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I Idea: Represent a “function” or a “sequence” f by an
equation of which it is a solution.

I Represent an “equation” for f by an “operator” which maps
this function to zero.

I Examples:

I

e2x is killed by L = D − 2, where D = d
dx .log(1−

√
x) is killed by

L = 2x(x− 1)D3 + (7x− 3)D2 + 3D.

I

2n is killed by L = E − 2, where E ≡ n n+ 1

n∑
k=1

k∑
i=1

1

i+ k
is killed by

L = (2n+ 7)(n+ 4)E3 − (6n2 − 41n− 71)E2

+ (6n2 + 37n+ 58)E − (n+ 3)(2n+ 5)

6
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I These operators are called Ore Polynomials.

I They live in an Ore Algebra.

I They act on a “Function Space.”
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Definition (Ore Algebra)

I Let R be a ring

I Let σ : R→ R be an endomorphism

, i.e.,

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b)

I Let δ : R→ R be a “σ-derivation”

, i.e.,

δ(a+ b) = δ(a) + δ(b) and δ(ab) = δ(a)b+ σ(a)δ(b)

I Let A = R[∂] be the set of all univariate polynomials in ∂
with coefficients in R.

I Let + be the usual polynomial addition.

I Let · be the unique (noncommutative) multiplication in A
which extends the multiplication in R and satisfies

∂a = σ(a)∂ + δ(a) for all a ∈ R.

I Then A together with this + and · is called an Ore Algebra.

8



Definition (Ore Algebra)

I Let R be a ring

I Let σ : R→ R be an endomorphism

, i.e.,

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b)

I Let δ : R→ R be a “σ-derivation”

, i.e.,

δ(a+ b) = δ(a) + δ(b) and δ(ab) = δ(a)b+ σ(a)δ(b)

I Let A = R[∂] be the set of all univariate polynomials in ∂
with coefficients in R.

I Let + be the usual polynomial addition.

I Let · be the unique (noncommutative) multiplication in A
which extends the multiplication in R and satisfies

∂a = σ(a)∂ + δ(a) for all a ∈ R.

I Then A together with this + and · is called an Ore Algebra.

8



Definition (Ore Algebra)

I Let R be a ring

I Let σ : R→ R be an endomorphism, i.e.,

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b)

I Let δ : R→ R be a “σ-derivation”

, i.e.,

δ(a+ b) = δ(a) + δ(b) and δ(ab) = δ(a)b+ σ(a)δ(b)

I Let A = R[∂] be the set of all univariate polynomials in ∂
with coefficients in R.

I Let + be the usual polynomial addition.

I Let · be the unique (noncommutative) multiplication in A
which extends the multiplication in R and satisfies

∂a = σ(a)∂ + δ(a) for all a ∈ R.

I Then A together with this + and · is called an Ore Algebra.

8



Definition (Ore Algebra)

I Let R be a ring

I Let σ : R→ R be an endomorphism

, i.e.,

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b)

I Let δ : R→ R be a “σ-derivation”, i.e.,

δ(a+ b) = δ(a) + δ(b) and δ(ab) = δ(a)b+ σ(a)δ(b)

I Let A = R[∂] be the set of all univariate polynomials in ∂
with coefficients in R.

I Let + be the usual polynomial addition.

I Let · be the unique (noncommutative) multiplication in A
which extends the multiplication in R and satisfies

∂a = σ(a)∂ + δ(a) for all a ∈ R.

I Then A together with this + and · is called an Ore Algebra.

8



Definition (Ore Algebra)

I Let R be a ring

I Let σ : R→ R be an endomorphism

, i.e.,

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b)

I Let δ : R→ R be a “σ-derivation”

, i.e.,

δ(a+ b) = δ(a) + δ(b) and δ(ab) = δ(a)b+ σ(a)δ(b)

I Let A = R[∂] be the set of all univariate polynomials in ∂
with coefficients in R.

I Let + be the usual polynomial addition.

I Let · be the unique (noncommutative) multiplication in A
which extends the multiplication in R and satisfies

∂a = σ(a)∂ + δ(a) for all a ∈ R.

I Then A together with this + and · is called an Ore Algebra.

8



Definition (Ore Algebra)

I Let R be a ring

I Let σ : R→ R be an endomorphism

, i.e.,

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b)

I Let δ : R→ R be a “σ-derivation”

, i.e.,

δ(a+ b) = δ(a) + δ(b) and δ(ab) = δ(a)b+ σ(a)δ(b)

I Let A = R[∂] be the set of all univariate polynomials in ∂
with coefficients in R.

I Let + be the usual polynomial addition.

I Let · be the unique (noncommutative) multiplication in A
which extends the multiplication in R and satisfies

∂a = σ(a)∂ + δ(a) for all a ∈ R.

I Then A together with this + and · is called an Ore Algebra.

8



Definition (Ore Algebra)

I Let R be a ring

I Let σ : R→ R be an endomorphism

, i.e.,

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b)

I Let δ : R→ R be a “σ-derivation”

, i.e.,

δ(a+ b) = δ(a) + δ(b) and δ(ab) = δ(a)b+ σ(a)δ(b)

I Let A = R[∂] be the set of all univariate polynomials in ∂
with coefficients in R.

I Let + be the usual polynomial addition.

I Let · be the unique (noncommutative) multiplication in A
which extends the multiplication in R and satisfies

∂a = σ(a)∂ + δ(a) for all a ∈ R.

I Then A together with this + and · is called an Ore Algebra.

8



Definition (Ore Algebra)

I Let R be a ring

I Let σ : R→ R be an endomorphism

, i.e.,

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b)

I Let δ : R→ R be a “σ-derivation”

, i.e.,

δ(a+ b) = δ(a) + δ(b) and δ(ab) = δ(a)b+ σ(a)δ(b)

I Let A = R[∂] be the set of all univariate polynomials in ∂
with coefficients in R.

I Let + be the usual polynomial addition.

I Let · be the unique (noncommutative) multiplication in A
which extends the multiplication in R and satisfies

∂a = σ(a)∂ + δ(a) for all a ∈ R.

I Then A together with this + and · is called an Ore Algebra.

8



Examples:

I For R = Q[x], σ = id, δ = d
dx , we have that

A = R[∂] = Q[x][∂] is the ring of linear differential operators
with polynomial coefficients.

I For R = Q[n], σ : R→ R defined by σ(c) = c for all c ∈ Q
and σ(n) = n+ 1, and δ = 0, we have that
A = R[∂] = Q[n][∂] is the ring of linear recurrence operators
with polynomial coefficients.

I There are other examples. . .
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Ore algebras A = R[∂] can act on an R-module F via a suitable
“interpretation” of the algebra’s generator ∂.
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“interpretation” of the algebra’s generator ∂.

We want the action

A× F → F , (a, f) 7→ a · f

to be such that

(a+ b) · f = a · f + b · f
(ab) · f = a · (b · f)

a · (f + g) = a · f + a · g

for all a, b ∈ A, f, g ∈ F .

10



Ore algebras A = R[∂] can act on an R-module F via a suitable
“interpretation” of the algebra’s generator ∂.

We want the action

A× F → F , (a, f) 7→ a · f

to be such that

(a+ b) · f = a · f + b · f
(ab) · f = a · (b · f)

a · (f + g) = a · f + a · g

for all a, b ∈ A, f, g ∈ F .

10



Ore algebras A = R[∂] can act on an R-module F via a suitable
“interpretation” of the algebra’s generator ∂.

Examples:

I The Ore algebra A = Q[x][Dx] acts on C∞(C,C) via

(a0(x) + a1(x)Dx + · · ·+ ar(x)D
r
x) · f(z)

= a0(z)f(z) + a1(z)f
′(z) + · · ·+ ar(z)f

(r)(z).

I The Ore algebra A = Q[n][En] acts on the space CN via

(a0(n) + a1(n)En + · · ·+ ar(n)E
r
n) · f(n)

= a0(n)f(n) + a1(n)f(n+ 1) + · · ·+ ar(n)f(n+ r).
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I The annihilator of f ∈ F is defined as

ann(f) :=
{
a ∈ R[∂] : a · f = 0

}
.

It is a subset of R[∂]. Its elements are called annihilating
operators for f .

I The solution space of a ∈ R[∂] is defined as

V (a) :=
{
f ∈ F : a · f = 0

}
.

It is a subset of F . Its elements are called solutions of a.
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Want: Obtain information about f by doing computations in R[∂].

Don’t want: do these computations by hand.

Instead: have them done by a computer algebra package.
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Ore Polynomials

/////// elsewhere

in Sage

Manuel Kauers

joint work with
Maximilian Jaroschek and Fredrik Johansson
RISC, JKU.
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I For Mathematica:
I univariate: Mallinger’s package
I multivariate: Koutschan’s package.

I For Maple:
I univariate: gfun by Salvy/Zimmermann

or OreTools by Abramov et al.
I multivariate: mgfun by Chyzak
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Key Features:

I Construction of Ore algebras and Ore polynomials

I GCRD, Closure properties, Desingularization

I Various types of solutions

I Guessing

I Built-in code for polynomial matrices

16



Key Features:

I Construction of Ore algebras and Ore polynomials

I GCRD, Closure properties, Desingularization

I Various types of solutions

I Guessing

I Built-in code for polynomial matrices

16



Algebra RingElement

OreAlgebra OreOperator

UnivariateOreOperator MultivariateOreOperator

UnivariateOreOperatorOverUnivariateRing

UnivariateDifferentialOperatorOverUnivariateRing . . . . . . . . . . . .
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Runtime for computing the least common left multiple of two
random operators from Z[x][Dx] of order n and degree 2n

I in Mathematica (i.e., Koutschan’s code)

I in Sage (i.e., our code)

0 5 10 15 20
n

100

200

300

400

500

600

700

time
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A typical linear algebra problem arising in this context: compute a
nullspace vector for the following matrix over Z[x]:

Degrees:
0 200 400 600 800 1000
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A typical linear algebra problem arising in this context: compute a
nullspace vector for the following matrix over Z[x]:

Total matrix size (number of monomials) during the elimination:

100 200 300 400 500 600

5.0 ´ 106

1.0 ´ 107

1.5 ´ 107

2.0 ´ 107

2.5 ´ 107

3.0 ´ 107

3.5 ´ 107

green: naive code, blue: our code, red: Axel Riese’s Mathematica
code.
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To do:

I operator factorization and fast arithmetic

I arbitrary precision evaluation of analytic D-finite functions

I construction of an annihilator from an expression

I the multivariate case, incl. Gröbner bases and creative
telescoping.
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