Analysis of Summation Algorithms

Manuel Kauers

Input:

$$
F(n)=\sum_{k}\binom{n}{k}\binom{2 n}{2 k}
$$

Input:

$$
F(n)=\sum_{k}\binom{n}{k}\binom{2 n}{2 k}
$$

Output:

$$
\begin{aligned}
& \left(48 n^{3}+152 n^{2}+144 n+40\right) F(n) \\
+ & \left(42 n^{3}+154 n^{2}+188 n+64\right) F(n+1) \\
& \quad-\left(6 n^{3}+25 n^{2}+32 n+12\right) F(n+2)=0
\end{aligned}
$$

Input:

$$
F(n)=\sum_{k}\binom{n}{k}\binom{2 n}{2 k}
$$

Output:

$$
\begin{aligned}
& \left(48 n^{3}+152 n^{2}+144 n+40\right) F(n) \\
+ & \left(42 n^{3}+154 n^{2}+188 n+64\right) F(n+1) \\
& \quad-\left(6 n^{3}+25 n^{2}+32 n+12\right) F(n+2)=0
\end{aligned}
$$

Questions:

Input:

$$
F(n)=\sum_{k}\binom{n}{k}\binom{2 n}{2 k}
$$

Output:

$$
\begin{aligned}
& \left(48 n^{3}+152 n^{2}+144 n+40\right) F(n) \\
+ & \left(42 n^{3}+154 n^{2}+188 n+64\right) F(n+1) \\
& \quad-\left(6 n^{3}+25 n^{2}+32 n+12\right) F(n+2)=0
\end{aligned}
$$

Questions:

- How much time does this computation take?

Input:

$$
F(n)=\sum_{k}\binom{n}{k}\binom{2 n}{2 k}
$$

Output:

$$
\begin{aligned}
& \left(48 n^{3}+152 n^{2}+144 n+40\right) F(n) \\
+ & \left(42 n^{3}+154 n^{2}+188 n+64\right) F(n+1) \\
& \quad-\left(6 n^{3}+25 n^{2}+32 n+12\right) F(n+2)=0
\end{aligned}
$$

Questions:

- How much time does this computation take?
- How large can the output become?

Input:

$$
F(n)=\sum_{k}\binom{n}{k}\binom{2 n}{2 k}
$$

Output:

$$
\begin{aligned}
& \left(48 n^{3}+152 n^{2}+144 n+40\right) F(n) \\
+ & \left(42 n^{3}+154 n^{2}+188 n+64\right) F(n+1) / \\
& -\left(6 n^{3}+25 n^{2}+32 n+12\right) F(n+2)=0
\end{aligned}
$$

Questions:

- How much time does this computation take?
- How large can the output become?

Input:

$$
F(n)=\sum_{k}\binom{n}{k}\binom{2 n}{2 k}
$$

Output:

$$
\begin{aligned}
& \text { degree } \\
& \left(48 n^{3}+152 n^{2}+144 n+40\right) F(n) \text { order } \\
& +\left(42 n^{3}+154 n^{2}+188 n+64\right) F(n+1) / \\
& \quad-\left(6 n^{3}+25 n^{2}+32 n+12\right) F(n+2)=0
\end{aligned}
$$

Questions:

- How much time does this computation take?
- How large can the output become?

Input:

$$
F(n)=\sum_{k}\binom{n}{k}\binom{2 n}{2 k}
$$

Output:

$$
\begin{aligned}
& \text { height } \\
& +\left(48 n^{3}+152 n^{2}+144 n+40\right) F(n) \text { order } \\
& -\left(6 n^{3}+25 n^{2}+32 n+12\right) F(n+2)=0
\end{aligned}
$$

Questions:

- How much time does this computation take?
- How large can the output become?

Input:

$$
F(x)=\int_{\Omega} \sqrt{(2 x-1) t+2} e^{x t^{2}} d t
$$

Output:

$$
\begin{aligned}
& \left(256 x^{6}-256 x^{5}+64 x^{3}-16 x^{2}\right) F^{\prime \prime}(x) \\
& \quad+\left(512 x^{5}+256 x^{2}-32 x\right) F^{\prime}(x) \\
& +\left(48 x^{4}+176 x^{3}+84 x-3\right) F(x)=0
\end{aligned}
$$

Questions:

- How much time does this computation take?
- How large can the output become?

Input:

$$
F(x)=\int_{\Omega} \sqrt{(2 x-1) t+2} e^{x t^{2}} d t
$$

Output: degree

$$
\begin{aligned}
& \text { height order } \\
& \left.\begin{array}{c}
\left(256 x^{6}-256 x^{5}+64 x^{3}-16 x^{2}\right) \\
+\left(512 x^{5}+256 x^{2}-32 x\right) \\
+\left(48 x^{4}+176 x^{3}+84 x-3\right) \\
\prime \\
(x)
\end{array}\right)=0
\end{aligned}
$$

Questions:

- How much time does this computation take?
- How large can the output become?

Summation/Integration algorithms: (general principle)

Summation/Integration algorithms: (general principle)

Summation/Integration algorithms: (general principle)

Analysis of the underlying linear algebra problem gives rise to

- existence results / bounds on the order
- bounds on degree and height / complexity estimates

$$
\left(\begin{array}{ccc}
3 x^{2}+3 x+10 & 7 x^{2}+3 x+3 & 3 x^{2}+4 x+6 \\
9 x^{2}+9 x+4 & 9 x^{2} & 6 x^{2}+x+3
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \stackrel{!}{=} 0
$$

$$
\underbrace{\left(\begin{array}{ccc}
3 x^{2}+3 x+10 & 7 x^{2}+3 x+3 & 3 x^{2}+4 x+6 \\
9 x^{2}+9 x+4 & 9 x^{2} & 6 x^{2}+x+3
\end{array}\right)}_{=A \in \mathbb{Z}[x]^{2 \times 3}}\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \stackrel{!}{=} 0
$$

$$
\underbrace{\left(\begin{array}{ccc}
3 x^{2}+3 x+10 & 7 x^{2}+3 x+3 & 3 x^{2}+4 x+6 \\
9 x^{2}+9 x+4 & 9 x^{2} & 6 x^{2}+x+3
\end{array}\right)}_{=A \in \mathbb{Z}[x]^{2 \times 3}}\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \stackrel{!}{=} 0
$$

- More variables than equations \Rightarrow there is a nonzero solution.

$$
\underbrace{\left(\begin{array}{ccc}
3 x^{2}+3 x+10 & 7 x^{2}+3 x+3 & 3 x^{2}+4 x+6 \\
9 x^{2}+9 x+4 & 9 x^{2} & 6 x^{2}+x+3
\end{array}\right)}_{=A \in \mathbb{Z}[x]^{2 \times 3}}\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \stackrel{!}{=} 0
$$

- More variables than equations \Rightarrow there is a nonzero solution.
- There is a nonzero solution $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}[x]^{3}$ with degree at most 4 and height at most 100.

$$
\underbrace{\left(\begin{array}{ccc}
3 x^{2}+3 x+10 & 7 x^{2}+3 x+3 & 3 x^{2}+4 x+6 \\
9 x^{2}+9 x+4 & 9 x^{2} & 6 x^{2}+x+3
\end{array}\right)}_{=A \in \mathbb{Z}[x]^{2 \times 3}}\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \stackrel{!}{=} 0
$$

- More variables than equations \Rightarrow there is a nonzero solution.
- There is a nonzero solution $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}[x]^{3}$ with degree at most 4 and height at most 100.
- There are fast algorithms (Storjohann-Villard 2005).

Indefinite summation: Given $f(k)$, find $g(k)$ such that

$$
f(k)=g(k+1)-g(k)
$$

Indefinite summation: Given $f(k)$, find $g(k)$ such that

$$
f(k)=g(k+1)-g(k)
$$

Definite summation: Given $f(n, k)$, find $p_{0}(n), \ldots, p_{r}(n)$ such that there exists $\mathrm{g}(\mathrm{k})$ with
$p_{0}(n) f(n, k)+\cdots+p_{r}(n) f(n+r, k)=g(n, k+1)-g(n, k)$.

Indefinite summation: Given $f(k)$, find $g(k)$ such that

$$
f(k)=g(k+1)-g(k) .
$$

Definite summation: Given $f(n, k)$, find $p_{0}(n), \ldots, p_{r}(n)$ such that there exists $\mathrm{g}(\mathrm{k})$ with

$$
\left(p_{0}(n)+p_{1}(n) S_{n}+\cdots+p_{r}(n) S_{n}^{r}\right) \cdot f(n, k)=g(n, k+1)-g(n, k) .
$$

Indefinite summation: Given $f(k)$, find $g(k)$ such that

$$
f(k)=g(k+1)-g(k)
$$

Definite summation: Given $f(n, k)$, find $p_{0}(n), \ldots, p_{r}(n)$ such that there exists $\mathrm{g}(\mathrm{k})$ with

$$
P\left(n, S_{n}\right) \cdot f(n, k)=g(n, k+1)-g(n, k) .
$$

Indefinite summation: Given $f(k)$, find $g(k)$ such that

$$
f(k)=g(k+1)-g(k) .
$$

Definite summation: Given $f(n, k)$, find $p_{0}(n), \ldots, p_{r}(n)$ such that there exists $\mathrm{g}(\mathrm{k})$ with

$$
P\left(n, S_{n}\right) \cdot f(n, k)=\left(S_{k}-1\right) \cdot g(n, k) .
$$

Indefinite summation: Given $f(k)$, find $g(k)$ such that

$$
f(k)=g(k+1)-g(k)
$$

Definite summation: Given $f(n, k)$, find $p_{0}(n), \ldots, p_{r}(n)$ such that there exists $\mathrm{g}(\mathrm{k})$ with

$$
P\left(n, S_{n}\right) \cdot f(n, k)=\left(S_{k}-1\right) Q\left(n, k, S_{n}, S_{k}\right) \cdot f(n, k)
$$

Indefinite summation: Given $f(k)$, find $g(k)$ such that

$$
f(k)=g(k+1)-g(k) .
$$

Definite summation: Given $f(n, k)$, find $p_{0}(n), \ldots, p_{r}(n)$ such that there exists $\mathrm{g}(\mathrm{k})$ with

$$
\left(P\left(n, S_{n}\right)-\left(S_{k}-1\right) Q\left(n, k, S_{n}, S_{k}\right)\right) \cdot f(n, k)=0 .
$$

Indefinite summation: Given $f(k)$, find $g(k)$ such that

$$
f(k)=g(k+1)-g(k)
$$

Definite summation: Given $f(n, k)$, find $p_{0}(n), \ldots, p_{r}(n)$ such that there exists $\mathrm{g}(\mathrm{k})$ with

$$
\begin{aligned}
& (\underbrace{P\left(n, S_{n}\right)}_{\text {Telescoper }}-\left(S_{k}-1\right) Q\left(n, k, S_{n}, S_{k}\right)) \cdot f(n, k)=0 . \\
& \text {. }
\end{aligned}
$$

Indefinite summation: Given $f(k)$, find $g(k)$ such that

$$
f(k)=g(k+1)-g(k) .
$$

Definite summation: Given $f(n, k)$, find $p_{0}(n), \ldots, p_{r}(n)$ such that there exists $g(k)$ with

Example: For

$$
f(n, k)=\binom{n}{k}
$$

we can take

$$
P\left(n, S_{n}\right)=S_{n}-2, \quad Q\left(n, k, S_{n}, S_{k}\right)=-\frac{k}{n+1-k} .
$$

Example: For

$$
f(n, k)=\binom{n}{k}
$$

we can take

$$
P\left(n, S_{n}\right)=S_{n}-2, \quad Q\left(n, k, S_{n}, S_{k}\right)=-\frac{k}{n+1-k} .
$$

Then

$$
\left(S_{n}-2\right) \cdot f(n, k)=\left(S_{k}-1\right) \cdot \frac{-k}{n+1-k} f(n, k)
$$

Example: For

$$
f(n, k)=\binom{n}{k}
$$

we can take

$$
P\left(n, S_{n}\right)=S_{n}-2, \quad Q\left(n, k, S_{n}, S_{k}\right)=-\frac{k}{n+1-k} .
$$

Then

$$
\sum_{k}\left(S_{n}-2\right) \cdot f(n, k)=\sum_{k}\left(S_{k}-1\right) \cdot \frac{-k}{n+1-k} f(n, k)
$$

Example: For

$$
f(n, k)=\binom{n}{k}
$$

we can take

$$
P\left(n, S_{n}\right)=S_{n}-2, \quad Q\left(n, k, S_{n}, S_{k}\right)=-\frac{k}{n+1-k} .
$$

Then

$$
\left(S_{n}-2\right) \cdot \sum_{k} f(n, k)=\sum_{k}\left(S_{k}-1\right) \cdot \frac{-k}{n+1-k} f(n, k)
$$

Example: For

$$
f(n, k)=\binom{n}{k}
$$

we can take

$$
P\left(n, S_{n}\right)=S_{n}-2, \quad Q\left(n, k, S_{n}, S_{k}\right)=-\frac{k}{n+1-k} .
$$

Then

$$
\left(S_{n}-2\right) \cdot \sum_{k} f(n, k)=\left[\frac{-k}{n+1-k} f(n, k)\right]_{k=0}^{k=n}
$$

Example: For

$$
f(n, k)=\binom{n}{k}
$$

we can take

$$
P\left(n, S_{n}\right)=S_{n}-2, \quad Q\left(n, k, S_{n}, S_{k}\right)=-\frac{k}{n+1-k} .
$$

Then

$$
\left(S_{n}-2\right) \cdot \sum_{k} f(n, k)=0 .
$$

Example: For

$$
f(n, k)=\binom{n}{k}
$$

we can take

$$
P\left(n, S_{n}\right)=S_{n}-2, \quad Q\left(n, k, S_{n}, S_{k}\right)=-\frac{k}{n+1-k} .
$$

Then

$$
\left(S_{n}-2\right) \cdot \sum_{k} f(n, k)=0 .
$$

How to find P and Q ?

How to find P and $Q ? \longrightarrow$ depends on the type of $f(n, k)$.

How to find P and $Q ? \longrightarrow$ depends on the type of $f(n, k)$.

- $\mathrm{f}(\mathrm{n}, \mathrm{k})$ hypergeometric \longrightarrow Zeilberger's algorithm
- $f(x, t)$ hyperexponential \longrightarrow Almkvist-Zeilberger algorithm
- $f(n, k)$ holonomic \longrightarrow Chyzak's algorithm

How to find P and $Q ? \longrightarrow$ depends on the type of $f(n, k)$.

- $\mathrm{f}(\mathrm{n}, \mathrm{k})$ hypergeometric \longrightarrow Zeilberger's algorithm
- $f(x, t)$ hyperexponential \longrightarrow Almkvist-Zeilberger algorithm
- $f(n, k)$ holonomic \longrightarrow Chyzak's algorithm

Or: Apagodu-Zeilberger-style approach

How to find P and Q ? \longrightarrow depends on the type of $f(n, k)$.

- $f(n, k)$ hypergeometric \longrightarrow Zeilberger's algorithm
- $f(x, t)$ hyperexponential \longrightarrow Almkvist-Zeilberger algorithm
- $\mathrm{f}(\mathrm{n}, \mathrm{k})$ holonomic \longrightarrow Chyzak's algorithm

Or: Apagodu-Zeilberger-style approach

- Easier to implement
- Easier to analyze

	order	degree	height
hypergeometric			
hyperexponential			
D-finite			

	order	degree	height
hypergeometric			
hyperexponential			
D-finite			

	order	degree	height
hypergeometric			$?$
hyperexponential			$?$
D-finite	\bigcirc	$?$	$?$

	order	degree	height
hypergeometric			$?$
hyperexponential			$?$
D-finite		$?$	$?$

$f(n, k)$ is called proper hypergeometric if it can be written in the form

$$
f(n, k)=c(n, k) p^{n} q^{k} \prod_{i=1}^{m} \frac{\Gamma\left(a_{i} n+a_{i}^{\prime} k+a_{i}^{\prime \prime}\right) \Gamma\left(b_{i} n-b_{i}^{\prime} k+b_{i}^{\prime \prime}\right)}{\Gamma\left(u_{i} n+u_{i}^{\prime} k+u_{i}^{\prime \prime}\right) \Gamma\left(v_{i} n-v_{i}^{\prime} k+v_{i}^{\prime \prime}\right)}
$$

for a certain polynomial c , certain constants $\mathrm{p}, \mathrm{q}, \mathrm{a}_{i}^{\prime \prime}, \mathrm{b}_{i}^{\prime \prime}, \mathrm{u}_{i}^{\prime \prime}, v_{i}^{\prime \prime}$ and certain fixed nonnegative integers $a_{i}, a_{i}^{\prime}, b_{i}, b_{i}^{\prime}, u_{i}, u_{i}^{\prime}, v_{i}, v_{i}^{\prime}$.
$f(n, k)$ is called proper hypergeometric if it can be written in the form

$$
f(n, k)=c(n, k) p^{n} q^{k} \prod_{i=1}^{m} \frac{\Gamma\left(a_{i} n+a_{i}^{\prime} k+a_{i}^{\prime \prime}\right) \Gamma\left(b_{i} n-b_{i}^{\prime} k+b_{i}^{\prime \prime}\right)}{\Gamma\left(u_{i} n+u_{i}^{\prime} k+u_{i}^{\prime \prime}\right) \Gamma\left(v_{i} n-v_{i}^{\prime} k+v_{i}^{\prime \prime}\right)}
$$

for a certain polynomial c , certain constants $\mathrm{p}, \mathrm{q}, \mathrm{a}_{\mathrm{i}}^{\prime \prime}, \mathrm{b}_{i}^{\prime \prime}, \mathrm{u}_{\mathrm{i}}^{\prime \prime}, v_{i}^{\prime \prime}$ and certain fixed nonnegative integers $a_{i}, a_{i}^{\prime}, b_{i}, b_{i}^{\prime}, u_{i}, u_{i}^{\prime}, v_{i}, v_{i}^{\prime}$.

Example: $f(n, k)=(n+k) 2^{n}(-1)^{k} \frac{(n+k)!(2 n-k)!(2 n-2 k)!}{(n+2 k)!^{2}}$

Theorem (Apagodu-Zeilberger) For every (non-rational) proper hypergeometric term

$$
f(n, k)=c(n, k) p^{n} q^{k} \prod_{i=1}^{m} \frac{\Gamma\left(a_{i} n+a_{i}^{\prime} k+a_{i}^{\prime \prime}\right) \Gamma\left(b_{i} n-b_{i}^{\prime} k+b_{i}^{\prime \prime}\right)}{\Gamma\left(u_{i} n+u_{i}^{\prime} k+u_{i}^{\prime \prime}\right) \Gamma\left(v_{i} n-v_{i}^{\prime} k+v_{i}^{\prime \prime}\right)}
$$

there exists a telescoper P with

$$
\operatorname{ord}(P) \leq \max \left\{\sum_{i=1}^{m}\left(a_{i}^{\prime}+v_{i}^{\prime}\right), \sum_{i=1}^{m}\left(u_{i}^{\prime}+b_{i}^{\prime}\right)\right\}
$$

Theorem (Apagodu-Zeilberger) For every (non-rational) proper hypergeometric term

$$
f(n, k)=c(n, k) p^{n} q^{k} \prod_{i=1}^{m} \frac{\Gamma\left(a_{i} n+a_{i}^{\prime} k+a_{i}^{\prime \prime}\right) \Gamma\left(b_{i} n-b_{i}^{\prime} k+b_{i}^{\prime \prime}\right)}{\Gamma\left(u_{i} n+u_{i}^{\prime} k+u_{i}^{\prime \prime}\right) \Gamma\left(v_{i} n-v_{i}^{\prime} k+v_{i}^{\prime \prime}\right)}
$$

there exists a telescoper P with

$$
\operatorname{ord}(P) \leq \max \left\{\sum_{i=1}^{\mathfrak{m}}\left(a_{i}^{\prime}+v_{i}^{\prime}\right), \sum_{i=1}^{\mathfrak{m}}\left(u_{i}^{\prime}+b_{i}^{\prime}\right)\right\}
$$

Theorem (Apagodu-Zeilberger) For every (non-rational) proper hypergeometric term

$$
f(n, k)=c(n, k) p^{n} q^{k} \prod_{i=1}^{m} \frac{\Gamma\left(a_{i} n+a_{i}^{\prime} k+a_{i}^{\prime \prime}\right) \Gamma\left(b_{i} n-b_{i}^{\prime} k+b_{i}^{\prime \prime}\right)}{\Gamma\left(u_{i} n+u_{i}^{\prime} k+u_{i}^{\prime \prime}\right) \Gamma\left(v_{i} n-v_{i}^{\prime} k+v_{i}^{\prime \prime}\right)}
$$

there exists a telescoper P with

$$
\operatorname{ord}(P) \leq \max \left\{\sum_{i=1}^{m}\left(a_{i}^{\prime}+v_{i}^{\prime}\right), \sum_{i=1}^{m}\left(u_{i}^{\prime}+b_{i}^{\prime}\right)\right\}
$$

Usually there is no telescoper of lower order.

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

$$
f(n, k)=
$$

$$
f(n, k)
$$

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

$$
\begin{aligned}
f(n, k) & = \\
f(n+1, k) & =
\end{aligned}
$$

$$
f(n, k)
$$

$$
\frac{(2 n+k)(2 n+k+1)}{(n+2 k)} f(n, k)
$$

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

$$
\begin{array}{rr}
f(n, k)= & f(n, k) \\
f(n+1, k)= & \frac{(2 n+k)(2 n+k+1)}{(n+2 k)} f(n, k) \\
\vdots & \\
f(n+i, k)= & \frac{(2 n+k) \cdots(2 n+k+(2 i-1))}{(n+2 k) \cdots(n+2 k+(i-1))} f(n, k)
\end{array}
$$

Example: $\mathrm{f}(\mathrm{n}, \mathrm{k})=\frac{\Gamma(2 \mathrm{n}+\mathrm{k})}{\Gamma(\mathrm{n}+2 \mathrm{k})}$.

$$
\begin{aligned}
& f(n, k)= \\
& f(n+1, k)= \\
& \frac{(2 n+k)(2 n+k+1)}{(n+2 k)} f(n, k) \\
& f(n+i, k)= \\
& \frac{(2 n+k) \cdots(2 n+k+(2 i-1))}{(n+2 k) \cdots(n+2 k+(i-1))} f(n, k)
\end{aligned}
$$

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

$$
\begin{aligned}
& f(n+1, k)=\frac{(n+2 k+1) \cdots \ldots \ldots \ldots(n+2 k+(r-1))}{(n+2 k+1) \ldots \ldots(n+2 k+(r-1))} \frac{(2 n+k)(2 n+k+1)}{(n+2 k)} f(n, k) \\
& \vdots \\
& f(n+i, k)=\frac{(n+2 k+i) \cdots(n+2 k+(r-1))}{(n+2 k+i) \cdots(n+2 k+(r-1))} \frac{(2 n+k) \cdots(2 n+k+(2 i-1))}{(n+2 k) \cdots(n+2 k+(i-1))} f(n, k)
\end{aligned}
$$

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.
P.f(n, k)

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

$$
P \cdot f(n, k)=p_{0}(n) f(n, k)+\cdots+p_{r}(n) f(n+r, k)
$$

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

$$
\begin{aligned}
P \cdot f(n, k) & =p_{0}(n) f(n, k)+\cdots+p_{r}(n) f(n+r, k) \\
& =\frac{p_{0}(n) \text { poly }_{0}(n, k)+\cdots \cdots \cdots \cdots+p_{r}(n) \text { poly }_{r}(n, k)}{(n+2 k) \cdots \ldots} f(n, k)
\end{aligned}
$$

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

$$
\begin{aligned}
& P \cdot f(n, k)=p_{0}(n) f(n, k)+\cdots+p_{r}(n) f(r n+r, k) \\
&=\frac{p_{0}(n) \text { poly }}{(n+2 k)}(n, k)+\cdots \ldots \ldots \ldots+p_{r}(n) \text { poly }(n, k) \\
&(n+2 \ldots \ldots \ldots \ldots \ldots \ldots(n+2 k+(r-1))
\end{aligned} f(n, k) .
$$

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

$$
\operatorname{deg}_{k} \leq 2 r
$$

$$
\begin{aligned}
& P \cdot f(n, k)=p_{0}(n) f(n, k)+\cdots+p_{r}(n) f(r n+r, k)
\end{aligned}
$$

Choose $\mathrm{Q}=\frac{\mathrm{q}_{0}(\mathrm{n})+\mathrm{q}_{1}(\mathrm{n}) \mathrm{k}+\cdots+\mathrm{q}_{2 \mathrm{r}-2}(\mathrm{n}) \mathrm{k}^{2 r-2}}{(\mathrm{n}+2 \mathrm{k}) \cdots \cdots(n+2 \mathrm{k}+(\mathrm{r}-3))}$.

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

$$
\operatorname{deg}_{k} \leq 2 r
$$

$$
\begin{aligned}
P \cdot f(n, k) & =p_{0}(n) f(n, k)+\cdots+p_{r}(n) f(r d+r, k) \\
& =\frac{p_{0}(n) \text { poly }}{(n+2 k) \cdots \cdots(n+2 k+(r-1))} f(n, k)
\end{aligned}
$$

Choose $\mathrm{Q}=\frac{\mathrm{q}_{0}(\mathrm{n})+\mathrm{q}_{1}(\mathrm{n}) \mathrm{k}+\cdots+\mathrm{q}_{2 \mathrm{r}-2}(\mathrm{n}) \mathrm{k}^{2 \mathrm{r}-2}}{(\mathrm{n}+2 \mathrm{k}) \cdots \cdots(n+2 \mathrm{k}+(\mathrm{r}-3))}$.

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

$$
\operatorname{deg}_{k} \leq 2 r
$$

$$
\begin{aligned}
& P \cdot f(n, k)=p_{0}(n) f(n, k)+\cdots+p_{r}(n) f(r n+r, k)
\end{aligned}
$$

Choose $\mathrm{Q}=\frac{\mathrm{q}_{0}(\mathrm{n})+\mathrm{q}_{1}(\mathrm{n}) \mathrm{k}+\cdots+\mathrm{q}_{2 \mathrm{r}-2}(\mathrm{n}) \mathrm{k}^{2 \mathrm{r}-2}}{(\mathrm{n}+2 \mathrm{k}) \cdots \cdots \ldots \ldots(n+2 \mathrm{r}+(\mathrm{r}) \mathrm{n})}$. Then:

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$. $\operatorname{deg}_{k} \leq 2 r$

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

$$
\begin{aligned}
& P \cdot f(n, k)=p_{0}(n) f(n, k)+\cdots+p_{r}(n) f(n+r, k) \\
& =\frac{p_{0}(n) \text { poly }_{0}(n, k)+\cdots \ldots \ldots \ldots+p_{r}(n) \text { poly }_{r}(n, k)}{(n+2 k) \ldots \ldots(n+2 k+(r-1))} f(n, k)
\end{aligned}
$$

Choose $\mathrm{Q}=\frac{\mathrm{q}_{0}(\mathrm{n})+\mathrm{q}_{1}(\mathrm{n}) \mathrm{k}+\cdots+\mathrm{q}_{2 \mathrm{r}-2}(\mathrm{n}) \mathrm{k}^{2 \mathrm{r}-2}}{(\mathrm{n}+2 \mathrm{k}) \ldots \ldots(\mathrm{n})}$. Then:

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

$$
P \cdot f(n, k)=p_{0}(n) f(n, k)+\cdots+p_{r}(n) f(n+r, k)
$$

Example: $f(n, k)=\frac{\Gamma(2 n+k)}{\Gamma(n+2 k)}$.

$$
P \cdot f(n, k)=p_{0}(n) f(n, k)+\cdots+p_{r}(n) f(n+r, k)
$$

Choose $Q \stackrel{!}{=} \frac{q_{0}(n)+q_{1}(n) k+\cdots+q_{2 r-2}(n) k^{2 r-2}}{=}$.
$\left(S_{k}-1\right) Q \cdot f(n, k)=\frac{q_{0}(n) \mathbf{p o l}_{0}(n, k)+\cdots \cdots \cdots+q_{2 r-2}(n) \mathbf{p o l}_{2 r-2}(n, k)}{(n+2 k) \ldots \ldots(n+2 k+(n-1))} f(n, k)$

Equating coefficients with respect to k gives a linear system with $(r+1)+(2 r-2+1)$ variables and $2 r+1$ equations. It has a nontrivial solution as soon as $r \geq 2$.

Theorem (Apagodu-Zeilberger)
For every (non-rational) proper hypergeometric term

$$
f(x, y)=c(x, y) p^{x} q^{y} \prod_{i=1}^{m} \frac{\Gamma\left(a_{i} x+a_{i}^{\prime} y+a_{i}^{\prime \prime}\right) \Gamma\left(b_{i} x-b_{i}^{\prime} y+b_{i}^{\prime \prime}\right)}{\Gamma\left(u_{i} x+u_{i}^{\prime} y+u_{i}^{\prime \prime}\right) \Gamma\left(v_{i} x-v_{i}^{\prime} y+v_{i}^{\prime \prime}\right)}
$$

there exists a telescoper P with

$$
\operatorname{ord}(P) \leq \max \left\{\sum_{i=1}^{\mathfrak{m}}\left(a_{i}^{\prime}+v_{i}^{\prime}\right), \sum_{i=1}^{m}\left(u_{i}^{\prime}+b_{i}^{\prime}\right)\right\}
$$

Theorem (Apagodu-Zeilberger; Chen-Kauers)
For every (non-rational) proper hypergeometric term

$$
f(x, y)=c(x, y) p^{x} q^{y} \prod_{i=1}^{m} \frac{\Gamma\left(a_{i} x+a_{i}^{\prime} y+a_{i}^{\prime \prime}\right) \Gamma\left(b_{i} x-b_{i}^{\prime} y+b_{i}^{\prime \prime}\right)}{\Gamma\left(u_{i} x+u_{i}^{\prime} y+u_{i}^{\prime \prime}\right) \Gamma\left(v_{i} x-v_{i}^{\prime} y+v_{i}^{\prime \prime}\right)}
$$

there exists a telescoper P with

$$
\operatorname{ord}(P) \leq \max \left\{\sum_{i=1}^{m}\left(a_{i}^{\prime}+v_{i}^{\prime}\right), \sum_{i=1}^{m}\left(u_{i}^{\prime}+b_{i}^{\prime}\right)\right\}
$$

and

$$
\operatorname{deg}(P) \leq\left\lceil\frac{1}{2} v(2 \delta+2 v \vartheta+|\mu|-v|\mu|)\right\rceil
$$

where

- $\delta=\operatorname{deg}(c)$
- $v=\max \left\{\sum_{i=1}^{\mathfrak{m}}\left(a_{i}^{\prime}+v_{i}^{\prime}\right), \sum_{i=1}^{m}\left(u_{i}^{\prime}+b_{i}^{\prime}\right)\right\}$
- $\vartheta=\max \left\{\sum_{i=1}^{m}\left(a_{i}+b_{i}\right), \sum_{i=1}^{m}\left(u_{i}+v_{i}\right)\right\}$
- $\mu=\sum_{i=1}^{m}\left(\left(a_{i}+b_{i}\right)-\left(u_{i}+v_{i}\right)\right)$

deg

deg

Theorem (Chen-Kauers)
For every (non-rational) proper hypergeometric term

$$
f(n, k)=c(n, k) p^{n} q^{k} \prod_{i=1}^{m} \frac{\Gamma\left(a_{i} n+a_{i}^{\prime} k+a_{i}^{\prime \prime}\right) \Gamma\left(b_{i} n-b_{i}^{\prime} k+b_{i}^{\prime \prime}\right)}{\Gamma\left(u_{i} n+u_{i}^{\prime} k+u_{i}^{\prime \prime}\right) \Gamma\left(v_{i} n-v_{i}^{\prime} k+v_{i}^{\prime \prime}\right)}
$$

there exist telescopers P with $\operatorname{ord}(\mathrm{P}) \leq \mathrm{r}$ and $\operatorname{deg}(\mathrm{P}) \leq \mathrm{d}$ for all $(r, d) \in \mathbb{N}^{2}$ with

$$
r \geq v \text { and } d>\frac{(\vartheta v-1) r+\frac{1}{2} v(2 \delta+|\mu|+3-(1+|\mu|) v)-1}{r-v+1}
$$

Theorem (Chen-Kauers)
For every (non-rational) proper hypergeometric term

$$
f(n, k)=c(n, k) p^{n} q^{k} \prod_{i=1}^{m} \frac{\Gamma\left(a_{i} n+a_{i}^{\prime} k+a_{i}^{\prime \prime}\right) \Gamma\left(b_{i} n-b_{i}^{\prime} k+b_{i}^{\prime \prime}\right)}{\Gamma\left(u_{i} n+u_{i}^{\prime} k+u_{i}^{\prime \prime}\right) \Gamma\left(v_{i} n-v_{i}^{\prime} k+v_{i}^{\prime \prime}\right)}
$$

there exist telescopers P with $\operatorname{ord}(\mathrm{P}) \leq \mathrm{r}$ and $\operatorname{deg}(\mathrm{P}) \leq \mathrm{d}$ for all $(r, d) \in \mathbb{N}^{2}$ with

$$
r \geq v \text { and } d>\frac{(\vartheta v-1) r+\frac{1}{2} v(2 \delta+|\mu|+3-(1+|\mu|) v)-1}{r-v+1} .
$$

Theorem (Kauers-Yen) Every (non-rational) proper hypergeometric term $f(n, k)$ with $p, q, a_{i}^{\prime \prime}, b_{i}^{\prime \prime}, u_{i}^{\prime \prime}, v_{i}^{\prime \prime} \in \mathbb{Z}$ admits a telescoper P with $\operatorname{ord}(P) \leq v$ and

$$
\begin{aligned}
\operatorname{ht}(P) \leq \max & \left\{|p|^{v},|q|+1\right\} h t(c)^{v+1}(\delta+\vartheta v+1)!^{v+1}(v+1)^{\delta(v+1)} \\
& \times(|y|+1)^{\delta+(\vartheta-1) v+1} \delta!^{2(v+1)}|p|^{v^{2}} \\
& \times(\delta+\vartheta v+1)^{\delta+(\vartheta+\delta+2) v+(\vartheta-1) v^{2}} \\
& \times(2(v+2) \Omega-2)^{(\delta+\vartheta+1) v+(2 \vartheta-1) v^{2}}
\end{aligned}
$$

where v, ϑ, δ are as before, and

$$
\Omega=\max _{i=1}^{m}\left\{\left|a_{i}\right|,\left|a_{i}^{\prime}\right|,\left|a_{i}^{\prime \prime}\right|,\left|b_{i}\right|,\left|b_{i}^{\prime}\right|,\left|b_{i}^{\prime \prime}\right|,\left|u_{i}\right|,\left|u_{i}^{\prime}\right|,\left|u_{i}^{\prime \prime}\right|,\left|v_{i}\right|,\left|v_{i}^{\prime}\right|,\left|v_{i}^{\prime \prime}\right|\right\} .
$$

Theorem (Kauers-Yen) Every (non-rational) proper hypergeometric term $\mathrm{f}(\mathrm{n}, \mathrm{k})$ with $\mathrm{p}, \mathrm{q}, \mathrm{a}_{\mathrm{i}}^{\prime \prime}, \mathrm{b}_{i}^{\prime \prime}, \mathrm{u}_{i}^{\prime \prime}, v_{i}^{\prime \prime} \in \mathbb{Z}$ admits a telescoper P with $\operatorname{ord}(P) \leq v$ and

$$
\begin{aligned}
\operatorname{ht}(P) \leq & \max \left\{|p|^{v},|q|+1\right\} h t(c)^{v+1}(\delta+\vartheta v+1)!^{v+1}(v+1)^{\delta(v+1)} \\
& \times(|y|+1)^{\delta+(\vartheta-1) v+1} \delta!^{2(v+1)} \mid p p^{v^{2}} \\
& \left.\left.\times\left(\delta+\vartheta v^{2}+1\right)^{\delta+(\vartheta-\delta-2) v-1} \mathbf{e x}^{\prime}\left(v^{2}\right)\right)\right) \\
& \times(2(v+2) \Omega-2)^{(\delta+\vartheta+1) v+(2 \vartheta-1) v^{2}}
\end{aligned}
$$

where v, ϑ, δ are as before, and

$$
\Omega=\max _{i=1}^{\max }\left\{\left|a_{i}\right|,\left|a_{i}^{\prime}\right|,\left|a_{i}^{\prime \prime}\right|,\left|b_{i}\right|,\left|b_{i}^{\prime}\right|,\left|b_{i}^{\prime \prime}\right|,\left|u_{i}\right|,\left|u_{i}^{\prime}\right|,\left|u_{i}^{\prime \prime}\right|,\left|v_{i}\right|,\left|v_{i}^{\prime}\right|,\left|v_{i}^{\prime \prime}\right|\right\} .
$$

This theorem only bounds the height of the telescoper of order v.

This theorem only bounds the height of the telescoper of order v.
How does trading order against degree influence the height?

This theorem only bounds the height of the telescoper of order v.
How does trading order against degree influence the height?
Theorem (Kauers-Yen)
Every (non-rational) proper hypergeometric term $f(n, k)$ with $\mathrm{p}, \mathrm{q}, \mathrm{a}_{\mathrm{i}}^{\prime \prime}, \mathrm{b}_{\mathrm{i}}^{\prime \prime}, \mathrm{u}_{\mathrm{i}}^{\prime \prime}, v_{i}^{\prime \prime} \in \mathbb{Z}$ admits a telescoper P with

$$
\begin{aligned}
\operatorname{ord}(P) & =O(\Omega) \\
\operatorname{deg}(P) & =O\left(\Omega^{2}\right) \\
\operatorname{ht}(P) & =O\left(\Omega^{5} \log (\Omega)\right)
\end{aligned}
$$

Summary:

Summary:

Summary:

	order	degree	height
hypergeometric			$?$
hyperexponential			$?$
D-finite		$?$	$?$

	order	degree	height
hypergeometric			$?$
hyperexponential			$?$
D-finite		$?$	$?$

	order	degree	height
hypergeometric			$?$
hyperexponential			$?$
D-finite	\square	$?$	$?$

Hypergeometric summation exploits the fact that

$$
\begin{aligned}
f(n+1, k) & =\operatorname{rat}_{1}(n, k) f(n, k) \\
f(n, k+1) & =\operatorname{rat}_{2}(n, k) f(n, k)
\end{aligned}
$$

for two rational functions rat $_{1}$, rat $_{2}$.

Hypergeometric summation exploits the fact that

$$
\begin{aligned}
f(n+1, k) & =\operatorname{rat}_{1}(n, k) f(n, k) \\
f(n, k+1) & =\operatorname{rat}_{2}(n, k) f(n, k)
\end{aligned}
$$

for two rational functions rat $_{1}$, rat $_{2}$.
The one-dimensional $\mathbb{Q}(n, k)$-vector space generated by $f(n, k)$ is closed under shifts in n and k.

Hypergeometric summation exploits the fact that

$$
\begin{aligned}
f(n+1, k) & =\operatorname{rat}_{1}(n, k) f(n, k) \\
f(n, k+1) & =\operatorname{rat}_{2}(n, k) f(n, k)
\end{aligned}
$$

for two rational functions rat $_{1}$, rat $_{2}$.
The one-dimensional $\mathbb{Q}(n, k)$-vector space generated by $f(n, k)$ is closed under shifts in n and k.

Actually this is more restrictive than necessary.

Hypergeometric summation exploits the fact that

$$
\begin{aligned}
& f(n+1, k)=\operatorname{rat}_{1}(n, k) f(n, k) \\
& f(n, k+1)=\operatorname{rat}_{2}(n, k) f(n, k)
\end{aligned}
$$

for two rational functions rat $_{1}$, rat $_{2}$.
The one-dimensional $\mathbb{Q}(n, k)$-vector space generated by $f(n, k)$ is closed under shifts in n and k.

Actually this is more restrictive than necessary.
It's sufficient when $f(n, k)$ lives in some finite-dimensional $\mathbb{Q}(\mathrm{n}, \mathrm{k})$-vector space which is closed under shifts.

Example. $f(n, k)=2^{n-k}+\binom{n}{k}$ is not hypergeometric.

Example. $f(n, k)=2^{n-k}+\binom{n}{k}$ is not hypergeometric.
But the two-dimensional $\mathbb{Q}(n, k)$-vector space generated by 2^{n-k} and $\binom{n}{k}$ contains $f(n, k)$ and is closed under shifts.

Example. $f(n, k)=2^{n-k}+\binom{n}{k}$ is not hypergeometric.
But the two-dimensional $\mathbb{Q}(n, k)$-vector space generated by 2^{n-k} and $\binom{n}{k}$ contains $f(n, k)$ and is closed under shifts.
Indeed, we have

$$
\begin{aligned}
S_{n} & \cdot\left(u(n, k) 2^{n-k}+v(n, k)\binom{n}{k}\right) \\
& =2 u(n+1, k) 2^{n-k}+v(n+1, k) \frac{n+1}{n-k+1}\binom{n}{k} \\
S_{k} & \cdot\left(u(n, k) 2^{n-k}+v(n, k)\binom{n}{k}\right) \\
& =\frac{1}{2} u(n, k+1) 2^{n-k}+v(n, k+1) \frac{n-k}{k+1}\binom{n}{k} .
\end{aligned}
$$

Example. $f(n, k)=2^{n-k}+\binom{n}{k}$ is not hypergeometric.
But the two-dimensional $\mathbb{Q}(n, k)$-vector space generated by 2^{n-k} and $\binom{n}{k}$ contains $f(n, k)$ and is closed under shifts.
Indeed, we have

$$
\begin{aligned}
S_{n} & \cdot\left(u(n, k) 2^{n-k}+v(n, k)\binom{n}{k}\right) \\
& =2 u(n+1, k) 2^{n-k}+v(n+1, k) \frac{n+1}{n-k+1}\binom{n}{k} \\
S_{k} & \cdot\left(u(n, k) 2^{n-k}+v(n, k)\binom{n}{k}\right) \\
& =\frac{1}{2} u(n, k+1) 2^{n-k}+v(n, k+1) \frac{n-k}{k+1}\binom{n}{k} .
\end{aligned}
$$

Such functions are called D-finite.

Such functions are called D-finite.

$$
\begin{array}{cccc}
f(n, k) & f(n, k+1) & f(n, k+2) & f(n, k+3) \\
f(n+1, k) & f(n+1, k+1) & f(n+1, k+2) & f(n+1, k+3) \\
f(n+2, k) & f(n+2, k+1) & f(n+2, k+2) & f(n+2, k+3) \\
f(n+3, k) & f(n+3, k+1) & f(n+3, k+2) & f(n+3, k+3) \\
f(n+4, k) & f(n+4, k+1) & f(n+4, k+2) & f(n+4, k+3)
\end{array}
$$

Such functions are called D-finite.

$$
\begin{array}{cccc}
f(n, k) & f(n, k+1) & f(n, k+2) & f(n, k+3) \\
f(n+1, k) & f(n+1, k+1) & f(n+1, k+2) & f(n+1, k+3) \\
f(n+2, k) & f(n+2, k+1) & f(n+2, k+2) & f(n+2, k+3) \\
f(n+3, k) & f(n+3, k+1) & f(n+3, k+2) & f(n+3, k+3) \\
f(n+4, k) & f(n+4, k+1) & f(n+4, k+2) & f(n+4, k+3)
\end{array}
$$

Such functions are called D-finite.

$$
\begin{array}{cccc}
f(n, k) & f(n, k+1) & f(n, k+2) & f(n, k+3) \\
f(n+1, k) & f(n+1, k+1) & f(n+1, k+2) & f(n+1, k+3) \\
f(n+2, k) & f(n+2, k+1) & f(n+2, k+2) & f(n+2, k+3) \\
f(n+3, k) & f(n+3, k+1) & f(n+3, k+2) & f(n+3, k+3) \\
f(n+4, k) & f(n+4, k+1) & f(n+4, k+2) & f(n+4, k+3)
\end{array}
$$

Such functions are called D-finite.

$$
\begin{array}{cccc}
f(n, k) & f(n, k+1) & f(n, k+2) & f(n, k+3) \\
f(n+1, k) & f(n+1, k+1) & f(n+1, k+2) & f(n+1, k+3) \\
f(n+2, k) & f(n+2, k+1) & f(n+2, k+2) & f(n+2, k+3) \\
f(n+3, k) & f(n+3, k+1) & f(n+3, k+2) & f(n+3, k+3) \\
f(n+4, k) & f(n+4, k+1) & f(n+4, k+2) & f(n+4, k+3)
\end{array}
$$

Such functions are called D-finite.

$$
\begin{array}{cccc}
f(n, k) & f(n, k+1) & f(n, k+2) & f(n, k+3) \\
f(n+1, k) & f(n+1, k+1) & f(n+1, k+2) & f(n+1, k+3) \\
f(n+2, k) & f(n+2, k+1) & f(n+2, k+2) & f(n+2, k+3) \\
f(n+3, k) & f(n+3, k+1) & f(n+3, k+2) & f(n+3, k+3) \\
f(n+4, k) & f(n+4, k+1) & f(n+4, k+2) & f(n+4, k+3)
\end{array}
$$

Such functions are called D-finite.

$$
\begin{array}{cccc}
f(n, k) & f(n, k+1) & f(n, k+2) & f(n, k+3) \\
f(n+1, k) & f(n+1, k+1) & f(n+1, k+2) & f(n+1, k+3) \\
f(n+2, k) & f(n+2, k+1) & f(n+2, k+2) & f(n+2, k+3) \\
f(n+3, k) & f(n+3, k+1) & f(n+3, k+2) & f(n+3, k+3) \\
f(n+4, k) & f(n+4, k+1) & f(n+4, k+2) & f(n+4, k+3)
\end{array}
$$

Such functions are called D-finite.

$$
\begin{array}{cccc}
f(n, k) & f(n, k+1) & f(n, k+2) & f(n, k+3) \\
f(n+1, k) & f(n+1, k+1) & f(n+1, k+2) & f(n+1, k+3) \\
f(n+2, k) & f(n+2, k+1) & f(n+2, k+2) & f(n+2, k+3) \\
f(n+3, k) & f(n+3, k+1) & f(n+3, k+2) & f(n+3, k+3) \\
f(n+4, k) & f(n+4, k+1) & f(n+4, k+2) & f(n+4, k+3)
\end{array}
$$

Such functions are called D-finite.

$f(n, k)$	$f(n, k+1)$	$f(n, k+2)$	$f(n, k+3)$
$f(n+1, k)$	$f(n+1, k+1) \longleftarrow f(n+1, k+2)$	$f(n+1, k+3)$	
$f(n+2, k)$	$f(n+2, k+1)$	$f(n+2, k+2)$	$f(n+2, k+3)$
$f(n+3, k)$	$f(n+3, k+1)$	$f(n+3, k+2)$	$f(n+3, k+3)$
$f(n+4, k)$	$f(n+4, k+1)$	$f(n+4, k+2)$	$f(n+4, k+3)$

Such functions are called D-finite.

$$
\begin{array}{cccc}
f(n, k) & f(n, k+1) & f(n, k+2) & f(n, k+3) \\
f(n+1, k) & f(n+1, k+1) & f(n+1, k+2) & f(n+1, k+3) \\
f(n+2, k) & f(n+2, k+1) & f(n+2, k+2) & f(n+2, k+3) \\
f(n+3, k) & f(n+3, k+1) & f(n+3, k+2) & f(n+3, k+3) \\
f(n+4, k) & f(n+4, k+1) & f(n+4, k+2) & f(n+4, k+3)
\end{array}
$$

Such functions are called D-finite.

$$
\begin{array}{cccc}
f(n, k) & f(n, k+1) & f(n, k+2) & f(n, k+3) \\
f(n+1, k) & f(n+1, k+1) & f(n+1, k+2) & f(n+1, k+3) \\
f(n+2, k) & f(n+2, k+1) & f(n+2, k+2) & f(n+2, k+3) \\
f(n+3, k) & f(n+3, k+1) & f(n+3, k+2) & f(n+3, k+3) \\
f(n+4, k) & f(n+4, k+1) & f(n+4, k+2) & f(n+4, k+3)
\end{array}
$$

Such functions are called D-finite.

$$
\begin{array}{cccc}
f(n, k) & f(n, k+1) & f(n, k+2) & f(n, k+3) \\
f(n+1, k) & f(n+1, k+1) & f(n+1, k+2) & f(n+1, k+3) \\
f(n+2, k) & f(n+2, k+1) & f(n+2, k+2) & f(n+2, k+3) \\
f(n+3, k) & f(n+3, k+1) & f(n+3, k+2) & f(n+3, k+3) \\
f(n+4, k) & f(n+4, k+1) & f(n+4, k+2) & f(n+4, k+3)
\end{array}
$$

Such functions are called D-finite.

$f(n, k)$	$f(n, k+1)$	$f(n, k+2)$	$f(n, k+3)$
$f(n+1, k)$	$f(n+1, k+1)$	$f(n+1, k+2)$	$f(n+1, k+3)$
$f(n+2, k)$	$f(n+2, k+1)$	$f(n+2, k+2)$	$f(n+2, k+3)$
$f(n+3, k)$	$f(n+3, k+1)$	$f(n+3, k+2)$	$f(n+3, k+3)$
$f(n+4, k)$	$f(n+4, k+1)$	$f(n+4, k+2)$	$f(n+4, k+3)$

Such functions are called D-finite.

$$
\begin{array}{cccc}
f(n, k) & f(n, k+1) & f(n, k+2) & f(n, k+3) \\
f(n+1, k) & f(n+1, k+1) & f(n+1, k+2) & f(n+1, k+3) \\
f(n+2, k) & f(n+2, k+1) & f(n+2, k+2) & f(n+2, k+3) \\
f(n+3, k) & f(n+3, k+1) & f(n+3, k+2) & f(n+3, k+3) \\
f(n+4, k) & f(n+4, k+1) & f(n+4, k+2) & f(n+4, k+3)
\end{array}
$$

Such functions are called D-finite.

$$
\begin{array}{cccc}
f(n, k) & f(n, k+1) & f(n, k+2) & f(n, k+3) \\
f(n+1, k) & f(n+1, k+1) & f(n+1, k+2) & f(n+1, k+3) \\
f(n+2, k) & f(n+2, k+1) & f(n+2, k+2) & f(n+2, k+3) \\
f(n+3, k) & f(n+3, k+1) & f(n+3, k+2) & f(n+3, k+3) \\
f(n+4, k) & f(n+4, k+1) & f(n+4, k+2) & f(n+4, k+3)
\end{array}
$$

Such functions are called D-finite. basis

$$
\begin{array}{cccc}
f(n, k) & f(n, k+1) & f(n, k+2) & f(n, k+3) \\
f(n+1, k) & f(n+1, k+1) & f(n+1, k+2) & f(n+1, k+3) \\
f(n+2, k) & f(n+2, k+1) & f(n+2, k+2) & f(n+2, k+3) \\
\hline f(n+3, k) & f(n+3, k+1) & f(n+3, k+2) & f(n+3, k+3) \\
f(n+4, k) & f(n+4, k+1) & f(n+4, k+2) & f(n+4, k+3)
\end{array}
$$

Of course you are free to work with different bases, if you wish.

Suppose you have chosen a basis $B=\left\{b_{1}, \ldots, b_{d}\right\}$.

Suppose you have chosen a basis $B=\left\{b_{1}, \ldots, b_{d}\right\}$.
Then every function in the vector space can be written uniquely as

$$
f(n, k)=\sum_{i=1}^{d} u_{i} b_{i}
$$

for some rational functions $u_{i}=u_{i}(n, k)$.

Suppose you have chosen a basis $B=\left\{b_{1}, \ldots, b_{d}\right\}$.
Then every function in the vector space can be written uniquely as

$$
f(n, k)=\sum_{i=1}^{d} u_{i} b_{i} \cong\left(u_{1}, \ldots, u_{d}\right)
$$

for some rational functions $u_{i}=u_{i}(n, k)$.

The shift actions with respect to n and k can be encoded by matrices $M_{n}, M_{k} \in \mathbb{Q}(n, k)^{d \times d}$ such that for the function

$$
f(n, k) \cong\left(u_{1}(n, k), \ldots, u_{d}(n, k)\right)
$$

we have

$$
\begin{aligned}
& f(n+1, k) \cong\left(u_{1}(n+1, k), \ldots, u_{d}(n+1, k)\right) \cdot M_{n} \\
& f(n, k+1) \cong\left(u_{1}(n, k+1), \ldots, u_{d}(n, k+1)\right) \cdot M_{k} .
\end{aligned}
$$

The shift actions with respect to n and k can be encoded by matrices $M_{n}, M_{k} \in \mathbb{Q}(n, k)^{d \times d}$ such that for the function

$$
f(n, k) \cong\left(u_{1}(n, k), \ldots, u_{d}(n, k)\right)
$$

we have

$$
\begin{aligned}
& f(n+1, k) \cong\left(u_{1}(n+1, k), \ldots, u_{d}(n+1, k)\right) \cdot M_{n} \\
& f(n, k+1) \cong\left(u_{1}(n, k+1), \ldots, u_{d}(n, k+1)\right) \cdot M_{k} .
\end{aligned}
$$

Example: For $\mathrm{B}=\left\{2^{\mathrm{n}-\mathrm{k}},\binom{\mathrm{n}}{\mathrm{k}}\right\}$ we have

$$
M_{n}=\left(\begin{array}{cc}
2 & 0 \\
0 & \frac{n+1}{n+1-k}
\end{array}\right) \quad \text { and } \quad M_{k}=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{n-k}{k+1}
\end{array}\right) .
$$

Goal: A bound for the order of the telescoper of a D-finite function.

Goal: A bound for the order of the telescoper of a D-finite function.
Problem: Not every D-finite function admits a telescoper.

Goal: A bound for the order of the telescoper of a D-finite function.
Problem: Not every D-finite function admits a telescoper.
Known: Not even every hypergeometric term admits a telescoper.

Goal: A bound for the order of the telescoper of a D-finite function.
Problem: Not every D-finite function admits a telescoper.
Known: Not even every hypergeometric term admits a telescoper.
The usual bounds only apply to "proper" hypergeometric terms.

Goal: A bound for the order of the telescoper of a D-finite function.
Problem: Not every D-finite function admits a telescoper.
Known: Not even every hypergeometric term admits a telescoper.
The usual bounds only apply to "proper" hypergeometric terms.
Question: What is a "proper" D-finite function?

Hypergeometric means that

$$
\begin{aligned}
f(n+1, k) & =\operatorname{rat}_{1}(n, k) f(n, k), \\
f(n, k+1) & =\operatorname{rat}_{2}(n, k) f(n, k)
\end{aligned}
$$

for two rational functions rat $_{1}$, rat $_{2}$.

Hypergeometric means that

$$
\begin{aligned}
f(n+1, k) & =\operatorname{rat}_{1}(n, k) f(n, k), \\
f(n, k+1) & =\operatorname{rat}_{2}(n, k) f(n, k)
\end{aligned}
$$

for two rational functions rat $_{1}$, rat $_{2}$.
Proper hypergeometric means (essentially) that the denominators of these rational functions have only integer-linear factors.

Definition (Chen-Kauers-Koutschan) A D-finite function $f(n, k)$ is called proper D-finite if it lives in a vector space which admits a basis B such that

Definition (Chen-Kauers-Koutschan) A D-finite function $f(n, k)$ is called proper D-finite if it lives in a vector space which admits a basis B such that

- the coordinates of $f(n, k)$ with respect to B are polynomials.

Definition (Chen-Kauers-Koutschan) A D-finite function $f(n, k)$ is called proper D-finite if it lives in a vector space which admits a basis B such that

- the coordinates of $f(n, k)$ with respect to B are polynomials.
- the shift matrices M_{n}, M_{k} with respect to B are such that the common denominator of all their entries has only integer-linear factors.

Theorem (Chen-Kauers-Koutschan; simplified version) Let $f(n, k)$ be proper D-finite.

Theorem (Chen-Kauers-Koutschan; simplified version) Let $f(n, k)$ be proper D-finite.

Then there exists a telescoper P for $\mathrm{f}(\mathrm{n}, \mathrm{k})$ with $\operatorname{ord}(\mathrm{P}) \leq|\mathrm{B}| \mathrm{v}+\mathrm{d}$.

Theorem (Chen-Kauers-Koutschan; simplified version) Let $f(n, k)$ be proper D-finite.

- Let B be an appropriate basis of the vector space and M_{n}, M_{k} be the shift matrices with respect to B.

Then there exists a telescoper P for $\mathrm{f}(\mathrm{n}, \mathrm{k})$ with $\operatorname{ord}(\mathrm{P}) \leq|\mathrm{B}| v+\mathrm{d}$.

Theorem (Chen-Kauers-Koutschan; simplified version) Let $f(n, k)$ be proper D-finite.

- Let B be an appropriate basis of the vector space and M_{n}, M_{k} be the shift matrices with respect to B.
- Write $M_{k}=\frac{1}{h} H$ for a polynomial matrix H and a polynomial h of the form $h=\prod_{i=1}^{m}\left(a_{i} n+b_{i} k+c_{i}\right)^{\overline{b_{i}}}\left(a_{i}^{\prime} n-b_{i}^{\prime} k+c_{i}^{\prime}\right)^{b_{i}^{\prime}}$ for nonnegative integers $a_{i}, b_{i}, a_{i}^{\prime}, b_{i}^{\prime}$. Let

$$
v:=\max \left\{\operatorname{deg}_{k}(h)-1, \operatorname{deg}_{k}(H)\right\} .
$$

Then there exists a telescoper P for $f(n, k)$ with $\operatorname{ord}(P) \leq|B| v+d$.

Theorem (Chen-Kauers-Koutschan; simplified version) Let $f(n, k)$ be proper D-finite.

- Let B be an appropriate basis of the vector space and M_{n}, M_{k} be the shift matrices with respect to B.
- Write $M_{k}=\frac{1}{h} H$ for a polynomial matrix H and a polynomial h of the form $h=\prod_{i=1}^{m}\left(a_{i} n+b_{i} k+c_{i}\right)^{\overline{b_{i}}}\left(a_{i}^{\prime} n-b_{i}^{\prime} k+c_{i}^{\prime}\right)^{b_{i}^{\prime}}$ for nonnegative integers $a_{i}, b_{i}, a_{i}^{\prime}, b_{i}^{\prime}$. Let

$$
v:=\max \left\{\operatorname{deg}_{\mathrm{k}}(\mathrm{~h})-1, \operatorname{deg}_{\mathrm{k}}(\mathrm{H})\right\} .
$$

- Let d be the dimension of the $\mathbb{Q}(n)$-subspace of all vectors v with $S_{k} \cdot v=v$.
Then there exists a telescoper P for $\mathrm{f}(\mathrm{n}, \mathrm{k})$ with $\operatorname{ord}(\mathrm{P}) \leq|\mathrm{B}| v+\mathrm{d}$.

	order	degree	height
hypergeometric			$?$
hyperexponential			$?$
D-finite	\square	$?$	$?$

	order	degree	height
hypergeometric			$?$
hyperexponential			$?$
D-finite	\ddots	$?$	$?$

All questions answered?

	order	degree	height
hypergeometric			$?$
hyperexponential			$?$
D-finite	\square	$?$	$?$

All questions answered?

	order	degree	height
hypergeometric			$?$
hyperexponential			$?$
D-finite		$?$	$?$

- So we know how big the telescopers P are. But how big are the certificates Q ?

All questions answered?

	order	degree	height
hypergeometric			$?$
hyperexponential			$?$
D-finite	\ddots	$?$	$?$

- So we know how big the telescopers P are. But how big are the certificates Q?
- And what's after all the complexity for computing this data?

Inspection of the underlying linear algebra problems also gives bounds for the size of the certificate and on the complexity.

Inspection of the underlying linear algebra problems also gives bounds for the size of the certificate and on the complexity.

Certificates are much bigger than telescopers. Their size messes up the complexity bound.

Inspection of the underlying linear algebra problems also gives bounds for the size of the certificate and on the complexity.

Certificates are much bigger than telescopers. Their size messes up the complexity bound.

The latest generation of creative telescoping algorithms (Bostan, Chen, Chyzak, Lairez, Li, Salvy, Xin) achieves better complexity by avoiding the computation of the certificate.

Inspection of the underlying linear algebra problems also gives bounds for the size of the certificate and on the complexity.

Certificates are much bigger than telescopers. Their size messes up the complexity bound.

The latest generation of creative telescoping algorithms (Bostan, Chen, Chyzak, Lairez, Li, Salvy, Xin) achieves better complexity by avoiding the computation of the certificate.

But that's another story. We stop here.

