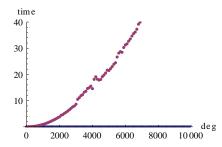
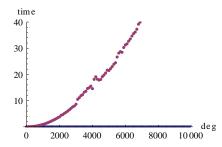
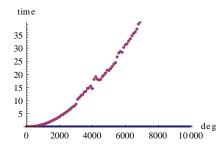
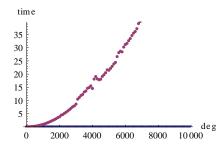
Ore Polynomials in Sage

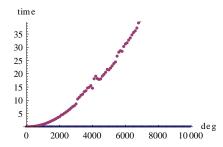
Manuel Kauers

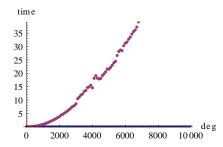

joint work with Maximilian Jaroschek and Fredrik Johansson RISC, JKU.

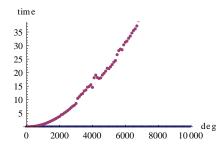

Ore Polynomials in Sage

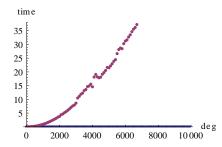

Manuel Kauers

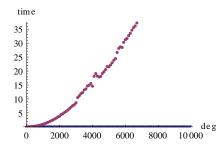

joint work with Maximilian Jaroschek and Fredrik Johansson RISC, JKU.

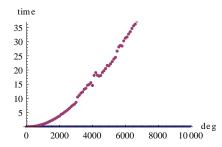

	Sage	Mathematica
computation speed	:	
programming speed	::	:

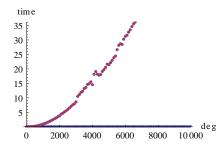


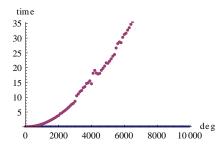


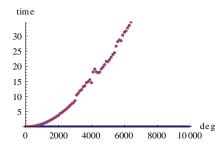


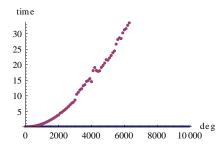


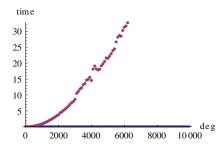


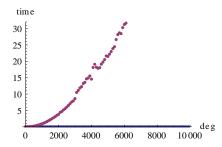


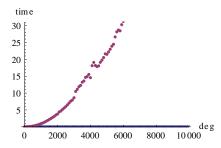


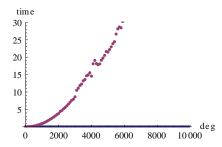


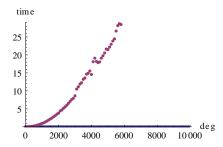


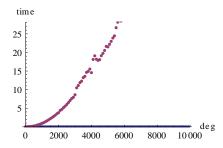


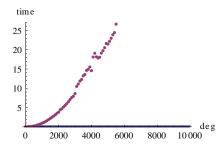


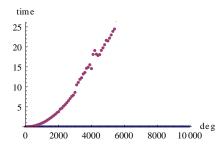


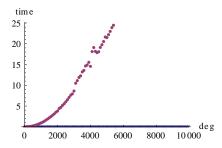


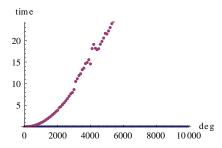


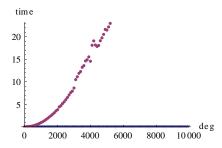


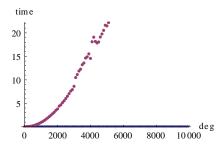


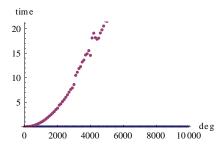


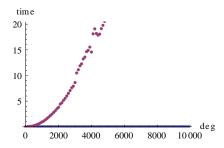


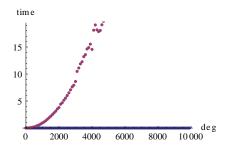


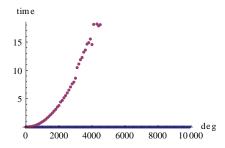


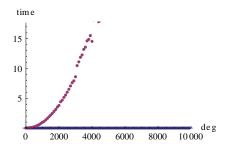


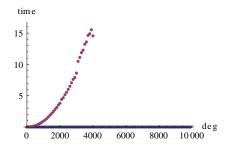


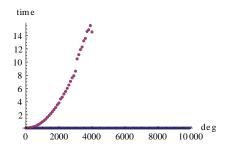




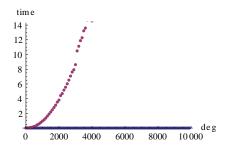


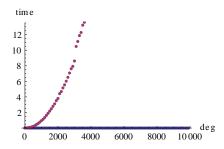


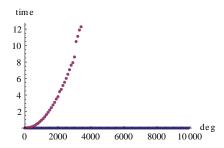


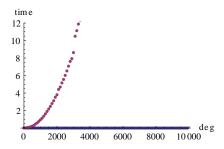


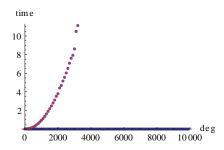


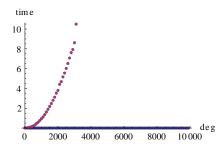


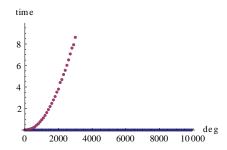


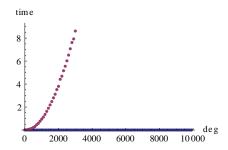


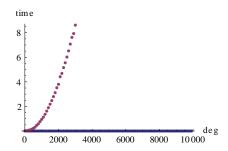


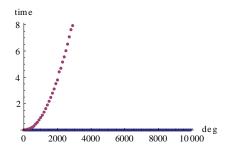


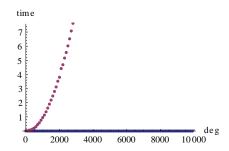


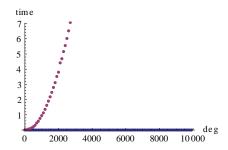


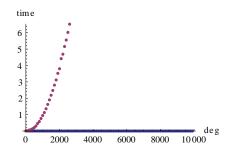


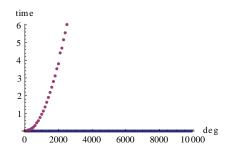


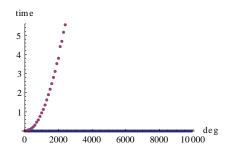


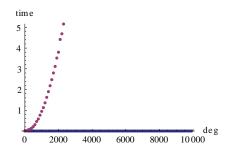


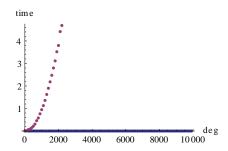


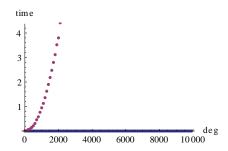


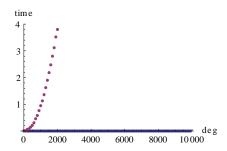


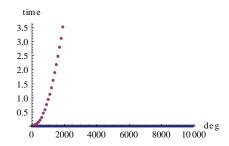


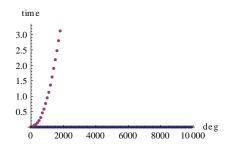


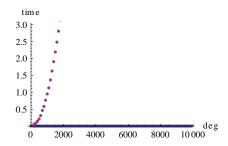


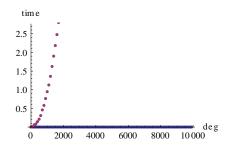


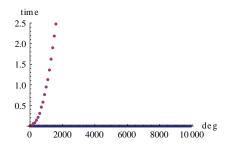


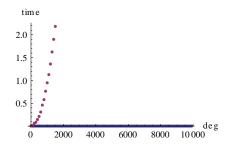


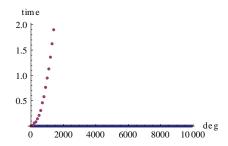


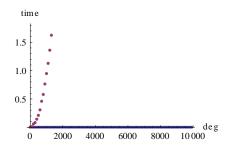


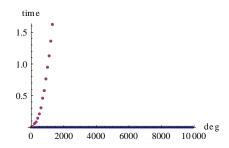


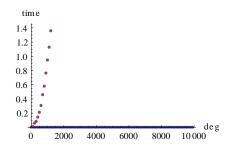


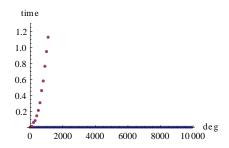


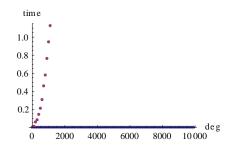


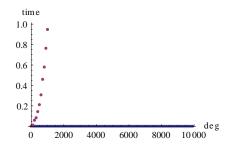


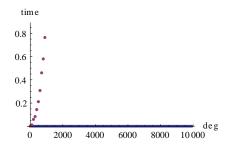


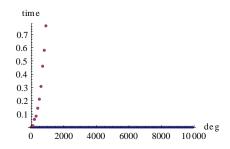


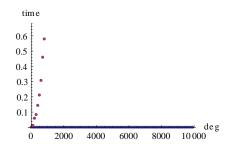


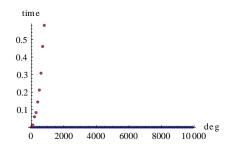


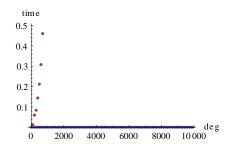


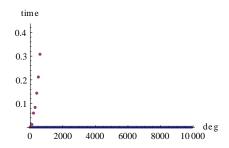


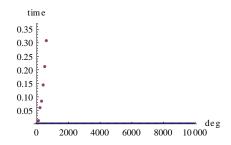


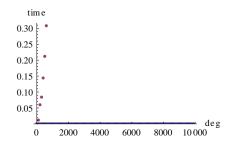


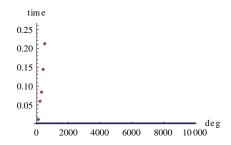


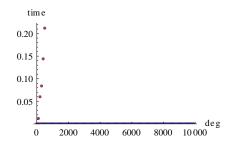


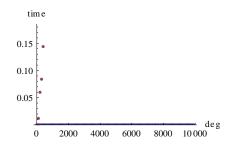


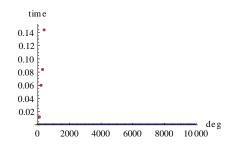


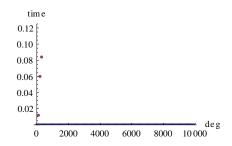


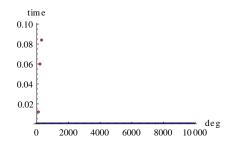


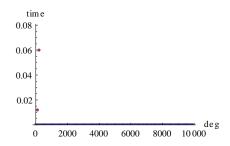


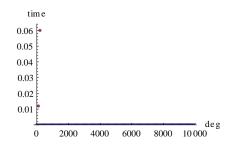


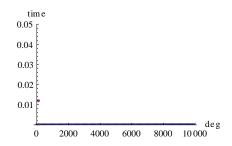


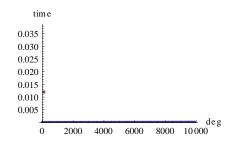


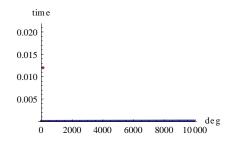


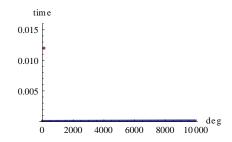


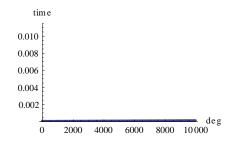


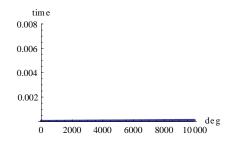


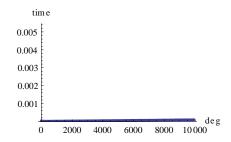


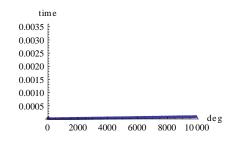


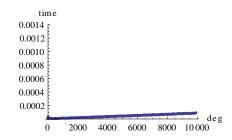


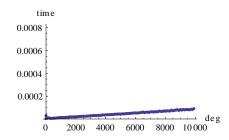


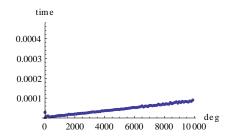


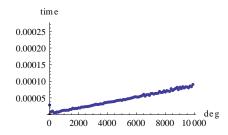


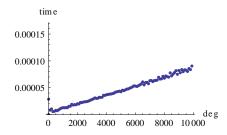


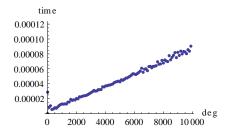


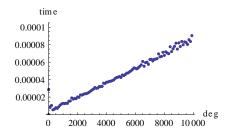


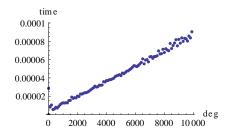


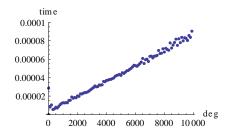


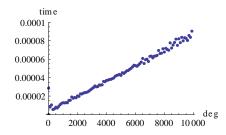


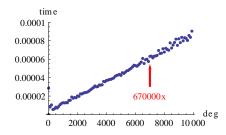


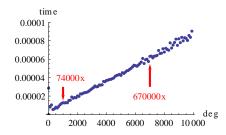












A Programming Speed Comparison

A Ptøgtahnhing/\$øeed Comparison Code Length

A P/øg/am/ming/\$øeed Comparison Code Length

Find a polynomial solution of prescribed degree of a given recurrence.

A Prøgramming/\$øeed Comparison Code Length

Find a polynomial solution of prescribed degree of a given recurrence.

A Prøgramming/\$øeed Comparison Code Length

Find a polynomial solution of prescribed degree of a given recurrence.

<pre>f polysolve[rec_,f_[n_],deg_] := Block[{a,c}, a=Sum[c[i]n^i,{i,0,deg}]; * f *DeleteCases[Flatten[a /. Solve[Thread[CoefficientLijst[rec /. f[n+i]:* f *>(a/.n->n+i), n]==0]] /. ({c[#]->1}&/@Range[0,deg]) /. c[]->1], 0]] f </pre>
f <>(a/.n->n+i), n]==0]] /. ({c[#]->1}\$/@Range[0,deg]) /. c[]->1], 0]] f f
f
F .
F
F F
n n
1
-U:**- x.m All L2 (mathematica-m)

Ore Polynomials in Sage

Manuel Kauers

joint work with Maximilian Jaroschek and Fredrik Johansson RISC, JKU.

Ore Polynomials in Sage

Manuel Kauers

joint work with Maximilian Jaroschek and Fredrik Johansson RISC, JKU. ▶ Idea: Represent a "function" or a "sequence" *f* by an equation of which it is a solution.

- ▶ Idea: Represent a "function" or a "sequence" *f* by an equation of which it is a solution.
- ▶ Represent an "equation" for *f* by an "operator" which maps this function to zero.

- ▶ Idea: Represent a "function" or a "sequence" *f* by an equation of which it is a solution.
- ▶ Represent an "equation" for *f* by an "operator" which maps this function to zero.
- Examples:

•
$$e^{2x}$$
 is killed by $L = D - 2$, where $D = \frac{d}{dx}$.

- ▶ Idea: Represent a "function" or a "sequence" *f* by an equation of which it is a solution.
- ▶ Represent an "equation" for *f* by an "operator" which maps this function to zero.
- Examples:

•
$$e^{2x}$$
 is killed by $L = D - 2$, where $D = \frac{d}{dx}$.

▶
$$2^n$$
 is killed by $L = E - 2$, where $E \equiv n \rightsquigarrow n + 1$

- ▶ Idea: Represent a "function" or a "sequence" *f* by an equation of which it is a solution.
- ▶ Represent an "equation" for *f* by an "operator" which maps this function to zero.
- ► Examples:

•
$$\log(1-\sqrt{x})$$
 is killed by

$$L = 2x(x-1)D^3 + (7x-3)D^2 + 3D.$$

- ▶ Idea: Represent a "function" or a "sequence" *f* by an equation of which it is a solution.
- ▶ Represent an "equation" for *f* by an "operator" which maps this function to zero.
- Examples:

•
$$\log(1-\sqrt{x})$$
 is killed by

$$L = 2x(x-1)D^3 + (7x-3)D^2 + 3D.$$

•
$$\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{i+k}$$
 is killed by

$$L = (2n+7)(n+4)E^3 - (6n^2 - 41n - 71)E^2 + (6n^2 + 37n + 58)E - (n+3)(2n+5)$$

► These operators are called **Ore Polynomials.**

- ► These operators are called **Ore Polynomials.**
- ► They live in an **Ore Algebra**.

- ► These operators are called **Ore Polynomials**.
- ► They live in an **Ore Algebra**.
- ► They act on a "Function Space."

 \blacktriangleright Let R be a ring

- Let R be a ring
- Let $\sigma \colon R \to R$ be an endomorphism, i.e.,

$$\sigma(a+b) = \sigma(a) + \sigma(b) \quad \text{and} \quad \sigma(ab) = \sigma(a)\sigma(b)$$

- \blacktriangleright Let R be a ring
- Let $\sigma \colon R \to R$ be an endomorphism
- \blacktriangleright Let $\delta\colon R\to R$ be a " $\sigma\text{-derivation"}$, i.e.,

$$\delta(a+b) = \delta(a) + \delta(b) \quad \text{and} \quad \delta(ab) = \delta(a)b + \sigma(a)\delta(b)$$

- ▶ Let R be a ring
- Let $\sigma \colon R \to R$ be an endomorphism
- Let $\delta \colon R \to R$ be a " σ -derivation"
- ▶ Let $A = R[\partial]$ be the set of all univariate polynomials in ∂ with coefficients in R.

- ▶ Let R be a ring
- Let $\sigma \colon R \to R$ be an endomorphism
- Let $\delta \colon R \to R$ be a " σ -derivation"
- ▶ Let A = R[∂] be the set of all univariate polynomials in ∂ with coefficients in R.
- ▶ Let + be the usual polynomial addition.

- ▶ Let R be a ring
- Let $\sigma \colon R \to R$ be an endomorphism
- Let $\delta \colon R \to R$ be a " σ -derivation"
- Let A = R[∂] be the set of all univariate polynomials in ∂ with coefficients in R.
- ▶ Let + be the usual polynomial addition.
- ► Let · be the unique (noncommutative) multiplication in A which extends the multiplication in R and satisfies

$$\partial a = \sigma(a)\partial + \delta(a)$$
 for all $a \in R$.

- Let R be a ring
- Let $\sigma \colon R \to R$ be an endomorphism
- Let $\delta \colon R \to R$ be a " σ -derivation"
- ▶ Let A = R[∂] be the set of all univariate polynomials in ∂ with coefficients in R.
- ▶ Let + be the usual polynomial addition.
- ► Let · be the unique (noncommutative) multiplication in A which extends the multiplication in R and satisfies

$$\partial a = \sigma(a)\partial + \delta(a)$$
 for all $a \in R$.

• Then A together with this + and \cdot is called an **Ore Algebra**.

 For R = Q[x], σ = id, δ = d/dx, we have that A = R[∂] = Q[x][∂] is the ring of linear differential operators with polynomial coefficients.

- For R = Q[x], σ = id, δ = d/dx, we have that A = R[∂] = Q[x][∂] is the ring of linear differential operators with polynomial coefficients.
- ▶ For $R = \mathbb{Q}[n]$, $\sigma: R \to R$ defined by $\sigma(c) = c$ for all $c \in \mathbb{Q}$ and $\sigma(n) = n + 1$, and $\delta = 0$, we have that $A = R[\partial] = \mathbb{Q}[n][\partial]$ is the ring of linear recurrence operators with polynomial coefficients.

- For R = Q[x], σ = id, δ = d/dx, we have that A = R[∂] = Q[x][∂] is the ring of linear differential operators with polynomial coefficients.
- For R = Q[n], σ: R → R defined by σ(c) = c for all c ∈ Q and σ(n) = n + 1, and δ = 0, we have that A = R[∂] = Q[n][∂] is the ring of linear recurrence operators with polynomial coefficients.
- There are other examples...

We want the action

A imes F o F, $(a, f) \mapsto a \cdot f$

We want the action

$$A \times F \to F$$
, $(a, f) \mapsto a \cdot f$

to be such that

$$(a+b) \cdot f = a \cdot f + b \cdot f$$
$$(ab) \cdot f = a \cdot (b \cdot f)$$
$$a \cdot (f+g) = a \cdot f + a \cdot g$$

for all $a, b \in A$, $f, g \in F$.

Examples:

▶ The Ore algebra $A = \mathbb{Q}[x][D_x]$ acts on $C^{\infty}(\mathbb{C}, \mathbb{C})$ via

$$(a_0(x) + a_1(x)D_x + \dots + a_r(x)D_x^r) \cdot f(z)$$

= $a_0(z)f(z) + a_1(z)f'(z) + \dots + a_r(z)f^{(r)}(z).$

Examples:

▶ The Ore algebra $A = \mathbb{Q}[x][D_x]$ acts on $C^{\infty}(\mathbb{C}, \mathbb{C})$ via

$$(a_0(x) + a_1(x)D_x + \dots + a_r(x)D_x^r) \cdot f(z)$$

= $a_0(z)f(z) + a_1(z)f'(z) + \dots + a_r(z)f^{(r)}(z).$

▶ The Ore algebra $A = \mathbb{Q}[n][E_n]$ acts on the space $\mathbb{C}^{\mathbb{N}}$ via

 $(a_0(n) + a_1(n)E_n + \dots + a_r(n)E_n^r) \cdot f(n)$ $= a_0(n)f(n) + a_1(n)f(n+1) + \dots + a_r(n)f(n+r).$ • The annihilator of $f \in F$ is defined as

$$\operatorname{ann}(f) := \left\{ a \in R[\partial] : a \cdot f = 0 \right\}.$$

It is a subset of $R[\partial]$. Its elements are called *annihilating* operators for f.

• The solution space of $a \in R[\partial]$ is defined as

$$V(\boldsymbol{a}) := \left\{ f \in \boldsymbol{F} : \boldsymbol{a} \cdot \boldsymbol{f} = \boldsymbol{0} \right\}.$$

It is a subset of F. Its elements are called *solutions* of a.

Want: Obtain information about f by doing computations in $R[\partial]$.

Want: Obtain information about f by doing computations in $R[\partial]$. Don't want: do these computations by hand. Want: Obtain information about f by doing computations in $R[\partial]$. Don't want: do these computations by hand.

Instead: have them done by a computer algebra package.

Ore Polynomials in Sage

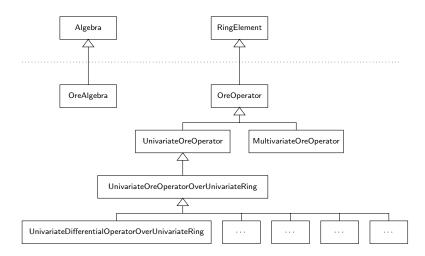
Manuel Kauers

Ore Polynomials in S/g/ge/ elsewhere

Manuel Kauers

- ► For Mathematica:
 - univariate: Mallinger's package
 - multivariate: Koutschan's package.
- ► For Maple:
 - univariate: gfun by Salvy/Zimmermann or OreTools by Abramov et al.
 - multivariate: mgfun by Chyzak

Ore Polynomials in S/g/ge/ elsewhere

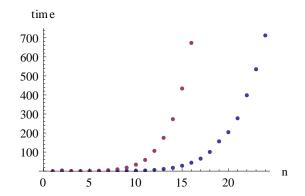

Manuel Kauers

Ore Polynomials in Sage

Manuel Kauers

- Construction of Ore algebras and Ore polynomials
- ► GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing

- Construction of Ore algebras and Ore polynomials
- ► GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing

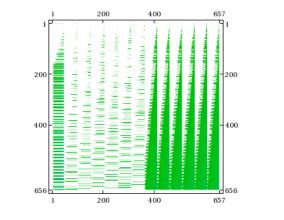


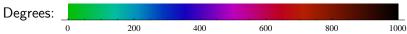
- Construction of Ore algebras and Ore polynomials
- ► GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing

- Construction of Ore algebras and Ore polynomials
- ► GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing

Runtime for computing the least common left multiple of two random operators from $\mathbb{Z}[x][D_x]$ of order n and degree 2n

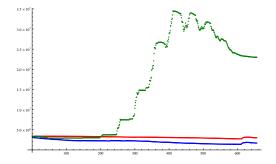
- ▶ in Mathematica (i.e., Koutschan's code)
- ▶ in Sage (i.e., our code)


- Construction of Ore algebras and Ore polynomials
- ► GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing


- Construction of Ore algebras and Ore polynomials
- ► GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing

- Construction of Ore algebras and Ore polynomials
- ► GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing

- Construction of Ore algebras and Ore polynomials
- ► GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing
- Built-in code for polynomial matrices


A typical linear algebra problem arising in this context: compute a nullspace vector for the following matrix over $\mathbb{Z}[x]$:

A typical linear algebra problem arising in this context: compute a nullspace vector for the following matrix over $\mathbb{Z}[x]$:

Total matrix size (number of monomials) during the elimination:

green: naive code, blue: our code, red: Axel Riese's Mathematica code.

- Construction of Ore algebras and Ore polynomials
- ► GCRD, Closure properties, Desingularization
- Various types of solutions
- Guessing
- Built-in code for polynomial matrices

To do:

- operator factorization and fast arithmetic
- arbitrary precision evaluation of analytic D-finite functions
- construction of an annihilator from an expression
- the multivariate case, incl. Gröbner bases and creative telescoping.