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Abstract

High order finite element methods are one of the most commonly used techniques for obtain-
ing numerical solutions to partial differential equations on non-trivial domains. The given
domain is subdivided into simple geometric objects and an approximate solution is computed
as a linear combination of locally supported basis functions. Starting from a variational for-
mulation of the partial differential equation the discretization yields a (usually large) system
of linear equations that is commonly solved using iterative methods. The performance of the
iterative solvers is closely related to the choice of basis functions. Customarily finite element
basis functions are defined by means of orthogonal polynomials.

Orthogonal polynomials belong to a class of sequences for which in the past decades various
methods for a symbolic treatment have been devised. This symbolic treatment includes
automatic proving of known identities as well as automatic finding of new identities, such as
algebraic dependencies or closed form representations for symbolic sums. Implementations of
these algorithms are available for all major computer algebra systems.

In this thesis we employ these techniques to solve problems that arose in the context of
high order finite element methods. As a first application we show how to find and prove au-
tomatically recurrence relations for certain edge and vertex based basis functions. Next, we
propose families of basis functions yielding a sparse system matrix for some elliptic bound-
ary values problems. We present an algorithmic proof for the sparsity. Furthermore, we
prove and extend a positivity conjecture on a weighted sum over Legendre polynomials that
was formulated in the context of a convergence proof for a certain high order finite element
scheme. In the final chapter, the construction of a stable polynomial projection operator with
applications to a posteriori error estimates is presented.
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Zusammenfassung

Zur numerischen Lösung partieller Differentialgleichungen auf nontrivialen Gebieten werden
bevorzugt high order Finite Elemente Methoden verwendet. Das gegebene Gebiet wird dabei
in einfache geometrische Objekte unterteilt und eine Näherungslösung als Linearkombination
von lokal definierten Basisfunktionen berechnet. Ausgehend von einer Variationsformulierung
der partiellen Differentialgleichung wird das Problem in ein (üblicherweise hochdimensionales)
lineares Gleichungssystem überführt. Zur Lösung werden im Allgemeinen iterative Metho-
den verwendet, deren Konvergenzverhalten von einer geeigneten Wahl der Basisfunktionen
abhängt. Üblicherweise werden diese Basisfunktionen aus orthogonalen Polynomen konstru-
iert.

Orthogonale Polynome gehören zu einer Klasse von Funktionenfolgen, für die in den letz-
ten Jahrzehnten verschiedene Methoden zur symbolischen Behandlung entwickelt wurden,
wie das automatische Beweisen bekannter Identitäten aber auch das automatische Finden
neuer Identitäten, wie algebraische Abhängigkeiten oder geschlossene Darstellungen symbo-
lischer Summen. Implementierungen dieser Algorithmen sind in allen führenden Computer-
algebrasystemen verfügbar.

In der vorliegenden Arbeit setzen wir diese Algorithmen zur Lösung von verschiedenen
Problemen ein, die im Zusammenhang mit high order Finite Elemente Methoden aufge-
treten sind. Als erste Anwendung zeigen wir, wie Rekursionen für neue kanten- und ver-
texbasierte Basisfunktionen automatisch gefunden und bewiesen werden können. Weiters
präsentieren wir Familien von Basisfunktionen die für bestimmte elliptische Randwertprob-
leme zu dünnbesetzten Systemmatrizen führen. Der Beweis dafür wird über einen Algo-
rithmus, den wir in Mathematica implementiert haben, erbracht. Außerdem beweisen und
erweitern wir eine Vermutung über die Positivität einer gewichteten Summe von Legendre
Polynomen, die im Zusammenhang mit dem Konvergenzbeweis für ein bestimmtes Finite
Elemente Modell aufgestellt wurde. Abschließend beschreiben wir die Konstruktion eines sta-
bilen, polynomialen Projektionsoperators mit Anwendungen für a posteriori Fehlerschätzer.
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Chapter 1

Introduction

Many problems in science and engineering are described by partial differential equations on
non-trivial domains which, except in special cases, cannot be solved analytically. Numerical
methods are required to solve these equations. The finite element method (FEM) [28, 22,
19] has in the last decades become the most popular tool for obtaining solutions of partial
differential equations on complicated domains. The main advantage of the finite element
method is its general applicability to a huge class of problems, linear as well as nonlinear
partial differential equations, coupled systems, varying material coefficients and boundary
conditions.

Finite element methods are based on the variational formulation of partial differential
equations. The domain of interest is subdivided by simple geometrical objects such as tri-
angles, quadrilaterals, tetrahedra, or hexahedra. The approximate solution is expanded in a
(finite) basis of local functions, each supported on a finite number of elements in the subdi-
vision. There are three main strategies to improve the accuracy of the approximate solution.

The classical approach is to use on each element basis functions of a fixed low polynomial
degree, say p = 1, 2, and to increase the number of elements in the subdivision. This strategy
of local or global refinement of the mesh is called the h-version of the finite element method,
where h refers to the diameter of the elements in the subdivision. With this approach the
approximation error decays algebraically (i.e., with polynomial rate) in the number of un-
knowns.

An alternative strategy is to keep the mesh fixed and to locally increase the polynomial
degree p of the basis functions. This method is called the p-version of the finite element
method [76, 78] and, in the case of a smooth solution, this approach leads to exponential
convergence with respect to the number of unknowns. But in practical problems usually the
solutions are not smooth. In this case the convergence rate of the p-method degenerates again
to an algebraic one.

Exponential convergence can be restored by combining both strategies in the hp-version
of the finite element method [76, 49, 31]. On parts of the domain where the sought solution is
smooth, few coarse elements with basis functions of high polynomial degrees are used, whereas
in the presence of singularities, caused, e.g., by re-entrant corners, the polynomial degree is
kept low and the mesh is refined locally towards the singularity. The p- and the hp-method
are also referred to as high(er) order finite element methods. In Chapter 2 we give a brief
introduction to the finite element method.

While the approximation with piecewise polynomial basis functions of high degree requires

1



2 Chapter 1. Introduction

considerably less parameters [82, 76], the implementation of high order methods is much more
involved. Hence, every simplification of the algorithms is most welcome.

In this thesis we consider several aspects of this challenging task, where as a key instrument
we apply recently developed computer algebra algorithms for special functions. The cross-
over point between high order finite element methods and these symbolic algorithms in our
work are the finite element basis functions. Basis functions for high order finite element
methods are usually defined by means of certain orthogonal polynomials. We are mainly
interested in obtaining recurrence relations or simplifications (closed forms) for expressions
involving orthogonal polynomials, as well as inequalities entering in, e.g., norm or convergence
estimates.

A large number of relations for orthogonal polynomials can be found in literature, see
e.g. [1, 69, 79]. Such relations can, however, on demand also be discovered and proven
automatically. In the past decades a variety of algorithms has been developed for this purpose
and we give a short overview on some of them below.

The orthogonal polynomials considered in this thesis can be represented as sums over
hypergeometric terms, i.e., terms satisfying a first order linear difference equation. Given
f(n, k), hypergeometric in both n and k, it can be decided algorithmically whether the sum
F (n) =

∑n
k=1 f(n, k) admits a closed form representation as linear combination of hyperge-

ometric terms. Furthermore, if such a closed form exists, it can be computed automatically.
The underlying algorithms are due to Gosper [45], Zeilberger [88], and Petkovšek [66]. Based
on WZ-theory [85], Wegschaider has implemented a Mathematica package for discovering and
proving hypergeometric multi-sum identities [83].

Symbolic summation algorithms, however, exist also for more general expressions than hy-
pergeometric terms such as functions described by so-called holonomic systems of differential-
difference equations. Orthogonal polynomials can be described via three term recurrences, or
as solutions to differential equations with polynomial coefficients. In other words, they are
holonomic and these symbolic summation algorithms are applicable.

The holonomic universe is closed under certain operations and these operations can again
be carried out algorithmically using the representation via difference or differential equations.
In the univariate case, we refer to the implementations by Salvy and Zimmermann [70] or
Mallinger [59].

One approach to symbolic summation due to Zeilberger [87] uses a representation via oper-
ators that annihilate the given (possibly multivariate) expression in a certain non-commutative
operator algebra. An algorithm for proving and finding identities for holonomic functions us-
ing Gröbner basis computations is due to Chyzak [25].

A further generalization of classical symbolic summation algorithms that finds closed forms
of expressions involving nested sums and products has been developed by Karr [50, 51]. The
sequences covered by Karr’s algorithm are called ΠΣ-sequences. Schneider [72] has generalized
this algorithm in various directions and due to him is also the only known implementation.

Kauers has devised algorithms for finding algebraic dependencies, symbolic summation,
deciding zero equivalence and proving inequalities that cover most of the cases mentioned
above and extends to a class of “admissible” sequences, see [52]. He has also implemented
this algorithm in his package SumCracker [53].

In Chapter 3 we state the precise definition of holonomic sequences and functions and
give more details on holonomic closure properties. Section 3.3 contains further descriptions of
the implementations of the symbolic summation algorithms that are employed in this thesis.
First applications are given in Chapter 4 where Jacobi and integrated Jacobi polynomials are
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introduced.

Via the finite element discretization the given partial differential equation (in variational
form) is transformed into systems of linear equations to be solved for the coefficients of the
expansion in the finite element basis. These usually large equation systems are commonly
solved by iterative methods, whose performance depends on properties of the system matrix,
such as a sparse structure and a small condition number. Also of interest is a fast assemblance
of the system matrix, or, to be more precise, a fast implementation of the matrix-vector
product. These demands are influenced by a diligent choice of basis functions.

In Chapter 5 the construction of edge and vertex based basis functions for the high order
finite element method is presented for which by means of symbolic summation algorithms
recurrence relations have been found that allow for a cheap implementation of these basis
functions. In [75] these high order basis functions were introduced and it was shown that the
application of cheap block-Jacobi preconditioners is efficient for the proposed basis. In the
joint paper [10] Schneider’s package Sigma [72] was applied to obtain recurrence relations for
these basis functions, whereas here we have chosen to present alternative proofs using different
algorithms. The edge based basis functions are defined through an extension procedure of
functions defined on the real line similar to the approach by Muñoz-Sola [62], for which also
cheap recurrence relations can be generated, see Section 5.1.

Next, in Chapter 6, families of basis functions for triangular and tetrahedral p-finite
element methods for discretizing elliptic boundary value problems are proposed that yield a
sparse system matrix in the case of a piecewise constant coefficient function and a polygonally
bounded domain. More precisely, the number of nonzero matrix entries is proportional to the
number of unknowns, which allows for a fast evaluation of the system matrix. The sparsity
is proven using a program we implemented in the computer algebra system Mathematica. A
further consequence of the sparse structure is the preconditioning of the block of cell based
basis functions, which is also applicable for uniformly elliptic second order boundary value
problems with arbitrary coefficients. The proposed basis functions are extensions of the bases
given in [49, 18]. The contents of this chapter are joint work with Sven Beuchler [16, 17].

The problem treated in Chapter 7 arose in a convergence proof for a certain high order
finite element scheme [74]. In this context Schöberl conjectured the positivity of a weighted
sum of Legendre polynomials. We have extended this conjecture to weighted sums over certain
ultraspherical Jacobi polynomials and proven it by combining human insight and application
of computer algebra [67]. So far neither a fully human nor a fully automated proof for this
result is known.

In the hp-version of the finite element method adaptive mesh refinement is crucial to avoid
an unnecessary high number of unknowns. The decision where to increase the polynomial
degrees of the basis functions and where to subdivide the elements further is usually based on
a posteriori error estimates. In Chapter 8 the construction of a stable polynomial projection
operator with applications in equilibrated residual error estimates is presented. The proof of
the norm estimates for the projection operator requires less applications of computer algebra
than the previous chapters, but it relies on several results given earlier in the thesis. This is
joint work with Dietrich Braess and Joachim Schöberl [20].

From the results presented in this thesis it is obvious that computer algebra techniques
have a significant impact on the design of high order finite methods and that this research
area offers many interesting topics for future investigation.
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Chapter 2

The Finite Element Method

This chapter contains a brief introduction to the finite element method, in particular the
high order finite element method. We define the underlying function spaces and introduce
some customary notations. The basic principles of the finite element method are described
and illustrated with a one dimensional example. We do not intend to give a complete sur-
vey, for instance existence and uniqueness results are not discussed at all. For more infor-
mations we refer to (higher order) finite element literature such as Braess [19], Brenner and
Scott [22], Karniadakis and Sherwin [49], Ciarlet [28], Demkowicz [31], Szabó and Babus̆ka [78]
or Schwab [76].

2.1 Function Spaces

Throughout this chapter let the domain Ω be an open and connected subset of Rd, where
in applications we assume that d = 1, 2, 3. The closure of a set M is denoted by M . We
define C∞

0 (Ω) as the space of infinitely differentiable functions with compact support on Ω.
Functions in C∞

0 (Ω) are supported on a compact subset of Ω with positive distance to the
boundary, i.e., they vanish on ∂Ω. We denote by L2(Ω) the Lebesgue space of square integrable
functions on the domain Ω:

L2(Ω) = {f : Ω → R |
∫

Ω
f(x)2 dx <∞}.

Note that f = g in L2(Ω) means equality almost everywhere, i.e., equal up to sets of measure
zero. The function space L2(Ω) is a Hilbert space with inner product

(f, g)L2(Ω) =

∫

Ω
f(x) g(x) dx.

We omit specifying the domain whenever no confusion can arise. The norm induced by this
inner product is given by

‖f‖2
L2(Ω) = (f, f)L2(Ω) =

∫

Ω
f(x)2 dx.

More generally, Lp-spaces, 1 ≤ p <∞, are defined as

Lp(Ω) = {f : Ω → R |
∫

Ω
|f(x)|p dx <∞}.

5



6 Chapter 2. The Finite Element Method

These spaces are Banach spaces equipped with the norm ‖f‖p
Lp(Ω) =

∫

Ω |f(x)|p dx.
Next we introduce Sobolev spaces. For this purpose we need the notion of weak derivatives.

To motivate the definition let us first consider a continuously differentiable function f ∈
C1(a, b) and a function v ∈ C∞

0 (a, b), for some open real interval (a, b). By partial integration
one obtains

∫ b

a
f(x)v′(x) dx = −

∫ b

a
f(x)′v(x) dx+ [f(x) v(x)]ba

︸ ︷︷ ︸

=0

.

Since v(x) vanishes at the endpoints of the interval, the boundary terms vanish. Based on this
identity the notion of differentiability can be generalized. A function f ∈ L2(a, b) is weakly
differentiable, if there exists a locally integrable function1 w ∈ L1

loc(a, b) satisfying

∫ b

a
f(x)v′(x) dx = −

∫ b

a
w(x)v(x) dx

for all v ∈ C∞
0 (a, b). If such a function w(x) exists, it is unique almost everywhere. In

notation we follow common practice and do not differ between classical (strong) and weak
derivatives, i.e., we write f ′(x) = w(x). Obviously weak and strong derivatives coincide, if the
function f is differentiable in the classical sense. Note that functions with jumps, such as the
Heavyside function, are not weakly differentiable. Continuous functions that are piecewise
differentiable certainly have a weak derivative. For higher derivatives and dimensions d > 1
weak derivatives are defined accordingly. Let α be some multi-index, then the αth weak
derivative Dαf of a square integrable function f : Ω ⊂ Rd → R, x 7→ f(x), is defined via

∫

Ω
Dαf(x) v(x) dx = (−1)|α|

∫

Ω
f(x)Dαv(x) dx,

for all v ∈ C∞
0 (Ω), where |α| =

∑d
i=1 αi. We are mainly concerned with weak gradients.

Motivated by Gauss’ law the weak gradient ∇f ∈ (L1
loc(Ω))d for a function f ∈ L2(Ω) is

defined as ∫

Ω
∇f · v(x) dx = −

∫

Ω
f(x) div v(x) dx,

for all v ∈ (C∞
0 (Ω))d, where the divergence of a vector valued function v is div v =

∑d
i=1

dvi

dxi
.

The Sobolev space H1(Ω) consists of L2-functions whose weak derivative is component-wise
again square integrable, i.e.,

H1(Ω) = {f ∈ L2(Ω) | ∇f ∈ (L2(Ω))d}.

This space is also a Hilbert space equipped with the inner product

(f, g)H1(Ω) = (f, g)L2(Ω) + (∇f,∇g)L2(Ω),

inducing the norm

‖f‖2
H1(Ω) = (f, f)L2(Ω) + (∇f,∇f)L2(Ω) = ‖f‖2

L2(Ω) + |f |2H1(Ω),

1w ∈ L1
loc(Ω) iff, for every compact subset K of Ω, the restriction of w to K is in L1(K).
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where | · |H1(Ω) denotes the H1-semi norm. For higher order derivatives Dα, |α| ≤ k, the

Sobolev space Hk(Ω) is defined accordingly. These Sobolev spaces are again Hilbert spaces
with the inner product

(f, g)Hk(Ω) =
∑

|α|≤k

(Dαf,Dαg)L2(Ω),

that induces the norm ‖f‖2
Hk(Ω)

= (f, f)Hk(Ω). Viewing the space of square integrable func-

tions as the Sobolev space with square integrable weak derivatives up to the zeroth order
explains the customary notations

H0(Ω) = L2(Ω) and (f, g)0 = (f, g)L2(Ω).

The K-interpolation method, cf. [12, 11], gives an equivalent norming of Sobolev spaces
Hs(Ω) that can be extended to fractional orders of differentiation s. The interpolation spaces
[X0,X1]θ, 0 < θ < 1, of two Banach spaces X0, X1, define a scale of spaces lying in a sense
between X0 and X1. The norm of the interpolation space [X0,X1]θ is defined by means of
the K-functional

K(f, t;X0,X1) = inf
f=f0+f1

(
‖f0‖X0 + t ‖f1‖X1

)
, t > 0,

and given by

‖f‖θ =

(∫ ∞

0

[

t−θK(f, t;X0,X1)
]2 dt

t

)1/2

.

For X0 = L2(Ω) = H0(Ω) and X1 = H1(Ω) it can be shown that

K(f, t;H0,H1) ≈ min{1, t}‖f‖L2(Ω) + sup
|h|≤t

‖f(· + h) − f‖L2(Ω), (2.1)

see [11, Chapter 5.4]. For the definition of the Hs-seminorm only the second term on the
right hand side of (2.1) is needed. For s ∈ (0, 1) the Sobolev space Hs(Ω) is defined as

Hs(Ω) = [H0(Ω),H1(Ω)]s = {f ∈ L2(Ω) | ‖f‖2
L2(Ω) + |f |2Hs(Ω) <∞}.

An equivalent renorming is obtained with the seminorm | · |Hs(Ω) given by

|f |Hs(Ω) =

∫

Ω

∫

Ω

|f(x) − f(y)|2
|x− y|2s+d

dx dy.

Next we briefly introduce the spaces needed for treating boundary values of weakly differen-
tiable functions. How to define the trace of a function f ∈ H1(Ω) on ∂Ω, i.e., its values at
∂Ω, is not obvious, because ∂Ω has measure zero in Rd. Still, for Hs(Ω), with s > 1

2 , the
trace of a function on ∂Ω can be defined uniquely in the L2-sense.

For the Sobolev space Hs(Ω), s > 1
2 , we define the space with zero trace on the boundary

∂Ω as the closure of C∞
0 (Ω) in the Hs-norm, i.e.,

Hs
0(Ω) = C∞

0 (Ω)
‖·‖Hs(Ω)

.

For s > 1
2 the trace operator tr mapping a function into its restriction on the boundary

is a continuous operator from Hs(Ω) to Hs−1/2(Ω). Conversely there exists a continuous
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lifting operator E : Hs−1/2(Ω) → Hs(Ω), such that tr(Ef) = f , f ∈ Hs−1/2(Ω). The space
Hs−1/2(Ω) is needed for given boundary values of a partial differential equation in order to
assure continuous dependence of the solution on the input data.

We close this section by defining H−s(Ω) to be the dual space of Hs
0(Ω), i.e., as the space

of continuous linear functionals on H
(
0s). The value of a functional u ∈ H−s(Ω) at a function

v ∈ Hs
0(Ω) are denoted by 〈u, v〉. The space H−s(Ω) is equipped with the dual norm

‖u‖H−s(Ω) = sup
v∈Hs

0 (Ω)

〈u, v〉
‖v‖Hs(Ω)

.

2.2 Variational Formulation

Finite element methods operate on “weak” or “variational” formulations of partial differential
equations. We demonstrate how to obtain the variational formulation starting from a classical
(strong) formulation of the Poisson equation.

Example 2.1. Given a domain Ω ⊂ Rd, d = 1, 2, 3, and a function f we consider the
boundary value problem

find u : −∆u =f, in Ω,

u =0, on ∂Ω.
(2.2)

We seek a solution to this problem in the Hilbert space V = H1
0 (Ω), which requires the weak

formulation of the equation. This formulation is obtained by first multiplying the differential
equation by smooth test functions v ∈ C∞

0 (Ω) and integrating over the domain. Via integration
by parts we have ∫

Ω
∇u∇v dx−

∫

∂Ω

∂u

∂n
v ds =

∫

Ω
fv dx,

where n denotes the unit outer normal vector of Ω. Since v vanishes on ∂Ω the boundary
integral is zero and we arrive at the variational formulation of (2.2),

find u ∈ V :

∫

Ω
∇u∇v dx =

∫

Ω
fv dx, for all v ∈ V. (2.3)

The choice V = H1
0 (Ω) meets the minimal regularity requirements needed for this equation to

be well defined, including also the zero boundary condition u = 0 on ∂Ω.
The quantities in (2.3) define a symmetric bilinear form a(·, ·) and a linear form F (·)

respectively. The bilinear form and linear form for this problem are given by

a(u, v) =

∫

Ω
∇u∇v dx and F (v) =

∫

Ω
fv dx.

Thus we can rewrite (2.3) as

find u ∈ V : a(u, v) = F (v) for all v ∈ V,

or, by the Riesz representation theorem, in operator notation, defining A = a(·, v), F = F (v),

Find u ∈ V : Au = F, in V ′, (2.4)

where V ′ denotes the dual space of V .
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The general procedure to obtain a weak formulation is just as demonstrated in Exam-
ple 2.1. The given partial differential equation is multiplied by some smooth test function,
integrated over the domain and partial integration is performed. The solution is then sought
in a larger space, namely some Sobolev space, that is determined by the weak formulation to
which the original problem was transformed. This change of spaces is also often necessary,
since on complicated domains there might not exist smooth solutions u ∈ C2(Ω) at all. In
the next section we briefly introduce the method we have chosen for solving such variational
problems.

2.3 Basic Principles of the Finite Element Method

The finite element method (FEM) is a special instance of Galerkin methods which provide a
general technique to solve problems of the form

Find u ∈ V : a(u, v) = F (v) ∀v ∈ V, (2.5)

where V is some infinite dimensional space, a(·, ·) is a given bilinear form and F (·) is a given
linear form. Now we approximate V by a sequence of finite dimensional spaces Vh ⊂ V
yielding the discrete problems

Find uh ∈ Vh : a(uh, vh) = F (vh) ∀vh ∈ Vh. (2.6)

By solving these systems approximations uh to the exact solution u of (2.5) are obtained.
Here and in the following the subscript h means that we are dealing with some discrete
object. Let Nh denote the dimension of Vh. Then Vh is spanned by a set of basis functions
{ϕ0, . . . , ϕNh−1}. We expand the approximate solutions uh in terms of these basis functions

uh(x) =

Nh−1
∑

i=0

uiϕi(x).

It is now sufficient to consider as test functions these basis functions, i.e., vh = ϕj , 0 ≤ j ≤
Nh − 1. Hence we can rewrite (2.6) accordingly:

Find u = (u0, . . . , uNh−1) ∈ RNh :

Nh−1
∑

i=0

uia(ϕi, ϕj) = F (ϕj), ∀ 0 ≤ j ≤ Nh − 1.

Defining the system matrix A with entries Ai,j = a(ϕi, ϕj) and the vector f, fj = F (ϕj), we
arrive at the linear system,

Find u ∈ RNh : Au = f. (2.7)

If the bilinear form a(·, ·) is of the form

a(u, v) =

∫

Ω
λ(x)∇u(x) · ∇v(x) dx,

for some coefficient function λ(x), then the corresponding system matrix is called stiffness
matrix . This bilinear form appears in the variational formulation of the partial differential
equation div(λ(x)·∇u(x)) = f(x). The Poisson equation discussed in Example 2.1 is a special
case of this equation for λ(x) ≡ 1. System matrices with entries stemming from the bilinear
form a(u, v) =

∫

Ω µ(x)u(x)v(x) dx, for some coefficient function µ(x), are called mass matrix .
The finite element method can be characterized as a special Galerkin method with the

following properties:
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Figure 2.1: Finite element mesh for a crankshaft, left: surface mesh, right: interior tetrahedral
elements

• the domain Ω is subdivided into a finite set of simple geometric objects such as lines,
triangles, bricks, etc. which are referred to as elements; they are collected in a triangu-
lation Th (see below);

• the basis functions ϕi have local support, i.e., they are nonzero on just a finite number
of elements of Th;

• the space Vh consists typically of piecewise polynomial functions.

Assume that the domain Ω ⊂ Rd (d = 1, 2, 3) is a bounded polygonal or polyhedral domain
with Lipschitz continuous boundary2. Next we characterize a triangulation.

A triangulation (mesh) Th = {Ki}i∈I is a finite, non-overlapping partition of Ω into sim-
ple geometrical objects Ki. A triangulation is called admissible if

1. the elements are non-overlapping, i.e., K̊i ∩ K̊j = ∅, i 6= j;

2. the triangulation Th is a covering of Ω, i.e., Ω =
⋃

i∈I Ki;

3. the intersection Ki ∩Kj of two different elements (i 6= j) is either empty or a vertex or
an edge or a face of both elements.

The index h refers to the mesh size of the triangulation and is related to the diameter of
elements of Th. A triangulation is called quasi-uniform, iff there exists κ > 0 such that each
element K ∈ Th contains a circle with radius ρT ≥ h/κ. The sets of all vertices, edges, faces
and interior cells of elements of the triangulation Th are denoted by V, E , F and C. We only
consider admissible triangulations.

One advantage of the finite element method is its ability of solving partial differen-
tial equations on non-trivial domains. Figure 2.1 shows a possible mesh for a crankshaft.
This mesh was generated by NETGEN, an automatic mesh generator developed by Joachim
Schöberl [73].

A key ingredient in the analysis, design and implementation of finite elements is the use
of reference elements. The physical elements in the mesh, Ki ∈ Th, are defined as images of a

2∂Ω is a Lipschitz continuous boundary, iff for every x ∈ ∂Ω there exists an environment in which ∂Ω can
be represented as graph of a Lipschitz continuous function.
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reference element K̂ of a (possibly non-linear) isoparametric mapping Fi : K̂ → Ki. Several
computations such as numerical integration or derivation can be performed a-priori on the
reference element and then be mapped onto the actual elements in the mesh.

2.4 Finite Element Basis Functions

In this thesis we consider applications of symbolic summation methods to high order finite
element methods, where “high order” refers to using polynomial basis functions up to some
“high” degree p. In general one distinguishes three types of finite element methods based
on their strategies how to improve the accuracy of the approximate solution, the h-, p- and
hp-method.

In the h-version of the finite element method one uses basis functions of fixed (low)
polynomial degree p, usually p = 1, 2. In order to decrease the error of the numerical solution,
the mesh size h is decreased, i.e., the approximate solution is computed on a finer grid. The
h-method converges algebraically (i.e., with polynomial rate), that is, the approximation error
decays algebraically in the number of unknowns.

An alternative strategy to obtain a higher accuracy is to increase the polynomial degree p
of the shape functions on a fixed mesh. This method is called the p-version of the finite element
method. If the solution is an analytic function, then using this approach leads to exponential
convergence. But in practical applications quite frequently we encounter singularities in the
sought solutions. In this situation the convergence of the p-method deteriorates to an algebraic
one.

Exponential convergence can be regained by combining both strategies in the hp-version
of the finite element method. In case of piecewise analytic solutions involving singularities
caused, e.g., by re-entrant corners, edges, etc., the mesh is refined locally towards the singu-
larities. On the finer parts of the grid the basis functions are chosen to be of low polynomial
degree, whereas on the coarse parts of the mesh basis functions of higher degree are used.

Concerning polynomial spaces we denote by P p(I) the space of polynomial functions on
the interval I ⊂ R with maximal degree p ≥ 0. The space of polynomials vanishing at the
endpoints of I is denoted by P p

0 (I). For simplicial elements T , i.e., triangles or tetrahedra,
P p(T ) is the space of polynomials of total degree p, whereas if T is a quadrilateral or hexahe-
dral element, P p(T ) denotes the space of polynomials of maximal degree p in each variable. If
different maximal degrees are used for the variables, we write this explicitely, e.g., P p1,p2(T )
for T a quadrilateral and maximal degree pi for the variable xi, i = 1, 2. The subscript 0 is
again used for polynomial functions that vanish at the boundary of T .

In this section we describe the construction of high order finite element basis functions.
These basis functions are associated to vertices, edges, faces and cells of Th and their defining
properties are stated next.

Definition 2.2. (Higher order basis functions) All basis functions characterized below are
piecewise polynomial and continuous.

• Vertex based basis functions: ϕVi
satisfy the nodal basis property, i.e., ϕVi

(Vj) =
δi,j , for all Vi ∈ V. Basis functions associated to vertices vanish on all faces not con-
taining the associated vertex Vi. Usually vertex based basis functions are chosen to be
piecewise linear.
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Figure 2.2: Vertex, edge based and cell based basis functions on a triangular mesh

• Edge based basis functions: ϕEi
, Ei ∈ E, span P p

0 (Ei) on the associated edge Ei

and vanish on all faces not containing Ei.

• Face based basis functions: ϕFi
, Fi ∈ F , vanish on all faces except the defining one.

They are supported on the two elements sharing Fi.

• Cell based basis functions: the support of ϕCi
, Ci ∈ C, is the defining element only.

In the context of the finite element method these basis functions are also called shape functions.
We denote the set of all vertex based basis functions as ΦV = {ϕV : V ∈ V} and define
ΦE = {ϕE : E ∈ E}, ΦF = {ϕF : F ∈ F} and ΦC = {ϕC : C ∈ C} accordingly. The set
of all basis functions Φ is given by the vector Φ = [ΦV ,ΦE,ΦF ,ΦC ] = [ϕ0, . . . , ϕNh−1].

Figure 2.2 shows the three possible types of basis functions in two dimensions for a trian-
gular mesh. Note that this construction allows to vary the polynomial degrees for each vertex,
edge, face or cell. Solutions u =

∑
uiϕi are by construction continuous across element in-

terfaces and piecewise differentiable, i.e. u is weakly differentiable. Usually hierarchic shape
functions are chosen, i.e., the set of shape functions of polynomial degree up to p should be
contained in the set of shape functions up to polynomial degree p + 1. We describe the con-
struction of such a basis starting with the one-dimensional case using the reference element
Î = [−1, 1]. The shape functions described below were introduced by Szabó and Babus̆ka [78].

Most commonly orthogonal polynomials are used for the construction of higher order
shape functions. In Section 3.2 an overview on orthogonal polynomials is given, for the
moment we only need Legendre and integrated Legendre polynomials. Let Pn(x) denote the
nth Legendre polynomial. Legendre polynomials are pairwise orthogonal with respect to the
L2-inner product on the interval [−1, 1], i.e.,

∫ 1

−1
Pi(x)Pj(x) dx =

2

2i+ 1
δi,j , (2.8)

where δi,j denotes the Kronecker delta. The first few Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) =
1

2

(
3x2 − 1

)
, P3(x) =

1

2
x
(
5x2 − 3

)
.

Moreover we define the nth integrated Legendre polynomial for n ≥ 2 and x ∈ [−1, 1] as

Ln(x) =

∫ x

−1
Pn−1(s) ds. (2.9)
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Figure 2.3: Vertex and cell based basis functions on the reference element [−1, 1], p = 7, all
hat functions on a mesh with five congruent elements

For n = 0, 1 we define L0(x) = −1 and L1(x) = x. The first few integrated Legendre
polynomials, for n ≥ 2, are

L2(x) =
1

2
(x−1)(x+1), L3(x) =

1

2
(x−1)x(x+1), L4(x) =

1

8
(x−1)(x+1)

(
5x2 − 1

)
.

Because of (2.8) integrated Legendre polynomials are orthogonal with respect to the inner
product of the H1-semi norm

(f, g)1 =

∫ 1

−1
f ′(x)g′(x) dx.

Observe also that Ln(±1) = 0. For x = −1 this is obvious and for x = 1 this follows
from orthogonality relation (2.8). We define the vertex based shape functions on Î to be the
standard hat functions

ϕ0(x) =
1 − x

2
, φ1(x) =

1 + x

2
, (2.10)

and the cell based basis functions as integrated Legendre polynomials,

ϕi(x) = Li(x), 2 ≤ i ≤ p. (2.11)

The family of polynomials {ϕi}p
i=0 forms a basis of P p(Î), see also Figure 2.3.

Next we construct shape functions for two dimensions starting with quadrilateral elements. In
the design of these shape functions usually the implicit tensor product structure is exploited.

Let Q̂ = [−1, 1]2 be the reference square with vertices and edges numbered as shown
in Figure 2.4. Then we define the 2D basis functions on Q̂ using the previously defined
one-dimensional ones as follows:

• Vertex shape functions:

ϕV0(x, y) =ϕ0(x)ϕ0(y), ϕV1(x, y) = ϕ1(x)ϕ0(y),

ϕV2(x, y) =ϕ1(x)ϕ1(y), ϕV3(x, y) = ϕ0(x)ϕ1(y).
(2.12)

• Edge based basis functions:

ϕE0
i (x, y) =ϕi(x)ϕ0(y), ϕE1

i (x, y) = ϕ1(x)ϕi(y),

ϕE2
i (x, y) =ϕi(x)ϕ1(y), ϕE3

i (x, y) = ϕ0(x)ϕi(y),
(2.13)

for 2 ≤ i ≤ p.



14 Chapter 2. The Finite Element Method
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Figure 2.4: Reference square Q̂ and reference triangle T̂

• Cell based basis functions:

ϕC
i,j(x, y) = ϕi(x)ϕj(y), 2 ≤ i, j ≤ p. (2.14)

It is easily verified that [ΦV ,ΦE ,ΦC ] satisfy the conditions stated in Definition 2.2 using the
properties of the one dimensional basis functions.

In the construction of high order basis functions for triangles we use a tensor-product-
like structure. This can be obtained by collapsing the quadrilateral to the triangle via the
mapping (x, y) 7→ (x(1 − y), y), see [49, 36]. Let the reference triangle T̂ be given by the
vertices {(−1,−1), (1,−1), (0, 1)} with vertices and edges according to Figure 2.4. The vertex
based basis functions are given as the linear functions satisfying ϕVi

(Vj) = δi,j, i.e.,

ϕV0(x, y) =
1 − 2x− y

4
, ϕV1(x, y) =

1 + 2x− y

4
, ϕV2(x, y) =

1 + y

2
. (2.15)

The edge based basis functions for the first edge E0 are given by

ϕE0
i (x, y) = ϕi

(
2x

1 − y

)

(1 − y)i, 2 ≤ i ≤ p, (2.16)

where ϕi(x) are again the previously defined one-dimensional finite element basis functions.
The shape functions for the other two edges can be constructed analogously. Finally the cell
based basis functions are defined as

ϕC
i,j(x, y) = ϕi

(
2x

1 − y

)

(1 − y)iϕj(y), i ≥ 2, j ≥ 1, i+ j ≤ p. (2.17)

Because of the factor (1 − y)i, both edge and cell based basis functions, are polynomials
in x and y. The construction principles described above can be carried over to the three
dimensional case for prisms, tetrahedra and hexahedra, see e.g. [49, 60].

2.5 Finite Element System Matrix

We have stated the definition of high order shape functions locally on one (reference) ele-
ment. The global shape functions are defined piecewise and consist of contributions of several
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elements. When building up the global system matrix A = (a(ϕi, ϕj))
N−1
i,j=0, first the local ele-

ment matrices are computed. Their entries are then added up in the corresponding positions
of the global system matrix A.

The structure of the system matrix is sparse, since the supports of the basis functions
only overlap on a finite number of elements. Based on the ordering of the shape functions
Φ = [ΦV ,ΦE,ΦF ,ΦC ] one can write the system matrix (locally and globally) in the following
block structure

A =







AV,V AV,E AV,F AV,C

AE,V AE,E AE,F AE,C

AF,V AF,E AF,F AF,C

AC,V AC,E AC,F AC,C






, (2.18)

where AV,V = [a(ϕV
i , ϕ

V
j )]i,j and the other blocks are defined analogously. The dimension N

of the system matrix depends on the topology of mesh and on the associate polynomial
degrees. For instance the mesh depicted in Figure 2.1 consists of 1622 elements. On a single
tetrahedron with uniform degree p we have a total of 1

6(p+ 1)(p+ 2)(p+ 3) shape functions.

Basically there are two options for solving a linear system, either directly or using iterative
solvers. Direct solvers are based on Gaussian elimination exploiting the structure of the system
matrix. Because of its sparsity it is possible to perform a reordering of the unknowns such
that the bandwidth is reduced and the profile is optimized. Using direct solvers that take
the bandwidth into account a lot of computational effort can be saved, see [71]. But usually
iterative solvers are preferred, since inverting even a sparse matrix is extremely costly.

The most frequently used iterative solvers are based on conjugate gradient methods. One
advantage of iterative solvers is that they need less memory than direct solvers, but the
number of iterations increases with the condition number, i.e., the ratio of the largest and
the smallest singular value of a matrix,

κ(A) =
λmax(A)

λmin(A)
.

A common strategy to speed up the rate of convergence is to use preconditioned conjugate
gradient methods if κ(A) is large. The linear system Au = f is multiplied by a regular matrix
C−1, called preconditioner, to obtain the system

C−1Au = C−1f,

that is solved instead of the original problem. The matrix C is chosen such that the condition
number of C−1A is small (at least smaller than κ(A)) and such that the matrix vector product
with C−1 can be computed efficiently. Setting C = A only one iteration is needed, but
its inversion is very costly, whereas setting C = I, the identity matrix, is very cheap, but
ineffective. So, in a sense, something in between these two choices is needed, for instance
C = diag(A), the diagonal entries of A. Another possibility is solving exactly on the “coarse”
level and use diagonal preconditioning on the “finer” level, i.e.,

C =







AV,V 0 0 0
0 diag(AE,E) 0 0
0 0 diag(AF,F ) 0
0 0 0 diag(AC,C)






. (2.19)
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2.6 A One Dimensional Example

We close this introductory chapter with an elementary example comparing the h- and p-version
of the finite element method. Consider the problem given in Example 2.1 in one dimension,
i.e.,

Find u ∈ C2[0, 1] : −u′′(x) = f(x), u(0) = u(1) = 0, (2.20)

where we choose the right hand side f(x) = sin(4πx). The exact solution is easily computed to
be uex(x) = 1

16π2 sin(4πx). Both methods are compared using the same numbers of unknowns.
We choose p = 8 and p = 16 on a single element for the p-version and hat functions on eight,
respectively 16 congruent elements for the h-version.

The variational formulation of (2.20) is

Find u ∈ H1
0 [0, 1] : a(u, v) = f(v), for all v ∈ H1

0 [0, 1],

where

a(u, v) =

∫ 1

0
u′(x)v′(x) dx, and f(v) =

∫ 1

0
f(x)v(x) dx.

There are several possibilities how to implement Dirichlet boundary conditions. In our
example we have homogeneous boundary conditions and in this case the simplest way is to
leave out the outermost hat functions, since their coefficients have to be zero anyway. In
the case of inhomogeneous Dirichlet boundary conditions the problem is transformed to a
homogeneous one. The given function on the boundary is extended properly to the interior
of the domain and added to the homogeneous solution.

The next step is to build the system matrix, where we consider the h-version using eight
elements. On an arbitrary interior element, say I1 = [18 ,

1
4 ], the following two parts of hat

functions are nonzero:

φ1(x) = 2 − 8x, and φ2(x) = 8x− 1,

where the basis functions are labeled according to the defining nodes in the grid from left to
right. The element stiffness matrix on I1 is easily computed as

A(1) = [a(φi, φj)]
2
i,j=1 =

[
8 −8

−8 8

]

.

The local contributions are then added up in the corresponding positions in the global stiffness
matrix. Note that in the diagonal the values of two neighbouring elements contribute. The
system matrices for both versions for p = 8 on one element, respectively p = 1 on eight
elements are given by

Ap =








4/3
4/5

. . .

4/15








and Ah =










16 −8
−8 16 −8

. . .

−8 16 −8
−8 16










.

Here we used the higher order basis functions defined in Section 2.4 in ascending order with
respect to their polynomial degrees. The right hand side of the linear system for h- and
p-version are given by

f
h

= 1
π2 [1, 0,−1, 0, 1, 0,−1]T ,
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Figure 2.5: Exact (dashed) and approximate (solid) solutions to (2.20), p = 8, respectively 8
elements (topline), p = 16, respectively 16 elements (bottomline)

and
f

p
= 1

128π7

[
0, 48π4, 0, 20π2

(
−21 + 8π2

)
, 0, 21

(
495 − 240π2 + 16π4

)
, 0
]T
.

Also the entries of this vector are computed element-wise and then added up in the corre-
sponding positions. The coefficients for the numerical solution are then computed as the
solution to the linear system

Ap/h up/h = f
p/h
.

Figure 2.5 compares the numerical solutions and the exact solution of (2.20). Observe
that for p = 16 there is no visible difference between the solution of the p-method and uex(x).
This was to be expected, since in our example the solution is analytic.

The computations above were carried out with a finite element package we implemented in
Mathematica and with which also figures 2.2 and 2.3 were created. This package is described
in Appendix A.1, where also two dimensional examples are given. The principal procedure
is the same for dimensions d = 2, 3, but the stiffness matrix in the p-version is no longer
diagonal for higher dimensions.
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Chapter 3

Algorithms for Special Functions

When talking about special functions we refer to orthogonal polynomials, especially Jacobi
polynomials. These polynomials appear in the analysis and computations of finite element
methods and we apply algorithms for special functions to tackle problems that arise in this
context. For this purpose we use the RISC symbolic summation packages that are introduced
in this chapter. These packages are implemented in the computer algebra system Mathe-
matica. The software described below as well as a detailed description of the underlying
algorithms are available at

http://www.risc.uni-linz.ac.at/research/combinat/software/

We do not intend to give a full characterization of either the algorithms or their theoretical
background. In the first section holonomic sequences and the concept of generating functions
are introduced. Section 3.2 deals with orthogonal polynomials and in Section 3.3 we present
the RISC symbolic summation packages. For more details on special functions in general
and orthogonal polynomials in particular, we refer to Zeilberger [87], the books of Szegö [79],
Andrews, Askey and Roy [5] and Rainville [69] as well as Abramowitz and Stegun [1]. Con-
cerning the Mathematica packages and literature on the implemented algorithms, references
can be found in the respective subsections of Section 3.3. A survey article can be found in
the chapter “Computer Algebra” [26] of the forthcoming Digital Library of Mathematical
Functions (DLMF).

3.1 Holonomic Sequences

In this section we give a rough overview on the framework of objects to which the algorithms
presented in Section 3.3 can be applied. We start by introducing the ring of formal power
series. Let throughout this chapter K be a field containing Q. Furthermore, let K[x] denote
the set of all polynomials in the indeterminate x with coefficients from the field K.

Definition 3.1. Let z be an indeterminate and let K be a field containing Q. Then we define
the ring of formal power series

K[[z]] := {(c0, c1, c2, . . .) | cn ∈ K}.
It is common notation to write elements of K[[z]] in power series form:

(c0, c1, c2, . . .) =
∞∑

n=0

cnz
n.

19
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Addition (subtraction) for elements a, b ∈ K[[z]] is defined as

∞∑

n=0

anz
n ±

∞∑

n=0

bnz
n :=

∞∑

n=0

(an ± bn)zn.

Multiplication is defined via the Cauchy product

∞∑

n=0

anz
n

∞∑

n=0

bnz
n :=

∞∑

n=0

cnz
n,

where the cn are given by

cn =

n∑

k=0

akbn−k, n ≥ 0.

We refer to an element f(z) =
∑∞

n=0 cnz
n of K[[z]] as the generating function of the

sequence c = (c0, c1, c2, . . .). These elements are viewed rather as formal objects than functions
in the classical sense, e.g., convergence is not an issue. Let us stress again that both, the power
series f(z) and the sequence c, describe the same objects in K[[z]]. An important subclass in
K[[z]] are holonomic power series.

Definition 3.2. A formal power series f(z) =
∑∞

n=0 cnz
n ∈ K[[z]] is called holonomic iff

there exist polynomials q0, . . . , qm ∈ K[z], not all zero, and q ∈ K[z] such that

(qm(z)Dm + . . .+ q0(z))f(z) = q(z), (3.1)

where Dm denotes the mth differential operator. The coefficient sequence (cn)∞n=0 of a holo-
nomic power series is called a holonomic sequence.

An alternative characterization of holonomic sequences that gives a simple criterion to
check for holonomicity is stated in the following lemma.

Lemma 3.3. A formal power series f(z) =
∑∞

n=0 cnz
n ∈ K[[z]] is holonomic iff there exist

polynomials q0, . . . , qm ∈ K[z], not all zero, and q ∈ K[z] such that

qm(n)cn+m + . . .+ q0(n)cn = q(n), (3.2)

for all n ≥ 0.

Example 3.4. A well known example for a holonomic function is the geometric series f(z) =
∑

n≥0 z
n satisfying the equation (1 − z)f(z) = 1, f(0) = 1. On the sequence level we have

cn+1 − cn = 0 with c0 = 1.

Another basic example is the exponential function f(z) =
∑

n≥0
zn

n! satisfying the differ-

ential equation f ′(z) − f(z) = 0 with f(0) = 1. The coefficient sequence cn = 1
n! fulfills the

recurrence relation (n+ 1)cn+1 − cn = 0, c0 = 1.

Holonomic power series satisfy certain closure properties that can be formulated either on
the power series or on the sequence level. In the next theorem some of these closure properties
are stated. Since we do not work with generating functions but only on the sequence level
they are formulated in terms of sequences.
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Theorem 3.5. Let (an)n≥0, (bn)n≥0 be holonomic sequences. If cn is defined as

• sum, i.e., cn = an + bn,

• Cauchy product, i.e., cn =
∑n

k=0 akbn−k,

• Hadamard product, i.e., cn = anbn,

• integer shift, i.e., cn = an+h, h ∈ N,

• partial sum, i.e., cn =
∑n

j=0 aj ,

• forward difference, i.e., cn = ∆nan = an+1 − an,

then (cn)n≥0 is again a holonomic sequence.

In the last theorem we used shift and difference operators. We denote the forward shift
operator in a variable v by Sv. The forward difference operator in n is denoted by ∆n and
can be written as ∆n = Sn − I, where I is the identity operator.

Let us next introduce a special instance of holonomic sequences, namely hypergeometric
sequences.

Definition 3.6. A sequence (an)n≥0 with elements in K is called hypergeometric over K, if
there exist polynomials p, q ∈ K[z] such that the linear relation

p(n)an+1 + q(n)an = 0

is satisfied for all n ≥ 0. A bivariate sequence (a(n, k))n,k≥0 is called hypergeometric if it is
hypergeometric in both variables n and k.

A hypergeometric term a(n, k) is called proper hypergeometric over K if the polynomials
pi, qi ∈ K[z1, z2] satisfying

p1(n, k)a(n + 1, k) + p0(n, k)a(n, k) = 0, q1(n, k)a(n, k + 1) + q0(n, k)a(n, k) = 0,

split into integer linear factors of the form αn+ βk + γ, α, β ∈ Z, γ ∈ K.

The generating function for an important subset of hypergeometric sequences is the hy-
pergeometric 2F1-function

2F1

(
a b
c

; z

)

=
∑

k≥0

(a)k(b)k
(c)k

zk

k!
, (3.3)

where (a)k = a(a + 1) · . . . · (a + k − 1), k ≥ 1, and (a)0 = 1, denotes the Pochhammer
symbol or rising factorial . We also use the notation 2F1(a, b, c; z) or F (a, b, c; z). Let an be
the summand of the hypergeometric function. Then we have

an+1

an
=

(n+ a)(n + b)

(n+ c)(n + 1)
z,

i.e., an is hypergeometric according to Definition 3.6. By the ratio test it hence follows that
the series in (3.3) is absolutely convergent for |z| < 1, independent of the choice of a, b and



22 Chapter 3. Algorithms for Special Functions

c, as long as c is not zero or a negative integer. The hypergeometric function satisfies Euler’s
hypergeometric differential equation

z(1 − z)
d2y

dz2
+ [c− (a+ b+ 1+)z]

dy

dz
− ab y = 0. (3.4)

It is often referred to as “the” hypergeometric function since it appears in the definition of
many classical objects, such as

log(1 + x) = x 2F1

(
1 1
2

;−x
)

.

Gauss defined two hypergeometric 2F1 functions to be contiguous if they have the same
power-series variable, if two of the parameters a, b, c are pairwise equal, and if the third pair
differs by 1. It is common notation to write F (a±) for 2F1(a± 1, b, c; z) and analogously for
the other parameters. Gauss [41] showed that a hypergeometric function and any two others
contiguous to it are linearly related. As Rainville in [69], page 50, observes: “The proof is
one of remarkable directness; we prove that the relations exist by obtaining them.” We note,
however, that, once the identities have been found, the proof follows by simple coefficient
comparison, as we illustrate below. An example for a contiguous relation is

(b− a)F + aF (a+) − bF (b+) = 0.

For the hypergeometric 2F1 function there are nine different such relations, if the symmetry
in a and b is taken into account. These relations can be iterated and linear relations involving
hypergeometric functions with parameters differing by integers are referred to as contiguous
relations. By simply shifting the summation index and using (λ)k = λ(λ + 1)k−1, one finds
for the derivative of the hypergeometric function with respect to z that

dF

dz
(z) =

ab

c
F

(
a+ 1 b+ 1
c+ 1

; z

)

, (3.5)

and

z
dF

dz
= (c− 1)(F (c−) − F ). (3.6)

Let 〈zn〉F (z) denote the coefficient of zn of F (z). With (3.5) we have for the nth coefficient
of the left hand side of (3.6) that

〈zn〉
(

z
dF

dz

)

=
ab

c

(a+ 1)n−1(b+ 1)n−1

(c+ 1)n−1(n − 1)!
=

(a)n(b)n
(c)n(n− 1)!

.

The nth coefficient of the right hand side of (3.6) is given by

〈zn〉
(
(c− 1)(F (c−) − F )

)
= (c− 1)

(a)n(b)n
n!

(
1

(c− 1)n
− 1

(c)n

)

=
(a)n(b)n

(c)n(n− 1)!
,

which proves (3.6). Later in Section 4.2 we show how to generate this relation using symbolic
summation algorithms. The notion “hypergeometric function” can be generalized to p and q
other than (p, q) = (2, 1).
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Definition 3.7. Let p, q ∈ N and ai, bi ∈ K. Then the formal power series

pFq

(
a1 . . . ap

b1 . . . bq
; z

)

=
∑

n≥0

(a1)n · . . . · (ap)n
(b1)n · . . . · (bq)n

zn

n!

is called the hypergeometric pFq function.

For generalized hypergeometric functions pFq with p ≤ q + 1, there are (2p + q) linearly
independent relations, see [69, Ch.5]. The proof proceeds by classifying the types of contiguous
relations and, as in the 2F1-case, stating the relations for each class. For more details on
hypergeometric functions and contiguous relations see [69, 5].

Observe that, if K is algebraically closed, then the sequence (cn)n≥0 is hypergeometric if
and only if its generating function is of the form

∑

n≥0

cnz
n = c0 pFq

(
a1 . . . ap

b1 . . . bq
; z

)

.

3.2 Orthogonal Polynomials

The main cross-over point of the high order finite element method and symbolic summation
methods in our work are orthogonal polynomials defining finite element shape functions.
This section is a brief introduction to some, mostly well known, basic facts on orthogonal
polynomials.

Definition 3.8. Let w(x) be a nonnegative function on the interval [a, b] (which may be

infinite) and assume that moments of all orders exist, i.e.,
∫ b
a x

nw(x)dx <∞ for n ≥ 0.
A sequence of polynomials (pn(x))∞n=0 with real coefficients and with deg(pn(x)) = n, is

called orthogonal with respect to the weight function w(x) if

∫ b

a
pi(x)pj(x)w(x)dx = hiδi,j , hi ∈ R+,

where δi,j denotes the Kronecker delta.

There exist several ways to represent orthogonal polynomials. One possible description
is using the coefficients of their three term recurrence. According to the next theorem [5,
Theorem 5.2.2] such a representation always exists.

Theorem 3.9. Any sequence of real orthogonal polynomials (pn(x))n≥0 satisfies a three term
recurrence with real coefficients an, bn, cn, with bn 6= 0, of the form

pn+1(x) = (an + bnx)pn(x) + cnpn−1(x), n ≥ 1. (3.7)

Furthermore we have, with hn as in Definition 3.8, that cn = bn

bn−1

hn

hn−1
.

Often the three term recurrence (3.7) can be extended to hold for n ≥ 0 with p−1(x) ≡ 0.
Whenever we state relations between orthogonal polynomials involving degrees n = −1 it is
to be understood in this sense. A prominent family of orthogonal polynomials often used in

the definition of high order shape functions are Jacobi polynomials P
(α,β)
n (x), α, β > −1 and

are treated in the next chapter. Legendre polynomials that were used in the definition of high
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order shape functions in Section 2.4 also belong to the family of Jacobi polynomials. More

precisely, we have, Pn(x) = P
(0,0)
n (x).

For 1 ≤ p < ∞, let Lp
w(a, b) denote the weighted Lp-space with respect to the weight

function w(x), i.e., the class of functions f such that

‖f‖p
Lp

w(a,b)
=

∫ b

a
|f |pw(x) dx <∞.

In the following we assume that [a, b] is a finite interval. Let (pn(x))n≥0 be a sequence of
real orthogonal polynomials on [a, b] with associated weight function w(x). Then the best
polynomial approximation for functions f ∈ L2

w(a, b) in the weighted L2
w-norm is given by the

polynomial

q(x) =
n∑

j=0

αjpj(x), where αj =
1

hj

∫ b

a
f(y) pj(y)w(y) dy, (3.8)

with hj as in Definition 3.8, i.e., the norm ‖f − q‖L2
w(a,b) is minimal when the coefficients αj

are defined as above. Moreover
n∑

j=0

α2
j ≤ ‖f‖2

L2
w(a,b). (3.9)

The sequence of partial sums sn =
∑n

j=0 α
2
j is increasing and bounded. Hence (3.9) also holds

in the limit n→ ∞. The inequality

∞∑

j=0

α2
j ≤ ‖f‖2

L2
w(a,b).

is called Bessel’s inequality. Since every function f ∈ L2
w(a, b) can be approximated arbi-

trarily well by a continuous function g ∈ C(a, b) in the L2
w(a, b)-norm, together with Bessel’s

inequality and Weierstrass’ approximation theorem one obtains the following formula, see [5,
Theorem 5.7.4].

Theorem 3.10. Let [a, b] be a finite interval, f ∈ L2
w(a, b) and (pn(x))n≥0 be a real orthogonal

polynomial sequence in L2
w(a, b). Then with αj as in (3.8) we have Parseval’s formula:

∞∑

j=0

α2
j =

∫ b

a
f(x)2w(x) dx.

As a corollary to this theorem we have that f(x) =
∑

j≥0 αjpj(x) in L2
w(a, b) in the sense

that the partial sums qn(x) =
∑n

j=0 αjpj(x) converge to f(x) in the L2
w(a, b)-norm, i.e.,

‖qn − f‖L2
w(a,b) → 0 as n→ ∞.

More informations and proofs of the stated results can be found e.g. in [5, Ch. 5.7] or [79,
Ch. 3]. If f(x) is a polynomial of degree at most m, then we have

f(x) =

m∑

j=0

αjpj(x) =

∫ b

a





m∑

j=0

1

hj
pj(x)pj(y)



 f(y)w(y) dy. (3.10)
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The expression in brackets defines the sequence of kernel polynomials (kn(x, y))n≥0 associated
to (pn(x))n≥0,

kn(x, y) =
n∑

j=0

1

hj
pj(x)pj(y). (3.11)

Identity (3.10) is called the reproducing property of kernel polynomials.
From the three term recurrence (3.7) one obtains the following important result, called

the Christoffel-Darboux formula [5, Theorem 5.2.4].

Theorem 3.11. Let (pn(x))n≥0 be a family of real orthogonal polynomials and bn, hn as in
Definition 3.8. Then we have for the associated sequence of kernel polynomials kn(x, y) that

kn(x, y) =
1

bnhn

pn+1(x)pn(y) − pn(x)pn+1(y)

x− y
, (3.12)

for all n ≥ 0.

Let us mention two more consequences of the three term recurrence for orthogonal poly-
nomials. The derivatives of some orthogonal polynomials are again orthogonal polynomials.
This holds for instance for certain limiting cases of Jacobi polynomials such as Hermite or
Laguerre polynomials, see [47, 56]. For Jacobi polynomials derivatives are again Jacobi poly-
nomials with parameters α, β raised by one, i.e.,

d

dx
P (α,β)

n (x) =
n+ α+ β + 1

2
P

(α+1,β+1)
n−1 (x), n ≥ 0.

Let (pn(x))n≥0 be a given sequence of orthogonal polynomials. Then differentiating the three
term recurrence (3.7) we can represent pn(x) in terms of p′n(x)

bnpn(x) = p′n+1(x) − anp
′
n(x) − bnx p

′
n(x) − cnp

′
n−1(x).

If the derivatives are again orthogonal polynomials, their three term recurrence can be used to
replace xp′n(x) to obtain a relation between pn(x) and shifts of p′n(x), where the coefficients are
free of x. Namely, let (αn, βn, γn) be the recurrence coefficients for the sequence (p′n(x))n≥1,
i.e.,

p′n+2(x) = (αnx+ βn)p′n+1(x) + γnp
′
n(x).

Then we arrive at the following x-free relation between pn(x) and shifts of its derivative,

pn(x) = Anp
′
n+1(x) +Bnp

′
n(x) + Cnp

′
n−1(x),

where

An =
αn−1 − bn
αn−1bn

, Bn = −anαn−1 − bnβn−1

αn−1bn
, Cn = −αn−1cn − bnγn−1

αn−1bn
.

Since the connection coefficients (An, Bn, Cn) are not depending on x, this relation can be dif-

ferentiated with respect to x to obtain relations between p
(k)
n (x) and p

(k+1)
n (x) for arbitrary k.

Their connection coefficients are simply shifts of the coefficients given above.
Another immediate consequence of the three term recurrence is the existence of a bivariate

x-free recurrence for the products of orthogonal polynomials. When assembling a system
matrix for high order finite elements one has to compute several integrals over products of
certain orthogonal polynomials. Having an x-free recurrence relation for the product of these
polynomials means having a recurrence relation for the integral over the product. This also
holds, when the polynomials are multiplied by some coefficient function not depending on the
polynomial degrees.
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Lemma 3.12. Let (pi(x))i≥0 and (qj(x))j≥0 be two sequences of orthogonal polynomials with
three term recurrences

pi+1(x) = (ai + bix)pi(x) + cipi−1(x), i ≥ 1,

and

qj+1(x) = (αj + βjx)qj(x) + γjqj−1(x), j ≥ 1.

Then the recurrence for Mi,j =
∫
pi(x)qj(x) dx is given by

Mi,j =
aiβj+1 − biαj+1

βj+1
Mi−1,j +

bi
βj+1

Mi−1,j+1 −
γj+1

βj+1
biMi−1,j−1 + ciMi−2,j, (3.13)

for i ≥ 1, j ≥ 0.

Proof. First employ the recurrence relation for pi to obtain

pi+1(x)qj+1(x) = aipi(x)qj+1(x) + bipi(x)x qj+1(x) + cipi−1(x)qj+1(x).

Using the recurrence relation for qj for rewriting x qj+1(x) completes the proof.

Besides using the recurrence coefficients as representation, Jacobi polynomials, as well as
other families of orthogonal polynomials, can be characterized in terms of the hypergeometric
function. A commonly used representation for Jacobi polynomials is

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n n+ α+ β + 1
α+ 1

;
1 − x

2

)

=
(α+ 1)n

n!

∑

k≥0

(−n)k(n+ α+ β + 1)k
(α+ 1)kk!

(
1 − x

2

)k

.

Note that the sum above is finite because of the factor (−n)k which vanishes for k > n, as-
suming n ∈ N. Because of this natural bound there is no need to specify an upper summation
bound. By different power series expansions further representations are obtained. In the next
chapter examples are given. We use the hypergeometric sum representation as input when
applying some of the RISC symbolic summation packages listed below.

3.3 Algorithms and RISC Symbolic Summation Packages

In this section we introduce the RISC symbolic summation packages implemented in Mathe-
matica that we apply later to problems arising in the context of the high order finite element
method. We focus on the functions that are used later in this thesis and do not give a full
list of the available features. All these packages (and more) as well as a detailed description
of the underlying algorithms are available for download at

http://www.risc.uni-linz.ac.at/research/combinat/software/
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3.3.1 GeneratingFunctions

The Mathematica package GeneratingFunctions provides routines to manipulate holonomic
objects, both on the power series and on the sequence level. It has been implemented by
Christian Mallinger as part of his diploma thesis [59]. The Maple predecessor of Generating-
Functions is the gfun package implemented by Salvy and Zimmermann [70]. The Generat-
ingFunctions package is loaded by typing:

In[1]:= << GeneratingFunctions.m

GeneratingFunctions Package by Christian Mallinger – c© RISC Linz – V 0.67 (03/13/03)

We mostly use Mallinger’s guessing-routine GuessRE. This functions finds a homogeneous
recurrence relation that is satisfied by elements from a given list. For instance, guessing from
the first nine values, the three term recurrence for Legendre polynomials is obtained by

In[2]:= GuessRE[Table[LegendreP[n, x], {n, 0, 8}], P [n]]

Out[2]= {{(1 + n)P [n] − (3 + 2n)xP [1 + n] + (2 + n)P [2 + n] == 0, P [0] == 1, P [1] == x}, ogf}

The input is a list of objects for which we want to know a linear relation. Optionally also
the order of the recurrence and the degree of the coefficient polynomials in n can be specified.
Their default bounds are 2 and 3, respectively.

Holonomic closure properties (Theorem 3.5) can be executed in GeneratingFunctions.
The implemented operations include REPlus (Addition), RECauchy (Cauchy-product) and
REHadamard (Hadamard-product). We consider the following example, where we determine
the Cauchy product of the sequence (an = n)n≥0 and the constant sequence (an = 1)n≥0.

In[3]:= RECauchy[{a[n + 1] − a[n] == 0, a[0] == 1},

{a[n] − 2a[1 + n] + a[2 + n] == 0, a[0] == 0, a[1] == 1}, a[n]]

Out[3]= {a[n] − 3a[1 + n] + 3a[2 + n] − a[3 + n] == 0, a[0] == 0, a[1] == 1, a[2] == 3}

Observe regarding the input form that both recurrence relations have to be given in the
same variables. According to the definition of the Cauchy product, the result has to be the
recurrence relation for

∑n
k=0 k. Solving the above recurrence using the Mathematica built-in

command RSolve yields the expected result

In[4]:= RSolve[%, a[n], n]

Out[4]= {{a[n] →
n + n2

2
}}

Certainly guessing is not proving. There has to be done more for showing that the
linear relation, satisfied by a finite number of initial values, holds for the sequence the user
is interested in. The key point, however, in our applications is discovering new identities.
Having found them, giving a proof usually requires only basic arithmetic that can often be
done automatically using computer algebra. The other routines presented in this section are
rigorous in the sense that their output (based on a correct input) is a full proof.
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3.3.2 Gosper, Zeilberger

Gosper’s algorithm [45] is designed to find antidifferences of a given hypergeometric term, if
they exist, and “impossible” otherwise, i.e. for solving the telescoping problem specified by

Input: f(k) hypergeometric

Output: g(k) hypergeometric: f(k) = g(k + 1) − g(k) OR “impossible”

If there exists such a hypergeometric antidifference g(k), then summation over the telescoping
identity yields a closed form for the sum

n∑

k=0

f(k) =

n∑

k=0

g(k + 1) − g(k) = g(n + 1) − g(0).

Hence Gosper’s algorithm even determines whether a hypergeometric term is indefinitely
summable or not. Let us discuss next the problem of finding a linear recurrence for a definite
sum over a proper hypergeometric term f(n, k)

S(n) =

∞∑

k=−∞
f(n, k).

Here we assume that for fixed n the summand has finite support in k, in the sense that

lim
k→±∞

f(n, k) = 0.

The task is now to find polynomials c0(n), . . . , cd(n), free of k and not all zero, and g(n, k)
satisfying

c0(n)f(n, k) + . . .+ cd(n)f(n+ d, k) = g(n, k + 1) − g(n, k). (3.14)

The algorithm accomplishing this task is due to Zeilberger [86, 88]. The function g(n, k) is
a rational multiple of the summand f(n, k). Hence g(n, k) also has finite support. Thus,
summing over the summand recurrence, one obtains a recurrence relation for the sum S(n)

c0(n)S(n) + . . .+ cd(n)S(n+ d) = 0.

We are using Peter Paule’s and Markus Schorn’s Mathematica implementation of these algo-
rithms [65]. Their package is loaded by typing

In[5]:= << zb.m

Fast Zeilberger Package by Peter Paule, Markus Schorn, and Axel Riese – c© RISC Linz
– V 3.43 (03/31/04)

To give an example, we apply Zeilberger’s algorithm for finding the three term recurrence
for Jacobi polynomials, using the summand of the hypergeometric sum representation as
input.

In[6]:= Zb[
Pochhammer[α + 1, n]

n!

Pochhammer[−n, k]Pochhammer[n + α + β + 1, k]

Pochhammer[α + 1, k]k!

„

1 − x

2

«k

,

{k, 0, n}, n]

Out[6]= If ‘n′is a natural number, then :

{−2(1+α+n)(1+β+n)(4+α+β+2n)SUM[n]+(3+α+β+2n)(α2−β
2+8x+6αx+α

2
x+6βx+2αβx+

β
2
x+12nx+4αnx+4βnx+4n

2
x)SUM[1+n]−2(2+n)(2+α+β+n)(2+α+β +2n)SUM[2+n] == 0}
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Typing “Prove[ ]” after Zeilberger’s algorithm returned a recurrence relation, the package
delivers a computer proof including the rational function r(n, k) with g(n, k) = r(n, k)f(n, k).
In our example we have

r(n, k) =
2k(k + α)(n + α+ 1)(2n + α+ β + 2)(2n + α+ β + 3)(2n + α+ β + 4)

(k − n− 2)(k − n− 1)(n + α+ β + 1)
.

3.3.3 MultiSum

MultiSum is a Mathematica package for discovering and proving holonomic hypergeometric
multi-sum identities. It has been developed by Kurt Wegschaider [83]. In 1945 Mary Fasen-
myer, also known as Sister Celine, showed in her PhD-thesis [37] that recurrence relations for
hypergeometric single sums

∑

k f(n, k) can be found algorithmically. MultiSum, based on WZ
theory [85], uses an efficient generalization of Sister Celine’s technique to find a homogeneous
polynomial recurrence relation for hypergeometric multiple sums.

The algorithm proceeds similarly to Zeilberger’s algorithm in the sense that first a re-
currence relation for the summand is generated that is free of the summation variables. A
recurrence for the given sum is then obtained by summing over both sides of this relation.
The package is loaded by typing

In[7]:= << MultiSum.m

MultiSum Package by Kurt Wegschaider and Axel Riese – c© RISC Linz – V 1.60
(04/14/04)

The function symbols used by MultiSum for the summand and sum are F and SUM,
respectively. To give a simple example we generate the product recurrence (3.13) for Legendre
polynomials. As input we use the summands of the hypergeometric sum representation of
Jacobi polynomials for α = β = 0. Since we are interested in a recurrence relation that is free
of x we specify this demand using the “FreeOf” option.

In[8]:= FindRecurrence[
Pochhammer[−n, k]Pochhammer[n + 1, k]

(k!)2

„

1 − x

2

«k

Pochhammer[−m, j]Pochhammer[m + 1, j]

(j!)2

„

1 − x

2

«j

, {m, n}, {j, k}, FreeOf → {x}][[1]]

Out[8]= −(m(1 + 2n)F [−1 + m,n,−1 + j,−1 + k]) + (1 + 2m)nF [m,−1 + n,−1 + j,−1 + k]

+ (1 + 2m)(1 + n)F [m, 1 + n,−1 + j,−1 + k] − (1 + m)(1 + 2n)F [1 + m, n,−1 + j,−1 + k]

== Delta[j, m(1 + 2n)F [−1 + m, n,−1 + j,−1 + k] − (1 + 2m)(1 + 2n)F [m, n,−1 + j,−1 + k]

+ (1 + m)(1 + 2n)F [1 + m,n,−1 + j,−1 + k]] + Delta[k,−((1 + 2m)nF [m,−1 + n,−1 + j,−1 + k])

+ (1 + 2m)(1 + 2n)F [m, n,−1 + j,−1 + k] − (1 + 2m)(1 + n)F [m, 1 + n,−1 + j,−1 + k]]

Observe that we specified the summand, the main variables and the summation variables.
Additionally it is possible to bound the shifts of both, main and summation variables as well as
to specify the maximal degree of the coefficient polynomials. In the output the right hand side
is given in terms of forward differences of linear combinations of shifts of the summand. This
identity as well as the initial values can easily be checked. The recurrence in the output Out[8]
is also called certificate recurrence.

By summing over this certificate recurrence a recurrence for the sum is obtained. This
can be done automatically using the SumCertificate command. Continuing our example the
recurrence for the double sum SUM[n,m] = Pn(x)Pm(x) is obtained as follows:

In[9]:= SumCertificate[%]
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Out[9]= −((1 + 2m)nSUM[−1 + n, m]) + m(1 + 2n)SUM[n,−1 + m] + (1 + m)(1 + 2n)SUM[n, 1 + m]

− (1 + 2m)(1 + n)SUM[1 + n, m] == 0

Note, however, that it is assumed that the summand has finite support and SumCertificate
returns a homogeneous recurrence. Hence in certain situations human inspection is needed
to pass from the certificate recurrence to the sum recurrence.

3.3.4 SumCracker

SumCracker is a package developed by Manuel Kauers [53] containing algorithmic procedures
for treating sequences that are described via certain systems of difference equations (recur-
rence relations). It can be used for proving known (or conjectured) identities as well as for
discovering new identities. The package is loaded by

In[10]:= << SumCracker.m

SumCracker Package by Manuel Kauers – c© RISC Linz – V 0.7 2007-02-04

One advantage of this package is that it allows to enter polynomials as symbolic expres-
sions. But it does not deliver proofs that are easily readable by humans such as the algorithms
described in the last two sections. The routines that we mostly use are Crack, ZeroSequenceQ,
LinearRecurrence and ProveInequality.

Crack rewrites a given expression either in terms of objects contained in the given expres-
sion or tries to rewrite it into other objects specified using the Into option. Let us consider an
example where we want to find a reformulation of the derivative of Legendre polynomials.

In[11]:= Crack[D[LegendreP[n + 1, x], x]]//Simplify

Out[11]=
(1 + n)(−LegendreP[n, x] + xLegendreP[1 + n, x])

−1 + x2

We have mentioned that derivatives of Jacobi polynomials are again Jacobi polynomials.

Hence we try to find a reformulation of P ′
n+1(x) in terms of Jacobi polynomials P

(1,1)
n (x)

automatically.

In[12]:= Crack[D[LegendreP[n + 1, x], x], Into → {n, JacobiP[n, 1, 1, x]}]//Simplify

Out[12]=
(2 + n)JacobiP[n, 1, 1, x]

2

ZeroSequenceQ is a zero-equivalence tester. It can be used to check whether a given
relation is true, for instance a result found by guessing. To give an example we verify the
Legendre three term recurrence found by GuessRE.

In[13]:= ZeroSequenceQ[(n + 1)LegendreP[n, x] − (2n + 3)xLegendreP[n + 1, x]

+ (n + 2)LegendreP[n + 2, x], Variable → n, From → 0]

Out[13]= True

LinearRecurrence is a special purpose command searching for a (possibly inhomogeneous)
linear recurrence for the given sequence. The expressions that may appear in the coefficients
are chosen automatically unless specified using the “In” option. The default function symbol
of the resulting recurrence is SUM. This setting can be overridden using the “Head” option.
As an example we consider generating the Legendre three term recurrence.
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In[14]:= LinearRecurrence[LegendreP[n, x], Head → L, In → {n}]

Out[14]= L[2 + n] ==
(−1 − n)L[n]

2 + n
+

(3x + 2nx)L[1 + n]

2 + n

Since SumCracker’s internal representation of Legendre polynomials is exactly the three
term recurrence, this is a void example. Later, however, this command is used to determine
linear relations for nontrivial input.

ProveInequality is an automatic inequality prover constructing an inductive proof us-
ing cylindrical algebraic decomposition, see Collins [29] and Gerhold and Kauers [43]. As
an example consider the Christoffel-Darboux formula (3.12) for kernel polynomials for the
limit y → x,

n∑

j=0

1

hj
pj(x)

2 = lim
y→x

1

bnhn

pn+1(x)pn(y) − pn(x)pn+1(y)

x− y
.

It is easily calculated that the right hand side is

1

bnhn

(
p′n+1(x)pn(x) − p′n(x)pn+1(x)

)
,

which is obviously positive since on the left hand side we are summing over squares with
positive coefficients. We demonstrate ProveInequality on the special case of pn(x) being
Legendre polynomials.

In[15]:= ProveInequality[D[LegendreP[n + 1, x], x]LegendreP[n, x]

− LegendreP[n + 1, x]D[LegendreP[n, x], x] > 0, Using → {−1 ≤ x ≤ 1}, Variable → n]

Out[15]= True

Note also that when a sum is given as input that within SumCracker the symbol SUM
has to be used in order to avoid conflicts with the Mathematica summation command Sum.
Furthermore note that SumCracker does not accept definite sums as input, where definite is
meant, roughly speaking, in the sense that no summation bound occurs in the summand.
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Chapter 4

Jacobi Polynomial Identities and

Computer Algebra

For the construction of higher order finite element basis functions usually certain orthogonal
polynomials are used. Often these polynomials are Jacobi polynomials or compositions of
Jacobi polynomials. One reason therefor is that the weight function associated to Jacobi
polynomials pops up naturally in transformations related to finite elements, as will be seen
below. For proving the desired properties of these basis functions or operators involving
Jacobi polynomials we apply the algorithms described in the last chapter either directly or by
using relations that can again be generated automatically using these symbolic summation
tools. In Section 3.2 general properties of orthogonal polynomials have been presented. Next,
we discuss in particular Jacobi polynomials. For further information we refer to the books of
Andrews, Askey and Roy [5], Szegö [79], Rainville [69] or Abramowitz and Stegun [1].

4.1 Jacobi and Integrated Jacobi Polynomials

For α, β real numbers and −1 < x < 1, the nth Jacobi polynomial P
(α,β)
n (x), n ≥ 0, may be

defined via the hypergeometric function as

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n n+ α+ β + 1
α+ 1

;
1 − x

2

)

. (4.1)

Using this representation and the hypergeometric differential equation (3.4), immediately a
differential equation satisfied by Jacobi polynomials is obtained:

(1 − x2) y′′(x) + [β − α− (α+ β + 2)x] y′(x) + n(n+ α+ β + 1) y(x) = 0. (4.2)

Jacobi polynomials are not symmetric in the parameters α and β, but they satisfy the relation

P (α,β)
n (x) = (−1)nP (β,α)

n (−x). (4.3)

From this identity and by definition (4.1) another hypergeometric sum representation of Jacobi
polynomials follows, namely

P (α,β)
n (x) = (−1)n

(β + 1)n
n!

2F1

(
−n n+ α+ β + 1
β + 1

;
1 + x

2

)

. (4.4)

33
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The values of Jacobi polynomials at x = ±1, that can be read off the representations (4.1)
and (4.4), respectively, are

P (α,β)
n (+1) =

(
n+ α

n

)

and P (α,β)
n (−1) = (−1)n

(
n+ β

n

)

.

Already in Section 3.2 we stated that derivatives of Jacobi polynomials are again Jacobi
polynomials with shifted parameters, i.e.,

d

dx
P (α,β)

n (x) =
n+ α+ β + 1

2
P

(α+1,β+1)
n−1 (x). (4.5)

This identity follows from the formula of derivatives of the hypergeometric function (3.5) by
substituting a = −n, b = n+ α+ β + 1, c = α+ 1 and z = 1−x

2 . With the same substitution
the contiguous relation (3.6) can be reinterpreted in terms of Jacobi polynomials to obtain

(1 − x)
d

dx
P (α,β)

n (x) = αP (α,β)
n (x) − (n+ α)P (α−1,β+1)

n (x). (4.6)

Because of (4.5) this identity relates Jacobi polynomials with shifts in α and β. Further such
identities can be generated automatically using MultiSum. Let

summand =
(α+ 1)n

n!

(−n)k(n+ α+ β + 1)k
(α+ 1)kk!

zk,

be the summand of the hypergeometric sum representation of Jacobi polynomials. Now
execute the FindRecurrence command, bounding the shifts in α and n each by one.

In[16]:= FindRecurrence[summand, {n, α}, {1, 1}, k, 0]

Out[16]= {−((β + n)F [−1 + n, α, k]) − (α + β + 2n)F [n,−1 + α, k] + (α + β + n)F [n, α, k] == Delta[k, 0]}

Summing over this difference equation (using SumCertificate) and rewriting in terms of
Jacobi polynomials yields

(2n + α+ β)P (α−1,β)
n (x) = (n+ α+ β)P (α,β)

n (x) − (n+ β)P
(α,β)
n−1 (x). (4.7)

A mirrored version of (4.7) is obtained by plugging in relation (4.3):

(2n + α+ β)P (α,β−1)
n (x) = (n+ α+ β)P (α,β)

n (x) + (n+ α)P
(α,β)
n−1 (x). (4.8)

This identity can also be generated using MultiSum by using the summand of (4.4) and
bounding the shifts in β and n each by one. For the identities stated so far no range for α and
β was specified and these parameters were treated symbolically, although the definitions (4.1)
and (4.4) are not valid for nonnegative integer α and β, respectively. But, more general and
not using the hypergeometric function, we may write

P (α,β)
n (x) =

1

n!

∑

k≥0

(−n)k
k!

(n+ α+ β + 1)k(α+ k + 1)n−k

(
1 − x

2

)k

. (4.9)

From this form it is obvious that Jacobi polynomials can be defined for all values of the
parameters α, β. Another well known representation of Jacobi polynomials is the Rodrigues
formula. With

wα,β(x) =

(
1 − x

2

)α(1 + x

2

)β

, (4.10)
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Jacobi polynomials can be written as

wα,β(x)P (α,β)
n (x) =

(−1)n

n!

dn

dxn
wn+α,n+β(x). (4.11)

Next, let α, β > −1. Under this condition wα,β(x) is an integrable, nonnegative function
on [−1, 1] for which the moments of all orders exist. Hence it can be viewed as a weight
function for orthogonal polynomials and, using the Rodrigues formula, via integration by
parts it follows that

∫ 1

−1
wα,β(x)P

(α,β)
i (x)P

(α,β)
j (x) dx = 0, i 6= j.

Summarizing, we have, for α, β > −1, that
(
P

(α,β)
n (x)

)

n≥0
is a sequence of orthogonal poly-

nomials on the interval [−1, 1] with associated weight function wα,β(x) satisfying the orthog-
onality relation

∫ 1

−1
P

(α,β)
i (x)P

(α,β)
j (x)wα,β(x) dx = hα,β

i δi,j . (4.12)

The squared weighted L2
wα,β

-norm is given by

hα,β
i =

2

2i+ α+ β + 1

Γ(i+ α+ 1)Γ(i + β + 1)

i! Γ(i+ α+ β + 1)
. (4.13)

By Theorem 3.9 Jacobi polynomials satisfy a three term recurrence and in Section 3.3.2 it
was proven, using Zeilberger’s algorithm (see Out[6]), that for n ≥ 0

P
(α,β)
n+1 (x) = (an + bnx)P

(α,β)
n (x) + cnP

(α,β)
n−1 (x), P

(α,β)
−1 (x) = 0, P

(α,β)
0 (x) = 1,

with coefficients

an =
(2n+ α+ β + 1)(α2 − β2)

2(n+ 1)(n + α+ β + 1)(2n + α+ β)
, bn =

(2n + α+ β + 1)(2n + α+ β + 2)

2(n+ 1)(n + α+ β + 1)
,

cn = − (n+ α)(n + β)(2n + α+ β + 2)

(n+ 1)(n + α+ β + 1)(2n + α+ β)
. (4.14)

The special case of α = β is called ultraspherical polynomial or Gegenbauer polynomial . The
nth Gegenbauer polynomial Cλ

n(x), where λ > −1
2 , is commonly defined as

Cλ
n(x) =

(2λ)n

(λ+ 1
2)n

P (λ−1/2,λ−1/2)
n (x).

These polynomials are even or odd polynomials according as n is even or odd. One alternative
hypergeometric sum representation of Gegenbauer polynomials, other than (4.1) or (4.4), is

Cλ
n(x) =

(λ)n
n!

(2x)n 2F1

(
−n/2 (1 − n)/2

1 − n− λ
;

1

x2

)

. (4.15)

Legendre polynomials Pn(x) = P
(0,0)
n (x) = C

1/2
n (x) are also in this class. Recall that Legendre

polynomials are orthogonal with respect to the L2-inner product, i.e., with respect to the
weight function w0,0(x) ≡ 1. Two further well-known ultraspherical polynomials are the
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Chebyshev polynomials of the first (α = β = −1
2) and of the second kind (α = β = 1

2 ). They
are commonly denoted by Tn(x) and Un(x), respectively, and defined with the normalization

Tn(x) =
P

(−1/2,−1/2)
n (x)

P
(−1/2,−1/2)
n (1)

, and Un(x) = (n+ 1)
P

(1/2,1/2)
n (x)

P
(1/2,1/2)
n (1)

. (4.16)

Both satisfy the same recurrence relation with constant coefficients

pn(x) − 2x pn+1(x) + pn+2(x) = 0, n ≥ 0,

but with different starting values

T0(x) = 1, T1(x) = x, and U0(x) = 1, U1(x) = 2x.

Recall that in Section 3.2 a relation connecting orthogonal polynomials and their derivatives
(if they are again orthogonal polynomials) with coefficients not depending on x was given.

Jacobi polynomials are in this class and we have for pn(x) = P
(α,β)
n (x)

pn(x) = Anp
′
n+1(x) +Bnp

′
n(x) + Cnp

′
n−1(x), (4.17)

with coefficients

An =
2(n+ α+ β + 1)

(2n+ α+ β + 2)(2n + α+ β + 1)
,

Bn = (α− β)
2

(2n + α+ β)(2n + α+ β + 2)
,

Cn = − 2(n+ β)(n + α)

(n+ α+ β)(2n + α+ β + 1)(2n + α+ β)
.

(4.18)

For ultraspherical polynomials relation (4.17) further simplifies since the coefficients Bn van-
ish. For Legendre polynomials in particular it reads as

Pn(x) =
1

2n+ 1
[P ′

n+1(x) − P ′
n−1(x)]. (4.19)

Conversely, for the expansion of P ′
n+1(x) in terms of Legendre polynomials ⌊n

2 ⌋ terms are
needed. Let γk = (P ′

n+1, Pk)0 denote the coefficients in the expansion

P ′
n+1(x) =

n∑

k=0

γk

h0,0
k

Pk(x),

where the squared L2-norm h0,0
k = 2

2k+1 is as in (4.13). Clearly the coefficients γk vanish
for k such that n − k ≡2 1. The remaining coefficients are computed by multiplying (4.19)
by Pk(x) and integrating over [−1, 1]. Since the inner product (P ′

n−1, Pn)0 vanishes, we have
γn = 2. For 0 < k < ⌊n

2 ⌋ it follows that γn−2k = 2, because of (Pn, Pn−2k)0 = 0. Altogether
this yields

P ′
n+1(x) =

⌊n/2⌋
∑

k=0

(2n − 4k + 1)Pn−2k(x). (4.20)
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There exists a general formula transforming Jacobi polynomials P
(α,β)
n (x) into Jacobi poly-

nomials P
(γ,δ)
n (x), see [5, Ch. 7.1]. The expansion (4.20) can be used to obtain

(P ′
i , P

′
j)0 =

∫ 1

−1
P ′

i (x)P
′
j(x) dx =

{

0, i− j ≡2 1,

l(l + 1), i− j ≡2 0, where l = min{i, j}.
(4.21)

This evaluation of the L2-inner product of derivatives of Legendre polynomials is needed later
in Section 8.1. Next we generalize integrated Legendre polynomials, as defined in (2.9), to
integrated Jacobi polynomials.

Definition 4.1. For α > −1, n ≥ 1 define the nth integrated Jacobi polynomial

p̂α
n(x) =

∫ x

−1
P

(α,0)
n−1 (s) ds.

Integrated Legendre polynomials, α = 0, are also denoted by Ln(x) = p̂0
n(x).

Observe that integrated Jacobi polynomials p̂α
n(x) vanish at x = −1. Using the sum

representation (4.4) by simple term-wise integration integrated Jacobi polynomials can be
related at once to classical Jacobi polynomials. We have for n ≥ 1

p̂α
n(x) = (−1)n−1(1 + x)

∑

k≥0

(−n+ 1)k(n+ α)k
(k + 1)!k!

(
1 + x

2

)k

. (4.22)

Comparing coefficients of this sum representation to (4.4) yields for n ≥ 1 the relation

p̂α
n(x) =

1 + x

n
P

(α−1,1)
n−1 (x). (4.23)

Integrated Jacobi polynomials p̂α
n(x) can also be expressed in terms of P

(α,0)
n (x). Indeed,

integrating (4.17) and using that P
(α,0)
n (−1) = (−1)n yields for n ≥ 1

p̂α
n(x) =

2(n + α)

(2n + α)(2n + α− 1)
P (α,0)

n (x) +
2α

(2n + α− 2)(2n + α)
P

(α,0)
n−1 (x)

− 2(n − 1)

(2n+ α− 1)(2n + α− 2)
P

(α,0)
n−2 (x),

since the contributions at the lower integration bound x = −1 cancel. For Legendre polyno-
mials, i.e., α = β = 0, the identity further simplifies since Bn = 0 and we obtain

Ln+1(x) =
1

2n+ 1
[Pn+1(x) − Pn−1(x)] , n ≥ 1. (4.24)

From either of the representations, (4.23) or (4.22), a recurrence relation for integrated Jacobi
polynomials can be derived. Applying Zeilberger’s algorithm to (4.22) or using SumCracker’s
LinearRecurrence command on (4.23) yields for n ≥ 2

p̂α
n(x) =

2n+ α− 3

2n(n+ α− 1)(2n + α− 4)
((α− 2)α + (2n+ α− 4)(2n + α− 2)x)p̂α

n−1(x)

− 2(n − 2)(n + α− 3)(2n + α− 2)

2n(n+ α− 1)(2n + α− 4)
p̂α

n−2(x),

(4.25)
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with p̂α
0 (x) = 1, p̂α

1 (x) = 1 + x for α 6= 0. In the case α = 0, i.e., for integrated Legendre
polynomials, the recurrence relation has to be extended differently to the left. For n ≥ 2 with
L0(x) = −1 and L1(x) = x we have

Ln(x) =
2n− 3

n
xLn−1(x) −

n− 3

n
Ln−2(x).

Note, that for this choice L1(x) 6=
∫ x
−1 P0(s) ds = 1 +x. A widely known result of Favard [38]

states the converse to Theorem 3.9: polynomials satisfying a three term recurrence of the
form (3.7) are orthogonal polynomials. The proof, however, is not constructive and gives
no information on either the interval or the associated weight function. For n ≥ 1 and
α 6= 0, the rewriting (4.23) suggests orthogonality with respect to the singular weight function
wα−1,−1(x). Let i, j ≥ 1, then we have

∫ 1

−1
wα−1,−1(x)p̂

α
i (x)p̂α

j (x) dx =
4

ij

∫ 1

−1
wα−1,1(x)P

(α−1,1)
i−1 (x)P

(α−1,1)
j−1 (x) dx =

4

i2
hα−1,1

i−1 δi,j .

Also identity (4.5) on derivatives of Jacobi polynomials supports viewing p̂α
n(x) as P

(α−1,−1)
n (x).

Since d
dx p̂

α
n(x) = P

(α,0)
n−1 (x) it follows that

p̂α
n(x) =

2

n+ α− 1
P (α−1,−1)

n (x). (4.26)

From this identity with (4.1) or (4.9) another sum representation for integrated Jacobi poly-
nomials can be obtained. Next consider integrated Legendre polynomials. Following the

reasoning above, we interprete them as Jacobi polynomials P
(−1,−1)
n (x). Integrated Legendre

polynomials vanish at x = ±1 and thus the factor (1−x2) can be pulled out. It is reasonable
to assume that integrated Legendre polynomials are multiples of Jacobi polynomials and in
fact, we have

Ln(x) = − 1 − x2

2(n− 1)
P

(1,1)
n−2 (x), n ≥ 2. (4.27)

This relation can be generated using SumCracker’s Crack command, where we define inte-
grated Legendre polynomials via identity (4.19):

In[17]:= Crack[JacobiP[n − 2, 1, 1, x], Into → {n, L[n]},

Where → {L[n] == 1/(2n − 1)(LegendreP[n, x] − LegendreP[n − 2, x])}]//Simplify

Out[17]=
2(n − 1)L[n]

x2 − 1

The two representations, (4.27) or (4.19), can also be used to generate the three term
recurrence for integrated Legendre polynomials using the LinearRecurrence command. For
n ≥ 2, integrated Legendre polynomials span the space of polynomials on [−1, 1] vanishing
at x = ±1. In Section 2.4 it was already stated that they are orthogonal with respect to
the H1-inner product. Using (4.27) one obtains orthogonality for n ≥ 2 with respect to the
singular weight function w−1,−1(x):

∫ 1

−1
w−1,−1(x)Li(x)Lj(x) dx =

4

(i− 1)(j − 1)

∫ 1

−1
w1,1(x)P

(1,1)
i−2 (x)P

(1,1)
j−2 (x) dx

=
4

(i− 1)2
h1,1

i−2δi,j =
8

(i− 1)i(2i − 1)
δi,j .
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Summarizing, Jacobi polynomials P
(α,−1)
n (x) for α ≥ −1 are to be understood as integrated

Jacobi polynomials as defined above. Observe that with this interpretation the identities (4.7)
and (4.8) hold for integrated Jacobi polynomials.

4.2 Generating Mixed Difference-Differential Relations

Most of the identities stated in the previous section could be generated automatically using
the algorithms presented in Section 3.3, where often it was possible to choose one’s favorite
tool. The relations collected in the last section emerged separately in various applications
described below as answers to problems such as finding a recurrence relation for cheap eval-
uation of polynomials or finding a suitable rewriting or simplification of certain expressions.
One example for such a relation is (4.6) that was originally needed especially formulated for
integrated Jacobi polynomials, i.e.,

(α− 1)p̂α
n(x) = (1 − x)P

(α,0)
n−1 (x) + 2P (α−2,0)

n (x).

We obtained this identity, generally for Jacobi polynomials, from the contiguous relation (3.6)
that in turn can be generated automatically using MultiSum. Let

summand =
(a)k(b)k
(c)kk!

zk

denote the summand of the hypergeometric function. First, use the FindStructureSet com-
mand to obtain a structure set of feasible shifts in a, b, c and k:

In[18]:= FindStructureSet[summand, {a, b, c}, {1, 1, 2}, {k}, {1}, WZ → True]

This yields amongst others the set S = {{0, 0, 0, 1}, {1, 1, 1, 0}, {1, 1, 2, 0}}. For this spe-
cific structure set, FindRecurrence and subsequently applying SumCertificate yield

In[19]:= FindRecurrence[summand, {a, b, c}, {k}, S, WZ → True]

Out[19]= {(−2 + c)(−1 + c)F [−1 + a,−1 + b,−2 + c,−1 + k] − (−2 + c)(−1 + c)F [−1 + a,−1 + b,−1 + c,−1 +

k] − (−1 + a)(−1 + b)zF [a, b, c,−1 + k] == Delta[k,−((−2 + c)(−1 + c)F [−1 + a,−1 + b,−2 + c,−1 +

k]) + (−2 + c)(−1 + c)F [−1 + a,−1 + b,−1 + c,−1 + k]]}

In[20]:= SumCertificate[%]

Out[20]= {(−2 + c)(−1 + c)SUM[−1 + a,−1 + b,−2 + c] − (−2 + c)(−1 + c)SUM[−1 + a,−1 + b,−1 + c]

− (−1 + a)(−1 + b)zSUM[a, b, c] == 0}

This is an example, where human inspection is in place for the passing from Out[19]
to Out[20]. The argument of the delta operator in Out[19] can be simplified to

(a)k−1(b)k−1

(c− 1)k(k − 2)!
zk−1,

which obviously vanishes for k = 0 and, for |z| < 1, also the limit k → ∞ tends to zero.
Thus we have verified the homogeneous recurrence in Out[20], which is just (3.6). In general,
contiguous relations, also between non-terminating series, can be found automatically using
Wilf-Zeilberger theory, see [64].
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For proving (3.6) using MultiSum the additional knowledge (3.5) on derivatives of the hy-
pergeometric function was needed. But it is also possible to derive mixed difference-differential
relations automatically as we have seen in Out[11] where Crack was used to rewrite derivatives
of Legendre polynomials in terms of Legendre polynomials. Another algorithm suited to find
such mixed relations is an extension of Zeilberger’s algorithm by Frédéric Chyzak and Bruno
Salvy [27]. This algorithm is part of Chyzak’s Maple package Mgfun. The underlying idea
is to translate the relations into annihilating operators which can be represented in so-called
Ore-algebras. In short, these are non-commutative operator algebras containing, e.g., shifts
and derivatives. As part of his forthcoming thesis [55] Christoph Koutschan implements this
algorithm in Mathematica with a user-friendly interface including further extensions. To il-
lustrate how this algorithm proceeds we consider again the derivation of (4.6), this time with
Koutschan’s package. As input for the program we use the summand of the hypergeometric
sum representation (4.1). An annihilator for Jacobi polynomials in terms of shifts in n, α, β
and derivation with respect to x is generated with Takayama’s algorithm [81, 80] and is given
by

(−2(n + 1)(n + α+ β + 1)Sn − (1 − x2)(2n + α+ β + 2)Dx

+ (n+ α+ β + 1)(2nx+ αx+ βx+ 2x+ α− β),

(−α− β − n− 1)Sβ − (1 − x)Dx + (α+ β + n+ 1),

(α+ β + n+ 1)Sα − (1 + x)Dx − (n + α+ β + 1),

(1 − x2)D2
x + (−αx− βx− 2x− α+ β)Dx + n(n+ α+ β + 1).

By means of Gröbner basis elimination in this non-commutative setting further identities
for Jacobi polynomials can be obtained. For instance equation (4.6) can be viewed as an
answer to the question: Find a relation between Jacobi polynomials free of β and shifts in n.
Eliminating these two variables β and Sn yields, amongst other relations, the sought identity
in operator form:

(1 − x)DxSα + (n+ α+ 1)Sβ − (α + 1)Sα.

Further examples for applications of Chyzak’s algorithm can be found in [24].



Chapter 5

Hypergeometric Summation

Algorithms for High Order Finite

Elements

Next we describe the construction of simplicial edge and vertex based finite element basis
functions, where we concentrate on providing recursion formulas that allow a simple imple-
mentation for fast basis function evaluation. The performance of iterative solution methods
depends on the condition number of the system matrix, which itself depends on the chosen
basis functions. Hence, the goal is to design basis functions minimizing the condition number
and which can be computed efficiently. In [75] the construction of basis functions such that
the blocks consisting of unknowns connected with one vertex, edge, face or cell of the mesh,
are nearly orthogonal among each other is presented. For these basis functions the application
of cheap block-Jacobi preconditioners is efficient; for the numerical analysis see [75]. In the
joint paper with Becirovic, Paule, Riese, Schneider, and Schöberl [10] by means of symbolic
summation algorithms recurrence relations for these edge and vertex based shape functions
have been derived by Carsten Schneider using his Sigma package [72]. Below, alternative ways
to generate these recurrence relations are given using other symbolic summation algorithms.
For more details on Schneider’s proofs see [10].

5.1 Edge Based Basis Functions

High order edge based basis functions form a basis of P p
0 (E) on the associated edge and

vanish on all faces in the finite element mesh not containing E. Degree-preserving extension
procedures for given polynomials p(x) ∈ P p

0 (E) to triangular edge based basis functions were
introduced in Babus̆ka et al. [8], and later simplified and extended to 3D by Muñoz-Sola [62].
Recently Demkowicz, Gopalakrishnan and Schöberl [33, 34, 32] gave a concise construction
of polynomial extension operators for tetrahedral p-fem for the spaces H1(Ω), H(curl,Ω) and
H(div,Ω).

We consider the reference triangle T̂ = {(−1,−1), (1,−1), (0, 1)} and the lower edge E0

connecting (−1,−1) and (1,−1) as associated edge. The lifting of a given polynomial p(x)

41
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defined on E0 according to Babus̆ka et al. [8] is defined via the averaging procedure

(R1p)(x, y) =
1

1 + y

∫ x+ 1+y
2

x− 1+y
2

p(s) ds.

Note that (R1p)(x, y) is again polynomial in x and y and that its restriction to E0 is again
p(x). This is easy to be seen via the substitution s = x+ t1+y

2 yielding

(R1p)(x, y) =
1

2

∫ 1

−1
p(x+

1 + y

2
t) dt.

This extension is bounded as operator from H1/2(E0) → H1(T̂ ). The modification by Muñoz-
Sola preserving zero boundary values on the edges E1 and E2 is

(Rp)(x, y) = (1 + 2x− y)(1 − 2x− y)(R1
p

1 − x2
)(x, y). (5.1)

This lifting operator maps polynomials p ∈ P p
0 (E0) into the space of polynomials of total

degree p on T̂ that vanish on ∂T̂\E0. When restricted to the associated edge Rp(x, y)
equals p(x). For the well-definedness of this operator we need to introduce another trace
space that has not yet been defined in Section 2.1. Let Ω be a domain and Γ be a subset of

∂Ω with non vanishing (d−1)-dimensional measure. The extensions of functions u ∈ H
1/2
0 (Γ)

by zero do not in general belong to H1/2(∂Ω). Therefor we define the space

H
1/2
00 (Γ) = {u ∈ H

1/2
0 (Γ) | Eu ∈ H1/2(∂Ω)},

where Eu is the extension by zero of u to ∂Ω. This space coincides with the interpolation

space [H1
0 (Γ), L2(Γ)]1/2. It can be shown that R is bounded as operator from H

1/2
00 (E0) to

H1(T̂ ), see [8, 62]. The extension operator we are introducing now is defined using a different
modification than (5.1) and we consider in particular extending integrated Legendre polyno-
mials. On E0 integrated Legendre polynomials Ln(x), 2 ≤ n ≤ p, form a basis for P p

0 (E0).
In the first step define

φ(1)
n (x, y) = (R1Ln)(x, y), n ≥ 2.

But, although the polynomials Ln, n ≥ 2, vanish at the boundary of E0, the extension does
not vanish at the upper two edges E1 and E2. This can be fixed, e.g., by linear interpolation
between the lower and upper two edges.

Hx,yL

Hu1,v1L

Hu2,v2L

T
`

E0

The coordinates of the interpolation points (u1, v1) and (u2, v2) are given by

u1(x, y) =
1 + 2x− y

4
, v1(x, y) =

1 − 2x+ y

2

u2(x, y) =
−1 + 2x+ y

4
, v2(x, y) =

1 + 2x+ y

2
.
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Figure 5.1: φ
(1)
n (x), φ

(2)
n (x) and φn(x) for n = 6

With this notation we homogenize φ
(1)
n on the upper right edge as follows

φ(2)
n (x, y) = φ(1)

n (x, y) − 1 + y

1 + v1
φ(1)

n (u1, v1), n ≥ 2. (5.2)

The final extension is then given by

φn(x, y) = φ(2)
n (x, y) − 1 + y

1 + v2
φ(2)

n (u2, v2), n ≥ 2. (5.3)

Figure 5.1 illustrates the transition from φ
(1)
n (x, y) to φn(x, y). The resulting extension

operator preserves the polynomial order for n ≥ 2. Furthermore the total extension operator

is bounded as operator from H
1/2
00 (E0) to H1(T̂ ) and the φn satisfy homogeneous boundary

conditions on the upper two edges E1 and E2. Thus they can be chosen as edge based basis
functions on the reference triangle T̂ . By means of symbolic summation methods we have
derived the following relation allowing for an efficient computation of the φn.

Theorem 5.1. The functions φn defined in (5.3) satisfy the 5-term recurrence relation

φn = an(v2 − v1)φn−1 + (bn + cnv1v2)φn−2 + dn(v2 − v1)φn−3 + enφn−4, (5.4)

for all n ≥ 5 with coefficients

an =
2n− 3

n+ 1
, bn = −(2n− 5)(2n2 − 10n + 3)

n(n+ 1)(2n − 7)
, cn =

(2n− 5)(2n − 3)

n(n+ 1)
,

dn =
(n− 5)(2n − 3)

n(n+ 1)
, en = −(n− 6)(n − 5)(2n − 3)

n(n+ 1)(2n − 7)
, .

The initial values are given by

φ1(x, y) =
x(−2x+ y − 1)(2x+ y − 1)

(−2x+ y + 3)(2x+ y + 3)
,

φ2(x, y) = −1

8
(−2x+ y − 1)(2x + y − 1),

φ3(x, y) = −1

8
x(−2x+ y − 1)(2x + y − 1),

φ4(x, y) =
1

128
(2x− y + 1)(2x + y − 1)

(
20x2 + 3y2 + 2y − 5

)
.

The initial value φ1(x, y) is a rational function, but although this function does not serve
as an edge based shape function, it is still the correct extension of the recurrence relation (5.4)
to the left. The denominator of φ1(x, y) does not vanish on the reference triangle T̂ .
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Remark 5.2. The coefficients an to en are computed once and for all and are stored in tables.
The evaluation of p basis functions φn takes just 11p + O(1) floating point operations.

Proof of Theorem 5.1. For finding and proving recurrence relation (5.4) we utilize holonomic

closure properties. Before doing so, we rewrite φn in terms of Jacobi polynomials P
(2,2)
n (x).

First recall identity (4.24) connecting integrated Legendre and Legendre polynomials

Ln(x) =
1

2n − 1
[Pn(x) − Pn−2(x)], n ≥ 2.

With this relation φ
(1)
n (x, y) can be expressed in terms of integrated Legendre polynomials.

For better readability we change variables to v1 and v2 (x = v2−v1
2 and y = v1 + v2−1). Thus

we obtain

φ(1)
n (x, y) =

1

v1 + v2

1

2n− 1
[Ln+1(v2) − Ln−1(v2) − Ln+1(−v1) + Ln−1(−v1)], n ≥ 2.

The right hand side can be simplified further by first expressing integrated Legendre polyno-

mials in terms of Jacobi polynomials P
(1,1)
n (x) using (4.27), i.e.,

Ln+1(x) − Ln−1(x) = (x2 − 1)

[
1

2n
P

(1,1)
n−1 (x) − 1

2n− 4
P

(1,1)
n−3 (x)

]

, n ≥ 3

By (4.17), Jacobi polynomials can be rewritten in terms of their derivatives which, by (4.5),
are again Jacobi polynomials with shifted parameters. Hence the difference Ln+1(x)−Ln−1(x)

can be expressed in terms of P
(2,2)
n (x). In fact, applying SumCracker yields

In[21]:= Crack[
1

2n + 6
JacobiP[n + 2, 1, 1, x] −

1

2n + 2
JacobiP[n, 1, 1, x],

Into → {n, JacobiP[n, 2, 2, x]}]//Factor

Out[21]=
(5 + 2n)(−1 + x)(1 + x)JacobiP[n, 2, 2, x]

4(1 + n)(2 + n)

With this identity we have completed the rewriting of φ
(1)
n (x, y):

φ(1)
n (x, y) =

1

(2n − 4)(2n − 2)

1

v1 + v2

(

(1 − v2
2)

2 P
(2,2)
n−3 (v2) − (1 − v2

1)
2 P

(2,2)
n−3 (−v1)

)

, n ≥ 3.

After performing the correction steps (5.2) and (5.3) we obtain the following representation
for φn:

φn(x, y) =
(1 − v1)(1 − v2)

(2n− 4)(2n − 2)(v1 + v2)
[(1 − v2)(1 + v1 + 2v2)P

(2,2)
n−3 (v2)

− (1 − v1)(1 + 2v1 + v2)P
(2,2)
n−3 (−v1)].

With this rewriting of φn as sum of two (scaled) Jacobi polynomials its recurrence relation
can easily be obtained by invoking the REPlus command of Mallinger’s GeneratingFunctions
package. We use the hypergeometric sum representation (4.1) for Jacobi polynomials and
apply Zeilberger’s algorithm to obtain the input recurrences for REPlus.

In[22]:= rec1 = Zb[
Pochhammer[−n, k]Pochhammer[n + 5, k]

k!(k + 2)!

„

1 + v1[x, y]

2

«k

, {k, 0, n}, n];

If ‘n’ is a natural number, then:
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Out[22]= {2(1 + n)SUM[n] − (7 + 2n)(−1 + 2x − y)SUM[1 + n] + 2(6 + n)SUM[2 + n] == 0}

and analogously for the second term. The proof is completed by adding these two relations
to obtain the recurrence for φn.

In[23]:= REPlus[rec1, rec2, SUM[n]]

Out[23]= 4(n + 1)(n + 2)(2n + 11)SUM(n) − 8(n + 2)(2n + 7)(2n + 11)xSUM(n + 1) + (2n + 9)·
`

16x2n2 − 4y2n2 − 8yn2 + 4n2 + 144x2n − 36y2n − 72yn + 36n + 308x2 − 77y2 − 154y + 47
´

·

SUM(n + 2) − 8(n + 7)(2n + 7)(2n + 11)xSUM(n + 3) + 4(n + 7)(n + 8)(2n + 7)SUM(n + 4) == 0
2

From the first part of the proof of Theorem 5.1 it is obvious that also for the Muñoz-Sola
lifting (Rp)(x, y) a recurrence relation can be derived automatically, if p(x)/(1 − x2) is from
a family of orthogonal polynomials whose derivatives are again orthogonal polynomials. This

is for instance the case if we consider p(x) = (1 − x2)P
(α,0)
n (x) for some α > −1. With the

notation of Definition 4.1, the primary extension operator can be written in terms of integrated
Jacobi polynomials

ψα
n(x, y) := (R1P

(α,0)
n )(x, y) =

1

v1 + v2
(p̂α

n+1(v2) − p̂α
n+1(−v1)).

The recurrence relation for ψα
n(x, y) is, as in the last proof, computed by adding the recurrence

relations for integrated Jacobi polynomials using REPlus. The resulting recurrence relation
is also of order five. Here, we only state the recurrence relation for the special case α = 0,
i.e., p(x) = (1 − x2)Pn(x), since the recurrence coefficients for general α are rather big. The
coefficients for the recurrence

anψ
0
n(x, y) + bnψ

0
n+1(x, y) + cnψ

0
n+2(x, y) + dnψ

0
n+3(x, y) + enψ

0
n+4(x, y) = 0,

are given by

an = (n− 1)n(2n + 5), bn = n(2n+ 1)(2n + 5)(v1 − v2),

cn = −(2n + 3)(−1 + 5v1v2 + 2n(3 + n)(−1 + 2v1v2)),

dn = (n+ 3)(2n + 1)(2n + 5)(v1 − v2), en = (n+ 3)(n + 4)(2n + 1).

As concluding example we consider the Muñoz-Sola extension of integrated Legendre poly-

nomials. Because of (4.27), integrated Legendre polynomials are p(x) = (1− x2)P
(1,1)
n (x), up

to normalization. Analogously to the rewriting in the proof of Theorem 5.1 one obtains

ψn(x, y) :=
(
R1P

(1,1)
n

)
(x, y) =

1

v1 + v2

2

n+ 2

(
Pn+1(v2) − Pn+1(−v1)

)
,

and, applying again REPlus, a five term recurrence for ψn(x, y) is obtained:

anψn(x, y) + bnψn+1(x, y) + cnψn+2(x, y) + dnψn+3(x, y) + enψn+4(x, y) = 0,

with coefficients:

an = 4(n + 2)(n+ 3)2(2n+ 9), bn = 4(n+ 3)(n + 4)(2n + 5)(2n + 9)(v1 − v2),

cn = 2(n + 5)(2n + 7)
(
1 + (2n+ 5)(2n + 9)(1 − 2v1v2)

2
)
,

dn = 4(n + 4)(n+ 6)(2n + 5)(2n + 9)(v1 − v2), en = 4(n+ 4)(n + 5)(n + 7)(2n + 5).
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The tetrahedral H1-extension operator investigated in [33] is constructed following the
same principles as the triangular edge extension operator described above. First an extension
operator similar to Muñoz-Sola is applied followed by a series of correction steps assuring
the defining properties of the resulting basis functions. This procedure would also allow
for invoking holonomic closure properties, if the extension is applied to certain orthogonal
polynomials. Since this extension is defined for three variables and more correction steps are
involved, it is to be expected that the resulting recurrence might be rather big.

5.2 Low Energy Vertex Based Basis Functions

The condition number of high order system matrices depends on the maximal degree p of
the basis functions. One possibility to reduce this dependence is the use of low energy vertex
shape functions. The authors in [75] propose to use vertex based basis functions that are
constant along the level sets of the standard hat functions and minimizing the H1-norm
along this class of functions.

Let in two dimensions the reference triangle T̂ be defined as in the last section and let
V = (0, 1) be the associated vertex. The vertex based basis functions minimizing the H1-
seminorm are obtained as solutions to the minimization problem

min
φV (V )=1, φV (x,−1)=0

‖∇φV ‖L2(T̂ ).

With the ansatz φV (x, y) = φV (y) ∈ P p([−1, 1]), i.e., φV constant in x-direction, the H1-
seminorm of φV has the form

‖∇φV ‖2
L2(T̂ )

=

∫ 1

−1

∫ 1−y
2

y−1
2

[
d

dy
φV (y)]2 dx dy =

∫ 1

−1
(1 − y)[

d

dy
φV (y)]2 dy.

Analogously in three dimensions, using the reference tetrahedron T̂ given by the vertices
(−1,−1,−1), (1,−1,−1), (0, 1,−1) and (0, 0, 1) with associated vertex V = (0, 0, 1), the
corresponding ansatz leads to

‖∇φV ‖2
L2(T̂ )

=

∫ 1

−1

(1 − z)2

2
[
d

dz
φV (z)]2 dz.

Thus for dimension d = 2, 3 the constrained minimization problems

min
v∈Pp(I)

v(−1)=0,v(1)=1

∫ 1

−1
(1 − s)d−1(v′(s))2 ds (5.5)

have to be solved. These are strictly convex minimization problems on finite dimensional

spaces. Thus there exist unique solutions which we call v
(d)
p (x), d = 2, 3. To find these

solutions we expand v(x) in terms of Jacobi polynomials. The factor (1 − s)d−1 in (5.5) can
be interpreted as the weight function wd−1,0(x) associated to Jacobi polynomials. Hence, it
is natural to expand v(x) in terms of integrated Jacobi polynomials p̂d−1

j (x), i.e.,

v(d)
p (s) =

p
∑

j=1

νj p̂
d−1
j (s), d = 2, 3, (5.6)
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since with this ansatz the derivative of v
(d)
p (s) is just

d

ds
v(d)
p (s) =

p
∑

j=1

νj P
(d−1,0)
j−1 (s).

The constrained minimization problem (5.5) can be translated to an algebraic one. Let A be
the real p× p matrix with entries

Ai,j =

∫ 1

−1
(1 − s)d−1 d

ds
p̂d−1

i (s)
d

ds
p̂d−1

j (s) ds, 1 ≤ i, j ≤ p,

and define the vectors b0 = (b01, . . . , b
0
p) and b1 = (b11, . . . , b

1
p) with entries

b0i = p̂d−1
i (−1) = 0 and b1i = p̂d−1

i (1) = 2
(d − 1)i−1

i!
,

where (a)n denotes again the Pochhammer symbol. With these definitions (5.5) can be
transformed into the algebraic constrained minimization problem

min
ν∈Rp

b0·ν=0,b1·ν=1

νTAν.

Because of the ansatz (5.6) for v
(d)
p (s) using integrated Jacobi polynomials, the matrix entries

of A are easily computed using the orthogonality relation (4.12) for Jacobi polynomials.
Thus A is a diagonal matrix with entries

Ai,i =

∫ 1

−1
(s− 1)d−1

(
P

(d−1,0)
i−1 (s)

)2
ds =

2d

2i+ d− 2
.

Since integrated Jacobi polynomials vanish at x = −1 the condition v(−1) = 0 is already
included in our ansatz. The vector b1 has entries b1i = 2

i in the two dimensional and b1i = 2
in the three dimensional case. With these specific values for A and b1 solving the constrained
minimization problem for the coefficients ν = (ν1 . . . , νp) yields

v(2)
p (x) =

(
p
∑

k=1

1

k

)−1 p
∑

j=1

p̂1
j(x),

in the two dimensional case d = 2, and

v(3)
p (x) =

1

p(p+ 2)

p
∑

j=1

(2j + 1) p̂2
j (x),

for the three dimensional case d = 3. For a fast computation it is sufficient to have good
recursive descriptions for

u(2)
p (x) :=

(
p
∑

k=1

1

k

)

v(2)
p (x) and u(3)

p (x) := p(p+ 2)v(3)
p (x),

that are stated in the next theorem.
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Theorem 5.3. The functions u
(2)
p and u

(3)
p satisfy the recurrence relations

u
(2)
1 (x) =

x+ 1

2
,

u
(2)
2 (x) =

3

8
(x+ 1)2,

u
(2)
3 (x) =

1

24
(x+ 1)

(
10x2 + 5x+ 7

)
,

u(2)
p (x) =

(2p − 1)(−1 + 3x+ p2(1 + 2x) − p(1 + 5x))

p2(2p − 3)
u

(2)
p−1(x)

− (1 + x− 3p(1 + x) + p2(1 + 2x))

p2
u

(2)
p−2(x) +

(p − 2)2(2p − 1)

p2(2p − 3)
u

(2)
p−3(x),

and

u
(3)
1 (x) =

3(1 + x)

2
,

u
(3)
2 (x) =

1

2
(1 + x)(3 + 5x),

u(3)
p (x) =

(x(4p2 − 1) − 1)

(p+ 1)(2p − 1)
u

(3)
p−1(x) −

(p− 1)(2p + 1)

(p+ 1)(2p − 1)
u

(3)
p−2(x) +

(2p+ 1)(1 + x)

(p+ 1)
,

respectively.

Proof. The recurrence relation for u
(2)
p can be proven using holonomic closure properties

following the same lines as in the example given in Section 3.3.1. With c[j] = p̂1
j+1(x), i.e.

u
(2)
p =

∑p−1
j=0 c[j], only the Cauchy product of the integrated Jacobi polynomials and the

constant sequence c[j] = 1 has to be computed. The recurrence relation for c[j] = p̂1
j+1(x),

that can either be generated using Zeilberger’s algorithm or read off (4.25), is given by

In[24]:= rec1 = {(j+3)2(j+3)c[j+2]−(j+2)
`

(2j+3)(2j+5)x−1
´

c[j+1]+(j+1)2(2j+5)c[j] == 0,

c[0] = 1 + x, c[1] = 1

4
(1 + x)(3x − 1)}

In order to obtain the recurrence for the sum we use the RECauchy command of Mallinger’s
GeneratingFunctions package:

In[25]:= rec = RECauchy[rec1, {c[j + 1] == c[j], c[0] == 1}, c[j]]

Out[25]= {−(j + 3)(2j + 7)(x + 1)c[j](j + 2)2 + (j + 3)(2j + 5)(x + 1)(2xj
2 + j

2 + 13xj + 5j + 21x + 5)c[j + 1]

−(j+3)(2j+7)(x+1)(2xj
2 +j

2 +11xj+7j+15x+11)c[j+2]+(j+3)(j+4)2(2j+5)(x+1)c[j+3] = 0,

c[0] =
x + 1

2
, c[1] = 3

8
(x + 1)2, c[2] = 1

24
(x + 1)(10x

2 + 5x + 7)}

It is easily checked that this result is the recurrence relation for c[j] = u
(2)
j+1 for j ≥ 0 as

stated in the theorem.
For proving the three term recurrence for u

(3)
p (x) we apply Kauers’ SumCracker package,

where we use the identity (4.26) to rewrite p̂2
j(x) = 2

j+1P
(1,−1)
j (x). With Crack a simple closed

form for the sum u
(3)
p (x) in terms of Legendre polynomials can be generated.

In[26]:= Crack[SUM[
2k + 1

k + 1
JacobiP[k, 1, −1, x], {k, 1, p}], Into → {p, LegendreP[p, x]}]

Out[26]=
−1 − x + LegendreP[p, x] + LegendreP[p + 1, x]

−1 + x
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p (x) for p = 8

At this point, we could again invoke holonomic closure properties. But using REPlus
to determine a recurrence for Pp(x) + Pp+1(x) results in a recurrence relation of order four.
Hence instead we use the LinearRecurrence command of SumCracker to obtain

In[27]:= LinearRecurrence[
−1 − x + LegendreP[p, x] + LegendreP[p + 1, x]

−1 + x
, In → {p}]

Out[27]= SUM(p + 2) ==
4xp2 + 4p2 + 16xp + 16p + 15x + 15

2p2 + 9p + 9
+

`

−2p2 − 7p − 5
´

SUM(p)

2p2 + 9p + 9

+

`

4xp2 + 16xp + 15x − 1
´

SUM(p + 1)

2p2 + 9p + 9

Figure 5.2 illustrates the steep descent of the derivatives of these low energy vertex shape
functions. Although using REPlus yields a recurrence for the closed form in Out[26] that is

too big, GeneratingFunctions can still be used to obtain the three term recurrence for u
(3)
p (x).

With GuessRE a homogeneous recurrence of order two for the sum of the Legendre polyno-
mials can be found:

In[28]:= GuessRE[Table[LegendreP[n, x] + LegendreP[n + 1, x]//Factor, {n, 0, 11}], S[n]][[1]]

Out[28]= {(2 + n)(7 + 2n)S[n] + (1 − 35x − 24nx − 4n
2
x)S[1 + n] + (4 + n)(5 + 2n)S[2 + n] == 0,

S[0] == 1 + x, S[1] == 1
2
(x + 1)(3x − 1)}

Here S[n] = Pn+1(x) + Pn+2(x) for n ≥ 0. The correctness of this relation for all n ≥ 0

can easily be verified plugging in the Legendre three term recurrence. Because of u
(3)
p+1(x) =

(1 + x − S[p])(1 − x) and since S[p] satisfies the recurrence above, replacing S[n] in Out[28]

by u
(3)
n+1(x) yields the desired inhomogeneous recurrence

(2 + n)(7 + 2n)u
(3)
n+1(x) + [1 − (2n+ 5)(2n + 7)x]u

(3)
n+2(x) + (n+ 4)(2n + 5)u

(3)
n+2(x)

=(2n+ 5)(2n + 7)(1 + x).

In [10] Schneider generated,i.e., proved, and used another closed form, namely

u(3)
p (x) =

1

(p+ 1)(1 − x)

[

pP (1,−1)
p (x) + (p+ 1)

(
x+ 1 − P

(1,−1)
p+1 (x)

)]

.

This identity can also be found using Crack the same way as the rewriting in terms of Legendre
polynomials was obtained by leaving out the “Into” option. Since the recurrence relation for
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the sum of the recurrences for the Jacobi polynomials P
(1,−1)
p (x) found with REPlus is also

of order four, Schneider followed another strategy to obtain a shorter recurrence. In the first
step an additional slack parameter e in the summand was introduced

up(3)(x) =

p
∑

j=1

(e− j + p)!

(−j + p)!

2j + 1

j + 1
P

(1,−1)
j (x).

Sending this parameter e to 0 the original summand is regained. Applying the Generating-
Recurrence command of his Sigma package yields a recurrence of order three. This relation
can be simplified further to the recurrence given in Theorem 5.3 using the Sigma command
ReduceRecurrence, for details see [10].



Chapter 6

Triangular and Tetrahedral Shape

Functions Using Integrated Jacobi

Polynomials

Next we propose bases for the high order finite element method using a triangular or tetrahe-
dral mesh that lead to a sparse stiffness matrix in the case of a piecewise constant diffusion
matrix and a polygonally bounded domain. More precisely, the number of nonzero matrix
entries is of the same order as the number of unknowns. This sparsity of the system matrix
has two direct applications, namely a fast evaluation of the matrix and the preconditioning of
the block of cell based basis functions. The latter also works for an uniformly elliptic second
order boundary value problem with arbitrary coefficients. For proving the nonzero pattern of
the system matrix we explicitely determine the matrix entries with a program that we imple-
mented in Mathematica. The underlying algorithm is described in Section 6.3 and numerical
experiments showing the efficiency of the proposed basis functions are given in Section 6.4.
The contents of this chapter are joint work with Sven Beuchler [16, 17].

6.1 Motivation

We study the following boundary value problem: Let Ω ⊂ Rd, d = 2, 3 be a bounded domain
and let A be a symmetric matrix that is uniformly positive in Ω. Find

u ∈ H1
Γ1

(Ω) = {u ∈ H1(Ω) | u = 0 on Γ1}, Γ1 ∩ Γ2 = ∅, Γ1 ∪ Γ2 = ∂Ω,

such that

a(u, v) =

∫

Ω
(∇u)TA∇v dx =

∫

Ω
fv dx+

∫

Γ2

f1v dx (6.1)

holds for all v ∈ H1
Γ1

(Ω). We denote the global system matrix for this problem by K.
The advantage of discretizing by means of the hp-version compared to the pure h-version is
that the solution converges faster to the exact solution with respect to the total number of
unknowns N . However the choice of a basis Φ in which the element stiffness matrix K has
O(N) nonzero matrix entries is a difficult question. In the one-dimensional case, e.g., for
the differential equation −u′′ + u = f , in order to get a sparse system matrix primitives of
orthogonal polynomials can be used, see e.g. [48] or the example given in Section 2.6.

51
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In the two and three dimensional case, however, the choice of a basis which is optimal with
respect to the condition number and sparsity of K is not so clear. In [9] several bases have
been investigated regarding their condition number. In the case of tensor product elements
like quadrilaterals and hexahedrons, and a constant diffusion matrix A, tensor products of
integrated Legendre polynomials, such as defined in (2.12)-(2.14), can be taken, see [8, 48].
Then the stiffness matrix has O(N) nonzero matrix entries, see Figure A.1, and K can be
computed in O(N) operations. However, in the case of a general quadrilateral (hexahedral
in 3D) element with nonparallel opposite edges (faces), most of the orthogonality relations
of the reference element case disappear and K has, in general, O(p6) matrix entries. Using a
quadrature rule, the cost in order to obtain K is O(p9). In [61] tensor products of Lagrangian
polynomials on the grid of the Gauss-Lobatto points are proposed. Then the cost for comput-
ing K by a quadrature rule is O(p5). This approach can be extended to the tetrahedral case
via the Duffy transformation. If the diffusion matrix A is piecewise constant, the cost for the
generation of the stiffness matrix can be reduced to O(p4) by the technique of precomputed
arrays, see [49, 63].

To give a better intuition for the underlying idea, we first present basis functions that are
orthogonal with respect to the L2-norm on triangles. Let the reference triangle T̂ be given
by the vertices (−1,−1), (1,−1), (0, 1). Dubiner [36] introduced the polynomial functions

ψi,j(x, y) = Pi

(
2x

1 − y

)(
1 − y

2

)i

P
(2i+1,0)
j (y), i, j ≥ 0.

These functions are orthogonal with respect to the L2-inner product on T̂ . By means of the
substitution u = 2x

1−y , also called the Duffy transformation, we have

∫

T̂
ψi,j(x, y)ψk,l(x, y)d(x, y) =

∫ 1

−1
Pi(x)Pk(x)dx

∫ 1

−1

(1 − y

2

)i+k+1
P

(2i+1,0)
j (y)P

(2k+1,0)
l (y)dy.

The first integral evaluates to h0,0
i δi,k because of the orthogonality of Legendre polynomials.

Dubiner chose the parameters α of the Jacobi polynomials to fit the appearing weight function
wi+k+1,0(y) = (1−y

2 )i+k+1 for i = k. With this one obtains

(ψi,j , ψk,l)L2(T̂ ) =

∫

T̂
ψi,j(x, y)ψk,l(x, y) d(x, y) = h0,0

i h2i+1,0
j δi,kδj,l,

i.e., the family {ψi,j(x, y)}i,j is orthogonal in L2(T̂ ). Sherwin and Karniadakis [77] investi-
gated a modification of Dubiner’s orthogonal basis for triangular and tetrahedral hp-finite
element method. The functions ψi,j(x, y) do not fulfill homogeneous boundary conditions
on ∂T̂ and are therefore not suited as cell based basis functions. Sherwin and Karniadakis
enforced this homogeneity by multiplication of simple bubble functions which induce a change
in the parameters of the Jacobi polynomials, i.e.,

ψ̃i,j(x, y) =
1 − a2

4
P

(1,1)
i−2 (a)

(
1 − b

2

)i 1 + b

2
P

(2i−1,1)
j−1 (b),

with a = 2x
1−y , b = y. They proved a sparse structure for these basis functions for the

bilinear form a(u, v) = (u, v)L2(T̂ ) and for the corresponding extension to three dimensions
on a tetrahedron. Sherwin and Karniadakis also observed sparsity of the system matrix for
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Figure 6.1: Notation of vertices and edges on the reference triangle T̂

problem (6.1), but without proof. By applying some of the rewritings stated in Section 4.1 it
can be seen that ψ̃i,j(x, y) is one instance of the family of basis functions that are introduced
below, as are the tetrahedral cell based basis functions given in [77]. In [18] Beuchler and
Schöberl investigated another basis for triangular high order finite element method based on
integrated Jacobi polynomials. They proved the sparsity of the system matrix by explicitely
computing the matrix entries. The relations they apply are the basis for the algorithm that
we describe below and their results are also covered by our algorithm.

6.2 Definition of the Basis Functions

In this section we define the triangular and tetrahedral basis functions and state the main
results on the sparsity of the element stiffness matrix. The parameter p denotes the polynomial
degree.

6.2.1 The Triangular Case

Let the reference triangle T̂ be given by the vertices {A,B,C} = {(−1,−1), (1,−1), (0, 1)}
and edges numbered as shown in Figure 6.1. Using integrated Jacobi polynomials p̂α

n(x), see
Definition 4.1 , we construct the shape functions on the reference element T̂ . We define the
vertex based basis functions as the linear functions satisfying φV

i (Vj) = δi,j for vertices Vi ∈ V,

φA(x, y) =
1 − 2x− y

4
, φB(x, y) =

1 + 2x− y

4
, φC(x, y) =

1 + y

2
.

Let ΦV = [φA, φB , φC ] be the basis of the vertex shape functions. Next we construct the edge
based basis functions. For the edge e1 we define

φe1
i (x, y) = p̂0

i

(
2x

1 − y

)(
1 − y

2

)i

, 2 ≤ i ≤ p.

For the remaining two edges we define for 1 ≤ i ≤ p− 1

φe2
i (x, y) =

1 + 2x− y

2
p̂0

i (y), and φe3
i (x, y) =

1 − 2x− y

2
p̂0

i (y).

By ΦE = [{φe1
i }p

i=2, {φe2
i }p−1

i=1 , {φe3
i }p−1

i=1 ] we denote the vector of all edge based basis functions

on T̂ . The basis functions given so far involved only integrated Legendre polynomials. In the
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definition of the cell based basis functions we now use Jacobi polynomials with parameter α
depending on the degree of the integrated Legendre polynomials analogously to the motivating
example. We define the cell based basis functions

φi,j(x, y) = p̂0
i

(
2x

1 − y

)(
1 − y

2

)i

p̂2i
j (y), i+ j ≤ p, i ≥ 2, j ≥ 1. (6.2)

The basis of cell based shape functions is denoted by ΦC = [φi,j ]i,j and the total of all basis
functions on T̂ is collected in the vector Φ = [φV , φE , φC ].

Let A =

[
A11 A12

A12 A22

]

be a symmetric and positive definite real 2 × 2-matrix and let

K̂ =

∫

T̂

(
∇Φ(x, y)

)TA∇Φ(x, y) d(x, y)

be the element system matrix on T̂ with respect to the basis Φ. According to the partitioning
of the basis Φ into vertex, edge and cell based basis functions, the matrix K̂ can be split into
nine blocks, compare to (2.18). We denote by K̂CC the block built from the cell based basis
functions

K̂CC =
[

ai,j;k,l

]i+j≤p;k+l≤p

i,k=2;j,l=1
=

∫

T̂
(∇φi,j(x, y))

TA (∇φk,l(x, y)) d(x, y). (6.3)

The element matrix K̂CC has 1
2 (p − 1)(p − 2) rows and columns. In the next theorem the

main result on the nonzero pattern of the interior block of the element stiffness matrix is
formulated.

Theorem 6.1. Let K̂CC be defined via (6.2) and (6.3). Then the matrix K̂CC has O(p2)
nonzero matrix entries. More precisely, ai,j;k,l = 0 if |i− k| > 2 or |i− k + j − l| > 1.

This theorem is proven by explicitely computing the matrix entries using the algorithm
described in Section 6.3. This algorithm can also be applied to determine the sparsity pattern
of K̂CC when the cell based basis functions are defined involving a parameter a ≥ 0 as

φi,j(x, y) = p̂0
i

(
2x

1 − y

)(
1 − y

2

)i

p̂2i−a
j (y), i+ j ≤ p, i ≥ 2, j ≥ 1, 0 ≤ a ≤ 4. (6.4)

In [18] the case a = 1 was investigated and the number of nonzero matrix entries is also O(p2).
The optimal case, however, with respect to sparsity and condition number of the system
matrix, is a = 0.

6.2.2 The Tetrahedral Case

Next we consider the three dimensional case and define the shape function on a tetrahedral
reference element split into the vertex, edge, face and cell based basis functions. Let T̂ be the
reference tetrahedron with the vertices A, B, C and D, the edges e1, . . . , e6, and the faces
F1, . . . , F4, see Figure 6.2. The vertex shape functions are defined as the usual hat functions,
i.e.,

φA(x, y, z) =
1 − 2y − z − 4x

8
, φC(x, y, z) =

1 + 2y − z

4
,

φB(x, y, z) =
1 − 2y − z + 4x

8
, φD(x, y, z) =

1 + z

2
.
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Figure 6.2: Notation of vertices, edges and faces on the reference tetrahedron T̂

Let ΦV = [φA, φB , φC , φD] denote the basis of vertex based basis functions. The edge based
basis functions are defined as

φe1
i (x, y, z) = p̂0

i

(
4x

1 − 2y − z

)(
1 − 2y − z

4

)i

, 2 ≤ i ≤ p,

φe2
i (x, y, z) =

1 − 2y − z + 4x

4
p̂0

i

(
2y

1 − z

)(
1 − z

2

)i

, 1 ≤ i ≤ p− 1,

φe3
i (x, y, z) =

1 − 2y − z − 4x

4
p̂0

i

(
2y

1 − z

)(
1 − z

2

)i

, 1 ≤ i ≤ p− 1,

φe4
i (x, y, z) =

1 − 2y − z − 4x

4
p̂0

i (z), 1 ≤ i ≤ p− 1,

φe5
i (x, y, z) =

1 − 2y − z + 4x

4
p̂0

i (z), 1 ≤ i ≤ p− 1,

φe6
i (x, y, z) =

1 + 2y − z

2
p̂0

i (z), 1 ≤ i ≤ p− 1.

We denote by ΦE = [{φe1
i }p

i=2, {φe2
i }p−1

i=1 , {φe3
i }p−1

i=1 , {φe4
i }p−1

i=1 , {φe5
i }p−1

i=1 , {φe6
i }p−1

i=1 ] the vector of

all edge based basis functions on the reference tetrahedron T̂ . The face based basis functions
read as

φF1
i,j(x, y, z) = p̂0

i

(
4x

1 − 2y − z

)(
1 − 2y − z

4

)i

p̂2i−a
j

(
2y

1 − z

)(
1 − z

2

)j

,

i+ j ≤ p, 2 ≤ i, 1 ≤ j,

φF2
j,k(x, y, z) =

1 − 2y − z − 4x

8
p̂0

j

(
2y

1 − z

)(
1 − z

2

)j

p̂2j−b
k (z),

j + k ≤ p− 1, 1 ≤ j, k,

φF3
j,k(x, y, z) =

1 − 2y − z + 4x

8
p̂0

j

(
2y

1 − z

)(
1 − z

2

)j

p̂2j−b
k (z),

j + k ≤ p− 1, 1 ≤ j, k,
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Figure 6.3: Nonzero pattern of the interior block K̂CC for p = 10 (left) and p = 24 (right)
with a = b = 0

φF4
i,k(x, y, z) = p̂0

i

(
4x

1 − 2y − z

)(
1 − 2y − z

4

)i

p̂2i−b
k (z), i+ k ≤ p, 2 ≤ i, 1 ≤ k.

By ΦF = [{φi, j
F1}i,j , {φF2

j,k}j,k, {φF3
j,k}j,k, {φF4

i,k}i,k] we denote the basis of all face based basis
functions. The cell based basis functions are defined as

φi,j,k(x, y, z) = p̂0
i

(
4x

1 − 2y − z

)(
1 − 2y − z

4

)i

p̂2i−a
j

(
2y

1 − z

)(
1 − z

2

)j

p̂2i+2j−b
k (z),

i+ j + k ≤ p, 2 ≤ i, 1 ≤ j, k.

(6.5)

The parameters a, b ∈ N satisfy the following assumptions

0 ≤ a ≤ 4, a ≤ b ≤ 6. (6.6)

Moreover ΦC = [φi,j,k]i,j,k = [φ2,1,1, . . . , φ2,1,p−3, φ2,2,1, . . . , φp−2,1,1] denotes the basis of cell
based basis functions in the indicated order. The basis of all basis functions is denoted by
Φ = [ΦV ,ΦE,ΦF ,ΦC ].

Next we define analogously to the previous section the element system matrix K̂ and its
inner block K̂CC for a symmetric, positive definite real 3 × 3-diffusion matrix A. The inner
block is given by

K̂CC = [ai,j,k;l,m,n]i,j,k;l,m,n =

∫

T̂
(∇φi,j,k(x, y, z))

TA(∇φl,m,n(x, y, z)) d(x, y, z).

Now we are in the position to formulate the main theorem of this section.

Theorem 6.2. The element matrix K̂ has (p+1)(p+2)(p+3)
6 rows and columns. If condi-

tion (6.6) is satisfied, each row has a bounded number of nonzero entries and the number
of total nonzero entries is O(p3). Moreover, the entry ai,j,k;l,m,n of the matrix K̂CC is zero if
|i− l| ∈ {0, 2}, or |i− l + j −m| > 3 + a, or |i− l + j −m+ k − n| > 2 + b.

This theorem is proven by explicitely computing the matrix entries using the algorithm
described in the next section.
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6.3 Algorithm for Proving Theorems 6.1 and 6.2

In this section the algorithm for determining the entries of the element stiffness matrix built
from the basis functions proposed in Sections 6.2.1 and 6.2.2 is presented. The computations
of the matrix entries are, especially in the three dimensional case, very time and paper
consuming. But this task can be shifted to the computer and we implemented the algorithm
described below in our program IntJac within Mathematica. The basic computational steps
follow the lines carried out in the proof for the sparsity of the stiffness matrix in [18], with
some additions that are necessary to treat the optimal case a = b = 0 in three dimensions. For
these computations several identities for Jacobi and integrated Jacobi polynomials are needed
that were introduced in chapter 4. In the next lemma we collect these relations, reinterpreted

for the polynomials P
(α,0)
n (x) and p̂α

n(x). To simplify notation we define pα
n(x) = P

(α,0)
n (x).

Lemma 6.3. Let pα
n(x) = P

(α,0)
n (x) and let p̂α

n(x) be as defined in section 4.1. Then we have
for n ≥ 1

pα−1
n =

1

2n+ α
[(n + α)pα

n(x) − n pα
n−1(x)], α > −1, (6.7)

pα
n+1(x) =

2n+ α+ 1

2(n+ 1)(n + α+ 1)(2n + α)
[(2n+ α+ 2)(2n + α)x+ α2]pα

n(x)

− n(n+ α)(2n + α+ 2)

(n + 1)(n+ α+ 1)(2n + α)
pα

n−1(x), α ≥ −1, (6.8)

p̂α
n(x) =

2(n + α)

(2n+ α− 1)(2n + α)
pα

n(x) +
2α

(2n+ α− 2)(2n + α)
pα

n−1(x)

− 2(n− 1)

(2n + α− 1)(2n + α− 2)
pα

n−2(x), α ≥ −1, (6.9)

p̂α
n(x) =

2

2n+ α− 1
[pα−1

n (x) + pα−1
n−1(x)], α > −1, (6.10)

(α− 1)p̂α
n(x) = (1 − x) pα

n−1(x) + 2 pα−2
n (x), α > 1. (6.11)

Proof. These relations have been proven in Section 4.1, hence we only point to the correspond-
ing identities. The first identity is (4.7) with β = 0. Relation (6.8) is the Jacobi three term
recurrence (4.14) with β = 0. The third identity (6.9) relates integrated Jacobi polynomials
with their derivatives, i.e., corresponds to (4.17) with coefficients (4.18) for β = −1. The next
identity (6.10) is (4.8) with β = 0. Finally (6.11) is obtained from (4.6) by setting β = −1.

For sake of simplicity we denote in this chapter the weight function associated to Jacobi
polynomials pα

n(x) by wα(x) = wα,0(x) =
(

1−x
2

)α
. Recall the orthogonality relation for Jacobi

polynomials,
∫ 1

−1
wα(x)pα

i (x)pα
j (x) dx =

2

2i+ α+ 1
δi,j . (6.12)

When computing the entries of the stiffness matrix K̂, integrals of the form
∫

T̂
Dζψ1(ξ)Dηψ2(ξ) dξ (6.13)

have to be evaluated, where T̂ is the reference triangle or tetrahedron, and ζ, η ∈ {x, y}, or
ζ, η ∈ {x, y, z} in the two and three dimensional case, respectively. The functions ψ1, ψ2 are
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the cell based basis functions defined by (6.2) and (6.5). The key idea is to first decouple the
integrals using the Duffy transformation and then to rewrite the integrands of the one dimen-
sional integrals such that they can be evaluated using only the orthogonality relation (6.12).
In the two dimensional case with reference triangle T̂ as defined in Section 6.2.1, we substitute
u = 2x

1−y to obtain

∫∫

T̂
f(x, y) d(x, y) =

∫ 1

−1

∫ 1

−1

1 − y

2
f̃(u, y) du dy.

For d = 3 and the reference tetrahedron depicted in Figure 6.2 we substitute u = 4x
1−2y−z and

v = 2y
1−z to obtain

∫∫∫

T̂
f(x, y, z) d(x, y, z) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

1 − v

2

(
1 − z

2

)2

f̃(u, v, z) du dv dz.

The additional factors emerging because of the substitution are of the form
(1−ζ

2

)α
and only

change the appearing weight functions in the integrand. But, when differentiating, additional
x and y might be introduced that cannot be absorbed in a weight function. As an example,
consider for d = 2 the derivative of φk,l(x, y) with respect to y:

d

dy
φk,l(x, y) =

1

2
x p0

k−1

(
2x

1 − y

)

wk−2(y)p̂
2k
l (y) − k

2
p̂0

k

(
2x

1 − y

)

wk−1(y)p̂
2k
l (y)

+ p̂0
k

(
2x

1 − y

)

wk(y)p
2k
l−1(y).

The three term recurrence (6.8) can be used to replace in the first expression on the right

hand side x p0
k−1

(
2x

1−y

)

and we obtain

d

dy
φk,l(x, y) =

1

4k − 2

[

(k − 1)p0
k−2

(
2x

1 − y

)

p̂2k
l (y)wk−1(y) + kp0

k

(
2x

1 − y

)

p̂2k
l (y)wk−1(y)

−(2k − 1)p̂0
k

(
2x

1 − y

)(

kp̂2k
l (y)wk−1(y) − 2p2k

l−1(y)wk(y)
)]

.

This elimination is carried out before the Duffy transformation is performed. Let us continue
with the example and multiply d

dyφk,l(x, y), as rewritten above, with

d

dx
φi,j(x, y) = p0

i−1

(
2x

1 − y

)

wi−1(y)p̂
2i
j (y).

Then altogether, including Duffy transformation, one arrives at the following integrals:
∫∫

T̂

d

dx
φi,j(x, y)

d

dy
φk,l(x, y) d(x, y) =

(k − 1)

2(2k − 1)

∫ 1

−1
p0

i−1(x)p
0
k−2(x) dx

∫ 1

−1
wi+k−1(y)p̂

2i
j (y)p̂2k

l (y) dy

+
k

2(2k − 1)

∫ 1

−1
p0

i−1(x)p
0
k(x) dx

∫ 1

−1
wi+k−1(y)p̂

2i
j (y)p̂2k

l (y) dy

− 1

2

∫ 1

−1
p0

i−1(x)p̂
0
k(x) dx

∫ 1

−1

1

2
p̂2i

j (y)
[

kwi+k−1(y)p̂
2k
l (y) − 2wi+k(y)p

2k
l−1(y)

]

dy.

(6.14)
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These operations of taking derivatives of the basis functions, eliminating “disturbing” vari-
ables and performing the Duffy transformation are also handed over to the computer. These
preparative steps are carried out by the Prepare2DIntegrand and Prepare3DIntegrand com-
mands of our program. The integrals appearing in (6.14) are all of the form

∫ 1

−1
wα(u)q1(u)q2(u) du,

where q1(u), q2(u) are Jacobi or integrated Jacobi polynomials. Next, these polynomials have
to be rewritten in terms of Jacobi polynomials fitting to the appearing weight. Because of
the dependence of the parameters, the integrals are processed from left to right, i.e., starting
with the integration with respect to x.

For the coefficient matrix A equal the identity matrix in the tetrahedral case, the integrand
has the form

Î =
d

dx
φi,j,k

d

dx
φl,m,n +

d

dy
φi,j,k

d

dy
φl,m,n +

d

dz
φi,j,k

d

dz
φl,m,n.

Executing the Prepare3DIntegrand command on this integrand results in 64 integrands of the
form

Î(r) = cr px,1 px,2w1(y) py,1 py,2w2(z) pz,1 pz,2,

i.e., Î =
∑64

r=1 Î(r), where the coefficients cr are rational in the polynomial degrees, pζ,i

are Jacobi or integrated Jacobi polynomials and wi(ζ) are Jacobi weight functions. The
integrands for K̂ are listed in Tables 6.1-6.2. In [16] only 21 integrands were used, because
another manual rewriting of the derivatives entered the computation. We chose to present
here a proof with as little human interaction as necessary. But even the 21 integrands given
in [16] illustrate the complexity of the problem of determining the nonzero pattern of the
system matrix. The main part of the program handles the rewriting of the integrands until
the final evaluation of the integrals. The basic steps of the algorithm for each integration
variable are:

1. Collect integrands depending on the current integration variable

2. For each integrand: Rewrite integrated Jacobi polynomials in terms of Jacobi polyno-
mials using (6.9), (6.10), or (6.11)

3. Collect integrands depending on the current integration variable

4. For each integrand: Adjust Jacobi polynomials to appearing weight functions

5. Collect integrands depending on the current integration variable

6. For each integrand: Evaluate integrals using orthogonality relation (6.12)

The two steps of the algorithm that need further explanations are steps 2 and 4. Which of the
identities relating integrated Jacobi polynomials and Jacobi polynomials (6.9)- (6.11) have to
be used in step 2 depends on the difference γ−α of the parameters of p̂α

n(ζ) and of the weight
function wγ(ζ).

2. Rewrite wγ(ζ)p̂α
n(ζ) in terms of Jacobi polynomials

(a) γ − α ≥ 0: transform integrated Jacobi polynomials to Jacobi polynomials with
same parameter using (6.9).
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px,1 px,2 w1 py,1 py,2 w2 pz,1 pz,2

Î(1) p0
i−2(x) p0

l−2(x) wi+l−1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(2) p0
i−2(x) p0

l (x) wi+l−1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(3) p0
i−2(x) p̂0

l (x) wi+l−1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(4) p0
i−2(x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(5) p0
i−2(x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ+1(z) p̂2δ−b
k (z) pǫ−b

n−1(z)

Î(6) p0
i−2(x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p2l−a

m−2(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(7) p0
i−2(x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p2l−a

m−1(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(8) p0
i−2(x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(9) p0
i (x) p0

l−2(x) wi+l−1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(10) p0
i (x) p0

l (x) wi+l−1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(11) p0
i (x) p̂0

l (x) wi+l−1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(12) p0
i (x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(13) p0
i (x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ+1(z) p̂2δ−b
k (z) pǫ−b

n−1(z)

Î(14) p0
i (x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p2l−a

m−2(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(15) p0
i (x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p2l−a

m−1(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(16) p0
i (x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(17) p0
i−1(x) p0

l−1(x) wi+l−1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(18) p̂0
i (x) p0

l−2(x) wi+l−1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(19) p̂0
i (x) p0

l−2(x) wi+l(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(20) p̂0
i (x) p0

l−2(x) wi+l(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ+1(z) p2δ−b
k−1 (z) p̂ǫ−b

n (z)

Î(21) p̂0
i (x) p0

l−2(x) wi+l(y) p2i−a
j−2 (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(22) p̂0
i (x) p0

l−2(x) wi+l(y) p2i−a
j−1 (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(23) p̂0
i (x) p0

l−2(x) wi+l(y) p2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(24) p̂0
i (x) p0

l (x) wi+l−1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(25) p̂0
i (x) p0

l (x) wi+l(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(26) p̂0
i (x) p0

l (x) wi+l(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ+1(z) p2δ−b
k−1 (z) p̂ǫ−b

n (z)

Î(27) p̂0
i (x) p0

l (x) wi+l(y) p2i−a
j−2 (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(28) p̂0
i (x) p0

l (x) wi+l(y) p2i−a
j−1 (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(29) p̂0
i (x) p0

l (x) wi+l(y) p2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(30) p̂0
i (x) p̂0

l (x) wi+l−1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(31) p̂0
i (x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(32) p̂0
i (x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ+1(z) p̂2δ−b
k (z) pǫ−b

n−1(z)

Î(33) p̂0
i (x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ+1(z) p2δ−b
k−1 (z) p̂ǫ−b

n (z)

Î(34) p̂0
i (x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p2l−a

m−2(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(35) p̂0
i (x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p2l−a

m−1(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(36) p̂0
i (x) p̂0

l (x) wi+l(y) p̂2i−a
j (y) p2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(37) p̂0
i (x) p̂0

l (x) wi+l(y) p2i−a
j−2 (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(38) p̂0
i (x) p̂0

l (x) wi+l(y) p2i−a
j−1 (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(39) p̂0
i (x) p̂0

l (x) wi+l(y) p2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(40) p̂0
i (x) p̂0

l (x) wi+l+1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Table 6.1: Integrands for product of x-, y- and z-derivatives and y-derivatives, part I, δ = i+j,
ǫ = l +m
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px,1 px,2 w1 py,1 py,2 w2 pz,1 pz,2

Î(41) p̂0
i (x) p̂0

l (x) wi+l+1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ+1(z) p̂2δ−b
k (z) pǫ−b

n−1(z)

Î(42) p̂0
i (x) p̂0

l (x) wi+l+1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ+1(z) p2δ−b
k−1 (z) p̂ǫ−b

n (z)

Î(43) p̂0
i (x) p̂0

l (x) wi+l+1(y) p̂2i−a
j (y) p̂2l−a

m (y) wǫ+δ+2(z) p2δ−b
k−1 (z) pǫ−b

n−1(z)

Î(44) p̂0
i (x) p̂0

l (x) wi+l+1(y) p̂2i−a
j (y) p2l−a

m−2(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(45) p̂0
i (x) p̂0

l (x) wi+l+1(y) p̂2i−a
j (y) p2l−a

m−2(y) wǫ+δ+1(z) p2δ−b
k−1 (z) p̂ǫ−b

n (z)

Î(46) p̂0
i (x) p̂0

l (x) wi+l+1(y) p̂2i−a
j (y) p2l−a

m−1(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(47) p̂0
i (x) p̂0

l (x) wi+l+1(y) p̂2i−a
j (y) p2l−a

m−1(y) wǫ+δ+1(z) p2δ−b
k−1 (z) p̂ǫ−b

n (z)

Î(48) p̂0
i (x) p̂0

l (x) wi+l+1(y) p̂2i−a
j (y) p2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(49) p̂0
i (x) p̂0

l (x) wi+l+1(y) p̂2i−a
j (y) p2l−a

m (y) wǫ+δ+1(z) p2δ−b
k−1 (z) p̂ǫ−b

n (z)

Î(50) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j−2 (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(51) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j−2 (y) p̂2l−a

m (y) wǫ+δ+1(z) p̂2δ−b
k (z) pǫ−b

n−1(z)

Î(52) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j−2 (y) p2l−a

m−2(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(53) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j−2 (y) p2l−a

m−1(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(54) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j−2 (y) p2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(55) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j−1 (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(56) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j−1 (y) p̂2l−a

m (y) wǫ+δ+1(z) p̂2δ−b
k (z) pǫ−b

n−1(z)

Î(57) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j−1 (y) p2l−a

m−2(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(58) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j−1 (y) p2l−a

m−1(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(59) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j−1 (y) p2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(60) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j (y) p̂2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(61) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j (y) p̂2l−a

m (y) wǫ+δ+1(z) p̂2δ−b
k (z) pǫ−b

n−1(z)

Î(62) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j (y) p2l−a

m−2(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(63) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j (y) p2l−a

m−1(y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Î(64) p̂0
i (x) p̂0

l (x) wi+l+1(y) p2i−a
j (y) p2l−a

m (y) wǫ+δ(z) p̂2δ−b
k (z) p̂ǫ−b

n (z)

Table 6.2: Integrands for product of x-, y- and z-derivatives and y-derivatives, part II, δ = i+j,
ǫ = l +m

(b) γ − α = −1: transform integrated Jacobi polynomials to Jacobi polynomials with
parameter α− 1 using (6.10)

(c) γ − α = −2: use the mixed relation (6.11) to obtain

wγ(ζ)p̂γ+2
n (ζ) =

2

γ + 1

(

wγ(ζ)pγ
n(ζ) + wγ+1(ζ)p

γ+2
n−1(ζ)

)

.

This transformation is executed (internally) by the RemovePHAT function. If the integrand
contains two integrated Jacobi polynomials RemovePHAT is applied with respect to the orig-
inal weight function, not taking into account a possible change introduced by relation (6.11).
The situation γ − α = −2, i.e., case 2(c), only happens for a = b or a = 0. This includes the
optimal cell based basis functions with a = b = 0. If none of the cases 2(a)-2(c) applies, the
algorithms interrupts.
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Rewriting the Jacobi polynomials pα
n(ζ) in terms of pγ

n(ζ) fitting to the appearing weights
wγ(ζ) in step 4, means lifting the polynomial parameter α using (6.7) (γ − α) times. This
transformation is performed by the AdjustToWeight function recursively for each appearing
Jacobi polynomial.

4. Rewrite the Jacobi polynomials pα
n(ζ) in terms of Jacobi polynomials fitting to the

appearing weights wγ(ζ) (γ − α > 0) by lifting the polynomial parameter α using (6.7)
(γ − α)-times, i.e., written in explicit form we have

pα
n(ζ) =

γ−α
∑

m=0

(−1)k
(
γ − α

m

)
(n+ γ −m)γ−α−m nm

(2n + γ −m+ 1)γ−α+1 (2n − 2m+ γ + 1)pγ
n−m(ζ),

where ak = a(a− 1) · . . . · (a− k + 1) denotes the falling factorial.

If γ − α < 0 the algorithm interrupts. In this step of the algorithm polynomials down to
degree n− γ +α are introduced. Hence this transformation is a costly one as it increases the
number of terms significantly, especially if a, b are far from the ideal case a = b = 0.

If step 2(c) of the algorithm is executed a further rewriting step might be necessary to
avoid abortion in step 4. We comment on this correction step below. First we continue our
example of computing the matrix entries for the mixed product in the two dimensional case,
where we go through the transformations step by step. After preparing the integrand we
arrived at the representation (6.14). We start by integrating with respect to x and in step 2
of the algorithm. In this case only the integrated Legendre polynomials in the third integral
need to be rewritten in terms of Legendre polynomials, i.e., the condition in step 2(a) applies.

In[29]:= RemovePHAT[p[i − 1, 0, x]phat[k, 0, x]]

Out[29]= −
p(i − 1, 0, x)(p(k − 2, 0, x) − p(k, 0, x))

2k − 1

Next, the integrands are collected again yielding for (6.14)

∫∫

T̂

d

dx
φi,j(x, y)

d

dy
φk,l(x, y) =

∫ 1

−1
p0

i−1(x)p
0
k(x) dx

∫ 1

−1

wi+k(y)p
2k
l−1(y)p̂

2i
j (y)

2k − 1
dy

+

∫ 1

−1
p0

i−1(x)p
0
k−2(x) dx

∫ 1

−1

p̂2i
j (y)

(
(2k − 1)wi+k−1(y)p̂

2k
l (y) − 2wi+k(y)p

2k
l−1(y)

)

4k − 2
dy

Step 4 is not executed for the integration with respect to x, because all polynomials already
fit to the appearing weight w0(x) ≡ 1. After evaluating the integrals and collecting integrands
we have
∫∫

T̂

d

dx
φi,j(x, y)

d

dy
φk,l(x, y)d(x, y) =

2δ0,−i+k+1

(2i− 3)(2i − 1)

∫ 1

−1
w2i−1(y)p̂

2i
j (y)p2i−2

l−1 (y) dy

− 2δ0,−i+k−1

(2i− 1)(2i + 1)

∫ 1

−1
w2i+1(y)p̂

2i
j (y)p2i+2

l−1 (y) dy

+
δ0,−i+k−1

2i− 1

∫ 1

−1
w2i(y)p̂

2i
j (y)p̂2i+2

l (y) dy.

(6.15)

Next integrated Jacobi polynomials are rewritten in terms of Jacobi polynomials in step 2
of the algorithm. For the first integrand we have γ − α = −1, i.e., we are in case 2(b) and
RemovePHAT rewrites using (6.10).
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In[30]:= RemovePHAT[p[−1 + l, −2 + 2i, y]phat[j, 2i, y]w[−1 + 2i, y]]

Out[30]=
2(p[−1 + j,−1 + 2i, y] + p[j,−1 + 2i, y]) p[−1 + l,−2 + 2i, y] w[−1 + 2i, y]

−1 + 2i + 2j

The integrand in the second integral can be reformulated using (6.9), i.e., step 2(a) is
executed,

w2i+1(y)p̂
2i
j (y)p2i+2

l−1 (y) = w2i+1(y)p
2i+2
l−1 (y)

[

−
(j − 1)p2i

j−2(y)

(i+ j − 1)(2i + 2j − 1)

+
ip2i

j−1(y)

(i+ j − 1)(i + j)
+

(2i+ j)p2i
j (y)

(i+ j)(2i + 2j − 1)

]

.

In the third integral the integrand is a product of two integrated Jacobi polynomials. The
first polynomial p̂2i

j (y) is rewritten using (6.9), i.e., step 2(a) is executed again. The second
polynomial needs the rewriting (6.11), i.e., we are in case 2(c).

w2i(y)p̂
2i
j (y)p̂2i+2

l (y) =
2

2i+ 1

(
w2i(y)p

2i
l (y) + w2i+1(y)p

2i+2
l−1 (y)

) [

−
(j − 1)p2i

j−2(y)

(i+ j − 1)(2i + 2j − 1)

+
i p2i

j−1(y)

(i+ j − 1)(i + j)
+

(2i+ j)p2i
j (y)

(i+ j)(2i + 2j − 1)

]

.

In the last two rewritings one obtains combinations of weight function w2i+1(y) and Jacobi
polynomials p2i+2

l−1 (y). These expressions could not be handled by the transformation of step 4,
but these terms cancel. A posteriori, we see that this cancellation would have been possible
already in (6.15) by using the relation (6.11). However, doing the cancellation after transform-
ing the integrated Jacobi polynomials is more efficient for the implementation. The algorithm
therefore proceeds with the steps described above. Either way, after applying RemovePHAT
to (6.15) and collecting integrands we arrive at

∫∫

T̂

d

dx
φi,j(x, y)

d

dy
φk,l(x, y)d(x, y) = −

∫ 1

−1

2(j − 1)δ0,−i+k−1w2i(y)p
2i
j−2(y)p

2i
l (y)

(2i− 1)(2i + 1)(i+ j − 1)(2i + 2j − 1)
dy

+

∫ 1

−1

2iδ0,−i+k−1w2i(y)p
2i
j−1(y)p

2i
l (y)

(2i− 1)(2i + 1)(i + j − 1)(i+ j)
dy +

∫ 1

−1

2(2i+ j)δ0,−i+k−1w2i(y)p
2i
j (y)p2i

l (y)

(2i− 1)(2i + 1)(i + j)(2i + 2j − 1)
dy

+

∫ 1

−1

4δ0,−i+k+1w2i−1(y)p
2i−2
l−1 (y)p2i−1

j−1 (y)

(2i− 3)(2i − 1)(2i + 2j − 1)
dy +

∫ 1

−1

4δ0,−i+k+1w2i−1(y)p
2i−2
l−1 (y)p2i−1

j (y)

(2i − 3)(2i − 1)(2i + 2j − 1)
dy.

It remains to adjust the Jacobi polynomials in the integrands to the appearing weights. Doing
so for each integrand and collecting terms again yields the following integrand

−
2(j − 1)δ0,−i+k−1w2i(y)p

2i
j−2(y)p

2i
l (y)

(2i − 1)(2i + 1)(i+ j − 1)(2i + 2j − 1)
+

2iδ0,−i+k−1w2i(y)p
2i
j−1(y)p

2i
l (y)

(2i− 1)(2i + 1)(i + j − 1)(i+ j)

+
2(2i + j)δ0,−i+k−1w2i(y)p

2i
j (y)p2i

l (y)

(2i − 1)(2i + 1)(i+ j)(2i + 2j − 1)
−

4(l − 1)δ0,−i+k+1w2i−1(y)p
2i−1
j−1 (y)p2i−1

l−2 (y)

(2i − 3)(2i − 1)(2i + 2j − 1)(2i + 2l − 3)

−
4(l − 1)δ0,−i+k+1w2i−1(y)p

2i−1
j (y)p2i−1

l−2 (y)

(2i− 3)(2i − 1)(2i + 2j − 1)(2i + 2l − 3)
+

4(2i + l − 2)δ0,−i+k+1w2i−1(y)p
2i−1
j−1 (y)p2i−1

l−1 (y)

(2i− 3)(2i − 1)(2i + 2j − 1)(2i + 2l − 3)

+
4(2i + l − 2)δ0,−i+k+1w2i−1(y)p

2i−1
j (y)p2i−1

l−1 (y)

(2i− 3)(2i − 1)(2i + 2j − 1)(2i + 2l − 3)
.
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These integrals are easily evaluated using orthogonality relation (6.12). Altogether we obtain,
for c1, . . . , c6 rational functions in i and j,

∫∫

T̂

d

dx
φi,j(x, y)

d

dy
φk,l(x, y)d(x, y) = c1δ0,−i+k−1δ0,l−j + c2δ0,−i+k−1δ0,−j+l+1

+ c3δ0,−i+k−1δ0,−j+l+2 + c4δ0,−i+k+1δ0,−j+l−2

+ c5δ0,−i+k+1δ0,−j+l−1 + c6δ0,−i+k+1δ0,l−j .

From this result one can read off that the integrals over the mixed product of derivatives
are nonzero only if |i − k| = 1 and |i − k + j − l| ≤ 1. The concrete values of the rational
functions ci and the output of IntJac when computing (6.14) are given in Appendix A.2.

Let us point out that in the general case, for the triangular shape functions as well as for
the tetrahedral shape functions, the exceptional cases γ − α < −2 in step 2 or γ − α < 0 in
step 4 of the algorithm (that would lead to an interruption of the program) never occurs.
In the tetrahedral case this is because of the range of parameters a, b, i.e., 0 ≤ a ≤ 4
and a ≤ b ≤ 6.

In the three dimensional case for a = b = 0 in step 2(c) of the algorithm also terms
including wγ(y)pγ+1

j (y) are introduced. Most of them cancel as shown in the two dimensional
example above. The remaining terms of this form appear only as factors of Jacobi three term
recurrences that reduce to zero. These expressions can also be detected automatically and be
removed when integrands are collected in step 3. Hence, also in the optimal case, the program
does not abort in step 4. For these necessary correction steps more than one of the integrands
in Tables 6.1-6.2 are needed. The evaluation of the single integrals leads to a dense matrix.
Only the combinations of several of the integrands introduce the cancellations.

We close this section by stating the nonzero pattern of the blocks containing the mixed
terms Dζφi,j,kDηφl,m,n for (ζ, η) ∈ {(x, y), (x, z), (y, z)}. After using Prepare3DIntegrand one
obtains in total 44 integrands, again all of the form

Î(r) = cr px,1 px,2w1(y) py,1 py,2w2(z) pz,1 pz,2.

Applying our program to evaluate these integrals we obtain the following results:

• For (ζ, η) = (x, y) the matrix entries are nonzero if |i − l| = 1, |i − l + j −m| ≤ 1 + a
and |i− l + j −m+ k − n| ≤ 2 + b.

• For (ζ, η) = (x, z) the matrix entries are nonzero if |i − l| = 1, |i − l + j −m| ≤ 2 + a
and |i− l + j −m+ k − n| ≤ 2 + b.

• For (ζ, η) = (x, y) the matrix entries are nonzero if |i− l| ∈ {0, 2}, |i− l+ j−m| ≤ 2+a
and |i− l + j −m+ k − n| ≤ 2 + b.

6.4 Numerical Properties and Applications

6.4.1 Properties of the Interior Block of the Stiffness Matrix

Now we briefly summarize the most important computational properties of the proposed basis
functions. We assume throughout this section that the coefficient matrix equals the identity
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Figure 6.4: Averaged number of the nonzero matrix entries of K̂CC per row

matrix, i.e., A = I. In Figure 6.3 the nonzero pattern of the matrix K̂CC is displayed, i.e.,
the block of the interior bubbles for the Laplacian, using the basis functions

φi,j,k(x, y, z) = p̂0
i

(
4x

1 − 2y − z

)(
1 − 2y − z

4

)i

p̂2i
j

(
2y

1 − z

)(
1 − z

2

)j

p̂2i+2j
k (z),

for p = 24. A typical stencil like structure of the nonzero entries can be observed. The average
number of nonzero entries per row are bounded by a constant ca,b which is independent of
the maximal polynomial degree p. In general one obtains

ca,b = 3(2a+ 7)(2b + 5).

This constant depends only on the special choice of parameters a and b and is minimal
for a = b = 0. This minimality is a consequence of the proof of Theorem 6.2. If the
condition (6.6) on the parameters a, and b is violated, then the averaged number of nonzero
entries increases with p, see Figure 6.4.

Figure 6.5 displays the maximal and the inverse of the minimal eigenvalue of the diagonally
preconditioned matrix K̂CC . In all cases the maximal eigenvalue is bounded by a constant
of about 7, . . . , 15. The minimal eigenvalue λmin depends strongly on the choice of a and b.
From the numerical results one can conclude that λ−1

min grows as O(pmax{4,4+2a,4+2b,4+2a+2b}).
So, the condition number grows at least with p4. The optimal order for the condition number
can be achieved if a, b ≤ 0. But, in combination with Theorem 6.2, the basis with a = b = 0
should be preferred since it yields the lowest number of nonzero entries and the best condition
number.

In the experiments the nonzero matrix entries were computed with a sum factorization
algorithm, see [61]. The remaining one dimensional integrals are computed recursively using
the product recurrence (3.12) with the three term recurrences for Jacobi and integrated Jacobi
polynomials.
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Figure 6.5: Maximal and inverse of minimal eigenvalue of the diagonally preconditioned
matrix K̂CC

6.4.2 Application: A Preconditioner for the Cell Based Basis Functions

In this section we derive a simple preconditioner for the interior block of the stiffness matrix
for the coefficient matrix A = I. It is well known from the literature that preconditioned
conjugate gradient methods (pcg-methods) with domain decomposition preconditioners of
Dirichlet-Dirichlet-type are among the most efficient iterative solvers for systems arising from
variational equations such as (6.1), cf. [3, 8, 48, 54].

The stiffness matrix K can be written in block structure corresponding to a partition
of the basis functions Φ = [ΦV ,ΦE ,ΦF ,ΦC ] = [Φext,Φint] into exterior degrees of freedom
Φext = [ΦV ,ΦE,ΦF ] and interior degrees of freedom Φint = ΦC . Let

K =

[
Kext Kext,int

Kint,ext Kint,ext

]

=

[
I Kext,intK−1

int

0 I

] [
S 0
0 Kint

] [
I 0

K−1
intKint,ext I

]

be this block structure with Schur complement

S = Kext −Kext,intK−1
intKint,ext.

Our domain decomposition preconditioner C for the matrix K is of the form

C =

[
I −ET

0 I

] [
CS 0
0 Cint

] [
I 0
−E I

]

, (6.16)

where

• Cint is a preconditioner for the inner block Kint,

• CS is a preconditioner for the Schur complement S, and

• E is the matrix representation of an extension operator acting from the edges of the
elements into the interior.

Preconditioners for the Schur complement have been proposed e.g. in [54]. The papers [2,
8, 62] deal with extension operators for the p-version of the finite element method using
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triangular or tetrahedral elements. In [14, 46] an algebraic analysis of a preconditioner of
type (6.16) is given.

Since the global stiffness matrix is built from the local contributions of the element matri-
ces using a local-to-global connection matrix and since the computations on arbitrary element
matrices can be reduced to computations on the reference element, it is sufficient to consider
a preconditioner for a single reference element. Now we propose a relatively simple precondi-
tioner Cint for Kint and (based on this) a matrix representation E for the extension operator
of the form (6.16). Let

C0 =

∫

T̂
(∇Φ(x, y, z))T∇Φ(x, y, z) d(x, y, z)

be the stiffness matrix on the reference tetrahedron T̂ and consider the block decomposition
of C0

C0 =

[
Cext Cext,int

Cint,ext Cint

]

.

Theorem 6.4. Let CS be a preconditioner for the Schur complement such that C−1
S u requires

not more than O(p6) operations and such that

c1 (CSv, v) ≤ (Sv, v) ≤ c2 (CSv, v), ∀v, (6.17)

for some constants c1, c2. Define the preconditioner

C1 =

[
I Cext,intC−1

int

0 I

] [
CS 0
0 Cint

] [
I 0

C−1
intCint,ext I

]

.

Then κ(C−1/2
1 KC−1/2

1 ) = O( c2
c1

). The operation C−1
1 u requires O(p6) operations.

Proof. The proof is similar to the proof of Theorem 4.2. in [18]. Using [48] one can prove that

κ(C−1/2
0 KC−1/2

0 ) = O(1). Hence the first assertion follows from equation (6.17) immediately.

To prove the complexity argument for C−1
1 u, we investigate the nonzero pattern for the

matrix K̂CC with A = I. Because of Theorem 6.2, see also Figure 6.3, the nonzero pattern
has the structure of a 3D-finite difference stencil.

Let (V,E) be the corresponding graph of the matrix K̂CC . Then (V,E) has an O(N2/3)
separator property and therefore the method of nested dissection, [42], yields a total cost of
O(N2) = O(p6), see [57].

6.5 Further Results

All basis functions presented in Sections 6.2.1 and 6.2.2 are of the same form, namely products
of certain integrated Jacobi polynomials and Jacobi weight functions. Hence, the algorithm
described in Section 6.3 is applicable to compute the entries of all blocks of the element
stiffness matrix. In [18] the matrix entries for all blocks for the triangular case and the cell
based basis functions (6.4) with a = 1 are listed. Here, we do not give the pattern for all
blocks, but only state the results for two examples in the tetrahedral case with a = b = 0



68 Chapter 6. Sparse Shape Functions for High Order-FEM

to support our assertion. First, consider the block K̂F1C of the stiffness matrix. Let K̂yz
F1C

denote the part stemming from the product

∫

T̂

d

dy
φF1

i,j (x, y, z)
d

dz
φl,m,n(x, y, z) d(x, y, z),

2 ≤ i, 1 ≤ j, i+ j ≤ p
2 ≤ l, 1 ≤ m,n, l +m+ n ≤ p

.

Recall the definition of the face based shape function for a = 0,

φF1
i,j (x, y, z) = p̂0

i

(
4x

1 − 2y − z

)(
1 − 2y − z

4

)i

p̂2i
j

(
2y

1 − z

)(
1 − z

2

)j

.

Again derivation and Duffy transformation can be performed automatically yielding inte-
grands of the form

Î = px,1px,2w1(y)py,1py,2w2(z)pz,1,

where the integration with respect to z is particularly simple, because the variable z appears
in φF1

i,j only in the denominators of the arguments and in the corresponding compensating
factors. For these integrals we have that

∫ 1

−1
wα(z)pα

n(z) dz =

∫ 1

−1
wα(z)pα

n(z)pα
0 (z) dz =

2

α+ 1
δn,0,

which can again be evaluated automatically. For a = b = 0 the matrix entries of K̂yz
F1C are

nonzero if |i − l| ∈ {0, 2}, 1 ≤ n ≤ 4 and n− 2 ≤ i+ j − l −m ≤ 2. Next consider the block
K̂zz

F4e6
with entries

∫

T̂

d

dz
φF4

i,j(x, y, z)
d

dz
φe6

l (x, y, z) d(x, y, z),
1 ≤ l ≤ p

2 ≤ i, 1 ≤ j, i+ j ≤ p
.

After taking derivatives and substituting, integrands of the form

Î = px,1w1(y)w2(z) pz,1pz,2

are obtained. Hence the matrix entries can be determined analogously to the previous example
with our program yielding that K̂zz

F4e6
is nonzero if i = 2 and −5 ≤ j − l ≤ 1.

The proposed basis functions also lead to a sparse system matrix for a convection reaction
diffusion equation of the form

− div(A∇u) + b · ∇u+ cu = f, (6.18)

with piecewise constant coefficients b, c, and piecewise constant diffusion matrix A. The
variational formulation of equation (6.18) leads to the bilinear forms

a(u, v) =

∫

Ω
(∇u)TA∇v dx, b(u, v) =

∫

Ω
u(b · ∇v), dx and c(u, v) =

∫

Ω
c uv dx.

Given these bilinear forms, we define the stiffness matrix K̂ as before and, analogously, the
convection matrix B̂ and the mass matrix M̂ via

B̂ =

∫

T̂
Φ(x, y, z)T (b · ∇Φ(x, y, z)) d(x, y, z), M̂ =

∫

T̂
cΦ(x, y, z)T Φ(x, y, z) d(x, y, z).
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Figure 6.6: Nonzero pattern of the interior blocks K̂CC , B̂CC , M̂CC (from left to right),
Topline: p = 10, Bottomline: p = 16

These integrands have the same structure as the integrands for the entries of the stiffness
matrix. Thus the algorithm is also applicable to determine the nonzero pattern of these
matrices and, moreover, it terminates. Let B̂CC and M̂CC denote the interior blocks of the
convection and mass matrix, respectively. Regarding the nonzero pattern for B̂CC using the
cell based basis functions (6.5) with a = b = 0 we obtain:

∫

T̂

d

dζ
φi,j,k(x, y, z)φl,m,n(x, y, z) d(x, y, z) 6= 0, ζ ∈ {x, y, z},

if |i− l| ≤ 2 and |i+ j − l−m| ≤ 3 and |i+ j + k− l−m− n| ≤ 3. The corresponding result
for the mass matrix is:

∫

T̂
φi,j,k(x, y, z)φl,m,n(x, y, z) d(x, y, z) 6= 0

if |i− l| ∈ {0, 2}, |i+ j − l −m| ≤ 3 and |i+ j + k − l −m− n| ≤ 4.

Figure 6.6 shows the nonzero pattern of these matrices for p = 10 and p = 16. Observe
that for these computations the coefficient matrix A is not chosen to equal the identity matrix.
This explains the additional branches in K̂CC that can be observed in this picture compared
to Figure 6.3.

Finally, let us discuss using recurrence relations to determine the nonzero pattern of the
system matrix. At first we consider the simplest possible case in two dimensions, namely the
matrix Kx with entries

Kx
i,j;k,l =

∫

T̂

d

dx
φi,j(x, y)

d

dx
φk,l(x, y) d(x, y)

=

∫ 1

−1
p0

i−1(x)p
k
k−1(x) dx

∫ 1

−1
wi+k−1(y)p̂

2i
j (y)p̂2k

l (y) dy.
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Figure 6.7: Structure of Kx
i,j;i,l: dark gray: nonzero matrix entries, light gray: initial values

for the recurrence relation in the vanishing part

The first integral is easily evaluated using the Legendre orthogonality and we have

Kx
i,j;k,l =

2

2i− 1
δi,k

∫ 1

−1
w2i−1(y)p̂

2i
j (y)p̂2i

l (y) dy,

i.e., Kx
i,j;k,l = 0 if i 6= k. For the remaining integral by Lemma (3.12) there exists a five term

recurrence of the form

c1K
x
i,j;i,l+1 + c2K

x
i,j+1;i,l + c3K

x
i,j+1;i,l+1 + c4K

x
i,j+1;i,l+2 + c5K

x
i,j+2;i,l+1 = 0, (6.19)

with coefficients cm rational in i, j and l. This recurrence relation can be generated, e.g., using
MultiSum on the summand of the sum representation (4.22) for integrated Jacobi polynomials.
Since the matrix Kx

i,j;i,l is symmetric in j and l, it is sufficient to consider the upper right
triangular matrix. In order to prove that the matrix entries are zero if |j − l| > 1, we only
need to show that Kx

i,1;i,l = 0 for l ≥ 3 and that Kx
i,2;i,l = 0 for l ≥ 4. Then it follows from

the recurrence relation (6.19) that the remaining entries in the upper right triangular matrix
vanish, see Figure 6.7. For computing the initial values of the first two rows, we use again
our program and obtain:

Kx
i,1;i,l =

8(iδl,2 + (3 + 2i)δl,1)

i(1 + i)(−1 + 2i)(1 + 2i)(3 + 2i)

and

Kx
i,2;i,l =

8(i + 2)(2i + 5)δl,1 + 8(2i + 1)(2i + 5)δl,2 + 8(i+ 1)(2i + 1)δl,3
(1 + i)(2 + i)(−1 + 2i)(1 + 2i)(3 + 2i)(5 + 2i)

.

With this we have proven that Kx
i,j;k,l = 0 if i 6= k and |i− l| > 1.

In general, after decoupling the integrals, the system matrix is built from linear combina-
tions of integrands such as

Î2d = c px,1 px,2w1(y) py,1 py,2, or, Î3d = c px,1 px,2w1(y) py,1 py,2w2(z) pz,1 pz,2,

in the two and three dimensional case, respectively. Each of these univariate products satisfies
a product recurrence of the form (3.13) and, by holonomic closure properties, a recurrence
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relation for the integrand can be determined. The resulting recurrences, however, might be
rather big, even for a single integral. For the optimal case a = b = 0, combinations of several
integrals have to be considered in order to show sparsity of the system matrix. This again
increases the order of the resulting recurrences.

Koutschan’s package [55] is among the tools that can generate recurrence relations for
these integrals and he already obtained first results for the triangular case. Holonomic closure
properties include the application of Ore operators, i.e., in our example the derivations Dx

and Dy. Hence, annihilating operators for integrands such as Dxφi,jDyφk,l can be provided
by Koutschan’s package, without further rewriting and without decoupling of the integrals.
An annihilating ideal obtained for this specific integrand has a size of 1 GB, which also
indicates that the generation of a recurrence relation for the entries of the system matrix will
be computational expensive, even more in the three dimensional case.
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Chapter 7

Positivity of Certain Sums over

Jacobi Kernel Polynomials

Whereas in the previous two chapters we were concerned with the construction of high or-
der finite element basis functions, the problems treated in this and the following chapter are
different in spirit. In this chapter we show positivity of sums over Jacobi kernel polynomials

kα
j (x, 0) on the interval [−1, 1] where we consider ultraspherical Jacobi polynomials P

(α,α)
n (x)

with −1
2 ≤ α ≤ 1

2 . This problem originated in a new convergence proof for a certain fi-
nite element scheme in the course of which Joachim Schöberl [74] was led to conjecture the
inequality

n∑

j=0

(4j + 1)(2n − 2j + 1)P2j(0)P2j(x) ≥ 0 (7.1)

for −1 ≤ x ≤ 1 and n ≥ 0, where Pn(x) denotes the nth Legendre polynomial. This
inequality corresponds to setting α = 0 in the inequality of Theorem 7.1 that is proven
below. No human proof, even for this special case, is known and also asymptotics seem to
be difficult [44]. Besides that this problem arose in the context of high order finite element
methods, we believe that it is interesting in its own right from a symbolic point of view.
We present a proof that is a mixture of traditional reasoning and applications of computer
algebra [67].

7.1 Motivation

When constructing a smoothing operator for a high order finite element scheme, Schöberl [74]
considered an integral operator that serves as point evaluation when applied to polynomials
up to a given degree n. More precisely, he wanted to find a family of polynomials (φn)n≥0

such that
∫ 1

−1
φn(x)v(x) dx = v(0), (7.2)

for all polynomials v with deg v ≤ n. Additionally he wanted (φn)n≥0 to satisfy the norm
estimate

‖φn‖L1 =

∫ 1

−1
|φn(x)| dx ≤ C,

73
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where the constant C is independent of n. In Section 3.2 we introduced the kernel polynomial
sequence defined as

kn(x, y) =
n∑

j=0

1

hj
pj(x)pj(y), (7.3)

for some family of orthogonal polynomials (pn(x))n≥0, where hn =
∫
pn(x)2w(x) dx is the

squared, weighted L2-norm of pn(x). Recall their reproducing property (3.10)
∫

kn(x, y)f(y)w(y) dy = f(x),

for polynomials f(x) with deg(f) ≤ n. Let kα
n(x, y) denote the kernel polynomials for ul-

traspherical Jacobi polynomials P
(α,α)
n (x). Then for α = 0, i.e., Legendre polynomials, we

have ∫ 1

−1
k0

n(x, 0)v(x) dx = v(0), v ∈ Pn(−1, 1), deg(v) ≤ n.

Hence a natural candidate for the kernel of the smoothing operator is φn(x) = k0
n(x, 0). But

numerical computations suggest that the k0
n(x, 0) are not uniformly bounded in the L1-norm.

So, Schöberl was led to consider a modified ansatz using gliding averages [35],

φn(x) =
1

n+ 1

2n∑

j=n

k0
j (x, 0). (7.4)

With this definition φn(x) is a polynomial of degree 2n clearly satisfying (7.2). Defining the
sum

S(n, x) =
1

n+ 1

n∑

j=0

k0
j (x, 0), (7.5)

the polynomials φn can be rewritten in the form

φn(x) =
2n + 1

n+ 1
S(2n, x) − n

n+ 1
S(n− 1, x).

Schöberl conjectured that (7.5) is positive for even indices, i.e., S(2n, x) ≥ 0. If this is true,
then the L1-norm of φn for odd n can be bounded immediately via

‖φn‖L1 ≤ 2n+ 1

n+ 1

∫ 1

−1
S(2n, x) dx +

n

n+ 1

∫ 1

−1
S(n− 1, x) dx =

3n+ 1

n+ 1
≤ 3, n odd.

Observe that for this estimate only the positivity of S(2n, x) and its constant preserving
property were needed. After applying the triangle inequality absolute values can be omitted.
Since both integrals over S(2n, x) and S(n−1, x) evaluate to 1, the upper bound is established.

Having only an estimate for φ2n+1 at hand clearly is no obstruction to the application
we have in mind since the degree of the smoothing operator can always be raised by one, if
needed.

Trying to prove that S(2n, x) ≥ 0, x ∈ [−1, 1], we observed that this inequality seems
to remain valid if we consider more general sums over Jacobi kernel polynomials kα

n with
α ∈ [−1

2 ,
1
2 ]. Consequently we define

Sα
n (x, y) :=

n∑

j=0

kα
j (x, y).
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In this notation we have S(n, x) = (n + 1)S0
n(x, 0). In this chapter we prove the extended

conjecture formulated in the following theorem.

Theorem 7.1.

Sα
2n(x, 0) ≥ 0 for − 1

2 ≤ α ≤ 1
2 , −1 ≤ x ≤ 1, n ≥ 0.

Note that for odd degrees, i.e., Sα
2n+1(x, 0), or for α 6= −1

2 and y 6= 0, i.e., Sα
2n(x, y), the

sums are not positive. Because ultraspherical Jacobi polynomials vanish at x = 0 for odd
degrees and because they are even polynomials for even degrees, see Section 4.1, the sums
Sα

2n(x, 0) are also even polynomials.

7.2 Related Results and Idea of Proof

Let hα
n = hα,α

n denote the squared, weighted L2-norm for Jacobi polynomials P
(α,α)
n (x) with

respect to the weight function wα,α(x) = 2−2α(1 − x2)α, i.e.,

hα
n =

∫ 1

−1
P (α,α)

n (x)2 wα,α(x) dx =
2

2n+ 2α+ 1

Γ(n+ α+ 1)2

n! Γ(n+ 2α+ 1)
,

see (4.12). Using the definition (7.3) of kernel polynomials, Sα
n (x, y) can be written as the

single sum

Sα
n (x, y) =

2n∑

j=n

j
∑

i=0

1

hα
i

P
(α,α)
i (x)P

(α,α)
i (y) =

n∑

i=0

n− i+ 1

hα
i

P
(α,α)
i (x)P

(α,α)
i (y).

For α = 0, n replaced by 2n and y = 0 this single sum is just the sum in the original
formulation of inequality 7.1.

The positivity of trigonometric series as well as their generalizations to Jacobi polyno-
mial series has been considered in many areas of mathematics. One famous example for an

inequality of this kind is the Askey-Gasper inequality for the sum
∑n

k=0 P
(α,β)
k (x)/P

(β,α)
k (1),

see [5, 7, 40]. For β = 0 this sum can be expressed as the square of a hypergeometric func-
tion using a formula of Clausen. For β ≥ 0 and α + β > −1 positivity follows from this
result by using a integral representation of Jacobi polynomials. This case also includes Fejér’s
inequality

∑n
k=0 Pk(x) ≥ 0. Another problem discussed in [7] is determining when the sums

n∑

k=0

(γ + 1)n−k

(n− k)!

(2k + α+ β + 1)(α+ β + 1)k
k!

P
(α,β)
k (x)

P
(α,β)
k (1)

are nonnegative for −1 ≤ x ≤ 1. In the ultraspherical case α = β with γ = 2α + 3 nonneg-
ativity can be proven by showing that the generating functions of these sums are products
of absolutely monotonic functions, cf. [5] and references therein. None of the techniques
mentioned so far, however, are applicable to proving Theorem 7.1, at least not directly.

Gasper [39] has shown that there exists a non negative function κα,β
n (x, y, z) such that

P (α,β)
n (x)P (α,β)

n (y) =

∫ 1

−1
kα,β

n (x, y, z)P (α,β)
n (z) dz.
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If the Sα
n (x, y) were positive with the factor P

(α,α)
j (y) removed, then it would follow that the

sum itself is non negative even for all y ∈ [−1, 1]. But, as we already remarked above, this
is not the case. Although Gasper’s result cannot be applied for proving Theorem 7.1, but it
is used in the next chapter for giving a short proof of the positivity of another weighted sum
over kernel polynomials.

In Section 3.2 the closed form (3.12) for general orthogonal polynomials was given. For

Jacobi polynomials P
(α,α)
n (x), considered as orthogonal polynomials with respect to the weight

function wα,α(x) = 2−2α(1 − x2)α, this closed form reads as

kα
n(x, y) =

cαn
x− y

[P
(α,α)
n+1 (x)P (α,α)

n (y) − P (α,α)
n (x)P

(α,α)
n+1 (y)], (7.6)

where

cαn =
1

2

Γ(n+ 2)Γ(n + 2α+ 2)

Γ(n+ α+ 1)Γ(n + α+ 2)
.

Our proof of Theorem 7.1 uses this closed form representation and is split into two parts. In
Section 7.3 we consider the cases α = ±1

2 , corresponding to the Chebyshev polynomials of the
first and second kind, respectively. The proof of these special cases motivates a decomposition
of the sum Sα

2n(x, 0) which is the key to proving Theorem 7.1 for the remaining part where
−1

2 < α < 1
2 .

7.3 Chebyshev Polynomials of First and Second Kind (α = ±1
2
)

In Section 3.2 we identified Jacobi polynomials with α = β = −1
2 and α = β = 1

2 with
Chebyshev polynomials of the first and second kind up to normalization, see (4.16). We
follow common notation and use Tn(x) for Chebyshev polynomials of the first kind and Un(x)
for Chebyshev polynomials of the second kind.

In the case of Chebyshev polynomials of the first kind, the sum S
−1/2
n (x, y) is called Fejér

kernel and positivity is well known for all n ≥ 0 and for all x, y in the unit square [−1, 1]2,
for a short proof see e.g. [84]. Hence we only have to consider the case α = 1

2 . The kernel
polynomials for α = 1

2 expressed in terms of Chebyshev polynomials read as

k1/2
n (x, y) =

1

π(x− y)
[Un+1(x)Un(y) − Un(x)Un+1(y)].

SumCracker yields a closed form for S
1/2
n (x, y), namely,

S1/2
n (x, y) =

1

π(x− y)2
[Un+1(x)(xUn(y) − Un+1(y)) + Un(x)(yUn+1(y) − Un(y)) + 1]. (7.7)

To prove that S
1/2
2n (x, 0) ≥ 0 we proceed as follows. Since U2n+1(0) = 0 and U2n(0) = (−1)n

we have that

S
1/2
2n (x, 0) =

1

πx2
[1 + (−1)nx U2n+1(x) − (−1)nU2n(x)].

Inspection of the first few polynomials S
1/2
2n (x, 0) suggests that

S
1/2
4m (x, 0) = p2m(x)2 and S

1/2
4m+2(x, 0) = (1 − x2)q2m(x)2,
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where p2m(x), q2m(x) are polynomials of degree 2m satisfying the relation

qn(x)S
1/2
1 (x, 0) = (pn+1(x) − pn(x))2.

This claim can be verified by first using GuessRE to guess a recurrence relation for pn(x). The
resulting recurrence can then easily be identified as the three term recurrence for Chebyshev
polynomials of the first kind (given the initial values).

Lemma 7.2. For m ≥ 0 and −1 ≤ x ≤ 1 we have

S
1/2
4m (x, 0) =

2

πx2
T2m+1(x)

2,

and

S
1/2
4m+2(x, 0) =

1

2πx2(1 − x2)
(T2m+3(x) − T2m+1(x))

2,

where Tm(x) are the Chebyshev polynomials of the first kind.

Proof. The closed forms for S
1/2
4m (x, 0) and S

1/2
4m+2(x, 0) can be verified immediately using

SumCracker’s ZeroSequenceQ command.

In[31]:= ZeroSequenceQ[xChebyshevU[4m + 1, x] − ChebyshevU[4m, x] + 1

− 2ChebyshevT[2m + 1, x]2]

Out[31]= True

In[32]:= ZeroSequenceQ[−xChebyshevU[4m + 3, x] + ChebyshevU[4m + 2, x] + 1

− (ChebyshevT[2m + 3, x] − ChebyshevT[2m + 1, x])2/(2(1 − x2))]

Out[32]= True

From these representations it is obvious that the sums S
1/2
2n (x, 0) are nonnegative. While

there exists a closed form representation of S
1/2
n (x, y), there is no closed form of Sα

n (x, y)
for general α. Still, examining a derivation of (7.7) using only the three term recurrence

satisfied by Un(x) indicates how to continue dealing with general Jacobi polynomials P
(α,α)
n (x),

−1
2 < α < 1

2 .

So, let again α = 1
2 . In order to derive (7.7), we show that S

1/2
n (x, y) rewritten according

to (7.6) as the sum

S1/2
n (x, y) =

1

π(x− y)

n∑

j=0

[Uj+1(x)Uj(y) − Uj(x)Uj+1(y)],

is a sum representation which telescopes to the right hand side of (7.7). Because of symmetry
it suffices to consider only one part of the sum. For the first part, SumCracker yields

(x− y)

n∑

j=0

Uj+1(x)Uj(y) = 1
2 (2xUn+1(x)Un(y) − Un(x)Un(y) − Un+1(x)Un+1(y) + 1) ,

which implies

(x−y)Uj+1(x)Uj(y) = 1
2∆j(2xUj(x)Uj−1(y)−Uj−1(x)Uj−1(y)−Uj(x)Uj(y)) =: 1

2∆jGj(x, y),
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where ∆j denotes the difference operator ∆j [ψ(j)] = ψ(j + 1)−ψ(j). The correctness of this
identity can be verified by straight-forward calculation using the three term recurrence for
Chebyshev polynomials,

Un(x) − 2xUn+1(x) + Un+2(x) = 0, U0(x) = 1, U1(x) = 2x. (7.8)

Namely, first we use (7.8) to rewrite 2xUj(x) and then, to involve y, we use the same recur-
rence relation to replace Uj−1(y) + Uj+1(y). This way we obtain

Gj+1(x, y) −Gj(x, y) = 2xUj(y)Uj+1(x) − Uj+1(x)Uj+1(y)

− 2xUj−1(y)Uj(x) + Uj−1(x)Uj−1(y)

= 2xUj(y)Uj+1(x) − Uj+1(x)Uj+1(y) − Uj−1(y)Uj+1(x)

= 2(x− y)Uj+1(x)Uj(y).

(7.9)

Note that this telescoper only exists because Chebyshev polynomials satisfy a three term
recurrence with constant coefficients. The procedure above cannot be generalized to Jacobi

polynomials P
(α,α)
n (x), α 6= ±1

2 , because the polynomial recurrence coefficients do not lead to
cancellation. However mimicking the steps of the proof above one obtains a decomposition of
Sα

2n(x, 0), −1
2 < α < 1

2 , that makes the problem better treatable with our methods.

Since Chebyshev polynomials of the first and second kind satisfy the same recurrence

but with different starting values, a closed form for S
−1/2
n (x, y) can be computed completely

analogously. After minor rewriting one obtains

S−1/2
n (x, y) =

1

π(x− y)2
[
1 − xy + 1

2Tn+2(x)Tn(y) − Tn+1(x)Tn+1(y) + 1
2Tn(x)Tn+2(y)

]
.

7.4 Jacobi Polynomials P
(α,α)
n (x) with −1

2 < α < 1
2

In this section we prove Theorem 7.1, i.e., the positivity of Sα
2n(x, 0), −1

2 < α < 1
2 , where the

sum representation according to (7.6) is given by

Sα
n (x, y) =

1

x− y

n∑

j=0

cαj [P
(α,α)
j+1 (x)P

(α,α)
j (y) − P

(α,α)
j (x)P

(α,α)
j+1 (y)], (7.10)

with cαj = 1
2

Γ(j+2)Γ(j+2α+2)
Γ(j+α+1)Γ(j+α+2) . To this end we need several intermediate results starting

with a suitable decomposition of Sα
n (x, y) which is obtained by following the steps of the

derivation (7.9). For this we need the Jacobi three term recurrence. Setting α = β in (4.14)
yields

(n+ 2)(n + 2α+ 2)P
(α,α)
n+2 (x) = (n+ α+ 2)(2n + 2α+ 3)xP

(α,α)
n+1 (x)

− (n+ α+ 1)(n + α+ 2)P (α,α)
n (x)

(7.11)
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for n ≥ 0 and the initial values P
(α,α)
−1 (x) = 0, P

(α,α)
0 (x) = 1. With this relation we obtain

for all j ≥ 0

(x− y)cαj P
(α,α)
j+1 (x)P

(α,α)
j (y)

= x cαj P
(α,α)
j+1 (x)P

(α,α)
j (y) −

cαj
(j + α+ 1)(2j + 2α + 1)

P
(α,α)
j+1 (x)

× [(j + α)(j + α+ 1)P
(α,α)
j−1 (y) + (j + 1)(j + 2α+ 1)P

(α,α)
j+1 (y)]

= x cαj P
(α,α)
j+1 (x)P

(α,α)
j (y) − cαj

(j + 1)(j + 2α+ 1)

(j + α+ 1)(2j + 2α+ 1)
P

(α,α)
j+1 (x)P

(α,α)
j+1 (y)

− cαj
(j + α)(j + α+ 1)

(2j + 2α+ 1)(j + 1)(j + 2α+ 1)
P

(α,α)
j−1 (y)

× [x(2j + 2α+ 1)P
(α,α)
j (x) − (j + α)P

(α,α)
j−1 (x)]

= xcαj P
(α,α)
j+1 (x)P

(α,α)
j (y) − xcαj−1P

(α,α)
j (x)P

(α,α)
j−1 (y)

− cαj
(j + 1)(j + 2α+ 1)

(j + α+ 1)(2j + 2α + 1)
P

(α,α)
j+1 (x)P

(α,α)
j+1 (y)

+ cαj
(j + α)2(j + α+ 1)

(j + 1)(j + 2α+ 1)(2j + 2α+ 1)
P

(α,α)
j−1 (x)P

(α,α)
j−1 (y).

Now we plug this identity into Definition (7.10), set y = 0 and substitute n 7→ 2n. This gives

x2Sα
2n(x, 0) =

2n∑

j=0

x∆j[c
α
j−1P

(α,α)
j (x)P

(α,α)
j−1 (0)]

− 2

2n∑

j=0

cαj
(j + 1)(j + 2α+ 1)

(j + α+ 1)(2j + 2α+ 1)
P

(α,α)
j+1 (x)P

(α,α)
j+1 (0)

+ 2

2n∑

j=0

cαj
(j + α)2(j + α+ 1)

(j + 1)(j + 2α+ 1)(2j + 2α+ 1)
P

(α,α)
j−1 (x)P

(α,α)
j−1 (0),

The first sum can easily be simplified by telescoping, the second and third sum can be com-
bined by shifting summation indices. We also use the fact that ultraspherical Jacobi polyno-

mials P
(α,α)
n of odd degree vanish at x = 0. Thus with

gα
2n(x, 0) = cα2n

[

xP
(α,α)
2n+1 (x) − 2

2n + α+ 1

4n + 2α+ 3
P

(α,α)
2n (x)

]

P
(α,α)
2n (0)

and

fα
2n(x, 0) = 2(4α2 − 1)

n∑

j=0

(2j + α+ 1)cα2j

(2j + 1)(2j + 2α+ 1)(4j + 2α − 1)(4j + 2α+ 3)
P

(α,α)
2j (0)P

(α,α)
2j (x)

we obtain a decomposition of the sum Sα
2n(x, 0). Note that for Chebyshev polynomials, i.e.,

α = ±1
2 , fα

2n(x, 0) collapses to 0 because of the factor (4α2−1). Only the closed form gα
2n(x, 0)

survives.

Lemma 7.3.

x2Sα
2n(x, 0) = fα

2n(x, 0) + gα
2n(x, 0), −1

2 < α < 1
2 , −1 ≤ x ≤ 1, n ≥ 0.
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Figure 7.1: left: x2S0
2n(x, 0) and right: f0

2n(x, 0) (red), g0
2n(x, 0) (blue) for n = 8

As can be seen from Figure 7.1, gα
2n(x, 0) contains the main oscillations whereas in

fα
2n(x) they are dampened out. In order to prove nonnegativity of Sα

2n(x, 0) we show that
fα
2n(x, 0) + gα

2n(x, 0) ≥ 0. This is achieved by estimating the sum fα
2n(x, 0) from below. The

sum of this lower bound and gα
2n(x, 0) can then be shown to be positive with SumCracker’s

ProveInequality command.

The first step is to define, more generally, fα
n for arguments x, y ∈ [−1, 1] by

fα
n (x, y) = 2(4α2 − 1)

n∑

j=0

(j + α+ 1)cαj
(j + 1)(j + 2α+ 1)(2j + 2α − 1)(2j + 2α+ 3)

P
(α,α)
j (x)P

(α,α)
j (y).

This definition is consistent with that of fα
2n(x, 0) above. The coefficient of the Jacobi poly-

nomials inside the sum is positive for j ≥ 1, hence we have

n∑

j=1

(j + α+ 1)cαj
(j + 1)(j + 2α+ 1)(2j + 2α− 1)(2j + 2α + 3)

[P
(α,α)
j (x) − P

(α,α)
j (y)]2 ≥ 0,

which is equivalent to

−
n∑

j=0

2(j + α+ 1)cαj
(j + 1)(j + 2α+ 1)(2j + 2α − 1)(2j + 2α+ 3)

P
(α,α)
j (x)P

(α,α)
j (y) ≥

−
n∑

j=0

(j + α+ 1)cαj
(j + 1)(j + 2α + 1)(2j + 2α− 1)(2j + 2α+ 3)

P
(α,α)
j (x)2

−
n∑

j=0

(j + α+ 1)cαj
(j + 1)(j + 2α+ 1)(2j + 2α− 1)(2j + 2α + 3)

P
(α,α)
j (y)2

Since (1 − 2α)(1 + 2α) is positive for −1
2 < α < 1

2 , both sides of the last inequality can be
multiplied with this factor to obtain

Lemma 7.4. Let −1
2 < α < 1

2 . Then

fα
n (x, y) ≥ 1

2(fα
n (x, x) + fα

n (y, y)), n ≥ 0,

for all x, y ∈ [−1, 1].
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This lower bound has the advantage that we can find a closed form for fα
n (x, x). Although

Kauers’ package SumCracker does not find a closed form of fα
n (x, x) for symbolic α, for specific

values of α it succeeds. Guessing on the coefficients of these expressions suggests the closed
form stated in the next lemma. The key point, however, is discovering this identity. Once it
has been found its validity can be proven fairly easily.

Lemma 7.5.

fα
n (x, x) = 2cαn

[
(n+ 1)(n + 2α+ 1)

(n+ α+ 1)(2n + 2α+ 1)
P

(α,α)
n+1 (x)2

−xP (α,α)
n (x)P

(α,α)
n+1 (x) +

n+ α+ 1

2n+ 2α+ 3
P (α,α)

n (x)2
]

,

for all n ≥ 0, −1 ≤ x ≤ 1 and α > −1. For n = −1 we have fα
−1(x, x) = 0.

Proof. We prove the identity using ZeroSequenceQ. The coefficients cαn are given by their
recurrence relation cdef.

In[33]:= cdef = {c[k] ==
(k + 1)(k + 2α + 1)

(k + α)(k + α + 1)
c[k − 1], c[0] ==

2−2α−1Gamma[2α + 2]

Gamma[α + 1]Gamma[α + 2]
};

In[34]:= ZeroSequenceQ[(2α − 1)(2α + 1)

SUM[
(j + α + 1)c[j]

(j + 1)(j + 2α + 1)(2j + 2α − 1)(2j + 2α + 3)
JacobiP[j, α, α, x]2, {j, 0, n}]

− c[n](
(n + 1)(n + 2α + 1)

(n + α + 1)(2n + 2α + 1)
JacobiP[n + 1, α, α, x]2

− xJacobiP[n, α, α, x]JacobiP[n + 1, α, α, x] +
n + α + 1

2n + 2α + 3
JacobiP[n, α, α, x]2),

Where → cdef ]

Out[34]= True

Figure 7.2 illustrates how the functions gα
2n(x, 0), fα

2n(x, 0) and 1
2 (fα

2n(x, x)+fα
2n(0, 0)) are

related. Lemma 7.5 can also be proven by showing that the closed form is the telescoper
for the summand using only the Jacobi three term recurrence. By telescoping and since
fα
−1(x, x) = 0, it suffices to show that

2(4α2 − 1)(j + α+ 1)cαj
(j + 1)(j + 2α+ 1)(2j + 2α− 1)(2j + 2α+ 3)

P
(α,α)
j (x)2 = fα

j (x, x) − fα
j−1(x, x).
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Since cαj−1 = (j+α)(j+α+1)
(j+1)(j+2α+1)c

α
j we have

1

2cαj

(
fα

j (x, x) − fα
j−1(x, x)

)
=

(4α2 − 1)(j + α+ 1)

(j + 1)(j + 2α+ 1)(2j + 2α− 1)(2j + 2α+ 3)
P

(α,α)
j (x)2

+

[
(j + 1)(j + 2α+ 1)

(j + α+ 1)(2j + 2α+ 1)
P

(α,α)
j+1 (x) − xP

(α,α)
j (x)

]

P
(α,α)
j+1 (x)

+
(j + α)(j + α+ 1)

(j + 1)(j + 2α+ 1)

[

xP
(α,α)
j (x) − j + α

2j + 2α+ 1
P

(α,α)
j−1 (x)

]

P
(α,α)
j−1 (x).

By the Jacobi recurrence relation (7.11) the expressions in the last two rows cancel.
Now we collect the previous lemmas to give a proof of Theorem 7.1.

Proof of Theorem 7.1. The cases α = ±1
2 are covered by the results of section 7.3. For

α = −1
2 Theorem 7.1 follows from well known results on the Fejèr kernel [84] and positivity

of S
1/2
2n (x, 0) is obvious from the rewriting stated in Lemma 7.2.
Next we consider −1

2 < α < 1
2 . With the decomposition given in Lemma 7.3 and the

lower bound from Lemma 7.4 we have

x2Sα
2n(x, 0) = gα

2n(x, 0) + fα
2n(x, 0) ≥ gα

2n(x, 0) + 1
2(fα

2n(x, x) + fα
2n(0, 0)).

To complete the proof it suffices to show positivity of the latter expression. Using Lemma 7.5
we have

1

cα2n

[gα
2n(x, 0) + 1

2(fα
2n(x, x) + fα

2n(0, 0))]

=
(2n+ 1)(2n + 2α+ 1)

(2n + α+ 1)(4n + 2α+ 1)
P

(α,α)
2n+1 (x)2 − x P

(α,α)
2n+1 (x)[P

(α,α)
2n (x) − P

(α,α)
2n (0)]

+
2n + α+ 1

4n+ 2α+ 3
[P

(α,α)
2n (x) − P

(α,α)
2n (0)]2. (7.12)

We use the ProveInequality command of SumCracker in the following way:

In[35]:= ProveInequality[
(2n + 1)(2n + 2α + 1)

(2n + α + 1)(4n + 2α + 1)
JacobiP[2n + 1, α, α, x]2

− xJacobiP[2n + 1, α, α, x](JacobiP[2n, α, α, x] − JacobiP[2n, α, α, 0])

+
2n + α + 1

4n + 2α + 3
(JacobiP[2n, α, α, x] − JacobiP[2n, α, α, 0])2 ≥ 0,

Using → {−1 ≤ x ≤ 1, − 1

2
< α < 1

2
}, Variable → n, From → 0]//Timing

Out[35]= {5358.25Second, True} 2
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Figure 7.4: |g0
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2n(0, 0)| = f0
2n(0, 0) and f0

2n(x, 0) for n = 6

The main computational effort in the execution of the ProveInequality lies in the cylindrical
decomposition. The condition on α above cannot be removed if we want positivity of (7.12)
for n ≥ 0. It seems though that this expression stays nonnegative for n greater than some
lower bound, possibly depending on α.

7.5 Envelope for the Oscillating Part

Taking a closer look at Figure 7.1 it can be noticed that the absolute value of the oscillat-
ing part |g0

2n(x, 0)| and the sum f0
2n(x, 0) are separated by a straight line passing through

f0
2n(0, 0) = |g0

2n(0, 0)|, see Figure 7.4. Guided by this observation one idea for proving Theo-
rem 7.1 was to show that f0

2n(x, 0) and |g0
2n(x, 0)| are bounded from below and above, respec-

tively, by this straight line. The idea for showing boundedness of the oscillating part followed
the proof of Theorem 7.3.1 in [79] stating that the relative maxima of Legendre polynomials
form a decreasing sequence when x decreases from 1 to 0. In [79] Szegö proves this theorem
by computing an envelope for Pn(x)2 and showing its monotonicity. We repeat this result in
Theorem 7.6 below. Although this idea did not work out to show positivity of S0

2n(x, 0), we
believe that the construction of the envelope of gα

2n(x, 0)2 is interesting in its own right.

Theorem 7.6. [79, Theorem 7.3.1] Let n ≥ 2. The successive relative maxima of |Pn(x)|,
when x decreases from 1 to 0, form a decreasing sequence. More precisely, if µ1, µ2, . . . , µ[n/2]

denote these maxima corresponding to decreasing values of x, we have

1 > µ1 > µ2 > . . . > µ[n/2].

Proof. This result can be proven by means of the differential equation for Legendre polyno-
mials. Setting α = β = 0 in (4.2) yields the Legendre differential equation

(1 − x2)y′′(x) − 2x y′(x) + n(n+ 1)y(x) = 0.

For the proof let hn(x) be defined via

n(n+ 1)hn(x) = n(n+ 1)Pn(x)2 + (1 − x2)P ′
n(x)2.

Then we have hn(x) = Pn(x)2 if P ′
n(x) = 0 or x = ±1. Therefore

max
−1≤x≤1

Pn(x)2 ≤ max
−1≤x≤1

hn(x).
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Then for the first derivative of hn(x), using the Legendre differential equation, we have

n(n+ 1)h′n(x) = 2n(n+ 1)Pn(x)P ′
n(x) − 2xP ′

n(x)2 + 2(1 − x2)P ′
n(x)P ′′

n (x)

= 2
[
n(n+ 1)Pn(x) − xP ′

n(x) + (1 − x2)P ′′
n (x)

]
P ′

n(x)

= 2xP ′
n(x)2.

Hence, hn(x) is decreasing for x < 0 and increasing for x > 0. This establishes the statement.

As a corollary to this theorem it follows that Legendre polynomials attain their maxima
at x = ±1, i.e., |Pn(x)| ≤ |Pn(±1)| = 1.

Now we apply this procedure for computing an envelope for the oscillating part g0
2n(x, 0).

In a first step we consider only the case of Legendre polynomials, i.e., α = 0. For computing
an envelope it is sufficient to work with the “essential” part of g0

2n(x, 0) which we define as

gn(x) = (4n + 3)xP2n+1(x) − 2(2n + 1)P2n(x),

i.e., we have (4n + 3)g0
2n(x, 0) = c02nP2n(0)gn(x). Now we make an ansatz for the envelope

hn(x) = h0
n(x) as a generalized version of the envelope in Theorem 7.6,

hn(x) = (a0 + a2x
2)gn(x)2 + (1 − x2)(b0 + b2x

2)g′n(x)2. (7.13)

Moreover, we also want the derivatives of hn(x) to be of a special form, hence we also make
an ansatz for h′n(x),

hder
n (x) = c1xgn(x)2 + x(d0 + d2x

2)g′n(x)2. (7.14)

Additionally we normalize subject to hn(0) = gn(0)2. This refined ansatz for both hn and
hder

n was found after trying a more general ansatz first and observing this special pattern. For
specific values of n the coefficients a0 to d2 are determined by coefficient comparison of h′n(x)
and hder

n (x). These concrete values are then used as input for Mallinger’s GuessRE routine
to find recurrence relations for the coefficients. The resulting recurrences can be solved for
instance using the Mathematica built-in RSolve command.

Let us consider a concrete example. The solutions for the coefficients b0 = b0(n) for
n = 2, . . . , 10 are given by

Sb0 =
{

1
31 ,

1
57 ,

1
91 ,

1
133 ,

1
183 ,

1
241 ,

1
307 ,

1
381 ,

1
463

}
.

Guessing on this list yields:

In[36]:= GuessRE[Sb0
, b0[n]]

Out[36]= {{(−4n
2 − 22n − 31)b0[n] + (4n

2 + 30n + 57)b0[n + 1] = 0, b0[0] =
1

31
}, ogf}

Using the RSolve command and shifting the index n properly yields the result stated next.
Because of the normalization hn(0) = gn(0)2, one has a0(n) = 1. With γ(n) = 4n2 + 6n + 3
the remaining coefficients are

a2(n) = −(4n+ 3)2(2n + 1)(n + 1)

γ(n)(2γ(n) − 1)
, c1(n) = 2a2(n),

b0(n) =
1

γ(n)
, d0(n) = 2b0(n) + 6b2(n),

b2(n) = − (4n+ 3)2

2γ(n)(2γ(n) − 1)
, d2(n) = −4b2(n).



7.5. Envelope for the Oscillating Part 85

-1 -0.5 0.5 1

10

20

30

0.975 0.98 0.985 0.99 0.995

2

4

6 10 20 30

0.998

0.9985

0.999

0.9995

Figure 7.5: gn(x)2 and envelope Gn(x) for n = 6, ρ(n)

There are two feasible ways how to obtain this result with GuessRE. Firstly by observing the
special form of the denominators involving γ(n) and simplifying the input by clearing denom-
inators appropriately. Then guessing is applied to determine the structure of the numerators
only. The second way avoids these manipulations and uses GuessRE on the input values
directly. In this case the degree bound for the recurrence coefficients has to be increased,
see Section 3.3.1, and also the number of input values has to be sufficiently big to obtain an
overdetermined equation system.

Next we show that the derivative of hn(x) coincides with hder
n (x). Differentiating (7.13)

and invoking the relations between the coefficients of hn and hder
n yields

h′n(x) = c1xg
2
n(x) + x(d0 + d2x

2)g′n(x)2

+ 2(1 + a2x
2)gn(x)g′n(x) − 4x(b0 + b2)g

′
n(x)2 + 2(1 − x2)(b0 + b2x

2)g′n(x)g′′n(x).

What is left to be shown is that the second line above vanishes for all n ≥ 2. Using
γ(n)(2γ(n) − 1)(b0(n) + b2(n)) = 1 and clearing common factors, this task can be simplified
further to showing that gn(x) satisfies the differential equation

(1 + a2x
2)gn(x) − x

γ(n)(2γ(n) − 1)
g′n(x) + (1 − x2)(b0 + b2x

2)g′′n(x) = 0. (7.15)

But this identity can be verified automatically using SumCrackers’s ZeroSequenceQ com-
mand. The envelope Gn(x) for gn(x)2 is consequently defined as

Gn(x) =
1

1 + a2x2
hn(x),

where the denominator 1 + a2(n)x2 is strictly negative on [−1, 1] and its roots are ap-
proaching ±1 from outside the interval in the limit n → ∞. By construction we have that
Gn(x) coincides with gn(x)2 at x = ±1 and at its extremal points, i.e., Gn(±1) = gn(±1)2,
Gn(0) = gn(0)2 and Gn(x̄) = gn(x̄)2 for all x̄ such that g′n(x̄) = 0.

The next step is showing that the envelope decreases when x passes from 0 to 1. For
this purpose we compute its first derivative using the definition of hn(x) and the special form
of h′n(x), yielding

(1 + a2x
2)2G′

n(x) = x g′n(x)2
(
−2a2(1 − x2)(b0 + b2x

2) + (1 + a2x
2)(d0 + d2x

2)
)
.

The polynomial on the right hand side is negative for x ∈ [−ρ(n), ρ(n)], where

ρ(n) =

((
4n2 + 5n+ 2

) (
8n2 + 14n+ 7

)
−

√
84n4 + 252n3 + 291n2 + 153n + 31

(n+ 1)(2n + 1)(4n + 3)2

)1/2

.
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Figure 7.6: gα
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The other roots are not in the interval [−1, 1]. This completes the analysis of the envelope
and we have that Gn(x) decreases for x passing from 0 to ρ(n), hence the maxima of gn(x)2

decrease in this interval as well. The middle picture in Figure 7.5 shows the behavior of the
envelope at x = ρ(n). The value of ρ(n) approaches 1 as n → ∞. The rightmost picture in
Figure 7.5 shows the first few values of ρ(n), indicating its rate of convergence.

Following the same procedure as in the special case α = 0 an envelope for arbitrary α > −1
for gα

n(x) can be computed, where

gα
n(x) = (4n + 2α+ 3)xP

(α,α)
2n+1 (x) − 2(2n + α+ 1)P

(α,α)
2n (x).

The ansatz for hα
n(x) is completely analogous as in the case α = 0, only the coefficients now

involve the parameter α. By coefficient comparison and subsequent guessing one obtains with
γα(n) = 4n2 + 2(2α + 3)n+ (2α+ 3) that

aα
2 (n) = 2(n + 1)(2n + 2α+ 1)bα2 (n), cα1 (n) = 2aα

2 (n),

bα0 (n) =
1

γα(n)
, dα

0 (n) = 2(2α + 1)bα0 (n) + 6bα2 (n),

bα2 (n) = − (4n+ 2α+ 3)2

2γα(n)(2γα(n) − 1 + 2α)
, dα

2 (n) = 4(α − 1)bα2 (n).

Because of the normalization hα
n(0) = gα

n(0)2 we have aα
0 (n) = 1. The envelope for gα

n(x)2 is
defined as Gα

n(x) = hα
n(x)/(1 + aα

2 (n)x2).
In the Chebyshev cases α = ±1

2 we have gα
2n(x, 0) = x2Sα

2n(x, 0), see Section 7.4. Hence,
for α = ±1

2 , gα
n(x) and its envelope Gα

n(x) capture the main information of the sums Sα
2n(x, 0),

see Figure 7.6.



Chapter 8

Stable Polynomial Projection

Operators and a posteriori Error

Estimates

Numerical error is intrinsic in computer simulations of physical events. The transformation
of a continuum model into a discretized model cannot capture all the information embodied
in the models characterized, e.g., by partial differential equations. It also occurs in practical
problems that the solution shows less regularity in certain subregions because of the given
data. In order to obtain a higher accuracy of the approximate solution in the hp-version of
the finite element method locally either the mesh is refined or the polynomial degree of the
basis functions is increased. It is desirable, however, not to introduce too many (possibly
unnecessary) new variables. In other words, the refinement process, either with respect to the
mesh size or with respect to the polynomial degree, has to be adaptive. The decision which
refinement to choose (if any) is based on a posteriori estimates.

There are various techniques for obtaining good a posteriori error estimates, see Ainsworth
and Oden [4], Braess [19], or Demkowicz [31] (for adaptive meshing procedures) and references
therein. Below, we turn to a posteriori error estimates for the p-method and the hp-method
by the hypercircle method that may be traced back to Prager and Synge [68]. We show that
equilibrated residual error estimates are p-robust. A major contribution of this chapter is the
construction of a right inverse of the divergence on quadrilateral and hexahedral elements. An
essential tool for this construction is a projection operator onto univariate polynomials that
is uniformly bounded in the polynomial degree for two norms. In Section 8.1, the composite
projection operator is defined and its main properties are proven. Next, the postprocessing
which yields the error estimate is described. Section 8.3 contains the construction of right
inverse of the divergence operator. Then, in Section 8.4, the proof for the p-robustness
of the efficiency estimate is sketched. For more details on this part, we refer to the joint
publication [20] with Dietrich Braess and Joachim Schöberl.

8.1 Construction of the Projector

The polynomial projector defined in this section is a composition of an extension operator,
a projection operator for polynomials with zero boundary values and a quasi-projection op-
erator. We start by constructing the latter operator. This quasi-projection operator maps

87
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L2-functions into the space of polynomials up to degree 2n − 1 and reproduces polynomials
q(x) with deg q(x) ≤ n. Furthermore, it is bounded uniformly in the polynomial degree with
respect to both, L2-, and H1-norm. The integral kernel of this operator is defined as a gen-
eralization of the function φn(x) given by (7.4). Let 0 < βj ≤ 1 and let k0

j (x, y) denote the
jth Legendre kernel polynomial. Then we define, with B(n) =

∑n
j=0 βj ,

φn(x, y) =
1

B(2n− 1) −B(n− 1)

2n−1∑

j=n

βj k
0
j (x, y).

Plugging in the definition of kernel polynomials, see (3.11), and exchanging the order of
summation, φn can be rewritten as

φn(x, y) =

N∑

j=0

B(N) −B(i− 1)

B(N) −B(n− 1)

2i+ 1

2
Pi(x)Pi(y) −

n∑

i=0

B(n) −B(i− 1)

B(N) −B(n− 1)

2i+ 1

2
Pi(x)Pi(y)

=

N∑

i=n

B(N) −B(i− 1)

B(N) −B(n− 1)

2i+ 1

2
Pi(x)Pi(y) +

n−1∑

i=0

2i+ 1

2
Pi(x)Pi(y),

where N = 2n − 1. Let Ti denote the projection operator mapping a function u ∈ L2(−1, 1)
to the ith term of its Legendre expansion, i.e.,

(Tiu)(x) =
2i+ 1

2

∫ 1

−1
Pi(y)u(y) dy Pi(x) =

2i+ 2

2
(Pi, u)0 Pi(x).

Hence, for u ∈ L2(−1, 1), it follows that

‖Tiu‖2
L2 =

(
2i+ 1

2

)2

(Pi, u)
2
0

∫ 1

−1
Pi(x)

2 dx =
2i+ 1

2
(Pi, u)

2
0. (8.1)

Furthermore, recall that
∑∞

i=0 ‖Tiu‖2
L2 = ‖u‖2

L2 by Parseval’s formula (Theorem 3.10). With
the notation fixed above and using the rewriting of φn(x, y), we define the quasi-projection
operator Sn with kernel φn(x, y):

Sn =
2n−1∑

i=0

γn(i)Ti with γn(i) =

{

1, i ≤ n,
B(2n−1)−B(i−1)
B(2n−1)−B(n−1) , n < i ≤ 2n − 1.

For βj = 1 and trigonometric polynomials this quasi-projection operator is similar to the
operator introduced by de la Vallée-Poussin [30]. Note that γn(i) ≤ 1.

Lemma 8.1. Let the coefficients 0 < βj ≤ 1 be such that

βj

B(2n− 1) −B(n− 1)
≤ 1

n
, n ≤ j ≤ 2n− 1. (8.2)

Then the quasi-projection operators Sn satisfy

(i) Sn reproduce polynomials with degree ≤ n.

(ii) The operators Sn are uniformly bounded with respect to n, more precisely we have

‖Sn‖L2 ≤ 1 and |Sn|H1 ≤ 3.
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Proof. The first assertion holds trivially because of the reproducing property of Legendre
kernel polynomials. The L2-norm of Sn is estimated by exploiting the L2-orthogonality of
Legendre polynomials. With (8.1) and Bessel’s inequality one obtains

‖Snu‖2
L2 =

2n−1∑

i,j=0

γn(i)γn(j)
2i + 1

2

2j + 1

2
|(Pi, u)0| |(Pj , u)0| (Pi, Pj)0

=
2n−1∑

i=0

γn(i)2‖Tiu‖2
L2 ≤

2n−1∑

i=0

‖Tiu‖2
L2 ≤ ‖u‖2

L2 .

In the course of estimating the H1-seminorm of Snu two identities from Chapter 4.1 are
needed. Recall equation (4.19) relating Legendre polynomials and their derivatives,

Pn(x) =
1

2n+ 1

[
P ′

n+1(x) − P ′
n−1(x)

]
,

and perform partial integration to reformulate (Pi, u)0 in terms of derivatives of u, i.e.,

∫ 1

−1
Pi(y)u(y) dy = − 1

2i+ 1

∫ 1

−1
[Pi+1(y) − Pi−1]u

′(y) dy = − 1

2i+ 1

[
(Pi+1, u

′)0 − (Pi−1, u
′)0
]
.

The boundary terms above vanish since Pn(1) = 1 and Pn(−1) = (−1)n. The other identity
that we use is the evaluation (4.21) of the L2-inner product of derivatives of Legendre
polynomials,

(P ′
i , P

′
j)0 =

∫ 1

−1
P ′

i (x)P
′
j(x) dx =

{

0, i− j ≡2 1,

l(l + 1), i− j ≡2 0, where l = min{i, j}.

Now we are in the position to start calculating

|Snu|2H1 = 1
4

2n−1∑

i,j=1

γn(i)γn(j)(2i + 1)(2j + 1)(P ′
i , P

′
j)0(Pi, u)0(Pj , u)0

= 1
4

2n−1∑

i,j=1

γn(i)γn(j)(P ′
i , P

′
j)0(Pi+1 − Pi−1, u

′)0(Pj+1 − Pj−1, u
′)0

=: 1
4

2n∑

i,j=0

Mi,j(Pi, u
′)0(Pj , u

′)0.

In the last step, via reordering, a symmetric and positive definite matrix M is defined and
we continue estimating,

4|Snu|2H1 ≤
2n∑

i,j=0

|Mi,j | |(Pi, u
′)0||(Pj , u

′)0| = 2

2n∑

i,j=0

|Mi,j|√
2i+ 1

√
2j + 1

‖Tiu
′‖L2‖Tju

′‖L2 .

Let the normalized matrix M (0) be given by M
(0)
i,j = 1√

2i+1
√

2j+1
|Mi,j |, for 0 ≤ i, j ≤ 2n, and

for 0 ≤ i ≤ n let ti = ‖Tiu
′‖L2 . Then it follows that

|Snu|2H1 ≤ tTM (0)t ≤ ρ
(
M (0)

)
‖t‖2

2 = ρ
(
M (0)

)
2n∑

i=0

‖Tiu
′‖2

L2 ≤ ρ
(
M (0)

)
‖u′‖2

L2 .
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Thus it remains to show that the spectral radius of M (0) is bounded by a constant. It is
sufficient to provide an estimate for the row sum-norm of M (0), which is an upper bound
for ρ

(
M (0)

)
. After reordering, for determining the matrix entries of M only the definition of

γn and the values of (P ′
i , P

′
j)0 are needed. For dealing with the last row it is convenient to

introduce the parameter

θj =

{

β2n−1 + β2n−2, j = 2n− 1,

β2n−1, j = 2n.

We omit the intermediate computations and state only the resulting expressions, starting
with the diagonal entries of M :

Mi,i = 2(2i + 1), 0 ≤ i < n,

Mi,i = 2(2i + 1)γn(i+ 1) − i(i− 1)
βi + βi−1

B(2n − 1) −B(n− 1)

(
1 − γn(i− 1)

)
, n ≤ i < 2n− 1,

Mj,j = (j − 1)j

(
θj

B(2n− 1) −B(n− 1)

)2

, j = 2n − 1, 2n.

By (4.21), we have that Mi,j = 0 if i − j is odd. In the following we silently assume that
i− j is even. Furthermore, since M is symmetric, it is sufficient to consider the upper right
triangular matrix. Hence, from now on, assume that i ≤ j − 2. The matrix entries in the
upper left block vanish, more precisely,

Mi,j = 0, for i < j < n.

The nonzero off-diagonal entries are:

Mi,n = −2(2i + 1)
βn

B(2n − 1) −B(n− 1)
, 0 ≤ i < j,

Mi,j = −2(2i + 1)
βj + βj−1

B(2n − 1) −B(n− 1)
, i < n < j < 2n− 1,

Mi,j = −2(2i + 1)
θj

B(2n − 1) −B(n− 1)
, i < n, j = 2n− 1, 2n,

Mn,j = − βj + βj−1

B(2n− 1) −B(n− 1)

(

2(2n + 1) − (n+ 1)βn

B(2n− 1) −B(n− 1)

)

,

n < j < 2n− 1,

Mn,j = θj
(n− 1)n γn(n− 1) − (n+ 1)(n + 2)γn(n+ 1)

B(2n− 1) −B(n− 1)
, j = 2n− 1, 2n,

Mi,j = − βj + βj−1

B(2n− 1) −B(n− 1)

(

2(2i + 1)γn(i+ 1) − (i− 1)i (βi + βi−1)

B(2n− 1) −B(n− 1)

]

,

n < i < j < 2n− 1,

Mi,j = −
(

2(2i + 1)γn(i+ 1) − (i− 1)i (βi + βi−1)

B(2n − 1) −B(n− 1)

)
θn

B(2n− 1) −B(n− 1)
,

n < i, j = 2n− 1, 2n.

Given condition (8.2) on the parameters βj it is now easily verified that

Mi,i ≤ 2(2i + 1) and |Mi,j | ≤
4

n

√
2i+ 1

√

2j + 1, i 6= j.
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Since there are at most n nonzero off-diagonal entries in each row, it follows that the row sum
of M (0) does not exceed 6, and the proof is complete.

Before continuing with the construction of the polynomial projection operator, let us
comment on two possible choices for the parameter βj . Firstly, let βj = 1. This choice
corresponds to the operator introduced by de la Vallée-Poussin and, for y = 0, to the operator
studied in the last chapter. Condition (8.2) is clearly satisfied, since B(n) = n+1. This setting
has also been used in [20] and the matrix entries of M for this specific choice can be found
there.

Secondly, let βj = 1
j+1 and hence B(n) = Hn+1, the (n + 1)th harmonic number. In this

setting condition (8.2) is again satisfied. The reason for choosing the weight βj this way is
that the function

ψn(x, y) =

n∑

j=0

1

j + 1
k0

j (x, y) =

n∑

j=0

(
Hn+1 −Hj

)2j + 1

2
Pj(x)Pj(y) (8.3)

is nonnegative for all (x, y) ∈ [−1, 1]2, which is proven below. Since φn(x, y) can be expressed
as

φn(x, y) =
ψ2n−1(x, y) − ψn(x, y)

H2n −Hn

using that ψn(x, y) ≥ 0, the L1-norm of φn(·, y) can be estimated analogously to the L1-esti-
mate of φn(x) given in Section 7.1. The positivity of ψn(x, y) can be shown using the afore-
mentioned result due to Gasper [39], according to which there exists a nonnegative function
κ(x, y, z) such that

Pn(x)Pn(y) =

∫ 1

−1
κ(x, y, z)Pn(z) dz.

Hence, changing the order of integration and summation, ψn(x, y) can be written as

ψn(x, y) =

∫ 1

−1
κ(x, y, z)

n∑

i=0

(Hn+1 −Hi)
2i+ 1

2
Pi(z) dz =

∫ 1

−1
κ(x, y, z)ψn(z, 1) dz.

In the last step it was used that Pn(1) = 1. It remains to show that ψn(z, 1) ≥ 0 for z ∈ [−1, 1].
But this follows immediately from the closed form of ψn(z, 1) generated using SumCracker.
As input we use the sum representation on the right hand side of (8.3) involving harmonic
numbers.

In[37]:= Crack[HarmonicNumber[n + 1]SUM[
2j + 1

2
LegendreP[j, z], {j, 0, n}]

− SUM[HarmonicNumber[j]
2j + 1

2
LegendreP[j, z], {j, 0, n}]]

Out[37]=
−1 + LegendreP[1 + n, z]

2(−1 + z)

Since Legendre polynomials are bounded by 1, see Theorem 7.6, this proves the asser-
tion. Alternatively the closed form expression can be obtained using the Christoffel-Darboux
formula for kernel polynomials (3.11), which reads for Legendre polynomials as

k0
n(x, y) =

n∑

j=0

2j + 1

2
Pj(x)Pj(y) =

n+ 1

2

Pn+1(x)Pn(y) − Pn(x)Pn+1(y)

x− y
.
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Plugging in this formula yields

2(1 − z)2ψn(z, 1) = (1 − z)
n∑

i=0

(
Pi(z) − Pi+1(z)

)
= (1 − z)

(
1 − Pn+1(z)

)
.

From the positivity of ψn(x, y) it follows for the L1-norm of φn(·, y) that

‖ψn(·, y)‖L1 ≤ 1

H2n −Hn

(∫ 1

−1
ψ2n−1(x, y) dx +

∫ 1

−1
ψn(x, y) dx

)

=
H2n +Hn

H2n −Hn
.

The right hand side above behaves asymptotically as log n, because of Hn ∼ log n. If the
upper summation bound is chosen to be N = n2−1 instead of N = 2n−1, then the L1-norm
is bounded by 4. Although for this choice

βj

B(N)−B(n−1) ≤ 2
N is not fulfilled, which is the

condition corresponding to (8.2), an examination of the proof of Lemma 8.1 shows that the
conclusion still holds, possibly with a slightly bigger constant.

The matrix entries are given by the same formulas as stated in the proof with 2n − 1
replaced by n2 − 1. The estimate for the diagonal entries carry over directly, but for the
off-diagonal entries a more refined analysis is needed. Recall that we defined the normalized

matrix M (0) with entries M
(0)
i,j = 1√

2i+1
1√

2j+1
|Mi,j | and consider first the case j = n and i < j.

These matrix entries can be bounded as follows:

|Mi,n| ≤
2

Hn2 −Hn

2i+ 1

n+ 1
≤ 2

Hn2 −Hn

√
2i+ 1

√
2n+ 1

n+ 1
.

Since at most n of these values contribute to the row sum-norm, this part of ‖M (0)‖1 is
bounded by a constant. Next, let i < n < j < n2 − 1. For the sum over these entries we
obtain

n2−1∑

j=n

|M (0)
i,j | ≤

2

Hn2 −Hn

n2−1∑

j=n

√
2i+ 1

√
2j + 1

j(j + 1)

≤ C

Hn2 −Hn

n2−1∑

j=n

1

j + 1
= C.

The boundedness for n < i < j < n2 − 1 can be shown by the same arguments as well
as for the remaining entries of the last two rows. Hence the conclusions of Lemma 8.1 also
hold for β = 1

j+1 and N = n2 − 1. Additionally the L1-norm of the operator-kernel φn(·, y)
is uniformly bounded, with the drawback of having to deal with a much higher maximal
polynomial degree.

After this excursion we return to the construction of the projection operator. It remains to
find a projector from P 2n−1(−1, 1) to Pn(−1, 1). This is done by separating polynomials with
zero boundary values. To this end we define extension operators that provide polynomials of
low Hs-norm, s = 0, 1, to given boundary data:

E(s)
n u(x) = argmin

v∈Pn([−1,1]),
v(−1)=u(−1), v(1)=u(1)

‖v‖s, s = 0, 1.

The properties of these operators are summarized in the next lemma.
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Lemma 8.2. There are constants Cs, s = 0, 1, independent of n such that for all polynomi-
als u on [−1, 1] with deg(u) ≤ 2n− 1,

‖E(s)
n u‖Hs ≤ Cs‖u‖Hs , s = 0, 1.

Proof. We restrict ourselves to n ≥ 2, since we may choose E
(s)
n u = u if n < 2. For s = 1 an

optimal solution (up to a constant) preserving boundary values is given by

E(1)
n u(x) = u(−1)

1 − x

2
+ u(1)

1 + x

2
.

The norm estimate follows by the trace theorem, so we have

‖E(1)
n u‖H1 ≤ |u(−1)| + |u(1)| ≤ C‖u‖H1 .

In order to determine the L2-extension we consider the minimization for the left and the right
endpoint separately,

w± = argmin
v∈Pn([−1,1]),

v(±1)=1,v(∓1)=0

‖v‖2
L2 .

The solutions to these problems are obtained by the same procedure as applied in the
construction of the low energy vertex based shape functions in Section 5.2. The ansatz
v(x) =

∑n
i=0 v±,iPi(x) transforms the constrained minimization problems into algebraic ones,

min vTAv,

with the diagonal matrix A = diag
(

2
2i+1

)n

i=0
. The constraints are now

n∑

i=0

(−1)i v−,i = 1 and
n∑

i=0

v−,i = 0

for the left endpoint and

n∑

i=0

(−1)i v+,i = 0 and
n∑

i=0

v+,i = 1

for the right endpoint. Solving the algebraic minimization problems yields the coefficients

v+,i =
2i+ 1

n(n+ 2)

[

1 +
(−1)n+i+1

n+ 1

]

and v−,i = (−1)iv+,i.

The total extension operator is then given by

E(0)
n u(x) = w−(x) +w+(x) =

n∑

i=0

(
(−1)iu(−1) + u(1)

)
v+,i Pi(x).

The L2-norm of the extension can easily be computed by exploiting the L2-orthogonality of
Legendre polynomials. A simple summation shows that

‖E(0)
n u‖2

L2 =
2

(n + 1)(n + 2)

(
u(−1)2 + u(1)2

)

+
2

n(n+ 1)(n + 2)
(u(1) − (−1)nu(−1))2 .

(8.4)
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Examining (8.4) we find that ‖E(0)
n u‖L2 ≤ 3‖E(0)

2n−1u‖L2 . The L2-norm of the given function
is certainly not smaller than the minimal one in P 2n−1(−1, 1) and thus we obtain

‖E(0)
n u‖L2 ≤ 3 ‖E(0)

2n−1u‖ ≤ 3 ‖u‖L2 . (8.5)

We note that it is necessary to restrict the domain of the extension operators in Lemma 8.2,
e.g., to polynomials up to degree 2n − 1. Otherwise we have no bound like (8.5). For this

reason the map Sn enters the analysis. Since the L2-norm of E
(0)
n u is computed exactly, there

is also no room for improvement. The upper bound N = n2 − 1, that has been discussed in
connection with uniform boundedness of the L1-norm, cannot be substituted in Lemma 8.2.

Now we define projection operators for functions with zero boundary values. As basis for
these polynomials we use scaled integrated Legendre polynomials L̂i(x), defined as

L̂i(x) =
1

2
((2i− 3)(2i − 1)(2i + 1))1/2 Li(x), i ≥ 2.

This normalization has been chosen according to [13, 15], where the following norm estimates
for u =

∑M
i=2 uiL̂i have been shown:

‖u′‖2
L2 ≈

M∑

i=2

i2 u2
i , ‖u‖2

L2 ≈
M∑

i=2

(
1

i2
u2

i + (ui − ui+2)
2

)

. (8.6)

We set Pn
0 (−1, 1) = Pn(−1, 1) ∩H1

0 (−1, 1) and define the projection operators Rn for poly-
nomials with zero boundary values:

Rn : P 2n−1
0 (−1, 1) → Pn

0 (−1, 1)

u =
2n−1∑

i=2

uiL̂i 7→ Rnu =
n∑

i=2

(
ui −

1

n
u2n−i+1

)
L̂i.

Lemma 8.3. The (semi-)norms ‖Rn‖L2 and |R|H1 of the projection operators are uniformly
bounded in n.

Proof. Recalling (8.6) the H1-estimate is obtained by a straight forward calculation

|Rnu|2H1 ≈
n∑

i=2

i2
(
ui −

1

n
u2n−i+1

)2 ≤ 2

(
n∑

i=2

i2 u2
i +

n∑

i=2

i2

n2
u2

2n−i+1

)

≤ 2

(
n∑

i=2

i2 u2
i +

n∑

i=2

(2n − i+ 1)2u2
2n−i+1

)

= 2

2n−1∑

i=2

i2 u2
i � ‖u′‖2

L2 ,

where � refers to ≤ up to a constant. The boundedness in the L2-norm follows the same
lines. First use (8.6) to express ‖Rnu‖L2 , then basic estimates yield

‖Rnu‖2
L2 ≈

n∑

i=2

1

i2
(
ui −

1

n
u2n−i+1

)2
+

n∑

i=2

(
(ui − ui+2) −

1

n
(u2n−i+1 − u2n−i−1)

)2

≤ 2
n∑

i=2

(u2
i

i2
+

u2
2n−i+1

(2n − i+ 1)2
)

+ 2
n∑

i=2

(
(ui − ui+2)

2 + (u2n−i+1 − u2n−i−1)
2
)

= 2
2n−1∑

i=2

1

i2
u2

i + (ui − ui+2)
2 � ‖u‖2

L2 .
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Summarizing the results of the previous lemmas we are now in the position to define the
composite projection operators and to prove the main result of this section.

Lemma 8.4. Let I = [−1, 1]. There exist projection operators Qn : L2(I) → Pn(I) which
are uniformly bounded in the polynomial degree n with respect to the L2- and simultaneously
the H1-norm.

Proof. First define the projection operators R̃(s)
n as composition of the operator Rn of Lemma 8.3

and the extension operators E
(s)
n of Lemma 8.2 for s = 0, 1 as

R̃(s)
n = Rn

(
id− E(s)

n

)
+ E(s)

n .

Since
(
E

(1)
n −E

(0)
n

)
v is a polynomial of degree less or equal n for v ∈ P 2n−1(I), the operators

R̃(0)
n and R̃(1)

n coincide. Indeed,

R̃(1)
n v =

(
Rn(id− E(1)

n

)
v + E(1)

n v

=
(
Rn

(
id− E(0)

n

)
+ E(0)

n

)
v +

(
id−Rn

)(
E(1)

n − E(0)
n

)
v

= R̃(0)
n v.

Hence, the norm estimates of the individual operators prove the estimate for R̃(0)
n = R̃(1)

n .

Finally we set Qn = R̃(0)
n Sn = R̃(1)

n Sn to complete the proof.

8.2 Formulation of the Postprocessing Method

Let Ω be a polygonal or polyhedral domain in Rd, d = 2, 3. We consider the homogeneous
Poisson equation (compare to Example 2.1) which in variational form is written as

a(u, v) = f(v), ∀v ∈ V,

with

a(u, v) =

∫

Ω
∇u · ∇v dx, f(v) =

∫

Ω
fv dx.

We consider finite element approximation with polynomials of higher order on a quasi-uniform
triangulation of a domain Ω with simplicial, quadrilateral or hexahedral elements T . Since
the notation for the finite element spaces differ for the triangulations above, we will focus
on triangular meshes throughout this chapter unless otherwise stated. The finite element
solution is given by

a(uh, v) = f(v), ∀v ∈ Vh,

and in this case we have
Vh = {v ∈ V | v|T ∈ P p+1(T )}.

We assume that f is a piecewise polynomial of degree p. Otherwise f is assumed to be the
piecewise approximation of the exact fex. For sake of simplicity we defined the bilinear form
with constant coefficient function a(x) ≡ 1. The analysis certainly also works for piecewise
constant coefficient functions and could be extended to a highly varying coefficient function
satisfying the quasi-monotonicity condition.
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Tl Tr
Enr

nl

Figure 8.1: Edge E with neighbouring elements Tl and Tr and corresponding outer unit
normal vectors nl and nr

Let the space H(div,Ω) for d = 2, 3 be defined as

H(div,Ω) = {q ∈ (L2(Ω))d | div q ∈ L2(Ω)}

with inner product

(p, q)div = (p, q)0 +

∫

Ω
div p div q dx.

This space again is a Hilbert space with norm induced by the inner product (·, ·)div. In
the following a postprocessing algorithm is established which provides an equilibrated flux
σ ∈ Σh ⊂ H(div), i.e., the flux satisfies pointwise

div σ + f = 0. (8.7)

The hypercircle method is the general framework. Cheap implementations of this technique
have been described recently, see e.g. [21, 58]. Merely local problems have to be solved that are
organized on local patches around nodes of the mesh. This is in contrast to local problems for
other classical error estimators that are oriented to elements of the triangulation. We propose
the following construction of the flux σ: Following [21] the residual r ∈ V ′ defined as

〈r, v〉 = f(v) − a(uh, v) = a(u− uh, v)

is written as

〈r, v〉 =
∑

T

(rT , v)L2(T ) +
∑

E

(rE , v)L2(E). (8.8)

The local error is assessed via the element residual and via the jumps across element-
interfaces. Let n denote the unit outer normal vector of an element T and associated to
an edge E let nl and nr denote the unit outer normal vector at E of the element to the left
and to the right of E, respectively, see Figure 8.1. Then the well known element and edge
residuals are given by

rT = f + div(∇uh),

rE = ⌈∂nuh⌉ :=
∂uh,l

∂nl
+
∂uh,r

∂nr
.

(8.9)

Here the divergence is taken pointwise on each element. Let φV denote the hat basis function
associated with the vertex V . Its support is the patch ωV =

⋃{T | V ∈ ∂T}. The family
(φV )V ∈V forms a partition of unity subordinated to the union of patches ωV and the residual
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is decomposed by this partition of unity, i.e., 〈rωV
, v〉 := 〈r, φV v〉. Recalling (8.9) the element

and edge terms of the residual read as

rωV ,T = φV

(
f + div(∇uh)

)
,

rωV ,E = φV ⌈∂nuh⌉.
(8.10)

By Galerkin orthogonality of the hat basis functions the local residuals are bi-orthogonal to
constant functions. The element terms as well as the edge terms in (8.10) are polynomials
of degree at most p + 1. We construct a vector function σωV

in the broken Raviart-Thomas
space RT p+1(ωV ) [6],

RT p
−1(ωV ) = {τ ∈ L2(ωV ) | τ |T ∈ RT p(T ), T ⊂ ωV },

with RT p(T ) = {τ | τ(x) = qT + sTx, qT ∈ (P p)2, sT ∈ P p},
such that div σωV

= rωV
. The divergence is understood in the distributional sense and is

consistent with (8.9). In combination with the boundary condition, it translates to

divT σωV
= rωV ,T in T ⊂ ωV ,

⌈σωV
· n⌉ = rωV ,E at E ⊂ ωV ,

σωV
· n = 0 on ∂ωV .

The computation of these local fluxes is the crucial step of the equilibration. By adding up
all the local fluxes the global correction

σ∆ =
∑

V ∈V
σωV

is obtained which satisfies
div σ∆ = r.

The difference between the discrete flux ∇uh and the postprocessed flux ∇σ = uh + σ∆

provides a true upper bound without generic constant to the error measured in the energy
norm, i.e., for the Poisson equation the H1-seminorm. Specifically, by the theorem of Prager
and Synge, cf. [68] or [19, Theorem III.5.1],

‖∇u−∇uh‖L2 ≤ ‖∇uh − σ‖L2 = ‖σ∆‖L2 ,

i.e., the error estimate is reliable. The p-robust efficiency of this estimate is the content of
Section 8.4. Next we present a crucial tool for the proof of this result, namely a right inverse
of the divergence operator on tensor product elements. The polynomial projection operator
defined in the last section enters in the construction of this inverse. The existence of the
inverse can be proven for quadrilateral or hexahedral elements and is left as a conjecture for
simplicial elements.

8.3 A Right Inverse of the Divergence Operator on Tensor

Product Elements

The estimates in the efficiency proof given in Section 8.4 are based on two ingredients: One
is the right inverse of the divergence operator on one element which is the main result of this
section. The other one is the extension of normal-traces from edges to elements that has been
treated in [32] and is given in the following lemma.



98 Chapter 8. Stable Polynomial Projectors and Error Estimates

H1 d/dx−−→ L2

Qp+1




y




y
Q̃

P p+1 d/dx−−→ P p

H(div)
div−−→ L2

QΣ




y




y
Q̃x ⊗ Q̃y

RT [p] div−−→ P p

Figure 8.2: Commuting diagram properties of projectors

Lemma 8.5. Let T be a triangle and let γ ⊂ ∂T be the union of one, two or three edges of T .
Let gn ∈ L2(γ) be given such that gn|E ∈ P p(E). If γ = ∂T we additionally assume

∫

γ gn = 0.

Then there exists an extension σp ∈ RT p(T ) such that

div σp = 0 and trn,γ σp = gn,

where trn,γ denotes the normal trace on γ, and

‖σp‖L2(T ) ≤ C inf
σ∈L2(T )

div σ=0,trn,γ=gn

‖σ‖L2(T ).

For the construction of the right inverse we turn to rectangular grids. The Raviart-Thomas
elements on rectangular grids build the space RT [k] = P k+1,k × P k,k+1.

Theorem 8.6. Let T be a square or a cube and let rT ∈ P p(T ). Then there exists a σT ∈
RT [p](T ) such that

div σT = rT and ‖σT ‖L2(T ) ≤ C ‖rT ‖H−1(T ). (8.11)

Proof. We restrict ourselves to the two dimensional case and consider the homogeneous Pois-
son equation

∆w = rT in T,

w = 0 on ∂T.

Since the Laplace operator can be written as the composition ∆ = div∇, the flux σ = ∇w
satisfies div σ = rT and ‖σ‖L2(T ) = ‖rT ‖H−1(T ). What is left to be done is to project σ into
the polynomials.

Let Iv(x) =
∫ x
−1 v(s) ds and take the one dimensional projector Qp+1 from Lemma 8.4 to

define another projector onto P p(T ) by

Q̃v = (Qp+1Iv)′.

The L2-boundedness of the operator Q̃ follows by the H1-boundedness of the projection
operator Qp+1. More precisely, we have

‖Q̃v‖L2(T ) = ‖(Qp+1Iv)′‖L2(T ) ≤ ‖(Iv)′‖L2(T ) = ‖v‖L2(T ).

The two operators Q̃ and Qp+1 have the commuting diagram property

Q̃u′ = (Qp+1u)
′,
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see Figure 8.2. The tensor product operator

QΣ = (Qp+1,x ⊗ Q̃y) × (Q̃x ⊗Qp+1,y) : L2(T ) → RT [p](T )

is bounded in L2(Q), and it has the commuting diagram property with the divergence, i.e.,

divQΣ = (Q̃x ⊗ Q̃y) div .

We set σT = QΣσ to complete the proof of the theorem.

At the moment, an analogous result for the right inverse on simplicial elements can be
posed only as a conjecture.

Conjecture 8.7. Let T be a triangular or tetrahedral element. Let rT ∈ P p(T ). Then there
exists a σT ∈ RT p(T ) such that

div σT = rT and ‖σT ‖L2(T ) ≤ C‖rT ‖H−1(T ).

This conjecture is supported by the corresponding result for rectangles and also by nu-
merical computations with finite elements of higher order. Table 8.1 contains the constants
Cp,q such that the inequalities

min
σ∈BDMp+1(T )

div σ=rT

‖σ‖2
L2(T ) ≤ Cp,q sup

v∈P p+q(T )∩H1
0 (T )

(v, rT )2

‖v‖2
H1(T )

(8.12)

hold for all rT ∈ P p(T ). For the definition of Brezzi-Douglas-Marini-elements (BDM-elements),
see [23, Ch. III.3]. The constants can be computed by finding the largest eigenvalue of gener-
alized eigenvalue problems. The discrete H−1-norms in (8.12) approach the H−1-norm from
below. Hence,

min
σ∈BDMp+1(T )

div σ=rT

‖σ‖2
L2(T ) ≤ Cp ‖rT ‖2

H−1(T )

with Cp ≤ Cp,q. The results indicate that Cp is bounded in p.

p q = 3 q = 5 q = 8

1 1.81 1.76 1.76
2 2.05 1.92 1.92
4 2.43 1.99 1.99
8 3.23 2.00 2.00
16 4.92 2.38 2.00

Table 8.1: Coefficients Cpq in (8.12).
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8.4 Equilibrated Residual Error Estimates are p-Robust

Now we are in the position to prove the efficiency of the resulting estimator, i.e., that the
overestimation in the error is bounded uniformly in the mesh-size as well as in the polynomial
degree. First we note that the H−1(ωV )-norm of the local residual is bounded by the local
error, i.e.,

‖rωV
‖H−1(ωV ) ≤ C ‖u− uh‖H1(ωV ).

The proof of the efficiency is completed once we have shown the existence of a σωV
on the

patch so that
div σωV

= rωV
and ‖σωV

‖L2(ωV ) ≤ ‖rωV
‖H−1(ωV ).

For this purpose the right inverse of the divergence given in Theorem 8.6, that applies to
distributions of the form (8.8), is needed. In the formulation of the main theorem guaranteeing
the efficiency of the a posteriori error estimate for large polynomial degrees, we focus on
simplicial meshes, although we have to base the analysis on Conjecture 8.7.

Theorem 8.8. Let ωV be the patch of elements around the vertex V and let r be the residual

〈r, v〉 =
∑

T⊂ωV

∫

T
rT v +

∑

E⊂ωV

∫

E
rEv,

with rT ∈ P p(T ) and rE ∈ P p(E). Moreover assume that 〈r, 1〉 = 0. Then there holds

inf
σ∈RT

p
−1

div σ=r

‖σ‖L2(ωV ) ≤ C ‖r‖[H1(ωV )]′ ,

and the constant C is independent of p.

We will only sketch the main ideas of the proof of this theorem. For a full proof including
all details as well as a numerical example we refer to [20].

Theorem 8.8 is proven in three steps. First the element residuals are eliminated. On each
element of the patch we construct a flux σT ∈ RT p(T ) such that divT σT + rT = 0 and the
norm estimate of Theorem 8.6 is satisfied. It can be shown that the norm of σT on the patch
ωV is bounded by the norm of r in the dual space H1(ωV )′.

With σ(1) =
∑

T⊂ωV
σT we define the new residual r(1) = r−div σ(1), where the divergence

is understood in the distributional sense. The residual r(1) satisfies

‖r(1)‖H1(ωV )′ ≤ C ‖r‖H1(ωV )′ and 〈r(1), 1〉 = 0.

Moreover it only contains the edge terms including the edges on ∂ωV .
In the second step the boundary edge residuals are eliminated. For each triangle T consider

the variational boundary value problem

(∇w,∇v) =

∫

E⊂∂ωV

r
(1)
E v.

At this point set σT = ∇w and we have that the L2-norm of σT on T is bounded by the

norm of r in the dual space H1(ωV )′. Since r
(1)
E is a polynomial, by Lemma 8.5 there exists

a polynomial σ
(2)
T whose normal trace on E coincides with r

(1)
E and whose L2-norm on T is
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bounded by ‖σT ‖L2(T ). This construction can be done independently triangle by triangle.

Next we subtract the divergences of σ(2) =
∑

T σ
(2)
T to obtain r(2) = r(1) − div σ(2). This new

residual contains only edge residuals on the internal edges and satisfies

‖r(2)‖H1(ωV )′ ≤ C ‖r‖H1(ωV )′ and 〈r(2), 1〉 = 0.

In the last step the internal edge residuals have to be eliminated. This procedure is similar
to the elimination of the boundary edge residuals, but the triangles cannot be treated inde-
pendently. Hence we circle around the patch, updating the residual each time when passing
a triangle. Altogether the residual has been decomposed as a sum of divergences of piecewise
polynomials that are bounded as stated in the theorem.

Summarizing we have shown that if the mesh consists of

• affine quadrilateral or hexahedral elements,

• or triangular or tetrahedral elements and Conjecture 8.7 is valid,

then the error estimator is locally efficient, i.e.,

‖σωV
‖L2(ωV ) ≤ C ‖∇u−∇uh‖L2(ωV )

holds with a constant C that is independent of h and p.
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Appendix A

Mathematica Implementations

A.1 Fem2D Package

As a completion to our introduction to the high order finite element method we consider
two more examples, this time in two dimensions on a quadrilateral mesh. The following
computations are carried out with our Mathematica program Fem2D. We already used its
one dimensional counterpart (Fem1D) for the introductory example given in Section 2.6. In
Fem2D only quadrilateral meshes, which have to be specified separately, can be used for
computations. The input structure is that of meshes generated and exported by Netgen [73].
The description is given below.

A.1.1 Example 1

Let Ω = [−1, 1]2. As first example, consider the boundary value problem: Find u such that

− 1

λ
∆u+ λu = fλ, in Ω,

u = 0, on ∂Ω,
(A.1)

where fλ(x, y) = λ2+2π2

λ sinπx sinπy and λ is a real parameter. The exact solution to this
problem is uex(x, y) = sinπx sinπy. The variational formulation for (A.1) is obtained by
multiplying the equation by smooth test functions v and integrating over the domain Ω. It
reads as

Find u ∈ H1
0 (Ω) : a(u, v) = f(v), for all v ∈ H1

0 (Ω), (A.2)

where the bilinear form a(u, v) is given by

a(u, v) =
1

λ

∫

Ω
∇u · ∇v dx+ λ

∫

Ω
u v dx,

and the linear form f(v) =
∫

Ω fλ v dx. For the discrete approximation of this problem, we
use the quadrilateral shape functions defined by (2.12)-(2.14) based on integrated Legendre
polynomials. Let φi ∈ [ΦV ,ΦE ,ΦC ] denote these basis functions and define the stiffness
matrix K and the mass matrix M with entries

Ki,j =

∫

Ω
∇φi · ∇φj dx, and Mi,j =

∫

Ω
φi φj dx.
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Figure A.1: Nonzero pattern of the interior block of mass matrix (left) and stiffness matrix
(right) for p = 8

For the right hand side we define the vector f with entries fi =
∫

Ω fλφi dx. With this notation
starting from the variational formulation of (A.1) we arrive at the linear system

Find u ∈ RN :

(
1

λ
K + λM

)

u = f. (A.3)

As we already remarked at the end of Section 2.6, the stiffness matrix is no longer a diagonal
matrix in the p-version of the finite element method for higher dimensions, not even for a
quadrilateral mesh. Figure A.1 shows the nonzero pattern of the block built from the cell
based basis functions for the mass and the stiffness matrix. We compute the approximate
solutions to (A.2) for λ = 10−5 on a mesh consisting of 64 congruent square elements with
polynomial degree p = 2 and on a mesh consisting of a single element with p = 16. For both
options the total number of unknowns is 289. The first step in the computations is to read
in the mesh information using the command:

In[38]:= GetMeshInformation[”sqfine.mesh”]

To visualize the mesh use Show[MeshGraphics[ ]]. The mesh information is read from a file,
where in the first line the total number of vertices is given, followed by the coordinates of the
vertices. Next, the total number of elements is given, followed by the vertices surrounding
this element, where the vertices are accessed by their number in the vertex-list. The first
entry in each element-line is “1”, indicating that the vertices are connected by straight lines.
The boundary of the element is a directed graph and the order of the vertices has to be such
that the interior of the element is on the left of this graph. Next the edges in the mesh
are listed, where again the first line gives the total number of edges. The entry “1” in the
first position of the following lines indicates that no curved elements are used and is followed
by the two vertices defining an edge. The information for the mesh consisting of the single
element [−1, 1]2 is given by:

4

−1 −1

1 −1

1 1

−1 1
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Figure A.2: Approximate solution for p = 16 on one element (left), for p = 2 on 64 elements
(middle) and exact solution (right)
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The next step is to compute the right hand side vector rhs = f for a given polynomial degree p
using the basis functions defined via integrated Legendre polynomials, which is specified by
“Recurrence[ ]”:

In[39]:= rhs = ComputeSourceVector[f, p, Recurrence[ ]];

The linear equation system (A.3) is solved iteratively using the (preconditioned) conjugate
gradient method with the “(P)CGMethod” command:

In[40]:= sol = PCGMethod[{1/λ&, λ&}, p, ”STIFF + MASS”, {Recurrence[], DRecurrence[]}, rhs];

The key-word “STIFF+MASS” specifies which bilinear forms are used and the correspond-
ing coefficient functions are given in the first argument. Per default the preconditioner (2.19)
is used. The computations with p = 16 on a single element need less iterations (≈ 20) than
the compuations with p = 2 on the finer mesh (≈ 50). The solutions can be visualized using

In[41]:= VisualizeFunction[sol[[1]], p, n, Recurrence[ ]]

The first component of the vector “sol” contains the solution vector u. The second argu-
ment of “VisualizeFunction” is the polynomial degree and the third argument specifies the
number of points used for plotting on each element in each direction. Figure A.2 compares
the two approximate solutions obtained with Fem2D to the exact solution.
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Figure A.3: Geometry and mesh for (A.4)

A.1.2 Example 2

As second example, consider the boundary value problem: Find u such that

−∆u = 0, in Ω,

u = 0, on Γ0,

u = 1, on Γ1,

∂u

∂n
= 0, on Γ2.

(A.4)

Here n denotes the unit outer normal vector on ∂Ω = Γ0 ∪ Γ1 ∪ Γ2 and ∂u
∂n is the directional

derivative along n. The first two boundary conditions are called Dirichlet boundary conditions
and the third one Neumann boundary condition. The domain Ω and the boundaries Γi are
as shown in Figure A.3. This problem describes a flow through the domain Ω, where the
homogeneous Neumann boundary condition on Γ2 specifies an isolation. The variational
formulation of (A.4) is obtained by multiplying the differential equation by a smooth test
function and integrating over the domain. By Green’s formula we have

−
∫

Ω
∆u v dx =

∫

Ω
∇u · ∇v dx−

∫

∂Ω

∂u

∂n
v ds.

The integral over the boundary of Ω can be split according to our splitting of ∂Ω, i.e.,

∫

∂Ω

∂u

∂n
v ds =

∫

Γ0

∂u

∂n
v ds+

∫

Γ1

∂u

∂n
v ds+

∫

Γ2

∂u

∂n
v ds = 0.

The first two integrals vanish because we choose the test functions

v ∈ {f ∈ H1(Ω) | f = 0 on Γ0 and f = 0 on Γ1},

whereas the third integral vanishes because of the zero Neumann boundary condition. Ob-
serve that for this type of problem the Neumann boundary condition enters naturally in the
variational formulation. Even if we assume a boundary condition of the form ∂u

∂n = g, g 6= 0,
then

∫

Γ2
g v ds can be included in the right hand side f . This is why Neumann boundary

conditions are often referred to as “natural boundary conditions”. The Dirichlet boundary
conditions on the other hand, have to be demanded separately, e.g., by including them in the
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Figure A.4: Gradient field of the solution to (A.4)

definition of the solution space. Hence they are also called “essential boundary conditions”.
Note, however, that this classification is problem dependent.

The gradient field of the solution to this problem is obtained by the “VisualizeGradient-
Field” command and can be plotted using the Mathematica built-in “ListPlotVectorField”
function:

In[42]:= gf = VisualizeGradientField[sol[[1]], p, n, Recurrence[], DRecurrence[]];

In[43]:= ListPlotVectorField[gf , ScaleFactor → 0.2, Frame → True, HeadWidth → 0.3,

HeadLength → 0.015]

The latter command delivers the output shown in Figure A.4.

A.2 IntJac Package

In this section we follow the notations of Chapter 6. Recall the definition of a family of cell
based basis functions defined on a triangular mesh,

φi,j(x, y) = p̂0
i

(
2x

1 − y

)(
1 − y

2

)i

p̂2i−a
j (y), i+ j ≤ p, i ≥ 2, j ≥ 1, 0 ≤ a ≤ 4,

where p̂α
n(ζ) are integrated Jacobi polynomials. We demonstrate our program that executes

the algorithm described in Section 6.3 by computing the integrals
∫

T̂

d

dx
φi,j(x, y)

d

dy
φk,l(x, y) d(x, y), (A.5)

for a = 0 and a = 1. Taking derivatives of the basis functions and decoupling the integrals
using the Duffy transformation is performed by the Prepare2DIntegrand command. First, we
consider the case a = 0:

In[44]:= ComputeMatrixEntries[Prepare2DIntegrand[phi[i, j, x, y], phi[k, l, x, y], {x, y}, {x, y}], x, y]

1. Collecting integrands depending on x
→ finished collecting (0.013998 Second)
→ 3 integrands

2. Rewriting integrated Jacobi polynomials in terms of Jacobi polynomials
Case 2(a) for phat[k, 0, x]
→ finished rewriting (0.003999 Second)
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3. Collecting integrands depending on x
→ finished collecting (0.003 Second)
→ 2 integrands

6. Evaluate integrals using Jacobi orthogonality relation
→ finished evaluating (0.002999 Second)

1. Collecting integrands depending on y
→ finished collecting (0.001 Second)
→ 3 integrands

2. Rewriting integrated Jacobi polynomials in terms of Jacobi polynomials
Case 2(b) for phat[j, 2 i, y] w[-1 + 2 i, y]
Case 2(a) for phat[j, 2 i, y] w[2 i, y]
Case 2(c) for phat[l, 2 + 2 i, y] w[2 i, y]
Case 2(a) for phat[j, 2 i, y] w[1 + 2 i, y]
→ finished rewriting (0.049992 Second)

3. Collecting integrands depending on y
→ finished collecting (0.017998 Second)
→ 5 integrands

4. Adjusting Jacobi polynomials to appearing weights functions
→ finished adjusting (0.007998 Second)

6. Evaluate 7 integrals using Jacobi orthogonality relation
→ finished evaluating (0.006999 Second)

Out[44]= −
4(j + 1)δ(0,−i + k + 1)δ(0,−j + l − 2)

(2i − 3)(2i − 1)(i + j)(2i + 2j − 1)(2i + 2j + 1)
+

4(i − 1)δ(0,−i + k + 1)δ(0,−j + l − 1)

(2i − 3)(2i − 1)(i + j − 1)(i + j)(2i + 2j − 1)

+
4(2i + j)δ(0,−i + k − 1)δ(0, l − j)

(2i − 1)(2i + 1)(i + j)(2i + 2j − 1)(2i + 2j + 1)
+

4(2i + j − 2)δ(0,−i + k + 1)δ(0, l − j)

(2i − 3)(2i − 1)(i + j − 1)(2i + 2j − 3)(2i + 2j − 1)

+
4iδ(0,−i + k − 1)δ(0,−j + l + 1)

(2i − 1)(2i + 1)(i + j − 1)(i + j)(2i + 2j − 1)
−

4(j − 1)δ(0,−i + k − 1)δ(0,−j + l + 2)

(2i − 1)(2i + 1)(i + j − 1)(2i + 2j − 3)(2i + 2j − 1)

Collecting the integrands in step 5 of the algorithm is in the implementation included in
step 4. For the evaluation of the integrals with respect to x, steps 4 and 5 do not have to be
executed. Next, we compute (A.5) for a = 1:

In[45]:= ComputeMatrixEntries[Prepare2DIntegrand[phi[i, j, x, y], phi[k, l, x, y], {x, y}, {x, y}], x, y]

1. Collecting integrands depending on x
→ finished collecting (0.005999 Second)
→ 3 integrands

2. Rewriting integrated Jacobi polynomials in terms of Jacobi polynomials
Case 2(a) for phat[k, 0, x]
→ finished rewriting (0.002 Second)

3. Collecting integrands depending on x
→ finished collecting (0.002 Second)
→ 2 integrands

6. Evaluate integrals using Jacobi orthogonality relation
→ finished evaluating (0.001 Second)

1. Collecting integrands depending on y
→ finished collecting (0. Second)
→ 3 integrands

2. Rewriting integrated Jacobi polynomials in terms of Jacobi polynomials
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Case 2(a) for phat[j, -1 + 2 i, y] w[-1 + 2 i, y]
Case 2(a) for phat[j, -1 + 2 i, y] w[2 i, y]
Case 2(b) for phat[l, 1 + 2 i, y] w[2 i, y]
Case 2(a) for phat[j, -1 + 2 i, y] w[1 + 2 i, y]
→ finished rewriting (0.050993 Second)

3. Collecting integrands depending on y
→ finished collecting (0.010999 Second)
→ 12 integrands

4. Adjusting Jacobi polynomials to appearing weights functions
→ finished adjusting (0.028995 Second)

6. Evaluate 22 integrals using Jacobi orthogonality relation
→ finished evaluating (0.013998 Second)

Out[45]=
(j + 1)(j + 2)(2i + j − 1)δ(0,−i + k + 1)δ(0,−j + l − 3)

(2i − 3)(2i − 1)(i + j − 1)(i + j)(i + j + 1)(2i + 2j − 1)(2i + 2j + 1)

−
2(j + 1)

`

8i2 + 6ji − 16i + 2j2 − 5j + 6
´

δ(0,−i + k + 1)δ(0,−j + l − 2)

(2i − 3)(2i − 1)(i + j − 1)(i + j)(2i + 2j − 3)(2i + 2j − 1)(2i + 2j + 1)

−
j(2i + j − 1)(2i + j)δ(0,−i + k − 1)δ(0,−j + l − 1)

(2i − 1)(2i + 1)(i + j − 1)(i + j)(i + j + 1)(2i + 2j − 1)(2i + 2j + 1)

+
2(i − 2)

`

4i2 + 2ji − 8i + j2 − 2j + 3
´

δ(0,−i + k + 1)δ(0,−j + l − 1)

(2i − 3)(2i − 1)(i + j − 2)(i + j − 1)(i + j)(2i + 2j − 3)(2i + 2j − 1)

+
2(2i + j − 1)

`

4i2 + 2ji − 2i + 2j2 − j − 2
´

δ(0,−i + k − 1)δ(0, l − j)

(2i − 1)(2i + 1)(i + j − 1)(i + j)(2i + 2j − 3)(2i + 2j − 1)(2i + 2j + 1)

+
2(2i + j − 3)

`

4i2 + 2ji − 10i + 2j2 − 3j + 4
´

δ(0,−i + k + 1)δ(0, l − j)

(2i − 3)(2i − 1)(i + j − 2)(i + j − 1)(2i + 2j − 5)(2i + 2j − 3)(2i + 2j − 1)

+
2(i − 1)

`

4i2 + 2ji − 2i + j2 − 2j
´

δ(0,−i + k − 1)δ(0,−j + l + 1)

(2i − 1)(2i + 1)(i + j − 2)(i + j − 1)(i + j)(2i + 2j − 3)(2i + 2j − 1)

−
(j − 1)(2i + j − 4)(2i + j − 3)δ(0,−i + k + 1)δ(0,−j + l + 1)

(2i − 3)(2i − 1)(i + j − 3)(i + j − 2)(i + j − 1)(2i + 2j − 5)(2i + 2j − 3)

−
2(j − 1)

`

8i2 + 6ji − 12i + 2j2 − 7j + 4
´

δ(0,−i + k − 1)δ(0,−j + l + 2)

(2i − 1)(2i + 1)(i + j − 2)(i + j − 1)(2i + 2j − 5)(2i + 2j − 3)(2i + 2j − 1)

+
(j − 2)(j − 1)(2i + j − 2)δ(0,−i + k − 1)δ(0,−j + l + 3)

(2i − 1)(2i + 1)(i + j − 3)(i + j − 2)(i + j − 1)(2i + 2j − 5)(2i + 2j − 3)

In this computation we observe that case 2(c) never occurs and that the rewriting in step 4
introduces more terms compared to the previous example. As we remarked in Section 6.3, in
the three dimensional case, e.g., for a = b = 0 in step 4 of the algorithm a further rewriting is
needed that reduces Jacobi three term recurrences to zero. This correction step is necessary
for the integration with respect to y of the integral

∫

T̂

d

dz
φi,j,k(x, y, z)

d

dz
φl,m,n(x, y, z) d(x, y, z).

The output of our program for this evaluation, showing only the main steps, reads as:

In[46]:= int1 = xComputeMatrixEntries[Prepare3DIntegrand[phi[i, j, k, x, y, z],

phi[l, m, n, x, y, z], {x, y, z}, {z, z}], x, y, z];

In[47]:= int2 = yComputeMatrixEntries[int1, y, z];

1. Collecting integrands depending on y
→ finished collecting (7.32046 Second)
→ 64 integrands

2. Rewriting integrated Jacobi polynomials in terms of Jacobi polynomials
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→ finished rewriting (0.432027 Second)
3. Collecting integrands depending on y

→ finished collecting (0.772048 Second)
→ 58 integrands

4. Adjusting Jacobi polynomials to appearing weights functions
reducing terms using the Jacobi three term recurrence (1.33608 Second)
→ finished adjusting (3.98025 Second)

6. Evaluate, 70 integrals using Jacobi orthogonality relation
→ finished evaluating (2.19614 Second)



Notation and Symbols

N = {0, 1, 2, . . .} - The set of natural numbers
Z,Q,R - Sets of integers, rational, real numbers
Rd - Set of real vectors x = (x1, x2, . . . , xd)

T

u - Vector u ∈ Rd

Ω - Bounded domain (open and connected subset of Rd)
∂Ω - Boundary of the domain Ω
K[x] - Ring of polynomials in x with coefficients in K
K[[x]] - Ring of formal power series
deg p - Total degree of a polynomial p
degx p - Degree of a polynomial p w.r.t. the variable x
(a)n - Pochhammer symbol or rising factorial,

(a)n = a(a+ 1) · . . . · (a+ n− 1)
an - Falling factorial,

an = a(a− 1) · . . . · (a− n+ 1)

pFq

( a1 . . . ap

b1 . . . bq
; z
)

- The generalized hypergeometric function,

pFq

( a1 . . . ap

b1 . . . bq
; z
)

=
∑

n≥0
(a1)n·...·(ap)n

(b1)n·...·(bq)n

zn

n!

F (a, b, c; z) - The hypergeometric 2F1-function,

F (a, b, c; z) = 2F1

( a b
c

; z
)

Hn - Harmonic number, Hn =
∑n

j=1
1
j

P p(T ), T simplex - Space of polynomial functions of total degree p defined
over T

P p(Q), Q quadrilateral
or hexahedron - Space of polynmomial functions of maximal degree p

defined over Q
P p1,p2(Q), Q quadrilateral - Space of polynomials p with degxi

p ≤ pi defined over Q

P
(α,β)
n (x), Pn(x), Cλ

n(x) - The families of Jacobi, Legendre and Gegenbauer
polynomials, respectively

Tn(x), Un(x) - The families of Chebyshev polynomials of the first
and second kind, respectively

Ln(x) - nth integrated Legendre polynomial
p̂α

n(x) - nth integrated Jacobi polynomial

pα
n(x) - Jacobi polynomial P

(α,0)
n (x)
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wα,β(x) =
(

1−x
2

)α(1+x
2

)β
- Weight function associated to Jacobi polynomials,

wα(x) = wα,0(x)
∆n - The forward difference operator in n
Sn - The forward shift operator in n, Snf(n) = f(n+ 1)

∇ - Gradient operator, ∇f(x) =
(∂f(x)

∂x1
, . . . , ∂f(x)

∂xd

)
, x ∈ Rd

div - Divergence operator, div f(x) =
∑d

i=1
∂fi(x)
∂xi

for a vector

valued function f and x ∈ Rd

∆ - Laplace operator, ∆f(x) =
∑d

i=1
∂2f(x)

∂x2
i

C∞
0 (Ω) - The space of infinitely differentiable functions with

compact support on Ω
Lp(Ω) - Lp(Ω) = {f : Ω → R |

∫

Ω |f(x)|p dx <∞}
‖ · ‖Lp(Ω) - ‖f‖p

Lp(Ω) =
∫

Ω |f(x)|p dx
(·, ·)0 = (·, ·)L2(Ω) - (f, g)0 = (f, g)L2(Ω) =

∫

Ω f(x)g(x) dx

‖ · ‖L2(Ω), ‖ · ‖0 - ‖f‖2
L2(Ω) = ‖f‖2

0 = (f, f)0

H1(Ω) - H1(Ω) = {f ∈ L2(Ω) | ∇f ∈ (L2(Ω))d}, Ω ⊂ Rd

‖ · ‖H1(Ω), ‖ · ‖1 - ‖f‖2
H1(Ω) = ‖f‖2

1 = (f, f)0 + (∇f,∇f)0

(·, ·)H1(Ω), (·, ·)1 - (f, g)H1(Ω) = (f, g)1 = (f, g)0 + (∇f,∇g)0
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Werke, 3:123–162, 1812.

[42] A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal.,
10:345–363, 1973. Collection of articles dedicated to the memory of George E. Forsythe.

[43] S. Gerhold and M. Kauers. A Procedure for Proving Special Function Inequalities In-
volving a Discrete Parameter. In Proceedings of ISSAC ’05, pages 156–162. ACM Press,
2005.
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Christoffel-Darboux formula, 25, 31, 91
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107, 108
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falling factorial, 62
Fasenmyer’s algorithm, 29
Fejér kernel, 76
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34, 39
FindStructureSet (MultiSum command), 39
finite element basis functions, 11–14
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Gegenbauer polynomial, 35
generating function, 20, 23
GeneratingFunctions, 27, 44, 49

GuessRE (command), 27, 49, 77, 84, 85
RECauchy (command), 27, 48
REHadamard (command), 27
REPlus (command), 27, 44, 45, 49, 50
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h-method, 11

Hadamard product, 21
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hp-method, 11
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weakly differentiable, 6
weight function, 23, 24, 57–59, 61, 63, 75, 76
Where (SumCracker option), 38

Zeilberger’s algorithm, 28, 35, 37, 40, 44, 48
ZeroSequenceQ (SumCracker command), 30,

77, 81, 85
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Ich erkläre an Eides statt, daß ich die vorliegende Dissertation selbstständig und ohne fremde
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