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Abstract—We present a novel approach to the runtime 

monitoring of network traffic where from a high-level 

specification of security properties an executable monitor is 

generated; this monitor observes the network traffic in real 

time for violation of the specified properties in order to report 

respectively prevent these violations. The specification 

formalism is purely based on the classical notions of predicate 

logic and set theory with the corresponding level of 

expressiveness; compared to other more restricted formalisms 

it has thus much stronger capabilities to describe properties of 

interest. Its high level of flexibility makes our approach also 

applicable to other problem areas and engineering domains 

such as process control where it is important to guarantee that 

sequences of events conform to a particular protocol. 
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I. INTRODUCTION  

Today the security of computer networks is primarily 
established by the application of firewalls. Originating from 
simple packet filters that inspect individual packets on the 
network layer and having further evolved to stateful filters 
that operate on the connection layer and take into account the 
connection to which a packet belongs, firewalls nowadays 
also operate on the application layer and protect access to 
resources and services by inspecting the contents of network 
traffic. While thus their inspection capabilities have 
substantially increased, their language in which to describe 
legal network traffic has not changed so much: in essence a 

specification still consists of a set of filtering rules where 
each rule, based on the header information of a package, the 
connection to which it belongs, the protocol that is used for 
the connection, and (if residing on a host) the kind of process 
from/to which the connection is established, decides whether 
to allow a package/connection request or not. The 
information on which the decision is based is therefore quite 
limited and predetermined by the firewall. 

The problem of monitoring network traffic, however, 
may also be seen in the broader context of runtime 
verification. Here the core idea is to specify in some 
formalism the intended behavior of a system and to 
automatically generate from this specification an executable 
monitor that observes the actual execution of the system and 
reports violations of the specification. In the case of network 
monitoring, the observed system may consist of one or more 
streams of messages captured at some network interface(s) 
and the specified behavior may describe various security 
properties that the message streams are expected to satisfy. 
Depending on the formalism, the specified behavior may 
take into account not only a single message but the 
relationship of this message to all the other messages that 
have been observed so far and thus describe complex 
properties that are beyond the realm of current firewalls. 

Most attempts to runtime monitoring are based on 
specialized formalisms such as linear temporal logic 
[2],[12],[1], rule systems on sets of atomic formulas [3], 
regular expressions, context-free grammars, and associated 
automata models [6], or the event calculus [16]. While the 
advantage of these formalisms lies in their efficient 
operational interpretation as executable monitors, their level 
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of expressiveness is still quite limited; moreover their 
application often requires special formal expertise which 
may not be readily available. 

In this paper, we present the LogicGuard stream 
specification language [15] and its associated monitoring 
system which attempts to overcome these limitations by 
applying a formalism that is rich and well known, namely 
classical predicate logic and set theory (more specifically, 
the logical foundation of LogicGuard is monadic second 
order logic [5][7]). Properties are expressed by quantified 
formulas interpreted over sequences of messages; the 
quantified variable denotes a position in the sequence. Using 
the ordering of stream positions and nested quantification, 
complex properties can thus be formulated. Furthermore, to 
raise the level of abstraction, higher-level streams may be 
constructed from lower-level streams by a notation 
analogous to classical set builders. 

Due to the expressiveness and flexibility of the 
specification language, our approach is not limited to 
monitoring security violations in a network. Both the 
specification language and its implementation have no 
“built-in” knowledge of the origin and the nature of the 
streams that are monitored; from their point of view, streams 
are just abstract sequences of “events” that are triggered by 
external sources; thus our approach can be applied to 
monitoring any kind of system that exhibits its behavior by 
triggering observable events. The runtime system provides 
interfaces to various event sources; new interfaces can be 
easily added. Furthermore, all knowledge about the events is 
confined to user-defined functions and predicates that are 
just declared in a specification; their actual definitions (in the 
form of executable code) is dynamically linked to the 
runtime system; new kinds of events can be thus added at 
any time. The language and its implementation should be 
thus also applicable to any kind of application domain where 
sequences of events shall conform to some “expectations” 
that are subject to a formal description; we thus see a wide 
range of applicability e.g. in the area of process control. 

The implementation of the LogicGuard language is based 
on Microsoft .NET technology and the programming 
languages C# and F#: a translator generates from a 
specification an executable monitor [9] and a static analysis 
determines from the specification whether the generated 
monitor only requires a finite number of past messages to be 
preserved in its local buffers [13],[10]; if yes, the monitor 
can operate with a bounded amount of stream history. 

The remainder of this paper is organized as follows: in 
Section II we describe an introductory application that 
depicts some features of our approach in the particular 
application context of process control. In Section III we 
outline the major elements of the stream monitoring 
specification language based on which we sketch in Section 
IV more application examples. In Section V we give an 
overview on the implementation of the corresponding 
monitoring system. In Section VI we present our conclusions 
and discuss further work. From the home page of our 
research project [11] various reports can be derived that 
complement this presentation [14]. 

II. AN APPLICATION SCENARIO 

Fig. 1 depicts the prototypical architecture of the 
corporate network of an industrial process plant. For 
security reasons the network is decomposed into multiple 
subnetworks that are separated by firewalls. The “front-
firewall” protects the corporate network from the “external 
network” (the Internet) that is outside of the control of the 
corporation. Behind the front firewall there is the “perimeter 
network” of those hosts that are visible to the external 
network (the company’s Web server and other published 
servers). The other company networks such as the 
“manufacturing operations network” are separated from the 
perimeter network by a “back-firewall” that prevents any 
access from the external network. 

 One of the company networks is the “production 
network” that encompasses the core facilities of the plant. 
Within this network there is the “process control network” 
to which the hosts of the “supervisory control and data 
acquisition” (SCADA) system are attached that operate and 
monitor the facilities [4]. Some of these hosts are clients that 
communicate via the process control network to servers that 
are linked via the “control system network” to 
programmable logic controllers (PLCs); these PLCs drive 
the actual machinery of the plant. 

In such a corporate network the LogicGuard system may 
be applied on the front-firewall (respectively on any host 
connected to the perimeter network) in order to monitor the 
traffic flowing from/to the external network and to report 
suspicious activities that may represent security violations. 
However, while this is indeed a possible application of the 
system, we demonstrate the versatility of our approach by 
an application scenario where the system is applied on the 
back-firewall (respectively on any host connected to the 
process control network) in order to monitor the activities of 
the plant as reported by the SCADA system; the goal is to 
detect activities of the production process that deviate from 
specific norms and that may thus represent safety violations. 

Fig. 1: The network of an industrial process plant. 
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Our demonstration scenario is as follows: we assume 
that the PLCs operate a set of valves for which the SCADA 
system reports the following kinds of events: 

 Open: a certain valve has been opened. 

 Close: a certain valve has been closed. 

 Flow: a certain volume of fluid has passed a valve. 

 Modify: the flow rate of a valve has been modified. 

This scenario can be modelled by the following declarations 
in the LogicGuard specification language: 

  type Event; 

  stream<Event> PCN; 
  logical Open(Event); 
  logical Close(Event); 

  logical Flow(Event); 

  logical Modify(Event); 

The first two declarations introduce an abstract type Event 
of “events” and a stream PCN of such events. The 
subsequent four declarations introduce unary predicates that 
are true if and only if a given event is of the indicated type. 
Furthermore, a declaration 

  logical Same(Event,Event); 

introduces a binary predicate Same that is true if two given 
events refer to the same valve. The concrete representation 
of the type Event, the source of the stream PCN, and the 
definitions of the various predicates are not part of the 
specification: the runtime system maps Event to some .NET 
type and provides an interface to the process control 
network that delivers a sequence of objects of this type 
under the stream name PCN; furthermore, the runtime 
system is dynamically linked to external .NET code that 
provides an executable implementation of the predicates. 

In our first application scenario, we would like to check that 
every valve is closed not later than 100 time units after it 
has been opened. This is expressed by the following 
definition of a monitor: 

  monitor<PCN> Closed = 
    monitor<PCN> x: Open(@x) => 
      exists<PCN> y with x<_<=#x+100 : 

        Same(@x,@y) && Close(@y); 

The declaration  monitor<PCN> Closed introduces 
a monitor Closed that is interpreted over the stream PCN; 
this stream is conceptually an infinite sequence 𝑒0, 𝑒1, 𝑒2, … 
of events that occur at stream positions 0,1,2, … at some 
times 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯. 

The definition of this monitor is provided by the 

expression monitor<PCN> x: … which introduces a 
locally bound variable x that denotes a position in stream 
PCN. The monitor checks whether for every value 0,1,2, … 
for x the formula denoted by the monitor body … is true; 
every position for which the formula is false is reported as a 
“violation” of the specified property. In above definition, 

the formula body has shape Open(@x)=>… where @x 

denotes the event in stream PCN at position x and => 
denotes logical implication. Thus only those positions are 
considered that denote Open events; violation reports thus 

indicate the positions of those events where valves have 
been opened that have not been closed in time. 

The core formula exists<PCN> y … represents 
existential quantification: it asks for a position y in stream 
PCN that satisfies a certain property denoted by the body 
…; the formula is true if and only if there exists such a 
position. For every position x denoting an Open event, the 
monitor thus tries to find some position y that satisfies this 
property; if such a position can be found, the position x does 
not report a represent a violation of the specification; if the 
monitor can determine that no such position y exists, x is 
reported as a violation.  

In more detail, the core formula has shape 

  exists<PCN> y …: 

  Same(@x,@y) && Close(@y) 

where && denotes logical conjunction. This formula asks for 
a position y that denotes a Close event that refers to the 
same valve as the one in the Open event at position x. The 
monitor thus tries to find for every event that opens a valve 
another event that closes the same valve.  

Furthermore, since the core formula has the clause 

  exists<PCN> y with x<_<=#x+100 :… 

position y must be greater than x (the token _ represents the 

variable y introduced by the quantifier and < represents the 
strict ordering of stream positions); the event at position y 
must occur at a time that is not more than 100 time units 
after the time at which the event at position x has occurred 

(the token <=# denotes the non-strict time ordering and the 

phrase x+100 denotes the time of the event at position x 
plus 100 time units). Thus, if 101 time units after the event 
at position x no suitable position y has been observed, the 
monitor can report x as a violating position. In other words, 
if a valve is not closed 101 time units after it has been 
opened, this fact can be reported as a violation of the 
specified property. 

By this specification, the execution of the monitor at 
runtime essentially proceeds as follows: the monitor 
maintains a pool of positions that may represent violations 
of the specification; every such position is accompanied by 
a formula (actually the suspended state of its evaluation) 
that the position has to satisfy; whenever another Open 
event is observed on PCN, the corresponding position is 
added to the pool together with the initial state of the 

evaluation of the exists formula. For any event observed 
on PCN, every formula in the pool is further evaluated; if by 
this new observation the value of the formula can be 
decided, the corresponding position is removed from the 
pool and, if the formula has become false, reported as a 
violation; if the truth of the formula cannot be decided yet, 
the evaluation of the formula is suspended and the position 
and the state of the evaluation are returned to the pool. 

In Section IV we will present more monitoring examples 
related to this scenario; more details on the implementation 
will be provided by Section V. Before, however, we will 
discuss the specification language in greater depth. 



III. THE LANGUAGE 

Fig. 2 depicts an excerpt of the grammar of the 
LogicGuard stream specification language (in the syntax of 
the parser generator ANTLR); the full grammar is 
documented in [15].  In a nutshell, a specification consists 
of a sequence of the following elements: 

 External streams: these are the “real” streams from 
which messages are fed into the monitor; the nature 
and origin of these streams are not part of the 
specification but are determined by the runtime 
system monitoring the specification. 

 Internal streams: these are “virtual” streams that 
are constructed from other (external or internal) 
streams in order to raise the level of abstraction of 
the specification. 

 Monitors: these are descriptions of properties that 
certain (external or internal) streams shall satisfy, 
separately or in combination. 

The construction of internal streams and monitors may 
depend on user-defined functions and predicates. The 
language is statically typed: a specification may declare 
uninterpreted type names and external functions and 
predicates on these types; streams are typed with respect to 

the values they carry; language terms are typed with respect 
to the values they denote. Furthermore, stream positions are 
typed with respect to the identities to the streams to which 
they refer; thus dereferencing a position variable pid by the 
term @pid uniquely denotes a stream and the value carried 
by a particular message in that stream; correspondingly the 
term #pid denotes the (wall clock) time at which this 
message has arrived. 

A. Formulas 

The core of the specification language are formulas in a 
three-valued logic (true, false, undefined); in this logic we 
have the usual propositional connectives for negation, 
conjunction, disjunction, implication, and equivalence 

(denoted by the operators !, &&, ||, =>, and <=>). The 

binary connectives may be annotated with the tags [seq] 

or [par] in order to indicate whether the evaluation of the 
first formula must terminate before the evaluation of the 
second formula can start or whether “parallel” formula 
evaluation is allowed; the latter is the default since 
monitoring becomes more efficient if the evaluation of 
formulas is delayed as little as possible (see also Section IV 
for more details). 

 Fig. 2.  Grammar of the LogicGuard language (excerpt). 

specification: (declaration ';')* ; 

 

declaration: … 

| 'stream' '<' typeid '>' streamid 

| 'stream' '<' typeid '>' streamid '=' term 

| 'monitor' '<' (streamid (',' streamid)* )? '>' monitorid '=' monitor ; 

 

monitor: formula | 'monitor' variable monitor ; 

 

formula: '(' formula ')' | 'true' | 'false' | 'logical' '?' | 'defined' formula | 'defined' term  

| logicalid | logicalid '(' term (','term)* )? ')' | '!' formula  

| formula '&&' ( '[' seq ']' )? formula | formula '||' ( '[' seq ']' )? formula  

| formula '=>' ( '[' seq ']' )? formula | formula '<=>' ( '[' seq ']' )? formula  

| 'if' ( '[' seq ']' )? formula 'then' formula 'else' formula  

| 'forall' variable formula | 'exists' variable formula | binder ':' formula ; 

 

term: '(' term ')' | 'value' '<' typeid '>' '?'  

| 'stream' '<' typeid '>' '?' | 'stream' '<' typeid '>' 'empty'  

| 'position' '<' streamid '>' '?' | 'zero' '<' streamid '>'  

| 'old' | 'new' | ident | ident '(' (term (',' term)* )? ')'  

| ( streamid )? '@' term | ( streamid )? '#' term  

| 'if' ( '[' seq ']' )? formula 'then' term 'else' term  

| 'min' variable formula | 'max' variable formula | 'num' variable formula  

| 'value' '[' seq2 ',' term ',' valueid ']' variable term  

| 'stream' '[' seq ']' variable term | 'stream' '[' seq2 ',' term ',' valueid ']' variable term  

| 'merge' '[' seq ']' variable term | binder ':' term ; 

 

seq: 'seq' | 'par' ; 

seq2: 'seq' | 'par' | 'strict' ; 

 

variable: '<' streamid '>' positionid 

( 'with' bound ( 'and' bound )* )? 

('satisfying' formula | binder )* 

( ('until' | 'while' ) formula )? ':' ; 

 

binder: 'logical' logicalid '=' formula  

| 'position' '<' streamid '>' positionid '=' term  

| 'value' '<' typeid '>' valueid '=' term ; 

… 
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However the most important formulas are the predicate 

logic formulas forall variable formula and exists 
variable formula which denote universal respectively 
existential quantification; the clause variable introduces an 
identifier id which denotes a position in some stream S; by 
the body formula the quantified formula can describe the 
values carried by a number of messages in S. 

The positions assigned to id may be constrained by 
variable in multiple ways, namely 

 by a clause _<pos (or _<=pos) which indicates 
that id must occur before (respectively not 
after) a particular position pos in the same 
stream; 

 by a clause pos<_ (or pos<_) which indicates 
that id must occur after (respectively not 
before) a particular position pos in the same 
stream; 

 by a clause _<#pos±T (or _<=pos±T) which 
indicates that the message at position id must 
occur at a time before (respectively not after) T 
time units plus/minus the time of the message 
at position pos (where pos may also refer to a 
position in another stream); 

 by a corresponding clause pos±T<#_ (or 
pos±T<=id) that constrains the time of the 
message at position id from below; 

 by a clause until formula which indicates 
that the quantification range terminates with the 
first position for which formula is true; 

 by a clause while formula which indicates the 
quantification range terminates with the last 
position for which formula is true 

as well as by combinations of these. Formulas represent the 
core of stream monitors; e.g. the monitor M defined as 

  monitor<S> M = 

    monitor<S> x : P(@x) => 

      forall<S> y  

        with x-100 <= _ until T(@y) : 

        Q(@x,@y) 

asks, for every message at some position x in stream S that 
satisfies property P, whether property Q is true for every 
message at some position y in S that occurs not earlier than 
100 time units before x; for every message at x the 
monitoring stops with the first message at y for which 
property T  holds. This relationship is illustrated in Fig. 3. 

B. Terms 

The formula language embeds a term language that 
allows to extract (components from) the values carried by 
stream messages, to construct new values, and to combine 
values; since message values have uninterpreted types, the 
extraction and composition is ultimately based on external 
functions declared in the specification. The main role of the 
term language is to coordinate the composition of values 
that have emerged from messages that have arrived at 
different times respectively stream positions. 

The core of the term language is represented by a 

number of quantified phrases such as min variable formula, 

max variable formula and num variable formula which 
denote the minimum/maximum position for which a 
formula is true as well as the number of positions for which 
this is the case. A more general kind of composition is 
denoted by the term pattern 

value [s, b, f] variable term 

which evaluates for all assignments of positions to the 
variable introduced by variable the denoted term yielding 
together with the base value b a non-empty sequence of 
values; by application of a binary function f these values are 
gradually combined to a single value that denotes the result 
of the term; the tag s indicates whether the evaluation must 
proceed in sequence or whether (because f is a commutative 
and associative operation) the order of combinations may be 
arbitrary. For instance, the term pattern 

  value[par,zero,add]<S> x … : f(@x) 

describes the sum of  the base value zero and of a bag of 
integers extracted from n messages in stream S (assuming 

that the user-defined function add denotes addition and 

zero denotes 0); its result is thus 

𝑓(𝑥1) + ⋯ + 𝑓(𝑥𝑛) 

for some permutation 𝑥1, … , 𝑥𝑛 of these messages. 
Quantified terms can also denote streams, e.g. 

  stream<S> x … : f(@x) 

denotes the stream 𝑓(𝑥1), 𝑓(𝑥2), … constructed from the 
messages 𝑥1, 𝑥2, … on stream S; the notation for stream 
construction mimics the classical set builder notation 
{𝑓(𝑥) | 𝑥 ∈ 𝑆}. The term pattern 

  stream[par,zero,add]<S> x … : f(@x) 

constructs the stream of values 𝑠1, 𝑠2, … where 𝑠𝑖 = 𝑓(𝑥1) +
⋯ + 𝑓(𝑥𝑖); i.e., its messages denote the partial results of the 

summation denoted by the value pattern shown above (the 
partial results are delivered in a non-deterministic order but 

Fig. 4. Constructing a virtual stream. 

Fig. 3. Monitoring a stream. 



using the keyword seq instead of par would make it 
deterministic by adding the elements in sequence).  

Terms represent the core of the construction of virtual 
streams which allows to considerably raise the level of 
abstraction; e.g. the virtual stream T defined as  

stream<M> T = 

  stream<S> x satisfying P(@x) : 

    value[s,b,f]<S> 

      y with x <= _ until Q(@y): @y 

consists of a sequence of values 𝑣1, 𝑣2, … of type M where 
each 𝑣𝑖 is constructed from some value 𝑥𝑗 on stream S that 

satisfies predicate 𝑃: the function f combines in 𝑣𝑖 the 
values 𝑏, 𝑥𝑗 , 𝑥𝑗+1, … , 𝑥𝑗+𝑛 where 𝑥𝑗+𝑛 is the first message for 

which property 𝑄 holds. This relationship between the 
original messages in S and the constructed messages in T is 
also illustrated in Fig. 4. 

IV. FURTHER APPLICATION EXAMPLES 

We are now going to illustrate the language features 

presented in Section III by some more examples of monitors 

for the application scenario described in Section II. 

A. Checking Flow Rate Modifications 

First we would like to check that for no valve the 

number of flow rate modifications exceeds a certain bound 

before the valve is closed. For this purpose, we introduce 

another predicate 

logical MaxModified(number); 

which is true if a given number of events (denoted by the 

predefined type number) does not exceed a certain 

threshold. Then we can define the corresponding monitor as 

monitor<PCN> Modified = 

  monitor<PCN> x: Open(@x) => 
    forall<PCN> y with x < _  
      satisfying Same(@x,@y) 

      until Close(@y) : Modify(@y) => 
        value<number> n =  
          num<PCN> z with x < _ <= y : 

            Same(@x,@z)&&Modify(@z) : 
        MaxModified(n); 

For every valve that is opened as indicated by an Open 

event at some position x in the PCN stream, this monitor 

checks every subsequent position y of an event that refers to 

the same valve until a Close event indicates that the valve 

has been closed. If a Modify event at position y indicates a 

flow rate modification of this valve, the monitor determines 

the number n of such modifications that have occurred since 

the valve has been opened (i.e. the number of Modify events 

that have occurred at some position z after x but not later 

than y). If this number exceeds the allowed threshold as 

indicated by the predicate MaxModified, the position x at 

which the valve has been opened is reported as violating the 

specification. This specification thus illustrates the 

capability to deal with numerical properties that refer to a 

certain number of events. 

B. Checking Flow Amounts 

More general computations are required in our next 

example where we would like to check that for no valve the 

total amount of fluid that has passed the valve does not 

exceed a certain threshold. For this purpose we introduce by 

the declarations 

type Flow; 

value<Flow> Zero(); 

value<Flow> Add(Flow,Flow); 

logical MaxFlow(Flow); 

an abstract datatype Flow with a constant Zero and a binary 

operation Add for the computation of flow amounts; the 

predicate MaxFlow is true if the amount does not exceed a 

certain threshold. Furthermore the declaration 

value<Flow> FlowValue(Event); 

introduces a function FlowValue that extracts from a Flow 

event the amount of fluid reported by that event. 

With these preliminaries we can now define the 

corresponding monitor as 

monitor<PCN> Flowed = 

  monitor<PCN> x: Open(@x) => 

    forall<PCN> y with x < _  
      satisfying Same(@x,@y) 

      until Close(@y) : Flow(@y) => 

        value<Flow> f =  

          value[seq,Zero(),Add]<PCN> z  

            with x < _ <= y satisfying 

              Same(@x,@z)&&Flow(@z): 

                FlowValue(@z) 

        MaxFlow(f); 

The definition of this monitor has the same shape as the 

previously introduced monitor Modified; the core difference 

is the computation of the flow value f rather than the event 

number n: For this computation we take into account all 

positions z of Flow events after the position x of the Open 

event up to the position y of the currently considered Flow 

event. From all these positions we extract the amount of 

liquid reported by the function FlowValue; by adding all 

these values with the help of the function Add starting with 

the base value Zero, we determine the total amount f of fluid 

that has passed the valve up to now and check whether it 

satisfies the threshold condition indicated by the predicate 

MaxFlow. 

C. Checking Flow Amounts (Revisited) 

While the previous examples have demonstrated the 

abilities of the specification language to handle event 

numbers and arbitrary computations with values derived 

from events, more complex specifications may become 

cumbersome to write and difficult to understand, if they 

have to be expressed solely in terms of the original event 

stream. We thus present an alternative solution for checking 

flow amounts where the level of abstraction of the monitor 
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is raised by transforming the raw event stream into a virtual 

stream that carries the actual values of interest for the 

monitor. The core idea is to construct a pipeline 

PCN → F → Flowed2 

where  

 the original event stream PCN is transformed to a 

stream F of “flow sums” that report the total 

amount of flow that has passed a valve so far, and 

 the monitor Flowed2 checks whether each flow 

sum report conforms to the required threshold. 

The first step is achieved by the virtual stream definition 

stream<Flow> F = 
  merge[par]<PCN> x 

      satisfying Open(@x): 
    stream[par,Zero(),Add]<PCN> z 
        with x < _ satisfying  

        Same(@x,@z)&& 
        (Flow(@z)||Close(@z)) 
        while !Close(@x,@z) : 

      FlowValue(@z); 

By the declaration 

stream<Flow> F = 
  merge[par]<PCN> x 

    satisfying Open(@x): … 

 

for every position x indicating an Open event a sub-stream 

of flow reports is generated; all sub-streams are merged to 

the result stream F in a “parallel” fashion, i.e., whenever a 

flow report is delivered by the sub-stream it is immediately 

forwarded to F which thus collects the flow reports of all 

open valves.  

Each sub-stream is constructed by the term 

stream[par,Zero(),Add]<PCN> z 

    with x < _ satisfying  
    Same(@x,@z)&&(Flow(@z)||Close(@z)) 
    while !Close(@x,@z) : 

  FlowValue(@z); 

which essentially proceeds like a corresponding term 

value[par,Zero(),Add]<PCN> z … 

by extracting and adding the flow amount reported by 

FlowValue from every Flow event that occurs after position 

x and refers to the same valve until the  Close event for that 

valve is observed. However, in contrast to the value term 

which delivers a result only when all additions have 

ultimately been performed, the stream term delivers after 

every addition the partial result computed so far as an 

element of the result stream. Above stream thus delivers 

after every Flow event the total amount of flow reported so 

far for the valve whose opening was indicated by an Open 

event at position x; the merged stream F collects the reports 

for all valves. 

With the help of the virtual stream F the task of the 

monitor becomes very simple; it can be expressed by the 

short definition 

monitor<F> Flowed2 = 

  monitor<F> x : 

    MaxFlow(@x); 

which operates on the virtual stream F by processing every 

flow report and checking whether it confirms to the 

threshold as indicated by the predicate MaxFlow. 

The use of virtual streams may thus considerably 

simplify the definitions of monitors. It should be noted that 

the same virtual stream may be processed by multiple 

monitors and that the construction of virtual streams may be 

staged, i.e., from one virtual stream another virtual stream 

may be constructed. 

D. Checking Manufacturing Requests 

Our final example demonstrates that a monitor may also 

correlate multiple streams from different sources. We 

assume that the monitor is deployed on the back-firewall 

and has thus access not only to the process control network 

(PCN) but also to the manufacturing operations network 

(MON). The goal is to check that valve opening requests 

from the MON lead in time to an opening of the 

corresponding valve in the PCN. The additional declarations 

type Request; 

stream<Request> MON; 

logical Same(Request,Event); 

introduce an abstract datatype Request, a stream MON of 

such requests and a binary predicate Same that is true, if and 

only if the MON request and the PCN event refer to the 

same valve. The monitor 

monitor<MON> Requested = 

  monitor<MON> x: 

    exists<PCN> y with  

      x <=# _ <=# x+100: 

        Same(@x,@y) && Open(@y) 

checks for every Request observed in the stream MON at 

some position x whether it observes within 100 time units 

also an event in the stream PCN that honors this request, 

i.e., an Open event that refers to the same valve. If no such 

event is observed, the position x in MON is reported as 

violating the specification. 

As this example demonstrates, also positions from 

different streams may be related by the absolute times 

(operator <=#) at which their corresponding events occur. 

However, since the positions refer to different streams, they 

must not be related by their relative order (operator <=). 

Actually, since stream positions are statically typed with 

respect to the streams to which they refer, any such attempt 

is reported as an error by the type checker and the 

subsequent translation of the specification to an executable 

monitor is refused. 



V. THE IMPLEMENTATION 

As a first step towards an implementation of the 
specification language described in Section III  we have 
defined (for an early version of language) a formal 
denotational semantics [8] and also formalized the 
translation of specifications described into this language into 
executable monitors that reports violations of the specified 
properties [9]. 

Based on this preparatory work we have implemented on 
top of Microsoft’s .NET framework using the object-
oriented programming language C# and the functional 
language F# a prototype of the LogicGuard language with 
the following components: 

 A parser (whose C# code was produced from a 
BNF grammar with the help of the parser generator 
ANTLR) processes the text of the specification and 
generates an abstract syntax tree (AST). 

 A type checker implemented in F# processes the 
AST and annotates it with type information; a 
function inliner implemented in F# replaces in the 
AST applications of user-defined functions and 
predicates by their definitions. 

 An analyzer implemented in F# determines from the 
AST of the specification how much “stream 
history” the generated monitor requires for its 
operation (more on this below). 

 A translator implemented in F# maps the resulting 
AST into an executable monitor. This monitor 
operates in a (potentially infinite) sequence of steps: 
in every step it accepts messages received from 
external streams, updates by these messages the 
status of its internal streams and of the specified 
properties, removes from its (external/internal 
stream) buffers those messages that according to the 
history analysis are not required any more, and 
returns information about the encountered violations 
of the specified properties. 

 A runtime system implemented in C# dynamically 
links the .NET code of external functions and 
predicates that are used by the specification, feeds 
the messages received from external streams into 
the monitor, and reports the violations determined 
by the monitor. External messages may arise (via 
the SharpPcap packet capture framework for the 
.NET environment) from live network traffic or also 
from traffic captured in a log file in pcap format for 
post mortem analysis; for debugging purposes, also 
text files as stream sources are supported. 

The core idea of the translation is that every formula and 
every stream is translated into a “step” function of type  
FormulaStep respectively StreamStep: 

  FormulaStep := Present → FormulaAnswer 
  FormulaAnswer := done of Bool + next of FormulaStep 

  StreamStep := Present → StreamAnswer 
  StreamAnswer := Set(Message)×(done + next of StreamStep) 

After every arrival of a message on an external stream the 
present state of all streams (including the newly arrived 

message) is passed to these steps. A formula then either 
produces a Boolean answer or another step while a stream 
produces a set of messages and, if the stream has not yet 
terminated, another step; the resulting steps capture the 
suspended states of the evaluation of the phrases which are 
to be activated again by the arrival of another message on 
some external stream. The state of a monitor thus consists of 
the suspended states of the evaluation of all phrases in the 
specification (in particular formulas and stream terms) as is 
illustrated in the right part of Fig. 5. Additionally the 
monitor buffers all the messages produced on external and 
internal streams as is illustrated in the left part of Fig. 5; this 
state is used to prepare the new “present” which after the 
arrival of the next message is passed to the captured steps, 
thus re-activating the suspended execution. 

However the buffering of the complete “histories” of all 
streams is clearly not sustainable: since monitors must be 
able to operate for an indefinite amount of time within a 
bounded amount of memory, the stream histories must be 
eventually pruned. For this purpose, we have devised a 
static analysis [13] which determines the amount of 
“history” that has to be preserved for every stream for the 
operation of the monitor. In a simplified form, this analysis 
is based on the logical judgment 

𝑒 ⊢ 𝐹: (ℎ, 𝑑)  

which determines for every formula (and in general for 
every phrase) F evaluated in environment e an upper bound 
h for the number of messages from the past (“history”) that 
may have to be investigated for the evaluation of F and the 
number d of messages from the future (“delay”) that may 
have to be awaited until the evaluation of F can be 
completed; the latter is needed since in a compound formula 
the result of one phrase 𝐹1 may be required before the 
evaluation of another phrase 𝐹2 can begin. The delay 
imposed by the evaluation of 𝐹1 increases the history 
requirements of 𝐹2 and thus of the whole phrase 
correspondingly (it is for this reason that the default for the 
evaluation of most compound phrases is the “parallel” 
evaluation of its components rather than the “sequential” 
one). Only specifications for which the analysis can impose 
an upper bound on the history requirements will be actually 
allowed for subsequent execution. 

The information determined by the analysis is passed to the 
runtime system in the form of a two-dimensional table 
𝐻(𝑠, 𝑡) that for arrival of a new message delivered to stream 
s determines how many messages need to be preserved on 

Fig. 5. The runtime state of a monitor. 
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stream t after the message has been processed. The 
soundness of the analysis has been formally proved for a 
core version of the specification language [10]. Its 
implementation is currently under way; as soon as it will be 
completed, we will be able to commence with tests and 
benchmarks on perpetually running monitors generated 
from LogicGuard specifications. 

VI. CONCLUSIONS 

The LogicGuard stream specification language and 
monitoring system represent a novel approach to monitoring 
properties of streams of events, in particular (but not limited 
to) violations of security properties as determined by the 
sequence of messages observed at some network interface. 
This approach sets itself apart from other approaches such 
as the rule based specification formalisms of stateful 
firewalls by its flexibility and its high level of abstraction 
that are provided by its foundations in predicate logic and 
set theory.  

By logical quantification over stream positions the 
language is able to describe properties that not only 
comprise a single message that is currently observed in the 
stream but that depend on multiple messages and that may 
thus take the history of the stream into account; the resulting 
monitor “loops” over the messages in the network and 
preserves in its state the information from the past of the 
stream relevant for processing future packages. By nested 
quantification “multi-level” properties may be described 
that depend on the relationship between messages on one 
level and messages on another level; for each message on 
one level an instance of the monitor is generated that 
processes the messages on the inner level. Furthermore, by 
constructing “virtual streams” that combine multiple 
messages from a lower-level stream into a single message of 
a higher-level stream, the layer of abstraction of the 
specification may be raised in analogy to a protocol stack 
where a corresponding transformation takes place. 

The LogicGuard monitoring system mechanically 
generates from every specification an executable monitor; 
this monitor takes one message at a time and reports those 
violations of the specification that can be deduced from this 
message. Rather than manually coding programs for 
monitoring complex properties, which is a tedious and error-
prone task, we leave the task of the generation of the 
monitor to an automatic system.  

However, the generality of the LogicGuard specification 
language comes at a price: not for every specification that 
can be expressed in the language also an efficient monitor 
can be generated; in particular, for some specifications a 
monitor may have to preserve an unbounded amount of the 
history of the monitored stream in its buffer. We have thus 
devised an static analysis that allows to deduce from the text 
of a specification the amount of the stream history that 
needs to be buffered. Only specifications for which the 
analysis is able to determine a finite upper bound on the 
amount of history to be preserved are actually amenable to 
monitoring; at every step of the execution the monitor will 
prune from its buffer those messages that it will 
subsequently not require any more. In this form monitors 

may operate for an indefinite amount of time within a finite 
amount of memory. 

Our future work will focus on evaluating our system on 
more and more application scenarios and thus exhibit its 
practical usefulness for these. Furthermore, we will work on 
a more in-depth analysis of the time and space requirements 
of the generated monitors; our goal is to devise classes of 
specifications and corresponding specification patterns for 
which efficient monitoring is always possible. 
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