigma(b) \quad \text { and } \quad \sigma(a b)=\sigma(a) \sigma(b)
$$

Definition (Ore Algebra)

- Let R be a ring
- Let $\sigma: R \rightarrow R$ be an endomorphism
- Let $\delta: R \rightarrow R$ be a " σ-derivation", i.e.,

$$
\delta(a+b)=\delta(a)+\delta(b) \quad \text { and } \quad \delta(a b)=\delta(a) b+\sigma(a) \delta(b)
$$

Definition (Ore Algebra)

- Let R be a ring
- Let $\sigma: R \rightarrow R$ be an endomorphism
- Let $\delta: R \rightarrow R$ be a " σ-derivation"
- Let $A=R[\partial]$ be the set of all univariate polynomials in ∂ with coefficients in R.

Definition (Ore Algebra)

- Let R be a ring
- Let $\sigma: R \rightarrow R$ be an endomorphism
- Let $\delta: R \rightarrow R$ be a " σ-derivation"
- Let $A=R[\partial]$ be the set of all univariate polynomials in ∂ with coefficients in R.
- Let + be the usual polynomial addition.

Definition (Ore Algebra)

- Let R be a ring
- Let $\sigma: R \rightarrow R$ be an endomorphism
- Let $\delta: R \rightarrow R$ be a " σ-derivation"
- Let $A=R[\partial]$ be the set of all univariate polynomials in ∂ with coefficients in R.
- Let + be the usual polynomial addition.
- Let • be the unique (noncommutative) multiplication in A which extends the multiplication in R and satisfies

$$
\partial a=\sigma(a) \partial+\delta(a) \quad \text { for all } a \in R
$$

Definition (Ore Algebra)

- Let R be a ring
- Let $\sigma: R \rightarrow R$ be an endomorphism
- Let $\delta: R \rightarrow R$ be a " σ-derivation"
- Let $A=R[\partial]$ be the set of all univariate polynomials in ∂ with coefficients in R.
- Let + be the usual polynomial addition.
- Let • be the unique (noncommutative) multiplication in A which extends the multiplication in R and satisfies

$$
\partial a=\sigma(a) \partial+\delta(a) \quad \text { for all } a \in R .
$$

- Then A together with this + and . is called an Ore Algebra.

Examples:

Examples:

- For $R=\mathbb{Q}[x], \sigma=\mathrm{id}, \delta=\frac{d}{d x}$, we have that $A=R[\partial]=\mathbb{Q}[x][\partial]$ is the ring of linear differential operators with polynomial coefficients.

Examples:

- For $R=\mathbb{Q}[x], \sigma=\mathrm{id}, \delta=\frac{d}{d x}$, we have that $A=R[\partial]=\mathbb{Q}[x][\partial]$ is the ring of linear differential operators with polynomial coefficients.
- For $R=\mathbb{Q}[n], \sigma: R \rightarrow R$ defined by $\sigma(c)=c$ for all $c \in \mathbb{Q}$ and $\sigma(n)=n+1$, and $\delta=0$, we have that $A=R[\partial]=\mathbb{Q}[n][\partial]$ is the ring of linear recurrence operators with polynomial coefficients.

Examples:

- For $R=\mathbb{Q}[x], \sigma=\mathrm{id}, \delta=\frac{d}{d x}$, we have that $A=R[\partial]=\mathbb{Q}[x][\partial]$ is the ring of linear differential operators with polynomial coefficients.
- For $R=\mathbb{Q}[n], \sigma: R \rightarrow R$ defined by $\sigma(c)=c$ for all $c \in \mathbb{Q}$ and $\sigma(n)=n+1$, and $\delta=0$, we have that $A=R[\partial]=\mathbb{Q}[n][\partial]$ is the ring of linear recurrence operators with polynomial coefficients.
- There are other examples...

Ore algebras $A=R[\partial]$ can act on an R-module F via a suitable "interpretation" of the algebra's generator ∂.

Ore algebras $A=R[\partial]$ can act on an R-module F via a suitable "interpretation" of the algebra's generator ∂.

We want the action

$$
A \times F \rightarrow F, \quad(a, f) \mapsto a \cdot f
$$

Ore algebras $A=R[\partial]$ can act on an R-module F via a suitable "interpretation" of the algebra's generator ∂.

We want the action

$$
A \times F \rightarrow F, \quad(a, f) \mapsto a \cdot f
$$

to be such that

$$
\begin{aligned}
(a+b) \cdot f & =a \cdot f+b \cdot f \\
(a b) \cdot f & =a \cdot(b \cdot f) \\
a \cdot(f+g) & =a \cdot f+a \cdot g
\end{aligned}
$$

for all $a, b \in A, f, g \in F$.

Ore algebras $A=R[\partial]$ can act on an R-module F via a suitable "interpretation" of the algebra's generator ∂.

Examples:

- The Ore algebra $A=\mathbb{Q}[x]\left[D_{x}\right]$ acts on $C^{\infty}(\mathbb{C}, \mathbb{C})$ via

$$
\begin{aligned}
& \left(a_{0}(x)+a_{1}(x) D_{x}+\cdots+a_{r}(x) D_{x}^{r}\right) \cdot f(z) \\
& \quad=a_{0}(z) f(z)+a_{1}(z) f^{\prime}(z)+\cdots+a_{r}(z) f^{(r)}(z)
\end{aligned}
$$

Ore algebras $A=R[\partial]$ can act on an R-module F via a suitable "interpretation" of the algebra's generator ∂.

Examples:

- The Ore algebra $A=\mathbb{Q}[x]\left[D_{x}\right]$ acts on $C^{\infty}(\mathbb{C}, \mathbb{C})$ via

$$
\begin{aligned}
& \left(a_{0}(x)+a_{1}(x) D_{x}+\cdots+a_{r}(x) D_{x}^{r}\right) \cdot f(z) \\
& \quad=a_{0}(z) f(z)+a_{1}(z) f^{\prime}(z)+\cdots+a_{r}(z) f^{(r)}(z)
\end{aligned}
$$

- The Ore algebra $A=\mathbb{Q}[n]\left[E_{n}\right]$ acts on the space $\mathbb{C}^{\mathbb{N}}$ via

$$
\begin{aligned}
& \left(a_{0}(n)+a_{1}(n) E_{n}+\cdots+a_{r}(n) E_{n}^{r}\right) \cdot f(n) \\
& \quad=a_{0}(n) f(n)+a_{1}(n) f(n+1)+\cdots+a_{r}(n) f(n+r)
\end{aligned}
$$

- The annihilator of $f \in F$ is defined as

$$
\operatorname{ann}(f):=\{a \in R[\partial]: a \cdot f=0\} .
$$

It is a subset of $R[\partial]$. Its elements are called annihilating operators for f.

- The solution space of $a \in R[\partial]$ is defined as

$$
V(a):=\{f \in F: a \cdot f=0\} .
$$

It is a subset of F. Its elements are called solutions of a.

Want: Obtain information about f by doing computations in $R[\partial]$.

Want: Obtain information about f by doing computations in $R[\partial]$.
Don't want: do these computations by hand.

Want: Obtain information about f by doing computations in $R[\partial]$.
Don't want: do these computations by hand.
Instead: have them done by a computer algebra package.

Ore Polynomials in Sage

Manuel Kauers

joint work with
Maximilian Jaroschek and Fredrik Johansson RISC, JKU.

Ore Polynomials ind Sage/ elsewhere

Manuel Kauers

joint work with
Maximilian Jaroschek and Fredrik Johansson RISC, JKU.

- For Mathematica:
- univariate: Mallinger's package
- multivariate: Koutschan's package.
- For Maple:
- univariate: gfun by Salvy/Zimmermann or OreTools by Abramov et al.
- multivariate: mgfun by Chyzak

Ore Polynomials ind Sage/ elsewhere

Manuel Kauers

joint work with
Maximilian Jaroschek and Fredrik Johansson RISC, JKU.

Ore Polynomials in Sage

Manuel Kauers

joint work with
Maximilian Jaroschek and Fredrik Johansson RISC, JKU.

Key Features:

- Construction of Ore algebras and Ore polynomials
- GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing

Key Features:

- Construction of Ore algebras and Ore polynomials
- GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing

Key Features:

- Construction of Ore algebras and Ore polynomials
- GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing

Key Features:

- Construction of Ore algebras and Ore polynomials
- GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing

Runtime for computing the least common left multiple of two random operators from $\mathbb{Z}[x]\left[D_{x}\right]$ of order n and degree $2 n$

- in Mathematica (i.e., Koutschan's code)
- in Sage (i.e., our code)

Key Features:

- Construction of Ore algebras and Ore polynomials
- GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing

Key Features:

- Construction of Ore algebras and Ore polynomials
- GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing

Key Features:

- Construction of Ore algebras and Ore polynomials
- GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing

Key Features:

- Construction of Ore algebras and Ore polynomials
- GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing
- Built-in code for polynomial matrices

A typical linear algebra problem arising in this context: compute a nullspace vector for the following matrix over $\mathbb{Z}[x]$:

Degrees:

0	200	400	600	800	1000

A typical linear algebra problem arising in this context: compute a nullspace vector for the following matrix over $\mathbb{Z}[x]$:

Total matrix size (number of monomials) during the elimination:

green: naive code, blue: our code, red: Axel Riese's Mathematica code.

Key Features:

- Construction of Ore algebras and Ore polynomials
- GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing
- Built-in code for polynomial matrices

To do:

- operator factorization and fast arithmetic
- arbitrary precision evaluation of analytic D-finite functions
- construction of an annihilator from an expression
- the multivariate case, incl. Gröbner bases and creative telescoping.

