Restricted Lattice walks in Three Dimensions

Manuel Kauers

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

joint work with Alin Bostan, Mireille Bousquet-Mélou, and Stephen Melczer

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j).

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

Example: For the step set

we have

$$a(x, y, t) = 1 + xy t + (x + y^{2} + x^{2}y^{2})t^{2} + (2y + 2x^{2}y + 2xy^{3} + x^{3}y^{3})t^{3} + \cdots$$

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

Example: For the step set

$$\begin{aligned} a(x, y, t) &= 1 + xy t \\ &+ (x + y^2 + x^2 y^2) t^2 \\ &+ (2y + 2x^2 y + 2xy^3 + x^3 y^3) t^3 \\ &+ \cdots \end{aligned}$$

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

Example: For the step set

$$\begin{aligned} a(x, y, t) &= 1 + (x + xy) t \\ &+ (2 + x^2 + y + 2x^2y + x^2y^2)t^2 \\ &+ (5x + x^3 + 6xy + 3x^3y + 2xy^2 + 3x^3y^2 + x^3y^3)t^3 \\ &+ \cdots \end{aligned}$$

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function. Who cares?

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

Who cares?

At least:

Bernadi, Bostan, Bousquet-Mélou, Cori, Denisov, Dulucq, Fayolle, Gessel, Gouyou-Beauchamps, Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Krattenthaler, Kurkova, Kreweras, Melczer, Mishna, Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

Who cares?

At least:

Bernadi, Bostan, Bousquet-Mélou, Cori, Denisov, Dulucq, Fayolle, Gessel, Gouyou-Beauchamps, Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Krattenthaler, Kurkova, Kreweras, Melczer, Mishna, Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

Note:

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

Note:

• a(1,1,t) counts the number of walks with arbitrary endpoint.

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

Note:

- a(1,1,t) counts the number of walks with arbitrary endpoint.
- a(0,0,t) counts the number of walks returning to the origin.

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

Question:

How does the nature of a(x, y, t) depend on the step set?

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

More precisely: For which step sets is a(x, y, t) D-finite (or even algebraic), and for which step sets is it not D-finite?

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

More precisely: For which step sets is a(x, y, t) D-finite (or even algebraic), and for which step sets is it not D-finite?

Recall: a is D-finite : \iff

$$p_0 a + p_1 \frac{d}{dt}a + \dots + p_r \frac{d^r}{dt^r}a = 0$$

for some polynomials p_0, \ldots, p_r in x, y, t, not all zero.

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

More precisely: For which step sets is a(x, y, t) D-finite (or even algebraic), and for which step sets is it not D-finite?

Recall: a is D-finite : \iff

$$(p_0 + p_1 D_t + p_2 D_t^2 + \dots + p_r D_t^r) \cdot a = 0$$

for some polynomials p_0, \ldots, p_r in x, y, t, not all zero.

Let $a_{n,i,j}$ be the number of walks of length n with end point (i, j). Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

More precisely: For which step sets is a(x, y, t) D-finite (or even algebraic), and for which step sets is it not D-finite?

Recall: a is algebraic : \iff

$$p_0 + p_1 a + p_2 a^2 + \dots + p_r a^r = 0$$

for some polynomials p_0, \ldots, p_r in x, y, t, not all zero.

$$2^{3^2 - 1} = 256$$

$$\frac{1}{2^{3^2-1}} = 256$$

$$\frac{1}{2^{3^2-1}} = 256$$

How many of them are D-finite?

How many of them are not D-finite?

How many of them are D-finite?

How many of them are not D-finite?

What does it depend on?

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Example: For the step set

 $a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Example: For the step set we obtain

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

Example: For the step set we obtain

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

Example: For the step set we obtain

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

Example: For the step set

ın

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

Example: For the step set we obtain

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

Example: For the step set we obtain

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

Example: For the step set

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

Example: For the step set above we obtain

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

This functional equation uniquely describes a(x, y, t).

Example: For the step set

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

Example: For the step set above we obtain

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

This functional equation uniquely describes a(x, y, t).

All properties of a(x, y, t) must somehow follow from it.

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

These two maps together with composition generate a group, the so-called group of the model.

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

These two maps together with composition generate a group, the so-called group of the model.

For some step sets this group is finite, for others it is infinite.

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

Here, $G = \{1, \phi, \psi, \phi\psi\}$ is finite.

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) - \phi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

- $\phi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$
- $\psi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

- $\phi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$
- $\psi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$
+ $\phi \psi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\begin{split} K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \\ - \phi \Big(\, K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \Big) \\ - \psi \Big(\, K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \Big) \\ + \phi \psi \Big(\, K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \Big) \end{split}$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\begin{split} K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \\ - \phi \Big(\, K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \Big) \\ - \psi \Big(\, K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \Big) \\ + \phi \psi \Big(\, K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \Big) \end{split}$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\begin{split} K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \\ - \phi \Big(\, K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \Big) \\ - \psi \Big(\, K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \Big) \\ + \phi \psi \Big(\, K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \Big) \end{split}$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\begin{split} K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \\ - \phi \Big(\, K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \Big) \\ - \psi \Big(\, K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \Big) \\ + \phi \psi \Big(\, K \, xy \, a(x, y, t) &= xy - xt \, a(x, 0, t) - y^2 t \, a(0, y, t) \Big) \end{split}$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

- $\phi (K xy a(x, y, t)) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$
- $\psi (K xy a(x, y, t)) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$
+ $\phi \psi (K xy a(x, y, t)) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

- $\phi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$
- $\psi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$
+ $\phi \psi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$

$$\Rightarrow xy \, a(x, y, t) = \, [x^{>}][y^{>}] \, \frac{xy - \frac{1}{x}y - x\frac{1}{1 + \frac{1}{x}}\frac{1}{y} + \frac{1}{x}\frac{1}{1 + \frac{1}{x}}\frac{1}{y}}{1 - (\frac{y}{x} + \frac{1}{y} + xy)t}$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

- $\phi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$
- $\psi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$
+ $\phi \psi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$

$$\Rightarrow xy \, a(x, y, t) = [x^{>}][y^{>}] \underbrace{\frac{xy - \frac{1}{x}y - x\frac{1}{1 + \frac{1}{x}}\frac{1}{y} + \frac{1}{x}\frac{1}{1 + \frac{1}{x}}\frac{1}{y}}{1 - (\frac{y}{x} + \frac{1}{y} + xy)t}}_{\text{rational}}$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

- $\phi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$
- $\psi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$
+ $\phi \psi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$

$$\Rightarrow xy \, a(x, y, t) = [x^{>}][y^{>}] \underbrace{\frac{xy - \frac{1}{x}y - x\frac{1}{1 + \frac{1}{x}}\frac{1}{y} + \frac{1}{x}\frac{1}{1 + \frac{1}{x}}\frac{1}{y}}{1 - (\frac{y}{x} + \frac{1}{y} + xy)t}}_{\text{rational}}_{\text{P finite}}$$

• if the group is infinite

- if the group is infinite
- ullet if the right hand side adds up to 0

- if the group is infinite
- if the right hand side adds up to $\boldsymbol{0}$
- if several terms on the left contain monomials with positive exponents

- if the group is infinite
- if the right hand side adds up to $\boldsymbol{0}$
- if several terms on the left contain monomials with positive exponents

What to do then?

- if the group is infinite
- if the right hand side adds up to $\boldsymbol{0}$
- if several terms on the left contain monomials with positive exponents

What to do then? Try using computer algebra, as follows.

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right) a(x, y, t) = 1 - \frac{t}{y} a(x, 0, t) - \frac{yt}{x} a(0, y, t)$$

$$\underbrace{\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)}_{=0 \text{ for } y = Y(x,t) := \frac{x - \sqrt{x(x - 4t^2(1 + x^2))}}{2t(1 + x^2)} = t + \left(x + \frac{1}{x}\right)t^3 + \cdots$$

$$\underbrace{\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)}_{=0 \text{ for } y = Y(x,t) := \frac{x - \sqrt{x(x - 4t^2(1 + x^2))}}{2t(1 + x^2)} = t + \left(x + \frac{1}{x}\right)t^3 + \cdots$$

$$0 = 1 - \frac{t}{Y(x,t)}a(x,0,t) - \frac{Y(x,t)t}{x}a(0,Y(x,t),t)$$

$$\underbrace{\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)}_{=0 \text{ for } y = Y(x,t) := \frac{x - \sqrt{x(x - 4t^2(1 + x^2))}}{2t(1 + x^2)} = t + \left(x + \frac{1}{x}\right)t^3 + \cdots$$

$$a(x,0,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 a(0,Y(x,t),t)$$

$$\underbrace{\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)}_{=0 \text{ for } y = Y(x,t) := \frac{x - \sqrt{x(x - 4t^2(1 + x^2))}}{2t(1 + x^2)} = t + \left(x + \frac{1}{x}\right)t^3 + \cdots$$

$$a(x,0,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 a(0,Y(x,t),t)$$

Setting $x \rightsquigarrow Y^{-1}(x,t)$ in this equation and rearranging terms gives

$$a(0,x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2}a(Y^{-1}(x,t),0,t)$$

$$\underbrace{\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)}_{=0 \text{ for } y = Y(x,t) := \frac{x - \sqrt{x(x - 4t^2(1 + x^2))}}{2t(1 + x^2)} = t + \left(x + \frac{1}{x}\right)t^3 + \cdots$$

$$a(x,0,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 a(0,Y(x,t),t)$$

Setting $x \rightsquigarrow Y^{-1}(x,t)$ in this equation and rearranging terms gives

$$a(0,x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2}a(Y^{-1}(x,t),0,t)$$

Now consider the following system of functional equations for two unknown power series U(x,t), V(x,t):

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$

$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$

$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Observe:

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$

$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Observe:

• This system has a unique solution.

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Observe:

- This system has a unique solution.
- By construction, the solution must be

$$U = a(x, 0, t)$$
 and $V = a(0, x, t)$.

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$

$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Now turn on the computer...

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Now turn on the computer...

• generate lots of coefficients of a(x, 0, t), and a(0, x, t).

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Now turn on the computer...

- generate lots of coefficients of a(x, 0, t), and a(0, x, t).
- guess a system of D-finite differential equations possibly satisfied by these series.

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Now turn on the computer...

- generate lots of coefficients of a(x, 0, t), and a(0, x, t).
- guess a system of D-finite differential equations possibly satisfied by these series.
- prove that the series solutions of the guessed D-finite system solve the functional equations.

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Conclude:

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$

$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Conclude:

• a(x, 0, t) and a(0, x, t) are D-finite.

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$

$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Conclude:

- a(x,0,t) and a(0,x,t) are D-finite.
- Because of

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$

$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Conclude:

- a(x,0,t) and a(0,x,t) are D-finite.
- Because of

$$a(x, y, t) = \frac{1 - \frac{t}{y} a(x, 0, t) - \frac{yt}{x} a(0, y, t)}{1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t}$$

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$

$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Conclude:

- a(x,0,t) and a(0,x,t) are D-finite.
- Because of

$$a(x, y, t) = \frac{1 - \frac{t}{y} a(x, 0, t) - \frac{yt}{x} a(0, y, t)}{1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t}$$

it follows that also a(x, y, t) is D-finite.

A posteriori observation: D-finite generating function \iff finite group.

step set	a(0,0,t)	a(1,1,t)	a(x,y,t)
	D-finite	D-finite	D-finite
	algebraic	algebraic	algebraic
	algebraic	algebraic	algebraic
	D-finite	algebraic	D-finite
	D-finite	D-finite	D-finite

step set	a(0,0,t)	a(1, 1, t)	a(x,y,t)
	algebraic	not D-finite	not D-finite
\mathbb{K}	algebraic	not D-finite	not D-finite
	algebraic	algebraic	algebraic
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite

step set	a(0,0,t)	a(1, 1, t)	a(x, y, t)
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0,0,t)	a(1,1,t)	a(x,y,t)
\mathbf{X}	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0,0,t)	a(1, 1, t)	a(x,y,t)
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite
\longleftrightarrow	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0,0,t)	a(1, 1, t)	a(x, y, t)
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite
	algebraic	not D-finite	not D-finite

step set	a(0,0,t)	a(1, 1, t)	a(x,y,t)
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0,0,t)	a(1, 1, t)	a(x, y, t)
\mathbb{X}	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite

step set	a(0,0,t)	a(1, 1, t)	a(x, y, t)
\mathbf{X}	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
$\left \right\rangle$	D-finite	D-finite	D-finite

step set	a(0,0,t)	a(1, 1, t)	a(x,y,t)
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0,0,t)	a(1, 1, t)	a(x,y,t)
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0,0,t)	a(1, 1, t)	a(x,y,t)
	not D-finite	not D-finite?	not D-finite
	algebraic	not D-finite	not D-finite
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0, 0, t)	a(1, 1, t)	a(x, y, t)
\mathbb{X}	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0,0,t)	a(1,1,t)	a(x,y,t)
\times	D-finite	D-finite	D-finite
	algebraic	algebraic	algebraic
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	D-finite	algebraic	D-finite

step set	a(0,0,t)	a(1, 1, t)	a(x, y, t)
K	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
\mathbb{X}	D-finite	D-finite	D-finite

step set	a(0,0,t)	a(1,1,t)	a(x,y,t)
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite

- start at (0,0,0)
- make n steps (e.g., n = 7)
- $\bullet \mbox{ end at } (i,j,k)$ (e.g., (i,j,k)=(3,4,2))
- never step out of the first octant
- use only steps taken from a prescribed step set, e.g.,

- start at (0,0,0)
- make n steps (e.g., n = 7)
- $\bullet \mbox{ end at } (i,j,k)$ (e.g., (i,j,k)=(3,4,2))
- never step out of the first octant
- use only steps taken from a prescribed step set, e.g.,

For a fixed step set, define the generating function $a(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z},t)$ in the obvious way.

For which step sets is a(x, y, z, t) D-finite, and for which step sets is it not D-finite?

For which step sets is a(x, y, z, t) D-finite, and for which step sets is it not D-finite?

For which step sets is a(x, y, z, t) D-finite, and for which step sets is it not D-finite?

```
\begin{array}{c} |\{-1,0,1\}| \\ & \bigvee_{3} \overset{\dim = 3}{\swarrow} \\ 2^{3^{3}-1} = 67108864 \\ \swarrow \\ \in \text{ or } \notin \end{array}
```

For which step sets is a(x, y, z, t) D-finite, and for which step sets is it not D-finite?

$$\begin{array}{c} |\{-1,0,1\}| \\ & \swarrow \\ 2^{3^3-1} = 67108864 \\ & \swarrow \\ \in \text{ or } \not\in \end{array} \\ \stackrel{\text{(0,0,0)}}{\leftarrow} 56034639 \text{ models in bijection to others} \end{array}$$

For which step sets is a(x, y, z, t) D-finite, and for which step sets is it not D-finite?

$$\begin{array}{c} |\{-1,0,1\}| \\ & \swarrow \\ 2^{3^{3}-1} = 67108864 \\ e \text{ or } \notin & -56034639 \text{ models in bijection to others} \\ & -11038677 \text{ models with } |\cdot| > 6 \end{array}$$

For which step sets is a(x, y, z, t) D-finite, and for which step sets is it not D-finite?

How many step sets are there? $\begin{array}{c} |\{-1,0,1\}| \\ & \downarrow \\ & \downarrow$

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

Models are in bijection!

Models are in bijection!

Models are in bijection!

Models are in bijection!

Not a valid bijection!

Bijection?

Bijection?

Bijection? YES!

Bijection? YES!

Bijection? YES!

Bijection? YES!

Bijection? YES!

Bijection? YES!

Bijection? YES!

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

Consider the following three properties that a step set may have.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

Consider the following three properties that a step set may have.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

$\left(\right)$	reducible to 2D decomposable finite group								
\downarrow	\downarrow	\downarrow	3	4	5	6	Σ		
Т	Т	Т							
Т	Т	F							
Т	F	Т							
Т	F	F							
F	Т	Т							
F	Т	F							
F	F	Т							
F	F	F							
		Σ							

/			- redu	reducible to 2D						
	1		dec	decomposable						
		ſ	finit	e grou	qu					
\downarrow	\downarrow	\downarrow	3	4	5	6	Σ			
Т	Т	Т	8	47	110	175	340			
Т	Т	F	46	437	1864	4821	7168			
Т	F	Т	0	0	0	0	0			
Т	F	F	18	275	1599	5344	7236			
F	Т	Т	0	18	47	82	147			
F	Т	F	0	9	125	411	545			
F	F	Т	0	8	0	15	23			
F	F	F	1	185	2680	17223	20089			
		Σ	73	979	6425	28071	35548			

/			- redı	ucible	to 2D			
	1		dec	ompos	able			
		ſ	finit	e grou	ір			
\downarrow	\downarrow	\downarrow	3	4	5	6	Σ	
Т	Т	Т	8	47	110	175	340	
Т	Т	F	46	437	1864	4821	7168	
Т	F	Т	0	0	0	0	0	
Т	F	F	18	275	1599	5344	7236	
F	Т	Т	0	18	47	82	147	
F	Т	F	0	9	125	411	545	
F	F	Т	0	8	0	15	23	
F	F	F	(1)	185	2680	17223	20089	
		Σ	73	979	6425	28071	35548	-

(reducible to 2D decomposable											
\downarrow	\downarrow	\downarrow	3	4	5	6	Σ					
Т	Т	Т	8	47	110	175	340					
Т	Т	F	46	437	1864	4821	7168					
Т	F	Т	0	0	0	0	0					
Т	F	F	18	275	1599	5344	7236					
F	Т	Т	0	18	47	82	147					
F	Т	F	0	9	125	411	545	not D-finite?				
F	F	Т	0	8	0	15	23					
F	F	F	1	185	2680	17223	20089	not D-finite?				
		Σ	73	979	6425	28071	35548					

(reducible to 2D decomposable											
	$\int \int finite group$											
\downarrow	\downarrow	\downarrow	3	4	5	6	Σ					
Т	Т	Т	8	47	110	175	340					
Т	Т	F	46	437	1864	4821	7168					
Т	F	Т	0	0	0	0	0					
Т	F	F	18	275	1599	5344	7236					
F	Т	Т	0	18	47	82	147	D-finite!				
F	Т	F	0	9	125	411	545	not D-finite?				
F	F	Т	0	8	0	15	23					
F	F	F	1	185	2680	17223	20089	not D-finite?				
		Σ	73	979	6425	28071	35548					

$\left(\right)$				ucible ompos								
		ſ	finit	finite group								
\downarrow	\downarrow	\downarrow	3	4	5	6	Σ					
Т	Т	Т	8	47	110	175	340	look at the				
Т	Т	F	46	437	1864	4821	7168	527 resulting				
Т	F	Т	0	0	0	0	0	2D models				
Т	F	F	18	275	1599	5344	7236) 2D models				
F	Т	Т	0	18	47	82	147	D-finite!				
F	Т	F	0	9	125	411	545	not D-finite?				
F	F	Т	0	8	0	15	23	not so clear				
F	F	F	1	185	2680	17223	20089	not D-finite?				
		Σ	73	979	6425	28071	35548					

$\left(\right)$								
		ſ	finit	te groi	ıp			
\downarrow	\downarrow	\downarrow	3	4	5	6	Σ	
Т	Т	Т	8	47	110	175	340	look at the
Т	Т	F	46	437	1864	4821	7168	527 resulting
Т	F	Т	0	0	0	0	0	2D models
Т	F	F	18	275	1599	5344	7236) 2D models
F	Т	Т	0	18	47	82	147	D-finite!
F	Т	F	0	9	125	411	545	not D-finite?
F	F	Т	0	8	0	15	23	not so clear
F	F	F	1	185	2680	17223	20089	not D-finite?
		Σ	73	979	6425	28071	35548	

There are 23 models in 3D which are not reducible to 2D, which are not decomposable, and which have a finite group. For 4 of them, the orbit sum is nonzero and the kernel method implies that they are D-Finite.

There are 23 models in 3D which are not reducible to 2D, which are not decomposable, and which have a finite group. For 4 of them, the orbit sum is nonzero and the kernel method implies that they are D-Finite.

The remaining 19 models are mysterious. Even on a super-computer we were not able to find any evidence for possible differential equations. Can it be that they are not D-finite?

There are 23 models in 3D which are not reducible to 2D, which are not decomposable, and which have a finite group. For 4 of them, the orbit sum is nonzero and the kernel method implies that they are D-Finite.

The remaining 19 models are mysterious. Even on a super-computer we were not able to find any evidence for possible differential equations. Can it be that they are not D-finite?

This would imply that the equivalence between D-finiteness and a finite group does not carry over to walks in three dimensions.

 \pm

A

