Desingularization of Ore Operators

Manuel Kauers

joint work with Shaoshi Chen and Michael Singer

$$
f^{\prime \prime}(x)=\frac{(x+1) f(x)+\left(x^{2}-10 x+7\right) f^{\prime}(x)}{3(x-5)(x-2)}
$$

$$
f^{\prime \prime}(x)=\frac{(x+1) f(x)+\left(x^{2}-10 x+7\right) f^{\prime}(x)}{3(x-5)(x-2)}
$$

- The roots of the denominator are called the singularities of the equation.

$$
f^{\prime \prime}(x)=\frac{(x+1) f(x)+\left(x^{2}-10 x+7\right) f^{\prime}(x)}{3(x-5)(x-2)}
$$

- The roots of the denominator are called the singularities of the equation.
- If a solution f has a singularity at ξ, then ξ is also a singularity of the equation.

$$
f^{\prime \prime}(x)=\frac{(x+1) f(x)+\left(x^{2}-10 x+7\right) f^{\prime}(x)}{3(x-5)(x-2)}
$$

- The roots of the denominator are called the singularities of the equation.
- If a solution f has a singularity at ξ, then ξ is also a singularity of the equation.
- The converse is not true: The equation may have singularities where all solutions are regular.

$$
f^{\prime \prime}(x)=\frac{(x+1) f(x)+\left(x^{2}-10 x+7\right) f^{\prime}(x)}{3(x-5)(x-2)}
$$

Solutions in this case:

$$
\exp (x / 3), \quad \frac{1}{x-5}
$$

$$
f^{\prime \prime}(x)=\frac{(x+1) f(x)+\left(x^{2}-10 x+7\right) f^{\prime}(x)}{3(x-5)(x-2)}
$$

Solutions in this case:

$$
\exp (x / 3), \quad \frac{1}{x-5}
$$

$$
f^{\prime \prime}(x)=\frac{(x+1) f(x)+\left(x^{2}-10 x+7\right) f^{\prime}(x)}{3(x-5)(x-2)}
$$

Solutions in this case:

$$
\exp (x / 3), \quad \frac{1}{x-5}
$$

$$
f^{\prime \prime}(x)=\frac{(x+1) f(x)+\left(x^{2}-10 x+7\right) f^{\prime}(x)}{3(x-5)(x-2)}
$$

Solutions in this case:

$$
\exp (x / 3), \quad \frac{1}{x-5}
$$

How to distinguish apparent and non-apparent singularities when we don't have closed form solutions?

$$
f^{\prime}(x)=\frac{(x-2) f(x)}{(x-1) x}
$$

$$
f^{\prime}(x)=\frac{(x-2) f(x)}{(x-1) x}
$$

$$
(x-1) x f^{\prime}(x)-(x-2) f(x)=0
$$

$$
(x-1) x f^{\prime}(x)-(x-2) f(x)=0 \quad \left\lvert\, \frac{d}{d x}\right.
$$

$$
(x-1) x f^{\prime}(x)-(x-2) f(x)=0 \quad \left\lvert\, \frac{d}{d x}\right.
$$

$(2 x-1) f^{\prime}(x)+(x-1) x f^{\prime \prime}(x)-f(x)-(x-2) f^{\prime}(x)=0$

$$
\begin{gathered}
(x-1) x f^{\prime}(x)-(x-2) f(x)=0 \quad \left\lvert\, \frac{d}{d x}\right. \\
(x-1) x f^{\prime \prime}(x)+(x+1) f^{\prime}(x)-f(x)=0
\end{gathered}
$$

$$
\begin{array}{c|c|c}
(x-1) x f^{\prime}(x)-(x-2) f(x)=0 & \frac{d}{d x} \\
(x-1) x f^{\prime \prime}(x)+(x+1) f^{\prime}(x)-f(x)=0 & \frac{d}{d x}
\end{array}
$$

$$
\begin{array}{c|c}
(x-1) x f^{\prime}(x)-(x-2) f(x)=0 & \frac{d}{d x} \\
(x-1) x f^{\prime \prime}(x)+(x+1) f^{\prime}(x)-f(x)=0 & \left\lvert\, \frac{d}{d x}\right.
\end{array}
$$

$(2 x-1) f^{\prime \prime}(x)+(x-1) x f^{\prime \prime \prime}(x)+f^{\prime}(x)+(x+1) f^{\prime \prime}(x)-f^{\prime}(x)=0$

$$
\begin{array}{c|c}
(x-1) x f^{\prime}(x)-(x-2) f(x)=0 & \frac{d}{d x} \\
(x-1) x f^{\prime \prime}(x)+(x+1) f^{\prime}(x)-f(x)=0 & \left\lvert\, \frac{d}{d x}\right. \\
(x-1) x f^{\prime \prime \prime}(x)+3 x f^{\prime \prime}(x)=0 &
\end{array}
$$

$$
\begin{array}{c|c|c}
(x-1) x f^{\prime}(x)-(x-2) f(x)=0 & \frac{d}{d x} \\
(x-1) x f^{\prime \prime}(x)+(x+1) f^{\prime}(x)-f(x)=0 & \frac{d}{d x} \\
(x-1) x f^{\prime \prime \prime}(x)+3 x f^{\prime \prime}(x)=0 & : x
\end{array}
$$

$$
\begin{array}{c|c}
(x-1) x f^{\prime}(x)-(x-2) f(x)=0 & \left\lvert\, \frac{d}{d x}\right. \\
(x-1) x f^{\prime \prime}(x)+(x+1) f^{\prime}(x)-f(x)=0 & \frac{d}{d x} \\
(x-1) x f^{\prime \prime \prime}(x)+3 x f^{\prime \prime}(x)=0 & : x \\
(x-1) f^{\prime \prime \prime}(x)+3 f^{\prime \prime}(x)=0 &
\end{array}
$$

removable singularity

$$
\begin{array}{c|c}
(x-1) x f^{\prime}(x)-(x-2) f(x)=0 & \frac{d}{d x} \\
(x-1) x f^{\prime \prime}(x)+(x+1) f^{\prime}(x)-f(x)=0 & \frac{d}{d x} \\
(x-1) x f^{\prime \prime \prime}(x)+3 x f^{\prime \prime}(x)=0 & : x \\
(x-1) f^{\prime \prime \prime}(x)+3 f^{\prime \prime}(x)=0 &
\end{array}
$$

non-removable singularity

$$
\begin{array}{cc}
\text { removable singularity } \\
\begin{array}{cc}
x-1) x f^{\prime}(x)-(x-2) f(x)=0 & \frac{\mathrm{~d}}{\mathrm{~d} x} \\
(x-1) x f^{\prime \prime}(x)+(x+1) f^{\prime}(x)-f(x)=0 & \frac{\mathrm{~d}}{\mathrm{~d} x} \\
(x-1) x f^{\prime \prime \prime}(x)+3 x f^{\prime \prime}(x)=0 & : x \\
(x-1) f^{\prime \prime \prime}(x)+3 f^{\prime \prime}(x)=0 &
\end{array}
\end{array}
$$

non-removable singularity

$$
\begin{array}{c|c}
\text { removable singularity } \\
\begin{array}{c|c}
x-1) x f^{\prime}(x)-(x-2) f(x)=0 & \frac{\mathrm{~d}}{\mathrm{~d} x} \\
(x-1) x f^{\prime \prime}(x)+(x+1) f^{\prime}(x)-f(x)=0 & \frac{\mathrm{~d}}{\mathrm{~d} x} \\
(x-1) x f^{\prime \prime \prime}(x)+3 x f^{\prime \prime}(x)=0 & : x \\
(x-1) f^{\prime \prime \prime}(x)+3 f^{\prime \prime}(x)=0 &
\end{array}
\end{array}
$$

Obvious: removable \Rightarrow apparent

$$
\begin{array}{c|c}
\text { removable singularity } \\
(x-1) x f^{\prime}(x)-(x-2) f(x)=0 & \left\lvert\, \frac{d}{d x}\right. \\
(x-1) x f^{\prime \prime}(x)+(x+1) f^{\prime}(x)-f(x)=0 & \left\lvert\, \frac{d}{d x}\right. \\
(x-1) x f^{\prime \prime \prime}(x)+3 x f^{\prime \prime}(x)=0 & : x \\
(x-1) f^{\prime \prime \prime}(x)+3 f^{\prime \prime}(x)=0 &
\end{array}
$$

Obvious: removable \Rightarrow apparent
Also true: apparent \Rightarrow removable

$$
f(x)=\frac{(7 x-17)(x-6) f(x-1)-4(x-7)(x-2) f(x-2)}{3(x-5)(x-2)}
$$

$$
f(x)=\frac{(7 x-17)(x-6) f(x-1)-4(x-7)(x-2) f(x-2)}{3(x-5)(x-2)}
$$

- The roots of the denominator are called the singularities of the equation.

$$
f(x)=\frac{(7 x-17)(x-6) f(x-1)-4(x-7)(x-2) f(x-2)}{3(x-5)(x-2)}
$$

- The roots of the denominator are called the singularities of the equation.
- If a solution f has a singularity at ξ and not at every point in $\xi+\mathbb{Z}$, then $\xi+\mathbb{Z}$ must contain a singularity of the equation.

$$
f(x)=\frac{(7 x-17)(x-6) f(x-1)-4(x-7)(x-2) f(x-2)}{3(x-5)(x-2)}
$$

- The roots of the denominator are called the singularities of the equation.
- If a solution f has a singularity at ξ and not at every point in $\xi+\mathbb{Z}$, then $\xi+\mathbb{Z}$ must contain a singularity of the equation.
- The converse is not true: The equation may have a singularity at ξ even though all solutions are regular at all points in $\xi+\mathbb{Z}$.

$$
f(x)=\frac{(7 x-17)(x-6) f(x-1)-4(x-7)(x-2) f(x-2)}{3(x-5)(x-2)}
$$

Solutions in this case:

$$
(4 / 3)^{x}, \quad \frac{1}{x-5}
$$

$$
f(x)=\frac{(7 x-17)(x-6) f(x-1)-4(x-7)(x-2) f(x-2)}{3(x-5)(x-2)}
$$

Solutions in this case:

$$
(4 / 3)^{x}, \quad \frac{1}{x-5}
$$

non-apparent singularity

apparent singularity

$$
f(x)=\frac{(7 x-17)(x-6) f(x-1)-4(x-7)(x-2) f(x-2)}{3(x-5)(x-2)}
$$

Solutions in this case:

$$
(4 / 3)^{x}, \quad \frac{1}{x-5}
$$

Singularities of recurrences can also be removable:

Singularities of recurrences can also be removable:

$$
(x+3) f(x+1)-(x+4) f(x)=0
$$

Singularities of recurrences can also be removable:

$$
\begin{gathered}
(x+3) f(x+1)-(x+4) f(x)=0 \\
(x+4) f(x+2)-(x+5) f(x+1)=0
\end{gathered}
$$

Singularities of recurrences can also be removable:

$$
\left.\begin{array}{c}
(x+3) f(x+1)-(x+4) f(x)=0 \\
(x+4) f(x+2)-(x+5) f(x+1)=0
\end{array}\right\}-
$$

Singularities of recurrences can also be removable:

$$
\begin{gathered}
(x+3) f(x+1)-(x+4) f(x)=0 \\
(x+4) f(x+2)-(x+5) f(x+1)=0 \\
(x+4) f(x+2)-2(x+4) f(x+1)+(x+4) f(x)=0
\end{gathered}
$$

Singularities of recurrences can also be removable:

$$
\begin{gathered}
(x+3) f(x+1)-(x+4) f(x)=0 \\
(x+4) f(x+2)-(x+5) f(x+1)=0 \\
(x+4) f(x+2)-2(x+4) f(x+1)+(x+4) f(x)=0 \\
f(x+2)-2 f(x+1)+f(x)=0
\end{gathered}
$$

Singularities of recurrences can also be removable:

$$
\begin{gathered}
(x+3) f(x+1)-(x+4) f(x)=0 \\
(x+4) f(x+2)-(x+5) f(x+1)=0 \\
(x+4) f(x+2)-2(x+4) f(x+1)+(x+4) f(x)=0 \\
f(x+2)-2 f(x+1)+f(x)=0
\end{gathered}
$$

For recurrences, removable and apparent are "almost equivalent"

Write differential equations in operator notation:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0
$$

Write differential equations in operator notation:

$$
\left(p_{r}(x) \partial^{r}+\cdots+p_{1}(x) \partial+p_{0}(x)\right) \cdot f(x)=0
$$

Write differential equations in operator notation:

$$
\left(p_{r}(x) \partial^{r}+\cdots+p_{1}(x) \partial+p_{0}(x)\right) \cdot f(x)=0
$$

Similarly, for recurrence operators:

Write differential equations in operator notation:

$$
\left(p_{r}(x) \partial^{r}+\cdots+p_{1}(x) \partial+p_{0}(x)\right) \cdot f(x)=0
$$

Similarly, for recurrence operators:

$$
p_{r}(x) f(x+r)+\cdots+p_{1}(x) f(x+1)+p_{0}(x) f(x)=0
$$

Write differential equations in operator notation:

$$
\left(p_{r}(x) \partial^{r}+\cdots+p_{1}(x) \partial+p_{0}(x)\right) \cdot f(x)=0
$$

Similarly, for recurrence operators:

$$
\left(p_{r}(x) \partial^{r}+\cdots+p_{1}(x) \partial+p_{0}(x)\right) \cdot f(x)=0
$$

Define multiplication of operators in such a way that it corresponds to composition:

$$
\left(L_{1} L_{2}\right) \cdot f(x) \stackrel{!}{=} L_{1} \cdot\left(L_{2} \cdot f(x)\right)
$$

Define multiplication of operators in such a way that it corresponds to composition:

$$
\left(L_{1} L_{2}\right) \cdot f(x) \stackrel{!}{=} L_{1} \cdot\left(L_{2} \cdot f(x)\right)
$$

Write $\mathrm{C}[\chi][\partial]$ for the algebra of all these operators.

Define multiplication of operators in such a way that it corresponds to composition:

$$
\left(L_{1} L_{2}\right) \cdot f(x) \stackrel{!}{=} L_{1} \cdot\left(L_{2} \cdot f(x)\right)
$$

Write $\mathrm{C}[\chi][\partial]$ for the algebra of all these operators.

- For differential operators, we have $\partial x=x \partial+1$

Define multiplication of operators in such a way that it corresponds to composition:

$$
\left(L_{1} L_{2}\right) \cdot f(x) \stackrel{!}{=} L_{1} \cdot\left(L_{2} \cdot f(x)\right)
$$

Write $\mathrm{C}[x][\partial]$ for the algebra of all these operators.

- For differential operators, we have $\partial x=x \partial+1$
- For recurrence operators, we have $\partial x=(x+1) \partial$

Define multiplication of operators in such a way that it corresponds to composition:

$$
\left(L_{1} L_{2}\right) \cdot f(x) \stackrel{!}{=} L_{1} \cdot\left(L_{2} \cdot f(x)\right)
$$

Write $\mathrm{C}[x][\partial]$ for the algebra of all these operators.

- For differential operators, we have $\partial x=x \partial+1$
- For recurrence operators, we have $\partial x=(x+1) \partial$
- More generally, we just assume to have $\partial x=\sigma(x) \partial+\delta(x)$ for certain given maps $\sigma, \delta: \mathrm{C}[x] \rightarrow \mathrm{C}[x]$.

Define multiplication of operators in such a way that it corresponds to composition:

$$
\left(L_{1} L_{2}\right) \cdot f(x) \stackrel{!}{=} L_{1} \cdot\left(L_{2} \cdot f(x)\right)
$$

Write $\mathrm{C}[\chi][\partial]$ for the algebra of all these operators.

- For differential operators, we have $\partial x=x \partial+1$
- For recurrence operators, we have $\partial x=(x+1) \partial$
- More generally, we just assume to have $\partial x=\sigma(x) \partial+\delta(x)$ for certain given maps $\sigma, \delta: \mathrm{C}[x] \rightarrow \mathrm{C}[x]$.

The maps σ, δ uniquely determine the Ore algebra $C[x][\partial]$.

Define multiplication of operators in such a way that it corresponds to composition:

$$
\left(L_{1} L_{2}\right) \cdot f(x) \stackrel{!}{=} L_{1} \cdot\left(L_{2} \cdot f(x)\right)
$$

Write $\mathrm{C}[\chi][\partial]$ for the algebra of all these operators.

- For differential operators, we have $\partial x=x \partial+1$

$$
\left(\sigma=\mathrm{id}, \delta=\frac{\mathrm{d}}{\mathrm{~d} x}\right)
$$

- For recurrence operators, we have $\partial x=(x+1) \partial$
- More generally, we just assume to have $\partial x=\sigma(x) \partial+\delta(x)$ for certain given maps $\sigma, \delta: \mathrm{C}[x] \rightarrow \mathrm{C}[x]$.

The maps σ, δ uniquely determine the Ore algebra $C[x][\partial]$.

Define multiplication of operators in such a way that it corresponds to composition:

$$
\left(L_{1} L_{2}\right) \cdot f(x) \stackrel{!}{=} L_{1} \cdot\left(L_{2} \cdot f(x)\right)
$$

Write $\mathrm{C}[\chi][\partial]$ for the algebra of all these operators.

- For differential operators, we have $\partial x=x \partial+1$

$$
\left(\sigma=\mathrm{id}, \delta=\frac{\mathrm{d}}{\mathrm{dx}}\right)
$$

- For recurrence operators, we have $\partial x=(x+1) \partial$ $(\sigma(x)=x+1, \delta=0)$
- More generally, we just assume to have $\partial x=\sigma(x) \partial+\delta(x)$ for certain given maps $\sigma, \delta: \mathrm{C}[x] \rightarrow \mathrm{C}[x]$.

The maps σ, δ uniquely determine the Ore algebra $C[x][\partial]$.

Definition. Let $L \in C[x][\partial]$. A factor $q \in C[x]$ of $\operatorname{lc}(L)$ is called removable if

$$
\exists \mathrm{Q} \in \mathrm{C}(x)[\partial]: \mathrm{QL} \in \mathrm{C}[x][\partial] \text { and } \operatorname{lc}(\mathrm{QL})=\frac{1}{\sigma^{\operatorname{ord}(\mathrm{Q})}(\mathrm{q})} \operatorname{lc}(\mathrm{L}) .
$$

Definition. Let $L \in C[x][\partial]$. A factor $q \in C[x]$ of $\operatorname{lc}(L)$ is called removable if

$$
\exists \mathrm{Q} \in \mathrm{C}(x)[\partial]: \mathrm{QL} \in \mathrm{C}[x][\partial] \text { and } \operatorname{lc}(\mathrm{QL})=\frac{1}{\sigma^{\operatorname{ord}(\mathrm{Q})}(\mathrm{q})} \operatorname{lc}(\mathrm{L}) .
$$

q is called removable "at order n " if $\operatorname{ord}(\mathrm{Q}) \leq \mathrm{n}$.

Definition. Let $L \in C[x][\partial]$. A factor $q \in C[x]$ of $\operatorname{lc}(L)$ is called removable if

$$
\exists \mathrm{Q} \in \mathrm{C}(x)[\partial]: \mathrm{QL} \in \mathrm{C}[x][\partial] \text { and } \operatorname{lc}(\mathrm{QL})=\frac{1}{\sigma^{\operatorname{ord}(\mathrm{Q})}(\mathrm{q})} \operatorname{lc}(\mathrm{L}) .
$$

q is called removable "at order n " if $\operatorname{ord}(\mathrm{Q}) \leq \mathrm{n}$.

Examples.

Definition. Let $L \in C[x][\partial]$. A factor $q \in C[x]$ of $\operatorname{lc}(L)$ is called removable if

$$
\exists \mathrm{Q} \in \mathrm{C}(x)[\partial]: \mathrm{QL} \in \mathrm{C}[x][\partial] \text { and } \operatorname{lc}(\mathrm{QL})=\frac{1}{\sigma^{\operatorname{ord}(\mathrm{Q})}(\mathrm{q})} \operatorname{lc}(\mathrm{L}) .
$$

q is called removable "at order n " if ord $(\mathrm{Q}) \leq \mathrm{n}$.

Examples.

- In the differential case, let $\mathrm{L}=(x-1) x \partial-(x-2)$. The factor $\mathrm{q}=x$ is removable using $\mathrm{Q}=\frac{1}{x} \partial^{2}$.

Definition. Let $L \in C[x][\partial]$. A factor $q \in C[x]$ of $\operatorname{lc}(L)$ is called removable if

$$
\exists \mathrm{Q} \in \mathrm{C}(x)[\partial]: \mathrm{QL} \in \mathrm{C}[x][\partial] \text { and } \operatorname{lc}(\mathrm{QL})=\frac{1}{\sigma^{\operatorname{ord}(\mathrm{Q})}(\mathrm{q})} \operatorname{lc}(\mathrm{L}) .
$$

q is called removable "at order n " if $\operatorname{ord}(\mathrm{Q}) \leq \mathrm{n}$.

Examples.

- In the differential case, let $\mathrm{L}=(x-1) x \partial-(x-2)$. The factor $\mathrm{q}=x$ is removable using $\mathrm{Q}=\frac{1}{x} \partial^{2}$.
- In the recurrence case, let $\mathrm{L}=(x+3) \partial-(x+4)$. The factor $\mathrm{q}=(x+3)$ is removable using $\mathrm{Q}=\frac{1}{x+4}(\partial-1)$.
- For differential operators, it is known since ~ 1890 how to decide removability.
- For differential operators, it is known since ~ 1890 how to decide removability.
- For recurrence operators, algorithms have been given by Abramov and van Hoeij in the 1990s.
- For differential operators, it is known since ~ 1890 how to decide removability.
- For recurrence operators, algorithms have been given by Abramov and van Hoeij in the 1990s.
- We give an algorithm which is more simple and more general, but which only decides removability at order n for a given n.

The classical desingularization algorithm for differential operators:

The classical desingularization algorithm for differential operators:
Let $\mathrm{L} \in \mathrm{C}[\chi][\partial]$ and $\mathrm{r}=\operatorname{ord}(\mathrm{L})$.

The classical desingularization algorithm for differential operators:
Let $L \in C[x][\partial]$ and $r=\operatorname{ord}(L)$.
Case 1. L has fewer than r linearly independent power series solutions. Then x is a non-removable factor of $\operatorname{lc}(\mathrm{L})$.

The classical desingularization algorithm for differential operators:
Let $L \in C[x][\partial]$ and $r=\operatorname{ord}(L)$.
Case 1. L has fewer than r linearly independent power series solutions. Then x is a non-removable factor of $\operatorname{lc}(\mathrm{L})$.
Case 2. L has a power series solution $\chi^{e}+\cdots$ for every starting degree $e \in\{0, \ldots, r-1\}$. Then $x \nmid \operatorname{lc}(L)$.

The classical desingularization algorithm for differential operators:
Let $\mathrm{L} \in \mathrm{C}[\chi][\partial]$ and $\mathrm{r}=\operatorname{ord}(\mathrm{L})$.
Case 1. L has fewer than r linearly independent power series solutions. Then x is a non-removable factor of $\operatorname{lc}(\mathrm{L})$.
Case 2. L has a power series solution $\chi^{e}+\cdots$ for every starting degree $e \in\{0, \ldots, r-1\}$. Then $x \nmid \mathrm{lc}(L)$.
Case 3. L has r power series solutions $\chi^{\mathrm{e}}+\cdots$ at least one of which has a starting degree $\mathrm{e} \geq \mathrm{r}$. Then $\mathrm{x} \mid \operatorname{lc}(\mathrm{L})$ is removable.

The classical desingularization algorithm for differential operators:
Let $\mathrm{L} \in \mathrm{C}[\chi][\partial]$ and $\mathrm{r}=\operatorname{ord}(\mathrm{L})$.
Case 1. L has fewer than r linearly independent power series solutions. Then x is a non-removable factor of $\operatorname{lc}(\mathrm{L})$.
Case 2. L has a power series solution $\chi^{e}+\cdots$ for every starting degree $e \in\{0, \ldots, r-1\}$. Then $x \nmid c(L)$.
Case 3. L has r power series solutions $\chi^{\mathrm{e}}+\cdots$ at least one of which has a starting degree $e \geq r$. Then $x \mid l c(L)$ is removable.

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+0 x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+0 x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+O x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+O x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+O x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+O x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+O x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+O x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+0 x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing $e^{\prime} s$.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+O x^{3}+O x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+O x+O x^{2}+O x^{3}+O x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+0 x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+0 x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing $e^{\prime} s$.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+0 x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing $e^{\prime} s$.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+0 x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+O x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing $e^{\prime} s$.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+0 x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing $e^{\prime} s$.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+O x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing $e^{\prime} s$.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+0 x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing $e^{\prime} s$.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+O x^{2}+0 x^{3}+O x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing $e^{\prime} s$.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+0 x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+0 x^{4}+O x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

The classical desingularization algorithm for differential operators:

$$
\begin{aligned}
& 1+\bigcirc x+\bigcirc x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& \rightarrow \quad 0+1 x+0 x^{2}+0 x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+\cdots \\
& 0+0 x+1 x^{2}+\bigcirc x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& 0+0 x+0 x^{2}+1 x^{3}+\bigcirc x^{4}+\bigcirc x^{5}+\bigcirc x^{6}+\cdots \\
& \rightarrow \quad 0+0 x+0 x^{2}+0 x^{3}+1 x^{4}+0 x^{5}+0 x^{6}+\cdots \\
& \rightarrow \quad 0+0 x+0 x^{2}+0 x^{3}+0 x^{4}+1 x^{5}+0 x^{6}+\cdots \\
& 0+0 x+0 x^{2}+0 x^{3}+0 x^{4}+0 x^{5}+1 x^{6}+\cdots
\end{aligned}
$$

Idea: when x is removable, construct a new operator whose solution space contains the solution space of L as well as monomials χ^{e} for all the missing e's.

Theorem (Fuchs). Let L be a differential operator and suppose that $\chi \mid \operatorname{lc}(\mathrm{L})$ is removable.
If $\chi^{e_{1}}, \ldots, \chi^{e_{m}}$ are the missing monomials, let

$$
M=\operatorname{lclm}\left(\chi \partial-e_{1}, \ldots, \chi \partial-e_{m}\right) .
$$

Then $\operatorname{lclm}(L, M)$ is an x-removed left multiple of L.

Theorem (Chen, Kauers, Singer).

Theorem (Chen, Kauers, Singer). Let $C[x][\partial]$ be an Ore algebra.

Theorem (Chen, Kauers, Singer). Let $C[x][\partial]$ be an Ore algebra.

Let $\mathrm{L} \in \mathrm{C}[\chi][\partial], \mathrm{q} \mid \mathrm{lc}(\mathrm{L})$ removable by some operator Q of order n.

Theorem (Chen, Kauers, Singer). Let $C[x][\partial]$ be an Ore algebra.

Let $\mathrm{L} \in \mathrm{C}[x][\partial], \mathrm{q} \mid \mathrm{lc}(\mathrm{L})$ removable by some operator Q of order n.

Let $M \in C[x][\partial]$ be an arbitrary operator of order n.

Theorem (Chen, Kauers, Singer). Let $C[x][\partial]$ be an Ore algebra.

Let $\mathrm{L} \in \mathrm{C}[x][\partial], \mathrm{q} \mid \mathrm{lc}(\mathrm{L})$ removable by some operator Q of order n.

Let $M \in C[x][\partial]$ be an arbitrary operator of order n.
Then $\operatorname{lclm}(L, M)$ is a q-removed left multiple of L.

Theorem (Chen, Kauers, Singer). Let $C[x][\partial]$ be an Ore algebra.

Let $\mathrm{L} \in \mathrm{C}[\chi][\partial], \mathrm{q} \mid \mathrm{lc}(\mathrm{L})$ removable by some operator Q of order n.

Let $M \in \mathcal{M} \in x][\partial]$ be an arbitrary operator of order n.
Then $\operatorname{lclm}(L, N i)$ is a q-removed left multiple of L .

Theorem (Chen, Kauers, Singer). Let $C[x][\partial]$ be an Ore algebra.

Let $\mathrm{L} \in \mathrm{C}[\chi][\partial], \mathrm{q} \mid \mathrm{lc}(\mathrm{L})$ removable by some operator Q of order n.
Let $V \subseteq \overline{\mathrm{C}}^{n}$ be the set of all points $\left(m_{0}, m_{1}, \ldots, m_{n-1}\right) \in \overline{\mathrm{C}}^{n}$ such that for

$$
M:=\partial^{n}+m_{n-1} \partial^{n-1}+m_{n-2} \partial^{n-2}+\cdots+m_{0}
$$

the operator $\operatorname{lclm}(L, M)$ is not a q-removed left multiple of L.

Theorem (Chen, Kauers, Singer). Let $C[x][\partial]$ be an Ore algebra.

Let $\mathrm{L} \in \mathrm{C}[\chi][\partial], \mathrm{q} \mid \mathrm{lc}(\mathrm{L})$ removable by some operator Q of order n.
Let $\mathrm{V} \subseteq \overline{\mathrm{C}}^{\mathfrak{n}}$ be the set of all points $\left(\mathrm{m}_{0}, \mathrm{~m}_{1}, \ldots, \mathrm{~m}_{n-1}\right) \in \overline{\mathrm{C}}^{n}$ such that for

$$
M:=\partial^{n}+m_{n-1} \partial^{n-1}+m_{n-2} \partial^{n-2}+\cdots+m_{0}
$$

the operator $\operatorname{lclm}(L, M)$ is not a q-removed left multiple of L.
Then V is (contained in) a proper algebraic subset of $\overline{\mathrm{C}}^{n}$.

Our simple and general desingularization algorithm is thus:
[1] Pick a random operator $M \in C[\partial]$ of order n.
[2] Return $\operatorname{lclm}(L, M)$.

Our simple and general desingularization algorithm is thus:
[1] Pick a random operator $M \in C[\partial]$ of order n.
[2] Return $\operatorname{lclm}(L, M)$.

Features:

- With high probability, this will remove all the removable factors in one stroke, not just a given factor q.

Our simple and general desingularization algorithm is thus:
[1] Pick a random operator $M \in C[\partial]$ of order n.
[2] Return $\operatorname{lclm}(L, M)$.

Features:

- With high probability, this will remove all the removable factors in one stroke, not just a given factor q.
- It can be detected a posteriori whether the choice of M was unlucky. (And there is a deterministic version too.)

Our simple and general desingularization algorithm is thus:
[1] Pick a random operator $M \in C[\partial]$ of order n.
[2] Return $\operatorname{lclm}(L, M)$.

Features:

- With high probability, this will remove all the removable factors in one stroke, not just a given factor q.
- It can be detected a posteriori whether the choice of M was unlucky. (And there is a deterministic version too.)
- The case where a factor with higher multiplicity cannot be removed but its multiplicity can be lowered.

Our simple and general desingularization algorithm is thus:
[1] Pick a random operator $M \in C[\partial]$ of order n.
[2] Return $\operatorname{lclm}(L, M)$.

Features:

- With high probability, this will remove all the removable factors in one stroke, not just a given factor q.
- It can be detected a posteriori whether the choice of M was unlucky. (And there is a deterministic version too.)
- The case where a factor with higher multiplicity cannot be removed but its multiplicity can be lowered.
- In the recurrence and differential case, bounds for n are can be obtained as in the known algorithms.

Removing factors is crucial for the contraction problem: Given $\mathrm{L} \in \mathrm{C}[x][\partial]$, consider the ideal $\mathfrak{L}=\langle\mathrm{L}\rangle$ generated by L in $\mathrm{C}(\mathrm{x})[\partial]$. The ideal

$$
\mathfrak{L} \downarrow:=\mathfrak{L} \cap \mathrm{C}[\chi][\partial]
$$

is called the contraction of \mathfrak{L}.

Removing factors is crucial for the contraction problem: Given $\mathrm{L} \in \mathrm{C}[x][\partial]$, consider the ideal $\mathfrak{L}=\langle\mathrm{L}\rangle$ generated by L in $\mathrm{C}(x)[\partial]$. The ideal

$$
\mathfrak{L} \downarrow:=\mathfrak{L} \cap \mathrm{C}[\chi][\partial]
$$

is called the contraction of \mathfrak{L}.
As a consequence of our theorem, we have that $\mathfrak{L} \downarrow$ is generated as ideal of $\mathrm{C}[\chi][\partial]$ by L and $\operatorname{lclm}(L, M)$, for almost every M of sufficiently high order.

Noting that $\operatorname{lclm}(L, M)$ is the generator of $\langle L\rangle \cap\langle M\rangle$, this suggests a natural generalization to the case of several variables:

Noting that $\operatorname{lclm}(L, M)$ is the generator of $\langle L\rangle \cap\langle M\rangle$, this suggests a natural generalization to the case of several variables:

For a left ideal $\mathfrak{L} \subseteq C\left(x_{1}, \ldots, x_{\mathfrak{m}}\right)\left[\partial_{1}, \ldots, \partial_{\mathfrak{m}}\right]$ we may hope that a basis of

$$
\mathfrak{L} \downarrow:=\mathfrak{L} \cap \mathrm{C}\left[x_{1}, \ldots, x_{m}\right]\left[\partial_{1}, \ldots, \partial_{m}\right]
$$

by joining a basis of \mathfrak{L} and a basis of $\mathfrak{L} \cap \mathfrak{M}$, for almost every left ideal \mathfrak{M}.

Noting that $\operatorname{lclm}(L, M)$ is the generator of $\langle L\rangle \cap\langle M\rangle$, this suggests a natural generalization to the case of several variables:

For a left ideal $\mathfrak{L} \subseteq C\left(x_{1}, \ldots, x_{\mathfrak{m}}\right)\left[\partial_{1}, \ldots, \partial_{\mathfrak{m}}\right]$ we may hope that a basis of

$$
\mathfrak{L} \downarrow:=\mathfrak{L} \cap \mathrm{C}\left[x_{1}, \ldots, x_{m}\right]\left[\partial_{1}, \ldots, \partial_{m}\right]
$$

by joining a basis of \mathfrak{L} and a basis of $\mathfrak{L} \cap \mathfrak{M}$, for almost every left ideal \mathfrak{M}.

Experiments suggest that this works indeed. We don't have a proof yet, but we are working on it.

