Restricted Lattice walks in Three Dimensions

Manuel Kauers
Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

joint work with
Alin Bostan, Mireille Bousquet-Mélou, and Stephen Melczer

Fix a step set.

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
Example: For the step set
 we have

$$
\begin{aligned}
& a(x, y, t)=1+x y t \\
& \quad+\left(x+y^{2}+x^{2} y^{2}\right) t^{2} \\
& \quad+\left(2 y+2 x^{2} y+2 x y^{3}+x^{3} y^{3}\right) t^{3} \\
& \quad+\cdots
\end{aligned}
$$

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
Example: For the step set
 we have

$$
\begin{aligned}
& a(x, y, t)=1+x y t \\
& \quad+\left(x+y^{2}+x^{2} y^{2}\right) t^{2} \\
& \quad+\left(2 y+2 x^{2} y+2 x y^{3}+x^{3} y^{3}\right) t^{3} \\
& \quad+\cdots
\end{aligned}
$$

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
Example: For the step set

$$
\begin{aligned}
& a(x, y, t)=1+(x+x y) t \\
& \quad+\left(2+x^{2}+y+2 x^{2} y+x^{2} y^{2}\right) t^{2} \\
& \quad+\left(5 x+x^{3}+6 x y+3 x^{3} y+2 x y^{2}+3 x^{3} y^{2}+x^{3} y^{3}\right) t^{3} \\
& \quad+\cdots
\end{aligned}
$$

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
Who cares?

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
Who cares?
At least:
Bernadi, Bostan, Bousquet-Mélou, Cori, Denisov, Dulucq, Fayolle, Gessel, Gouyou-Beauchamps, Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Krattenthaler, Kurkova, Kreweras, Melczer, Mishna, Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
Who cares?
At least:
Bernadi, Bostan, Bousquet-Mélou, Cori, Denisov, Dulucq, Fayolle, Gessel, Gouyou-Beauchamps, Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Krattenthaler, Kurkova, Kreweras, Melczer, Mishna, Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
Note:

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
Note:

- $a(1,1, t)$ counts the number of walks with arbitrary endpoint.

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
Note:

- $a(1,1, t)$ counts the number of walks with arbitrary endpoint.
- $a(0,0, t)$ counts the number of walks returning to the origin.

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
Question:
How does the nature of $a(x, y, t)$ depend on the step set?

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
More precisely: For which step sets is $a(x, y, t)$ D-finite (or even algebraic), and for which step sets is it not D-finite?

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
More precisely: For which step sets is $a(x, y, t)$ D-finite (or even algebraic), and for which step sets is it not D-finite?
Recall: a is D-finite : \Longleftrightarrow

$$
p_{0} a+p_{1} \frac{d}{d t} a+\cdots+p_{r} \frac{d^{r}}{d t^{r}} a=0
$$

for some polynomials p_{0}, \ldots, p_{r} in x, y, t, not all zero.

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
More precisely: For which step sets is $a(x, y, t)$ D-finite (or even algebraic), and for which step sets is it not D-finite?
Recall: a is D-finite $: \Longleftrightarrow$

$$
\left(p_{0}+p_{1} D_{t}+p_{2} D_{t}^{2}+\cdots+p_{r} D_{t}^{r}\right) \cdot a=0
$$

for some polynomials p_{0}, \ldots, p_{r} in x, y, t, not all zero.

Fix a step set.
Let $a_{n, i, j}$ be the number of walks of length n with end point (i, j).
Let

$$
a(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} a_{n, i, j} x^{i} y^{j} t^{n}
$$

be the corresponding generating function.
More precisely: For which step sets is $a(x, y, t)$ D-finite (or even algebraic), and for which step sets is it not D-finite?

Recall: a is algebraic : \Longleftrightarrow

$$
p_{0}+p_{1} a+p_{2} a^{2}+\cdots+p_{r} a^{r}=0
$$

for some polynomials p_{0}, \ldots, p_{r} in x, y, t, not all zero.

How many step sets are there?

How many step sets are there?

$$
2^{3^{2}-1}=256
$$

How many step sets are there?

$$
\begin{aligned}
& |\{-1,0,1\}| \\
& 2^{3^{2}-1}=256
\end{aligned}
$$

How many step sets are there?

$$
\begin{aligned}
& |\{-1,0,1\}| \\
& \underbrace{\text { dim }}=2 \\
& 2^{3^{2}-1}=256
\end{aligned}
$$

How many step sets are there?

$$
\begin{aligned}
& |\{-1,0,1\}| \\
& \downarrow^{\downarrow} \operatorname{dim}=2 \\
& 2^{3^{2}-1}=256 \\
& \begin{array}{c}
\text { except }(0,0)
\end{array}
\end{aligned}
$$

How many step sets are there?

$$
\underset{\substack{\text { or } \notin}}{|\{-1,0,1\}|}{ }^{3^{2}-1} \operatorname{except}(0,0)=256
$$

How many step sets are there?

$$
\begin{aligned}
& \text { |\{-1,0,1\}| } \\
& \overbrace{\in \text { or } \notin}^{2^{3^{2}-1}=256} \underset{\text { except }(0,0)}{\operatorname{dim}=32} \text { trivial models }
\end{aligned}
$$

How many step sets are there?

$$
\begin{aligned}
& \text { |\{-1,0, 1\}| } \\
& \underset{\in \text { or } \notin \text { except }(0,0)-32 \text { trivial models }}{2^{3^{2}-1}=256} \\
& \text { - } 86 \text { half-space models (easy) }
\end{aligned}
$$

How many step sets are there?

$$
\begin{aligned}
& |\{-1,0,1\}| \\
& \begin{array}{l}
\stackrel{\downarrow}{\operatorname{dim}=2} \\
\overbrace{\text { or }}^{2^{2}-1}=256
\end{array} \\
& \text { - } 86 \text { half-space models (easy) } \\
& \text { - } 59 \text { models being in bijection to others }
\end{aligned}
$$

How many step sets are there?

How many step sets are there?

How many of them are D-finite?
How many of them are not D-finite?

How many step sets are there?

How many of them are D-finite?
How many of them are not D-finite?
What does it depend on?

The step set gives rise to a recurrence for $a_{i, j, n}$.

The step set gives rise to a recurrence for $a_{i, j, n}$.
Example: For the step set we obtain

$$
a_{i, j, n+1}=a_{i+1, j-1, n}+a_{i, j+1, n}+a_{i-1, j-1, n}
$$

The step set gives rise to a recurrence for $a_{i, j, n}$.
Example: For the step set we obtain

$$
a_{i, j, n+1}=a_{i+1, j-1, n}+a_{i, j+1, n}+a_{i-1, j-1, n}
$$

The step set gives rise to a recurrence for $a_{i, j, n}$.
Example: For the step set we obtain

$$
a_{i, j, n+1}=a_{i+1, j-1, n}+a_{i, j+1, n}+a_{i-1, j-1, n} .
$$

The step set gives rise to a recurrence for $a_{i, j, n}$.
Example: For the step set

$$
a_{i, j, n+1}=a_{i+1, j-1, n}+a_{i, j+1, n}+a_{i-1, j-1, n}
$$

The step set gives rise to a recurrence for $a_{i, j, n}$.
Example: For the step set we obtain

$$
a_{i, j, n+1}=a_{i+1, j-1, n}+a_{i, j+1, n}+a_{i-1, j-1, n}
$$

The step set gives rise to a recurrence for $a_{i, j, n}$.
Example: For the step set

$$
a_{i, j, n+1}=a_{i+1, j-1, n}+a_{i, j+1, n}+a_{i-1, j-1, n}
$$

Together with $a_{0,0,0}=1$ and the boundary conditions $a_{-1, j, n}=a_{i,-1, n}=0$, this recurrence gives rise to a functional equation for the generating function $a(x, y, t)$.

The step set gives rise to a recurrence for $a_{i, j, n}$.
Example: For the step set

$$
a_{i, j, n+1}=a_{i+1, j-1, n}+a_{i, j+1, n}+a_{i-1, j-1, n}
$$

Together with $a_{0,0,0}=1$ and the boundary conditions $a_{-1, j, n}=a_{i,-1, n}=0$, this recurrence gives rise to a functional equation for the generating function $a(x, y, t)$.
Example: For the step set above we obtain

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set gives rise to a recurrence for $a_{i, j, n}$.
Example: For the step set

we obtain

$$
a_{i, j, n+1}=a_{i+1, j-1, n}+a_{i, j+1, n}+a_{i-1, j-1, n}
$$

Together with $a_{0,0,0}=1$ and the boundary conditions $a_{-1, j, n}=a_{i,-1, n}=0$, this recurrence gives rise to a functional equation for the generating function $a(x, y, t)$.
Example: For the step set above we obtain

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set gives rise to a recurrence for $a_{i, j, n}$.
Example: For the step set

we obtain

$$
a_{i, j, n+1}=a_{i+1, j-1, n}+a_{i, j+1, n}+a_{i-1, j-1, n}
$$

Together with $a_{0,0,0}=1$ and the boundary conditions $a_{-1, j, n}=a_{i,-1, n}=0$, this recurrence gives rise to a functional equation for the generating function $a(x, y, t)$.
Example: For the step set above we obtain

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set gives rise to a recurrence for $a_{i, j, n}$.
Example: For the step set

we obtain

$$
a_{i, j, n+1}=a_{i+1, j-1, n}+a_{i, j+1, n}+a_{i-1, j-1, n}
$$

Together with $a_{0,0,0}=1$ and the boundary conditions $a_{-1, j, n}=a_{i,-1, n}=0$, this recurrence gives rise to a functional equation for the generating function $a(x, y, t)$.
Example: For the step set above we obtain

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set gives rise to a recurrence for $a_{i, j, n}$.
Example: For the step set

$$
a_{i, j, n+1}=a_{i+1, j-1, n}+a_{i, j+1, n}+a_{i-1, j-1, n}
$$

Together with $a_{0,0,0}=1$ and the boundary conditions $a_{-1, j, n}=a_{i,-1, n}=0$, this recurrence gives rise to a functional equation for the generating function $a(x, y, t)$.
Example: For the step set above we obtain

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set gives rise to a recurrence for $a_{i, j, n}$.
Example: For the step set

we obtain

$$
a_{i, j, n+1}=a_{i+1, j-1, n}+a_{i, j+1, n}+a_{i-1, j-1, n}
$$

Together with $a_{0,0,0}=1$ and the boundary conditions $a_{-1, j, n}=a_{i,-1, n}=0$, this recurrence gives rise to a functional equation for the generating function $a(x, y, t)$.
Example: For the step set above we obtain

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

This functional equation uniquely describes $a(x, y, t)$.

The step set gives rise to a recurrence for $a_{i, j, n}$.
Example: For the step set

we obtain

$$
a_{i, j, n+1}=a_{i+1, j-1, n}+a_{i, j+1, n}+a_{i-1, j-1, n}
$$

Together with $a_{0,0,0}=1$ and the boundary conditions $a_{-1, j, n}=a_{i,-1, n}=0$, this recurrence gives rise to a functional equation for the generating function $a(x, y, t)$.

Example: For the step set above we obtain

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

This functional equation uniquely describes $a(x, y, t)$.
All properties of $a(x, y, t)$ must somehow follow from it.

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\phi: \quad(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\phi: \quad(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\phi: \quad(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\phi: \quad(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\underbrace{x^{-1}} \begin{array}{ll}
1 & x \\
1 & y:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
y^{-1}
\end{array} \quad \phi:(2)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\overbrace{}^{x^{-1}} \begin{aligned}
& 1 \\
& \\
& \\
& \\
& \\
& \\
& y^{-1}
\end{aligned} \quad \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{gathered}
1 \\
x^{-1} \\
\\
\\
\\
\\
\\
y^{-1}
\end{gathered} \quad \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\overbrace{x^{-1}} \begin{aligned}
& 1 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& y^{-1}
\end{aligned} \quad \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \begin{array}{ccc}
x^{-1} & 1 & \\
& \uparrow & \\
& & y \\
& & \\
& & \\
& & \\
& & \\
& &
\end{array} \\
& \phi: \quad(x, y) \mapsto\left(\frac{1}{x}, y\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\overbrace{x^{-1}} \begin{aligned}
& 1 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& y^{-1}
\end{aligned} \quad \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{gathered}
1 \\
x^{-1} \\
\\
\\
\\
\\
\\
y^{-1}
\end{gathered} \quad \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\overbrace{}^{x^{-1}} \begin{aligned}
& 1 \\
& \\
& \\
& \\
& \\
& \\
& y^{-1}
\end{aligned} \quad \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\underbrace{x^{-1}} \begin{array}{ll}
1 & x \\
1 & y:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
y^{-1}
\end{array} \quad \phi:(2)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\phi: \quad(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\phi: \quad(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\phi: \quad(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\phi: \quad(x, y) \mapsto\left(\frac{1}{x}, y\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{\left.x+\frac{1}{x} \frac{1}{y}\right)}\right.
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x} \frac{1}{y}}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{\left.x+\frac{1}{x} \frac{1}{y}\right)}\right.
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{array}{ll}
x^{-1} \quad 1 \quad x & \phi \\
& \psi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
y^{-1}
\end{array}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& x^{x^{-1} \quad 1 \quad{ }^{x}} \begin{array}{l}
y \\
y^{-1}
\end{array} \quad \psi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \gg\left(x, \frac{1}{\left.x+\frac{1}{x} \frac{1}{y}\right)}\right.
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{array}{ll}
x^{-1} \quad 1 \quad x & \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
y^{-1} & \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{array}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{array}{lll}
x^{-1} \quad 1 \quad x & y & \\
& & \\
& \psi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
y^{-1}
\end{array}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{array}{lll}
x^{-1} \quad 1 \quad x & \\
& & \\
& 1 & \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{array}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& x^{-1} \quad 1 \quad x \\
& \begin{array}{l}
y \\
1
\end{array} \\
& y^{-1} \\
& \phi: \quad(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi: \quad(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{array}{ccc}
\begin{array}{lll}
x^{-1} \quad 1 & x & \\
& & y
\end{array} & \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
\longleftrightarrow & 1 & \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{array}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{array}{cccc}
x^{-1} \quad 1 \quad x & \\
& & y & \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& 1 & \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{array}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{array}{lll}
x^{-1} \begin{array}{cc}
1 & x \\
& \\
& \\
& 1
\end{array} \\
& \psi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
y^{-1}
\end{array}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
x^{-1}{ }^{-1}{ }^{x} & \\
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
y^{-1} & \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
x^{-1} 1 \quad x & \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& x^{-1} \quad 1 \quad x \\
& \text { Clos } \\
& \phi: \quad(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi: \quad(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{\left.x+\frac{1}{x} \frac{1}{y}\right)}\right.
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi: \quad(x, y) \mapsto\left(x, \frac{1}{\left.x+\frac{1}{x} \frac{1}{y}\right)}\right.
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{\left.x+\frac{1}{x} \frac{1}{y}\right)}\right.
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi: \quad(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi: \quad(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{\left.x+\frac{1}{x} \frac{1}{y}\right)}\right.
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{\left.x+\frac{1}{x} \frac{1}{y}\right)}\right.
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{\left.x+\frac{1}{x} \frac{1}{y}\right)}\right.
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{\left.x+\frac{1}{x} \frac{1}{y}\right)}\right.
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

$$
\begin{aligned}
& \phi:(x, y) \mapsto\left(\frac{1}{x}, y\right) \\
& \psi:(x, y) \mapsto\left(x, \frac{1}{x+\frac{1}{x}} \frac{1}{y}\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

These two maps together with composition generate a group, the so-called group of the model.

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

The step set (and hence, the step set polynomial) is invariant under the following two maps:

These two maps together with composition generate a group, the so-called group of the model.

For some step sets this group is finite, for others it is infinite.

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite.

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite. Therefore we can do the following (writing $K=1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t$):

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite. Therefore we can do the following (writing $K=1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t$):

$$
K x y a(x, y, t)=x y-x t a(x, 0, t)-y^{2} t a(0, y, t)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite. Therefore we can do the following (writing $K=1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t$):

$$
\begin{aligned}
K x y a(x, y, t) & =x y-x t a(x, 0, t)-y^{2} t a(0, y, t) \\
-\phi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t a(0, y, t)\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite. Therefore we can do the following (writing $K=1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t$):

$$
\begin{aligned}
K x y a(x, y, t) & =x y-x t a(x, 0, t)-y^{2} t a(0, y, t) \\
-\phi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t a(0, y, t)\right) \\
-\psi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t a(0, y, t)\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite. Therefore we can do the following (writing $K=1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t$):

$$
\begin{aligned}
K x y a(x, y, t) & =x y-x t a(x, 0, t)-y^{2} t a(0, y, t) \\
-\phi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t a(0, y, t)\right) \\
-\psi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t a(0, y, t)\right) \\
+\phi \psi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t a(0, y, t)\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite. Therefore we can do the following (writing $K=1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t$):

$$
\begin{aligned}
K x y a(x, y, t) & =x y-x t a(x, 0, t)-y^{2} t a(\hat{0}, y, t) \\
-\phi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t a(\hat{0}, y, t)\right) \\
-\psi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t a(0, y, t)\right) \\
+\phi \psi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t a(0, y, t)\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite. Therefore we can do the following (writing $K=1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t$):

$$
\begin{aligned}
K x y a(x, y, t) & =x y-x t a(x, 0, t)-y^{2} t u(\hat{0}, y, t) \\
-\phi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t u(\hat{0}, y, t)\right) \\
-\psi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t u(\hat{0}, y, t)\right) \\
+\phi \psi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t u(\hat{0}, y, t)\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite. Therefore we can do the following (writing $K=1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t$):

$$
\begin{aligned}
K x y a(x, y, t) & =x y-x t u^{\prime}(x, 0, t)-y^{2} t u(\hat{0}, y, t) \\
-\phi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t u(\hat{0}, y, t)\right) \\
-\psi(K x y a(x, y, t) & \left.\left.=x y-x t u(x, 0, t)-y^{2} t u^{\prime} \hat{0}, y, t\right)\right) \\
+\phi \psi(K x y a(x, y, t) & \left.=x y-x t a(x, 0, t)-y^{2} t u(\hat{0}, y, t)\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite. Therefore we can do the following (writing $K=1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t$):

$$
\begin{aligned}
K x y a(x, y, t) & =x y-x t u(x, 0, t)-y^{2} t u(\hat{0}, y, t) \\
-\phi(K x y a(x, y, t) & \left.=x y-x t u(x, 0, t)-y^{2} t u(\hat{0}, y, t)\right) \\
-\psi(K x y a(x, y, t) & \left.=x y-x t u(x, 0, t)-y^{2} t u(\hat{0}, y, t)\right) \\
+\phi \psi(K x y a(x, y, t) & \left.=x y-x t u(x, 0, t)-y^{2} t u(\hat{0}, y, t)\right)
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite. Therefore we can do the following (writing $K=1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t$):

$$
\left.\begin{array}{rl}
K x y a(x, y, t) & =x y-x_{t}^{t} u^{\prime}(x, 0, t)-y^{2} t u^{\prime}(\hat{0}, y, t) \\
-\phi\left(H_{1} x y(x, y, t)\right. & =x y-x^{t} u^{\prime}(x, 0, t)-y^{2} t u^{\prime}(\hat{0}, y, t)
\end{array}\right)
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite. Therefore we can do the following (writing $K=1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t$):

$$
\left.\begin{array}{rl}
K x y a(x, y, t) & =x y-x^{t} u^{\prime}(x, 0, t)-y^{2} t u^{\prime}(\hat{0}, y, t) \\
-\phi(H x y a(x, y, t) & \left.=x y-x^{t} u^{\prime}(x, 0, t)-y^{2} t u^{\prime} \hat{0}, y, t\right) \\
-\psi(K x y a(x, y, t) & =x y-x^{t} u^{\prime}(x, 0, t)-y^{2} t u^{\prime}(\hat{0}, y, t)
\end{array}\right) .
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite. Therefore we can do the following (writing $K=1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t$):

$$
\begin{aligned}
& K x y a(x, y, t)=x y-x^{t} u^{\prime}(x, 0, t)-y^{2} t u^{\prime}(\hat{0}, y, t) \\
&-\phi(H x y a(x, y, t)\left.=x y-x^{t} u^{\prime}(x, 0, t)-y^{2} t u^{\prime}(\hat{0}, y, t)\right) \\
&-\psi(K x y a(x, y, t)\left.=x y-x^{t} u^{\prime}(x, 0, t)-y^{2} t u^{\prime}(\hat{0}, y, t)\right) \\
&+\phi \psi(K x y a(x, y, t)\left.=x y-x^{t} u^{\prime}(x, 0, t)-y^{2} t u^{\prime}(\hat{0}, y, t)\right) \\
& \Rightarrow x y a(x, y, t)=\left[x^{>}\right][y^{>} \underbrace{\frac{x y-\frac{1}{x} y-x \frac{1}{1+\frac{1}{x}} \frac{1}{y}+\frac{1}{x} \frac{1}{1+\frac{1}{x}} \frac{1}{y}}{1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t}}_{\text {rational }}
\end{aligned}
$$

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Here, $G=\{1, \phi, \psi, \phi \psi\}$ is finite. Therefore we can do the following (writing $K=1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t$):

$$
\begin{aligned}
& K x y a(x, y, t)=x y-x^{t} u^{\prime}(x, 0, t)-y^{2} t u^{\prime}(\hat{0}, y, t) \\
&-\phi\left(Y^{\prime} x y a(x, y, t)\right.\left.=x y-x^{t} u^{\prime}(x, 0, t)-y^{2} t u^{\prime}(\hat{U}, y, t)\right) \\
&-\psi(K x y a(x, y, t)\left.=x y-x^{t} u^{\prime}(x, 0, t)-y^{2} t u^{\prime}(\hat{0}, y, t)\right) \\
&+\phi \psi(K x y a(x, y, t)\left.=x y-x^{t} u^{\prime}(x, 0, t)-y^{2} t u^{\prime}(\hat{0}, y, t)\right) \\
& \Rightarrow x y a(x, y, t)=\underbrace{\left[x^{>}\right]\left[y^{>}\right] \underbrace{\frac{x y-\frac{1}{x} y-x \frac{1}{1+\frac{1}{x}} \frac{1}{y}+\frac{1}{x} \frac{1}{1+\frac{1}{x}} \frac{1}{y}}{1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t}}_{\text {rational }}}_{\text {D-finite }} .
\end{aligned}
$$

There are three possible reasons why this approach can fail:

There are three possible reasons why this approach can fail:

- if the group is infinite

There are three possible reasons why this approach can fail:

- if the group is infinite
- if the right hand side adds up to 0

There are three possible reasons why this approach can fail:

- if the group is infinite
- if the right hand side adds up to 0
- if several terms on the left contain monomials with positive exponents

There are three possible reasons why this approach can fail:

- if the group is infinite
- if the right hand side adds up to 0
- if several terms on the left contain monomials with positive exponents

What to do then?

There are three possible reasons why this approach can fail:

- if the group is infinite
- if the right hand side adds up to 0
- if several terms on the left contain monomials with positive exponents

What to do then? Try using computer algebra, as follows.

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

$$
\begin{gathered}
\underbrace{\left.\left(1-\frac{y}{x}+\frac{1}{y}+x y\right) t\right)}_{=0 \text { for } y=Y(x, t):=\frac{x-\sqrt{x\left(x-4 t^{2}\left(1+x^{2}\right)\right)}}{2 t\left(1+x^{2}\right)}} a(x, y, t)=1-\left(x+\frac{1}{x}\right) t^{3}+\cdots
\end{gathered}
$$

$$
\begin{gathered}
\underbrace{\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right)}_{=0 \text { for } y=Y(x, t):=\frac{x-\sqrt{x\left(x-4 t^{2}\left(1+x^{2}\right)\right)}}{2 t\left(1+x^{2}\right)}} a(x, y, t)=1-\left(x+\frac{1}{x}\right) t^{3}+\cdots
\end{gathered}
$$

For this choice of $Y(x, t)$ we find

$$
0=1-\frac{t}{Y(x, t)} a(x, 0, t)-\frac{Y(x, t) t}{x} a(0, Y(x, t), t)
$$

$$
\begin{gathered}
\underbrace{\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right)}_{=0 \text { for } y=Y(x, t):=\frac{x-\sqrt{x\left(x-4 t^{2}\left(1+x^{2}\right)\right)}}{2 t\left(1+x^{2}\right)}} a(x, y, t)=1-\left(x+\frac{1}{x}\right) t^{3}+\cdots
\end{gathered}
$$

For this choice of $Y(x, t)$ we find

$$
a(x, 0, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} a(0, Y(x, t), t)
$$

$$
\begin{gathered}
\underbrace{\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right)}_{=0 \text { for } y=Y(x, t):=\frac{x-\sqrt{x\left(x-4 t^{2}\left(1+x^{2}\right)\right)}}{2 t\left(1+x^{2}\right)}=t+\left(x+\frac{1}{x}\right) t^{3}+\cdots} a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
\end{gathered}
$$

For this choice of $Y(x, t)$ we find

$$
a(x, 0, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} a(0, Y(x, t), t)
$$

Setting $x \rightsquigarrow Y^{-1}(x, t)$ in this equation and rearranging terms gives

$$
a(0, x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} a\left(Y^{-1}(x, t), 0, t\right)
$$

$$
\begin{gathered}
\underbrace{\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right)}_{=0 \text { for } y=Y(x, t):=\frac{x-\sqrt{x\left(x-4 t^{2}\left(1+x^{2}\right)\right)}}{2 t\left(1+x^{2}\right)}=t+\left(x+\frac{1}{x}\right) t^{3}+\cdots} a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
\end{gathered}
$$

For this choice of $Y(x, t)$ we find

$$
a(x, 0, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} a(0, Y(x, t), t)
$$

Setting $x \rightsquigarrow Y^{-1}(x, t)$ in this equation and rearranging terms gives

$$
a(0, x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} a\left(Y^{-1}(x, t), 0, t\right)
$$

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Observe:

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Observe:

- This system has a unique solution.

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Observe:

- This system has a unique solution.
- By construction, the solution must be

$$
U=a(x, 0, t) \text { and } V=a(0, x, t)
$$

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Now turn on the computer. . .

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Now turn on the computer. . .

- generate lots of coefficients of $a(x, 0, t)$, and $a(0, x, t)$.

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Now turn on the computer. . .

- generate lots of coefficients of $a(x, 0, t)$, and $a(0, x, t)$.
- guess a system of D-finite differential equations possibly satisfied by these series.

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Now turn on the computer. . .

- generate lots of coefficients of $a(x, 0, t)$, and $a(0, x, t)$.
- guess a system of D-finite differential equations possibly satisfied by these series.
- prove that the series solutions of the guessed D-finite system solve the functional equations.

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Conclude:

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Conclude:

- $a(x, 0, t)$ and $a(0, x, t)$ are D-finite.

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Conclude:

- $a(x, 0, t)$ and $a(0, x, t)$ are D-finite.
- Because of

$$
\left(1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t\right) a(x, y, t)=1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)
$$

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Conclude:

- $a(x, 0, t)$ and $a(0, x, t)$ are D-finite.
- Because of

$$
a(x, y, t)=\frac{1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)}{1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t}
$$

Now consider the following system of functional equations for two unknown power series $U(x, t), V(x, t)$:

$$
\begin{aligned}
& U(x, t)=\frac{Y(x, t)}{t}-x Y(x, t)^{2} V(Y(x, t), t) \\
& V(x, t)=\frac{1}{t x Y^{-1}(x, t)}-\frac{1}{Y^{-1}(x, t) x^{2}} U\left(Y^{-1}(x, t), t\right)
\end{aligned}
$$

Conclude:

- $a(x, 0, t)$ and $a(0, x, t)$ are D-finite.
- Because of

$$
a(x, y, t)=\frac{1-\frac{t}{y} a(x, 0, t)-\frac{y t}{x} a(0, y, t)}{1-\left(\frac{y}{x}+\frac{1}{y}+x y\right) t}
$$

it follows that also $a(x, y, t)$ is D-finite.

A posteriori observation:
D-finite generating function \Longleftrightarrow finite group.

step set	$a(0,0, t)$	$a(1,1, t)$	$a(x, y, t)$
	D-finite	D-finite	D-finite
algebraic	algebraic	algebraic	
algebraic	algebraic	algebraic	
D-finite	algebraic	D-finite	

step set	$a(0,0, t)$	$a(1,1, t)$	$a(x, y, t)$
	algebraic	not D-finite	not D-finite
algebraic	not D-finite	not D-finite	
algebraic	algebraic	algebraic	

step set	$a(0,0, t)$	$a(1,1, t)$	$a(x, y, t)$

step set	$a(0,0, t)$	$a(1,1, t)$	$a(x, y, t)$
	D-finite	D-finite	D-finite
not D-finite	not D-finite?	not D-finite	
not D-finite	not D-finite?	not D-finite	

step set	$a(0,0, t)$	$a(1,1, t)$	$a(x, y, t)$
	not D-finite	not D-finite?	not D-finite
D-finite	D-finite	D-finite	
D-finite	D-finite	D-finite	

step set	$a(0,0, t)$	$a(1,1, t)$	$a(x, y, t)$
	not D-finite	not D-finite?	not D-finite
algebraic	not D-finite	D-finite	not D-finite
ald	not D-finite?	not D-finite	

step set $\quad a(0,0, t) \quad$ not D-finite \quad not D-finite? \quad not D-finite

step set	$a(0,0, t)$	$a(1,1, t)$	$a(x, y, t)$

step set	$a(0,0, t)$	$a(1,1, t)$	$a(x, y, t)$
	not D-finite	not D-finite?	not D-finite
not D-finite	not D-finite?	not D-finite	
D-finite	D-finite	D-finite	

step set	$a(0,0, t)$	$a(1,1, t)$	$a(x, y, t)$
	not D-finite	not D-finite?	not D-finite
not D-finite	not D-finite?	not D-finite	
not D-finite	not D-finite?	not D-finite	

step set | | $a(0,0, t)$ | $a(1,1, t)$ |
| :---: | :---: | :---: |
| D-finite | $a(x, y, t)$ | |
| | D-finite | D-finite |
| not D-finite | not D-finite? | not D-finite |

step set	$a(0,0, t)$	$a(1,1, t)$	$a(x, y, t)$

step set $\quad a(0,0, t) \quad$ not D-finite \quad not D-finite? \quad not D-finite

step set	$a(0,0, t)$	$a(1,1, t)$	$a(x, y, t)$
	D-finite	D-finite	D-finite
algebraic	algebraic	algebraic	
D-finite	not D-finite	not D-finite?	not D-finite
algebraic	D-finite		

step set	$a(0,0, t)$	$a(1,1, t)$	$a(x, y, t)$
Dot D-finite	not D-finite?	not D-finite	
D-finite	D-finite	D-finite	
D-finite	D-finite	D-finite	

step set	$a(0,0, t)$	$a(1,1, t)$	$a(x, y, t)$
Dot D-finite	not D-finite?	not D-finite	
D-finite	D-finite	D-finite	
D-finite	D-finite	D-finite	

- start at $(0,0,0)$
- make n steps (e.g., $n=7$)
- end at (i, j, k) (e.g., $(i, j, k)=(3,4,2))$
- never step out of the first octant
- use only steps taken from a prescribed step set, e.g.,

- start at $(0,0,0)$
- make n steps (e.g., $n=7$)
- end at (i, j, k) (e.g., $(i, j, k)=(3,4,2))$
- never step out of the first octant
- use only steps taken from a prescribed step set, e.g.,

For a fixed step set, define the generating function $a(x, y, z, t)$ in the obvious way.

For a fixed step set, define the generating function $a(x, y, z, t)$ in the obvious way. Question:

For which step sets is $a(x, y, z, t)$ D-finite, and for which step sets is it not D-finite?

For a fixed step set, define the generating function $a(x, y, z, t)$ in the obvious way. Question:

> For which step sets is $a(x, y, z, t)$ D-finite, and for which step sets is it not D-finite?

How many step sets are there?

For a fixed step set, define the generating function $a(x, y, z, t)$ in the obvious way. Question:

For which step sets is $a(x, y, z, t)$ D-finite, and for which step sets is it not D-finite?

How many step sets are there?
$\underset{\substack{\text { or } \notin}}{2^{3^{3}-1} \operatorname{except}_{(0,0,0)}^{|\{-1,0,1\}|}}=67108864$

For a fixed step set, define the generating function $a(x, y, z, t)$ in the obvious way. Question:

For which step sets is $a(x, y, z, t)$ D-finite, and for which step sets is it not D-finite?

How many step sets are there?

For a fixed step set, define the generating function $a(x, y, z, t)$ in the obvious way. Question:

For which step sets is $a(x, y, z, t)$ D-finite, and for which step sets is it not D-finite?

How many step sets are there?

For a fixed step set, define the generating function $a(x, y, z, t)$ in the obvious way. Question:

For which step sets is $a(x, y, z, t)$ D-finite, and for which step sets is it not D-finite?

How many step sets are there?

Consider the following three properties that a step set may have.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

Consider the following three properties that a step set may have.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

Consider the following three properties that a step set may have.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

Models are in bijection!

Models are in bijection!

Models are in bijection!

Models are in bijection!

Not a valid bijection!

Bijection?

Bijection?

Bijection? YES!

Bijection? YES!

Bijection? YES!

$\nmid \# e \geq \# a+\# b+\# c$

Bijection? YES!

$\nmid \# e \geq \# a+\# b+\# c$
Y $\# a+\# b+\# c \geq \# d$

Bijection? YES!

Bijection? YES!

Bijection? YES!
$\nmid \# e \geq \# a+\# b+\# c$
$\nmid \# a+\# b+\# c \geq \# d$
$\Varangle \# c+\# e \geq \# a$

Consider the following three properties that a step set may have.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

Consider the following three properties that a step set may have.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

Consider the following three properties that a step set may have.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

Consider the following three properties that a step set may have.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

There are 23 models in 3D which are not reducible to 2D, which are not decomposable, and which have a finite group. For 4 of them, the orbit sum is nonzero and the kernel method implies that they are D-Finite.

There are 23 models in 3D which are not reducible to 2D, which are not decomposable, and which have a finite group. For 4 of them, the orbit sum is nonzero and the kernel method implies that they are D-Finite.

The remaining 19 models are mysterious. Even on a super-computer we were not able to find any evidence for possible differential equations. Can it be that they are not D-finite?

There are 23 models in 3D which are not reducible to 2D, which are not decomposable, and which have a finite group. For 4 of them, the orbit sum is nonzero and the kernel method implies that they are D-Finite.

The remaining 19 models are mysterious. Even on a super-computer we were not able to find any evidence for possible differential equations. Can it be that they are not D-finite?

This would imply that the equivalence between D-finiteness and a finite group does not carry over to walks in three dimensions.

