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Abstract. The conjecture that the orbit-counting generating function for totally symmetric

plane partitions can be written as an explicit product-formula, has been stated independently

by George Andrews and David Robbins around 1983. We present a proof of this long-standing
conjecture.

1. Proemium

In the historical conference Combinatoire Énumerative that took place at the end of May 1985,
in Montreal, Richard Stanley raised some intriguing problems about the enumeration of plane
partitions (see below), which he later expanded into a fascinating article [9]. Most of these problems
concerned the enumeration of “symmetry classes” of plane partitions that were discussed in more
detail in another article of Stanley [10]. All of the conjectures in the latter article have since been
proved (see David Bressoud’s modern classic [3]), except one, which until now resisted the efforts
of the greatest minds in enumerative combinatorics. It concerns the proof of an explicit formula
for the q-enumeration of totally symmetric plane partitions, conjectured, ca. 1983, independently
by George Andrews and David Robbins ([10], [9] conj. 7, [3] conj. 13, and already alluded to in
[1]). In the present article we finally turn this conjecture into a theorem.
A plane partition π is an array π = (πi,j)1≤i,j , of positive integers πi,j with finite sum |π| =

∑
πi,j ,

which is weakly decreasing in rows and columns so that πi,j ≥ πi+1,j and πi,j ≥ πi,j+1. A plane
partition π is identified with its 3D Ferrers diagram which is obtained by stacking πi,j unit cubes
on top of the location (i, j). This gives a left-, back-, and bottom-justified structure in which we
can refer to the locations (i, j, k) of the individual unit cubes. If the diagram is invariant under the
action of the symmetric group S3 then π is called a totally symmetric plane partition (TSPP). In
other words, π is called totally symmetric if whenever a location (i, j, k) in the diagram is occupied
then all its up to 5 permutations {(i, k, j), (j, i, k), (j, k, i), (k, i, j), (k, j, i)} are occupied as well.
Such a set of cubes, i.e., all cubes to which a certain cube can be moved via S3 is called an orbit;
the set of all orbits of π forms a partition of its diagram (see Figure 1).
In 1995, John Stembridge [11] proved Ian Macdonald’s conjecture that the number of totally
symmetric plane partitions with largest part at most n, i.e., those whose 3D Ferrers diagram is
contained in the cube [0, n]3, is given by the elegant product-formula∏

1≤i≤j≤k≤n

i+ j + k − 1
i+ j + k − 2

.

Ten years after Stembridge’s completely human-generated proof, Andrews, Peter Paule and Carsten
Schneider [2] came up with a computer-assisted proof based on an ingenious matrix decomposition,
but since no q-analog of their decomposition was found, their proof could not be extended to a
proof for the q-case. A third proof of Stembridge’s theorem [7], completely computer-generated,
was recently found in the context of our investigations of the q-TSPP conjecture. We have now
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Figure 1. A totally symmetric plane partition with largest part 7. The yellow
cubes form an orbit of length 6 (corresponding to all permutations of (2, 4, 6)),
the red cubes an orbit of length 3 (all permutations of (1, 1, 7)), and the green
cube on location (4, 4, 4) represents an orbit of length 1.

succeeded in completing all the required computations for an analogous proof of the q-TSPP
conjecture, and can therefore announce:

Theorem 1. Let π/S3 denote the set of orbits of a plane partition π under the action of the
symmetric group S3. Then the orbit-counting generating function ([3, p. 200], [10, p. 106]) is
given by ∑

π∈T (n)

q|π/S3| =
∏

1≤i≤j≤k≤n

1− qi+j+k−1

1− qi+j+k−2

where T (n) denotes the set of totally symmetric plane partitions with largest part at most n.

Proof sketch. Our proof is based on a result by Soichi Okada [8] who has shown that the theorem
is implied by a certain—conjectured—determinant evaluation. These preliminaries are stated
accurately in Section 2 below, followed by a description of the holonomic ansatz [14] that we are
going to pursue. This approach relies on a kind of oracle that tells us a description of a certificate
function cn,j ; the odyssey how this function has been “guessed” is described in Section 3. Once
cn,j is known, the determinant evaluation reduces further to proving the three identities (1), (2),
and (3) stated below. In Section 4 we come full circle by proving these identities. Additional
technical details of the proof and our computations as well as the explicit certificates are provided
electronically on our website (http://www.risc.uni-linz.ac.at/people/ckoutsch/qtspp/). �

Our proof is noteworthy not only for its obvious significance in enumerative combinatorics, as it
settles a long-standing conjecture, attempted by many people. It is noteworthy also for computa-
tional reasons, as the computations we performed went far beyond what has been thought to be
possible with currently known algebraic algorithms, software packages, and computer hardware.

2. The Telemachiad

In order to prove the q-TSPP conjecture, we exploit an elegant reduction by Okada [8] to the
problem of evaluating a certain determinant. This determinant is also listed as Conjecture 46 in
Christian Krattenthaler’s essay [6] on the art of determinant evaluation.
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Let, as usual, δi,j be the Kronecker delta function and let, also as usual,[
n

k

]
=

(1− qn)(1− qn−1) · · · (1− qn−k+1)
(1− qk)(1− qk−1) · · · (1− q)

denote the q-binomial coefficient. Define the discrete function ai,j by:

ai,j := qi+j−1

([
i+ j − 2
i− 1

]
+ q

[
i+ j − 1

i

])
+ (1 + qi)δi,j − δi,j+1.

Okada’s crucial insight is that Theorem 1 holds if

det(ai,j)1≤i,j≤n =
∏

1≤i≤j≤k≤n

(
1− qi+j+k−1

1− qi+j+k−2

)2

=: bn (n ≥ 1).

So for proving the q-TSPP conjecture, it is sufficient to prove this conjectured determinant eval-
uation. For this purpose we apply a computational approach originally proposed in [14] which is
applicable to identities of the form

det(ai,j)1≤i,j≤n = bn (n ≥ 1)

where ai,j and bn (with bn 6= 0 for all n ≥ 1) are given explicitly (as it is the case here).

The approach rests on the following induction argument on n. For n = 1, the identity is trivial.
Suppose the identity holds for n− 1; then the linear system

a1,1 · · · a1,n−1 a1,n

...
. . .

...
...

an−1,1 · · · an−1,n−1 an−1,n

0 · · · 0 1




cn,1
...

cn,n−1

cn,n

 =


0
...
0
1


has a unique solution (cn,1, . . . , cn,n). The component cn,j of this solution is precisely the (n, j)-
cofactor divided by the (n, n)-cofactor of the n×n-determinant. The division is meaningful because
the (n, n)-cofactor is just the (n−1)× (n−1)-determinant, which by induction hypothesis is equal
to bn−1, which by general assumption is nonzero. Since the n × n-determinant can be expressed
in terms of the matrix entries an,j and the normalized cofactors cn,j via

bn−1

n∑
j=1

cn,jan,j ,

the induction step is completed by showing that this sum evaluates to bn.

The difficulty is that this last summation involves the function cn,j (of the discrete variables n
and j) for which we do not have an explicit expression for general n and j. In order to achieve our
goal, we guess a suitable description of a function cn,j and then prove that it satisfies the three
identities

cn,n = 1 (n ≥ 1),(1)
n∑
j=1

cn,jai,j = 0 (1 ≤ i < n),(2)

n∑
j=1

cn,jan,j =
bn
bn−1

(n ≥ 1).(3)

Once this is done, then by the argument given before the cn,j must be precisely the normalized
(n, j)-cofactors of the n×n-determinant and the determinant evaluation follows as a consequence.
So in a sense, the function cn,j plays the rôle of a certificate for the determinant identity.
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3. The Odyssey

In our the setting the certificate function cn,j will be described implicitly by a system of linear
recurrence equations in n and j with coefficients depending polynomially on q, qj and qn. Such
recurrence equations can be phrased as the elements of some noncommutative operator algebras
Q(q, qn, qj)[Sn, Sj ] where the symbols Sx represent the shifts x 7→ x+1. If a function is annihilated
by certain operators (viz. it satisfies certain recurrence equations), then it is also annihilated by
all the elements in the (left) ideal generated by those operators. We speak of an annihilating ideal
and represent such ideals by (left) Gröbner bases, so that for instance ideal membership can be
decided effectively.
The annihilating ideals we use for representing functions are such that they uniquely determine
the function up to some finitely many initial values. Technically, this means that the ideals
have dimension zero and that some particular polynomial coefficients appearing in the recurrence
system must not vanish simultaneously for infinitely many points (n, j). These recurrence systems
are similar but somewhat simpler than q-holonomic systems [13], which satisfy some additional
requirements that are not needed for our proof. We have checked that all the ideals arising in our
proof are indeed of the desired form, but in the interest of clarity we suppress a more detailed
description of these checks here. For a complete analysis including all technical details we refer
to the supplementary material on our website. Also in the interest of clarity, we will from now on
identify recurrence equations with their corresponding operators.
A priori, there is no reason why the normalized cofactors cn,j should admit a recursive description
of the kind we are aiming at, but there is also no reason why they should not. It turns out that
they do, and this is fortunate because for functions described in this way, techniques are known
by which the required identities (1), (2) and (3) can be proven algorithmically [13, 12, 5, 4]. In
order to find a recursive description for cn,j , we first computed explicitly the normalized cofactors
cn,j ∈ Q(q) for a few hundred specific indices n and j by directly solving the linear system quoted
in Section 2. Using an algorithm reminiscent of polynomial interpolation, we then constructed a
set of recurrences compatible with the values of cn,j at the (finitely many) indices we computed.
Polynomial interpolation applied to a finite sample u1, . . . , uk of an infinite sequence un will always
deliver some polynomial p of degree at most k − 1 which matches the given data. If it turns out
that this polynomial matches some further sequence terms uk+1, uk+2, . . . , then it is tempting to
conjecture that un = p(n) for all n. The more specific points n are found to match, the higher is
the evidence in favor of this conjecture, even though without further knowledge no finite amount
of points will ever constitute a rigorous proof.
Very much analogously, it is possible to extract recurrence equations from some finite number
of values cn,j . The equations become trustworthy if they also hold for points (n, j) which were
not used for their construction. In this way, we have discovered a system of potential recurrence
equations for the cn,j , which, despite being respectable in size (about 30 Megabytes), appears to
be a rather plausible candidate for a recursive description of the normalized cofactors cn,j . The
system is available for download on our website.

4. The Nostos

Now we switch our point of view. We discard the definition that cn,j be the normalized (n, j)-
cofactor and redefine the discrete function cn,j as the unique solution of the guessed recurrence
system whose (finitely many) initial values agree with the normalized (n, j)-cofactor. If we succeed
in proving that cn,j defined in this way satisfies the identities (1), (2) and (3), then we are done.
For this purpose we provide operators which belong to the annihilating ideal of cn,j or related
ideals and have certain features which imply the desired identities. So in a sense, these operators
play the rôle of certificates for the identities under consideration.
Because of their astronomical size (up to 7 Gigabytes; equivalent to more than one million printed
pages; corresponding to about 2.5 tons of paper), these certificates are not included explicitly in
this article but provided only electronically on our website. Also because of their size, it was not
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possible to construct them by simply applying the standard algorithms from [13, 12, 4, 5]. A
detailed explanation of how exactly we found the certificates is beyond the scope of this article
and will be given in a separate publication. But this lack of explanation does not at all affect the
soundness of our proof, because the correctness of the certificates can be checked independently
by simply performing ideal membership tests. Our certificates are so big that even this “simple”
calculation is not quite trivial, but a reader with a sufficient amount of patience and programming
expertise will be able to do it.
We proceed by explaining the properties of the certificates provided on our website and why they
imply (1), (2) and (3).

4.1. A certificate for (1). To certify that cn,n = 1 for all n ≥ 1, we provide a recurrence in the
annihilating ideal of cn,j which is of the special form

p7(q, qj , qn)cn+7,j+7 + · · ·+ p1(q, qj , qn)cn+1,j+1 + p0(q, qj , qn) = 0.

By virtue of the substitution j 7→ n, it translates into a recurrence for the diagonal sequence cn,n.
This recurrence contains the annihilating operator Sn − 1 of the constant sequence 1 as a (right)
factor, and therefore, after checking c1,1 = c2,2 = · · · = c7,7 = 1, it can be concluded that cn,n = 1
for all n.
Similarly, we showed that cn,0 = 0 for all n ≥ 1 and that cn,j = 0 for all j > n. This knowledge
greatly simplifies the following proofs of the summation identities.

4.2. Certificates for (2). In order to prove the first summation identity, we translate (2) into
the equivalent formulation

(2′)
n∑
j=1

qi+j−1(qi+j + qi − q − 1)
qi − 1

[
i+ j − 2
i− 1

]
cn,j = cn,i−1 − (qi + 1)cn,i (1 ≤ i < n),

taking into account that cn,0 = 0. We provide certificates for (2′).
To this end, let c′n,i,j be the summand of the sum on the left-hand side. A recursive description
for c′n,i,j can be computed directly from the defining equations of cn,j and the fact that the rest
of the summand is a q-hypergeometric factor. In the corresponding operator ideal I ′ we were able
to find two different recurrence equations for c′n,i,j which are of the special form

p4,3c
′
n+4,i+3,j + · · ·+ p1,0c

′
n+1,i,j + p0,1c

′
n,i+1,j + p0,0c

′
n,i,j = tn,i,j+1 − tn,i,j

where the p4,3, . . . , p0,0 are rational functions in Q(q, qi, qn) and tn,i,j is a Q(q, qi, qj , qn)-linear
combination of certain shifts of c′n,i,j (which are determined by the Gröbner basis of I ′ as described
in [4]). Next observe that c′n,i,j = 0 for j ≤ 0 (because of the q-binomial coefficient) and also for
j > n (because cn,j = 0 for j > n). When summing the two recurrence equations for j from −∞
to +∞, the right-hand side telescopes to 0 and the left-hand side turns into a recurrence for the
sum in (2′). This method is known as creative telescoping. Finally we obtain two annihilating
operators P1 and P2 for the left-hand side of (2′).
For the right-hand side of (2′), we can again construct an ideal of recurrences from the defining
equations of cn,j . It turns out that this ideal contains P1 and P2, so that both sides of (2′) are
annihilated by these two operators. Additionally, P1 and P2 have been constructed such that
they require only finitely many initial values to produce a uniquely determined bivariate sequence.
Therefore it suffices to check that the two sides of (2′) agree at some finitely many points (n, j).

4.3. The certificate for (3). To certify the final identity, we rewrite (3) equivalently into

(3′) (1 + qn)− cn,n−1 +
n∑
j=1

qn+j−1(qn+j + qn − q − 1)
qn − 1

[
n+ j − 2
n− 1

]
cn,j =

(q2n; q)2n
(qn; q2)2n

(n ≥ 1)

where (a; q)n := (1− a)(1− qa) · · · (1− qn−1a) denotes the q-Pochhammer symbol. As before, we
use creative telescoping to provide a certified operator P which annihilates the sum on the left-
hand side. In the present case, a single operator is sufficient because the sum depends only on a
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single variable n (there is no i there). Using the operator P and the defining equations for cn,j , we
then construct a recurrence for the entire left-hand side, which turns out to have order twelve. As
this recurrence is a left multiple of the second order operator annihilating the right-hand side, the
proof of Theorem 1 is completed by checking (3′) for n = 1, 2, . . . , 12. Quod Erat Demonstrandum!

5. Epilogue

Paul Erdős famously (and naively) believed that every short and elegant mathematical statement
has a short and elegant “proof from the book”, and if humans tried hard enough, they would
eventually find it. Kurt Gödel, on the other hand, meta-proved that there exist many short
statements whose shortest possible proof is very long. It is very possible that the q-TSPP theorem
does have a yet-to-be-found proof from the book, but it is just as possible that it does not, and
while we are sure that the present proof is not the shortest-possible (there were lots of random
choices in designing the proof), it may well be the case that the shortest-possible proof is still very
long, and would still require heavy-duty computer calculations.
Be that as it may, we believe that our general approach, and our way of taming the computer
to prove something that seemed intractable with today’s hardware and software are very elegant,
and deserve to be included in the book.

References

[1] George E. Andrews, Totally symmetric plane partitions, Abstracts Amer. Math. Soc. 1 (1980), 415.

[2] George E. Andrews, Peter Paule, and Carsten Schneider, Plane Partitions VI. Stembridge’s TSPP theorem,
Adv. Appl. Math. 34 (2005), 709–739.

[3] David M. Bressoud, Proofs and Confirmations, Math. Assoc. America and Cambridge University Press (1999).

[4] Frédéric Chyzak An extension of Zeilberger’s fast algorithm to general holonomic functions Discrete Mathe-
matics 217 (2000), 115–134.

[5] Frédéric Chyzak and Bruno Salvy, Non-commutative elimination in Ore algebras proves multivariate identities,

J. of Symbolic Computation 26 (1998), 187–227.
[6] Christian Krattenthaler, Advanced Determinant Calculus, Sém. Lothar. Comb. 42 (1999), B42q. The Andrews

Festschrift, D. Foata and G.-N. Han (eds.)
[7] Christoph Koutschan, Eliminating Human Insight: An Algorithmic Proof of Stembridge’s TSPP Theorem,

Contemporary Mathematics, to appear.

[8] Soichi Okada, On the generating functions for certain classes of plane partitions, J. Comb. Theory, Series A
53 (1989), 1–23.

[9] Richard Stanley, A baker’s dozen of conjectures concerning plane partitions. In Combinatoire énumérative, ed.
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