
www.embedded-world.eu

Securing Device Communication

by Predicate Logic Specifications*

Wolfgang Schreiner, Temur Kutsia

Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria

Wolfgang.Schreiner@risc.jku.at

Temur.Kutsia@risc.jku.at

Michael Krieger, Bashar Ahmad

RISC Software GmbH

Hagenberg, Austria

Michael.Krieger@risc-software.at

Bashar.Ahmad@risc-software.at

Helmut Otto, Martin Rummerstorfer

SecureGUARD GmbH

Linz, Austria

hotto@secureguard.at

mrummerstorfer@secureguard.at

Abstract—We present a novel approach to the runtime

monitoring of network traffic where from a high-level

specification of security properties an executable monitor is

generated; this monitor observes the network traffic in real

time for violation of the specified properties in order to report

respectively prevent these violations. The specification

formalism is purely based on the classical notions of predicate

logic and set theory with the corresponding level of

expressiveness; compared to other more restricted formalisms

it has thus much stronger capabilities to describe properties of

interest. Its high level of flexibility makes our approach also

applicable to other problem areas and engineering domains

such as process control where it is important to guarantee that

sequences of events conform to a particular protocol.

*Supported by the Austrian Research Promotion Agency (FFG)

in the frame of the BRIDGE program by the project 846003

“LogicGuard II”.

Keywords— runtime monitoring; network security; event

streams; predicate logic.

I. INTRODUCTION

Today the security of computer networks is primarily
established by the application of firewalls. Originating from
simple packet filters that inspect individual packets on the
network layer and having further evolved to stateful filters
that operate on the connection layer and take into account the
connection to which a packet belongs, firewalls nowadays
also operate on the application layer and protect access to
resources and services by inspecting the contents of network
traffic. While thus their inspection capabilities have
substantially increased, their language in which to describe
legal network traffic has not changed so much: in essence a

specification still consists of a set of filtering rules where
each rule, based on the header information of a package, the
connection to which it belongs, the protocol that is used for
the connection, and (if residing on a host) the kind of process
from/to which the connection is established, decides whether
to allow a package/connection request or not. The
information on which the decision is based is therefore quite
limited and predetermined by the firewall.

The problem of monitoring network traffic, however,
may also be seen in the broader context of runtime
verification. Here the core idea is to specify in some
formalism the intended behavior of a system and to
automatically generate from this specification an executable
monitor that observes the actual execution of the system and
reports violations of the specification. In the case of network
monitoring, the observed system may consist of one or more
streams of messages captured at some network interface(s)
and the specified behavior may describe various security
properties that the message streams are expected to satisfy.
Depending on the formalism, the specified behavior may
take into account not only a single message but the
relationship of this message to all the other messages that
have been observed so far and thus describe complex
properties that are beyond the realm of current firewalls.

Most attempts to runtime monitoring are based on
specialized formalisms such as linear temporal logic
[2],[12],[1], rule systems on sets of atomic formulas [3],
regular expressions, context-free grammars, and associated
automata models [6], or the event calculus [16]. While the
advantage of these formalisms lies in their efficient
operational interpretation as executable monitors, their level

mailto:Wolfgang.Schreiner@risc.jku.at
mailto:Temur.Kutsia@risc.jku.at
mailto:Michael.Krieger@risc-software.at
mailto:Bashar.Ahmad@risc-software.at
mailto:hotto@secureguard.at
mailto:mrummerstorfer@secureguard.at

of expressiveness is still quite limited; moreover their
application often requires special formal expertise which
may not be readily available.

In this paper, we present the LogicGuard stream
specification language [15] and its associated monitoring
system which attempts to overcome these limitations by
applying a formalism that is rich and well known, namely
classical predicate logic and set theory (more specifically,
the logical foundation of LogicGuard is monadic second
order logic [5][7]). Properties are expressed by quantified
formulas interpreted over sequences of messages; the
quantified variable denotes a position in the sequence. Using
the ordering of stream positions and nested quantification,
complex properties can thus be formulated. Furthermore, to
raise the level of abstraction, higher-level streams may be
constructed from lower-level streams by a notation
analogous to classical set builders.

Due to the expressiveness and flexibility of the
specification language, our approach is not limited to
monitoring security violations in a network. Both the
specification language and its implementation have no
“built-in” knowledge of the origin and the nature of the
streams that are monitored; from their point of view, streams
are just abstract sequences of “events” that are triggered by
external sources; thus our approach can be applied to
monitoring any kind of system that exhibits its behavior by
triggering observable events. The runtime system provides
interfaces to various event sources; new interfaces can be
easily added. Furthermore, all knowledge about the events is
confined to user-defined functions and predicates that are
just declared in a specification; their actual definitions (in the
form of executable code) is dynamically linked to the
runtime system; new kinds of events can be thus added at
any time. The language and its implementation should be
thus also applicable to any kind of application domain where
sequences of events shall conform to some “expectations”
that are subject to a formal description; we thus see a wide
range of applicability e.g. in the area of process control.

The implementation of the LogicGuard language is based
on Microsoft .NET technology and the programming
languages C# and F#: a translator generates from a
specification an executable monitor [9] and a static analysis
determines from the specification whether the generated
monitor only requires a finite number of past messages to be
preserved in its local buffers [13],[10]; if yes, the monitor
can operate with a bounded amount of stream history.

The remainder of this paper is organized as follows: in
Section II we describe an introductory application that
depicts some features of our approach in the particular
application context of process control. In Section III we
outline the major elements of the stream monitoring
specification language based on which we sketch in Section
IV more application examples. In Section V we give an
overview on the implementation of the corresponding
monitoring system. In Section VI we present our conclusions
and discuss further work. From the home page of our
research project [11] various reports can be derived that
complement this presentation [14].

II. AN APPLICATION SCENARIO

Fig. 1 depicts the prototypical architecture of the
corporate network of an industrial process plant. For
security reasons the network is decomposed into multiple
subnetworks that are separated by firewalls. The “front-
firewall” protects the corporate network from the “external
network” (the Internet) that is outside of the control of the
corporation. Behind the front firewall there is the “perimeter
network” of those hosts that are visible to the external
network (the company’s Web server and other published
servers). The other company networks such as the
“manufacturing operations network” are separated from the
perimeter network by a “back-firewall” that prevents any
access from the external network.

 One of the company networks is the “production
network” that encompasses the core facilities of the plant.
Within this network there is the “process control network”
to which the hosts of the “supervisory control and data
acquisition” (SCADA) system are attached that operate and
monitor the facilities [4]. Some of these hosts are clients that
communicate via the process control network to servers that
are linked via the “control system network” to
programmable logic controllers (PLCs); these PLCs drive
the actual machinery of the plant.

In such a corporate network the LogicGuard system may
be applied on the front-firewall (respectively on any host
connected to the perimeter network) in order to monitor the
traffic flowing from/to the external network and to report
suspicious activities that may represent security violations.
However, while this is indeed a possible application of the
system, we demonstrate the versatility of our approach by
an application scenario where the system is applied on the
back-firewall (respectively on any host connected to the
process control network) in order to monitor the activities of
the plant as reported by the SCADA system; the goal is to
detect activities of the production process that deviate from
specific norms and that may thus represent safety violations.

Fig. 1: The network of an industrial process plant.

www.embedded-world.eu

Our demonstration scenario is as follows: we assume
that the PLCs operate a set of valves for which the SCADA
system reports the following kinds of events:

 Open: a certain valve has been opened.

 Close: a certain valve has been closed.

 Flow: a certain volume of fluid has passed a valve.

 Modify: the flow rate of a valve has been modified.

This scenario can be modelled by the following declarations
in the LogicGuard specification language:

 type Event;

 stream<Event> PCN;
 logical Open(Event);
 logical Close(Event);

 logical Flow(Event);

 logical Modify(Event);

The first two declarations introduce an abstract type Event
of “events” and a stream PCN of such events. The
subsequent four declarations introduce unary predicates that
are true if and only if a given event is of the indicated type.
Furthermore, a declaration

 logical Same(Event,Event);

introduces a binary predicate Same that is true if two given
events refer to the same valve. The concrete representation
of the type Event, the source of the stream PCN, and the
definitions of the various predicates are not part of the
specification: the runtime system maps Event to some .NET
type and provides an interface to the process control
network that delivers a sequence of objects of this type
under the stream name PCN; furthermore, the runtime
system is dynamically linked to external .NET code that
provides an executable implementation of the predicates.

In our first application scenario, we would like to check that
every valve is closed not later than 100 time units after it
has been opened. This is expressed by the following
definition of a monitor:

 monitor<PCN> Closed =
 monitor<PCN> x: Open(@x) =>
 exists<PCN> y with x<_<=#x+100 :

 Same(@x,@y) && Close(@y);

The declaration monitor<PCN> Closed introduces
a monitor Closed that is interpreted over the stream PCN;
this stream is conceptually an infinite sequence 𝑒0, 𝑒1, 𝑒2, …
of events that occur at stream positions 0,1,2, … at some
times 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯.

The definition of this monitor is provided by the

expression monitor<PCN> x: … which introduces a
locally bound variable x that denotes a position in stream
PCN. The monitor checks whether for every value 0,1,2, …
for x the formula denoted by the monitor body … is true;
every position for which the formula is false is reported as a
“violation” of the specified property. In above definition,

the formula body has shape Open(@x)=>… where @x

denotes the event in stream PCN at position x and =>
denotes logical implication. Thus only those positions are
considered that denote Open events; violation reports thus

indicate the positions of those events where valves have
been opened that have not been closed in time.

The core formula exists<PCN> y … represents
existential quantification: it asks for a position y in stream
PCN that satisfies a certain property denoted by the body
…; the formula is true if and only if there exists such a
position. For every position x denoting an Open event, the
monitor thus tries to find some position y that satisfies this
property; if such a position can be found, the position x does
not report a represent a violation of the specification; if the
monitor can determine that no such position y exists, x is
reported as a violation.

In more detail, the core formula has shape

 exists<PCN> y …:

 Same(@x,@y) && Close(@y)

where && denotes logical conjunction. This formula asks for
a position y that denotes a Close event that refers to the
same valve as the one in the Open event at position x. The
monitor thus tries to find for every event that opens a valve
another event that closes the same valve.

Furthermore, since the core formula has the clause

 exists<PCN> y with x<_<=#x+100 :…

position y must be greater than x (the token _ represents the

variable y introduced by the quantifier and < represents the
strict ordering of stream positions); the event at position y
must occur at a time that is not more than 100 time units
after the time at which the event at position x has occurred

(the token <=# denotes the non-strict time ordering and the

phrase x+100 denotes the time of the event at position x
plus 100 time units). Thus, if 101 time units after the event
at position x no suitable position y has been observed, the
monitor can report x as a violating position. In other words,
if a valve is not closed 101 time units after it has been
opened, this fact can be reported as a violation of the
specified property.

By this specification, the execution of the monitor at
runtime essentially proceeds as follows: the monitor
maintains a pool of positions that may represent violations
of the specification; every such position is accompanied by
a formula (actually the suspended state of its evaluation)
that the position has to satisfy; whenever another Open
event is observed on PCN, the corresponding position is
added to the pool together with the initial state of the

evaluation of the exists formula. For any event observed
on PCN, every formula in the pool is further evaluated; if by
this new observation the value of the formula can be
decided, the corresponding position is removed from the
pool and, if the formula has become false, reported as a
violation; if the truth of the formula cannot be decided yet,
the evaluation of the formula is suspended and the position
and the state of the evaluation are returned to the pool.

In Section IV we will present more monitoring examples
related to this scenario; more details on the implementation
will be provided by Section V. Before, however, we will
discuss the specification language in greater depth.

III. THE LANGUAGE

Fig. 2 depicts an excerpt of the grammar of the
LogicGuard stream specification language (in the syntax of
the parser generator ANTLR); the full grammar is
documented in [15]. In a nutshell, a specification consists
of a sequence of the following elements:

 External streams: these are the “real” streams from
which messages are fed into the monitor; the nature
and origin of these streams are not part of the
specification but are determined by the runtime
system monitoring the specification.

 Internal streams: these are “virtual” streams that
are constructed from other (external or internal)
streams in order to raise the level of abstraction of
the specification.

 Monitors: these are descriptions of properties that
certain (external or internal) streams shall satisfy,
separately or in combination.

The construction of internal streams and monitors may
depend on user-defined functions and predicates. The
language is statically typed: a specification may declare
uninterpreted type names and external functions and
predicates on these types; streams are typed with respect to

the values they carry; language terms are typed with respect
to the values they denote. Furthermore, stream positions are
typed with respect to the identities to the streams to which
they refer; thus dereferencing a position variable pid by the
term @pid uniquely denotes a stream and the value carried
by a particular message in that stream; correspondingly the
term #pid denotes the (wall clock) time at which this
message has arrived.

A. Formulas

The core of the specification language are formulas in a
three-valued logic (true, false, undefined); in this logic we
have the usual propositional connectives for negation,
conjunction, disjunction, implication, and equivalence

(denoted by the operators !, &&, ||, =>, and <=>). The

binary connectives may be annotated with the tags [seq]

or [par] in order to indicate whether the evaluation of the
first formula must terminate before the evaluation of the
second formula can start or whether “parallel” formula
evaluation is allowed; the latter is the default since
monitoring becomes more efficient if the evaluation of
formulas is delayed as little as possible (see also Section IV
for more details).

 Fig. 2. Grammar of the LogicGuard language (excerpt).

specification: (declaration ';')* ;

declaration: …

| 'stream' '<' typeid '>' streamid

| 'stream' '<' typeid '>' streamid '=' term

| 'monitor' '<' (streamid (',' streamid)*)? '>' monitorid '=' monitor ;

monitor: formula | 'monitor' variable monitor ;

formula: '(' formula ')' | 'true' | 'false' | 'logical' '?' | 'defined' formula | 'defined' term

| logicalid | logicalid '(' term (','term)*)? ')' | '!' formula

| formula '&&' ('[' seq ']')? formula | formula '||' ('[' seq ']')? formula

| formula '=>' ('[' seq ']')? formula | formula '<=>' ('[' seq ']')? formula

| 'if' ('[' seq ']')? formula 'then' formula 'else' formula

| 'forall' variable formula | 'exists' variable formula | binder ':' formula ;

term: '(' term ')' | 'value' '<' typeid '>' '?'

| 'stream' '<' typeid '>' '?' | 'stream' '<' typeid '>' 'empty'

| 'position' '<' streamid '>' '?' | 'zero' '<' streamid '>'

| 'old' | 'new' | ident | ident '(' (term (',' term)*)? ')'

| (streamid)? '@' term | (streamid)? '#' term

| 'if' ('[' seq ']')? formula 'then' term 'else' term

| 'min' variable formula | 'max' variable formula | 'num' variable formula

| 'value' '[' seq2 ',' term ',' valueid ']' variable term

| 'stream' '[' seq ']' variable term | 'stream' '[' seq2 ',' term ',' valueid ']' variable term

| 'merge' '[' seq ']' variable term | binder ':' term ;

seq: 'seq' | 'par' ;

seq2: 'seq' | 'par' | 'strict' ;

variable: '<' streamid '>' positionid

('with' bound ('and' bound)*)?

('satisfying' formula | binder)*

(('until' | 'while') formula)? ':' ;

binder: 'logical' logicalid '=' formula

| 'position' '<' streamid '>' positionid '=' term

| 'value' '<' typeid '>' valueid '=' term ;

…

www.embedded-world.eu

However the most important formulas are the predicate

logic formulas forall variable formula and exists
variable formula which denote universal respectively
existential quantification; the clause variable introduces an
identifier id which denotes a position in some stream S; by
the body formula the quantified formula can describe the
values carried by a number of messages in S.

The positions assigned to id may be constrained by
variable in multiple ways, namely

 by a clause _<pos (or _<=pos) which indicates
that id must occur before (respectively not
after) a particular position pos in the same
stream;

 by a clause pos<_ (or pos<_) which indicates
that id must occur after (respectively not
before) a particular position pos in the same
stream;

 by a clause _<#pos±T (or _<=pos±T) which
indicates that the message at position id must
occur at a time before (respectively not after) T
time units plus/minus the time of the message
at position pos (where pos may also refer to a
position in another stream);

 by a corresponding clause pos±T<#_ (or
pos±T<=id) that constrains the time of the
message at position id from below;

 by a clause until formula which indicates
that the quantification range terminates with the
first position for which formula is true;

 by a clause while formula which indicates the
quantification range terminates with the last
position for which formula is true

as well as by combinations of these. Formulas represent the
core of stream monitors; e.g. the monitor M defined as

 monitor<S> M =

 monitor<S> x : P(@x) =>

 forall<S> y

 with x-100 <= _ until T(@y) :

 Q(@x,@y)

asks, for every message at some position x in stream S that
satisfies property P, whether property Q is true for every
message at some position y in S that occurs not earlier than
100 time units before x; for every message at x the
monitoring stops with the first message at y for which
property T holds. This relationship is illustrated in Fig. 3.

B. Terms

The formula language embeds a term language that
allows to extract (components from) the values carried by
stream messages, to construct new values, and to combine
values; since message values have uninterpreted types, the
extraction and composition is ultimately based on external
functions declared in the specification. The main role of the
term language is to coordinate the composition of values
that have emerged from messages that have arrived at
different times respectively stream positions.

The core of the term language is represented by a

number of quantified phrases such as min variable formula,

max variable formula and num variable formula which
denote the minimum/maximum position for which a
formula is true as well as the number of positions for which
this is the case. A more general kind of composition is
denoted by the term pattern

value [s, b, f] variable term

which evaluates for all assignments of positions to the
variable introduced by variable the denoted term yielding
together with the base value b a non-empty sequence of
values; by application of a binary function f these values are
gradually combined to a single value that denotes the result
of the term; the tag s indicates whether the evaluation must
proceed in sequence or whether (because f is a commutative
and associative operation) the order of combinations may be
arbitrary. For instance, the term pattern

 value[par,zero,add]<S> x … : f(@x)

describes the sum of the base value zero and of a bag of
integers extracted from n messages in stream S (assuming

that the user-defined function add denotes addition and

zero denotes 0); its result is thus

𝑓(𝑥1) + ⋯ + 𝑓(𝑥𝑛)

for some permutation 𝑥1, … , 𝑥𝑛 of these messages.
Quantified terms can also denote streams, e.g.

 stream<S> x … : f(@x)

denotes the stream 𝑓(𝑥1), 𝑓(𝑥2), … constructed from the
messages 𝑥1, 𝑥2, … on stream S; the notation for stream
construction mimics the classical set builder notation
{𝑓(𝑥) | 𝑥 ∈ 𝑆}. The term pattern

 stream[par,zero,add]<S> x … : f(@x)

constructs the stream of values 𝑠1, 𝑠2, … where 𝑠𝑖 = 𝑓(𝑥1) +
⋯ + 𝑓(𝑥𝑖); i.e., its messages denote the partial results of the

summation denoted by the value pattern shown above (the
partial results are delivered in a non-deterministic order but

Fig. 4. Constructing a virtual stream.

Fig. 3. Monitoring a stream.

using the keyword seq instead of par would make it
deterministic by adding the elements in sequence).

Terms represent the core of the construction of virtual
streams which allows to considerably raise the level of
abstraction; e.g. the virtual stream T defined as

stream<M> T =

 stream<S> x satisfying P(@x) :

 value[s,b,f]<S>

 y with x <= _ until Q(@y): @y

consists of a sequence of values 𝑣1, 𝑣2, … of type M where
each 𝑣𝑖 is constructed from some value 𝑥𝑗 on stream S that

satisfies predicate 𝑃: the function f combines in 𝑣𝑖 the
values 𝑏, 𝑥𝑗 , 𝑥𝑗+1, … , 𝑥𝑗+𝑛 where 𝑥𝑗+𝑛 is the first message for

which property 𝑄 holds. This relationship between the
original messages in S and the constructed messages in T is
also illustrated in Fig. 4.

IV. FURTHER APPLICATION EXAMPLES

We are now going to illustrate the language features

presented in Section III by some more examples of monitors

for the application scenario described in Section II.

A. Checking Flow Rate Modifications

First we would like to check that for no valve the

number of flow rate modifications exceeds a certain bound

before the valve is closed. For this purpose, we introduce

another predicate

logical MaxModified(number);

which is true if a given number of events (denoted by the

predefined type number) does not exceed a certain

threshold. Then we can define the corresponding monitor as

monitor<PCN> Modified =

 monitor<PCN> x: Open(@x) =>
 forall<PCN> y with x < _
 satisfying Same(@x,@y)

 until Close(@y) : Modify(@y) =>
 value<number> n =
 num<PCN> z with x < _ <= y :

 Same(@x,@z)&&Modify(@z) :
 MaxModified(n);

For every valve that is opened as indicated by an Open

event at some position x in the PCN stream, this monitor

checks every subsequent position y of an event that refers to

the same valve until a Close event indicates that the valve

has been closed. If a Modify event at position y indicates a

flow rate modification of this valve, the monitor determines

the number n of such modifications that have occurred since

the valve has been opened (i.e. the number of Modify events

that have occurred at some position z after x but not later

than y). If this number exceeds the allowed threshold as

indicated by the predicate MaxModified, the position x at

which the valve has been opened is reported as violating the

specification. This specification thus illustrates the

capability to deal with numerical properties that refer to a

certain number of events.

B. Checking Flow Amounts

More general computations are required in our next

example where we would like to check that for no valve the

total amount of fluid that has passed the valve does not

exceed a certain threshold. For this purpose we introduce by

the declarations

type Flow;

value<Flow> Zero();

value<Flow> Add(Flow,Flow);

logical MaxFlow(Flow);

an abstract datatype Flow with a constant Zero and a binary

operation Add for the computation of flow amounts; the

predicate MaxFlow is true if the amount does not exceed a

certain threshold. Furthermore the declaration

value<Flow> FlowValue(Event);

introduces a function FlowValue that extracts from a Flow

event the amount of fluid reported by that event.

With these preliminaries we can now define the

corresponding monitor as

monitor<PCN> Flowed =

 monitor<PCN> x: Open(@x) =>

 forall<PCN> y with x < _
 satisfying Same(@x,@y)

 until Close(@y) : Flow(@y) =>

 value<Flow> f =

 value[seq,Zero(),Add]<PCN> z

 with x < _ <= y satisfying

 Same(@x,@z)&&Flow(@z):

 FlowValue(@z)

 MaxFlow(f);

The definition of this monitor has the same shape as the

previously introduced monitor Modified; the core difference

is the computation of the flow value f rather than the event

number n: For this computation we take into account all

positions z of Flow events after the position x of the Open

event up to the position y of the currently considered Flow

event. From all these positions we extract the amount of

liquid reported by the function FlowValue; by adding all

these values with the help of the function Add starting with

the base value Zero, we determine the total amount f of fluid

that has passed the valve up to now and check whether it

satisfies the threshold condition indicated by the predicate

MaxFlow.

C. Checking Flow Amounts (Revisited)

While the previous examples have demonstrated the

abilities of the specification language to handle event

numbers and arbitrary computations with values derived

from events, more complex specifications may become

cumbersome to write and difficult to understand, if they

have to be expressed solely in terms of the original event

stream. We thus present an alternative solution for checking

flow amounts where the level of abstraction of the monitor

www.embedded-world.eu

is raised by transforming the raw event stream into a virtual

stream that carries the actual values of interest for the

monitor. The core idea is to construct a pipeline

PCN → F → Flowed2

where

 the original event stream PCN is transformed to a

stream F of “flow sums” that report the total

amount of flow that has passed a valve so far, and

 the monitor Flowed2 checks whether each flow

sum report conforms to the required threshold.

The first step is achieved by the virtual stream definition

stream<Flow> F =
 merge[par]<PCN> x

 satisfying Open(@x):
 stream[par,Zero(),Add]<PCN> z
 with x < _ satisfying

 Same(@x,@z)&&
 (Flow(@z)||Close(@z))
 while !Close(@x,@z) :

 FlowValue(@z);

By the declaration

stream<Flow> F =
 merge[par]<PCN> x

 satisfying Open(@x): …

for every position x indicating an Open event a sub-stream

of flow reports is generated; all sub-streams are merged to

the result stream F in a “parallel” fashion, i.e., whenever a

flow report is delivered by the sub-stream it is immediately

forwarded to F which thus collects the flow reports of all

open valves.

Each sub-stream is constructed by the term

stream[par,Zero(),Add]<PCN> z

 with x < _ satisfying
 Same(@x,@z)&&(Flow(@z)||Close(@z))
 while !Close(@x,@z) :

 FlowValue(@z);

which essentially proceeds like a corresponding term

value[par,Zero(),Add]<PCN> z …

by extracting and adding the flow amount reported by

FlowValue from every Flow event that occurs after position

x and refers to the same valve until the Close event for that

valve is observed. However, in contrast to the value term

which delivers a result only when all additions have

ultimately been performed, the stream term delivers after

every addition the partial result computed so far as an

element of the result stream. Above stream thus delivers

after every Flow event the total amount of flow reported so

far for the valve whose opening was indicated by an Open

event at position x; the merged stream F collects the reports

for all valves.

With the help of the virtual stream F the task of the

monitor becomes very simple; it can be expressed by the

short definition

monitor<F> Flowed2 =

 monitor<F> x :

 MaxFlow(@x);

which operates on the virtual stream F by processing every

flow report and checking whether it confirms to the

threshold as indicated by the predicate MaxFlow.

The use of virtual streams may thus considerably

simplify the definitions of monitors. It should be noted that

the same virtual stream may be processed by multiple

monitors and that the construction of virtual streams may be

staged, i.e., from one virtual stream another virtual stream

may be constructed.

D. Checking Manufacturing Requests

Our final example demonstrates that a monitor may also

correlate multiple streams from different sources. We

assume that the monitor is deployed on the back-firewall

and has thus access not only to the process control network

(PCN) but also to the manufacturing operations network

(MON). The goal is to check that valve opening requests

from the MON lead in time to an opening of the

corresponding valve in the PCN. The additional declarations

type Request;

stream<Request> MON;

logical Same(Request,Event);

introduce an abstract datatype Request, a stream MON of

such requests and a binary predicate Same that is true, if and

only if the MON request and the PCN event refer to the

same valve. The monitor

monitor<MON> Requested =

 monitor<MON> x:

 exists<PCN> y with

 x <=# _ <=# x+100:

 Same(@x,@y) && Open(@y)

checks for every Request observed in the stream MON at

some position x whether it observes within 100 time units

also an event in the stream PCN that honors this request,

i.e., an Open event that refers to the same valve. If no such

event is observed, the position x in MON is reported as

violating the specification.

As this example demonstrates, also positions from

different streams may be related by the absolute times

(operator <=#) at which their corresponding events occur.

However, since the positions refer to different streams, they

must not be related by their relative order (operator <=).

Actually, since stream positions are statically typed with

respect to the streams to which they refer, any such attempt

is reported as an error by the type checker and the

subsequent translation of the specification to an executable

monitor is refused.

V. THE IMPLEMENTATION

As a first step towards an implementation of the
specification language described in Section III we have
defined (for an early version of language) a formal
denotational semantics [8] and also formalized the
translation of specifications described into this language into
executable monitors that reports violations of the specified
properties [9].

Based on this preparatory work we have implemented on
top of Microsoft’s .NET framework using the object-
oriented programming language C# and the functional
language F# a prototype of the LogicGuard language with
the following components:

 A parser (whose C# code was produced from a
BNF grammar with the help of the parser generator
ANTLR) processes the text of the specification and
generates an abstract syntax tree (AST).

 A type checker implemented in F# processes the
AST and annotates it with type information; a
function inliner implemented in F# replaces in the
AST applications of user-defined functions and
predicates by their definitions.

 An analyzer implemented in F# determines from the
AST of the specification how much “stream
history” the generated monitor requires for its
operation (more on this below).

 A translator implemented in F# maps the resulting
AST into an executable monitor. This monitor
operates in a (potentially infinite) sequence of steps:
in every step it accepts messages received from
external streams, updates by these messages the
status of its internal streams and of the specified
properties, removes from its (external/internal
stream) buffers those messages that according to the
history analysis are not required any more, and
returns information about the encountered violations
of the specified properties.

 A runtime system implemented in C# dynamically
links the .NET code of external functions and
predicates that are used by the specification, feeds
the messages received from external streams into
the monitor, and reports the violations determined
by the monitor. External messages may arise (via
the SharpPcap packet capture framework for the
.NET environment) from live network traffic or also
from traffic captured in a log file in pcap format for
post mortem analysis; for debugging purposes, also
text files as stream sources are supported.

The core idea of the translation is that every formula and
every stream is translated into a “step” function of type
FormulaStep respectively StreamStep:

 FormulaStep := Present → FormulaAnswer
 FormulaAnswer := done of Bool + next of FormulaStep

 StreamStep := Present → StreamAnswer
 StreamAnswer := Set(Message)×(done + next of StreamStep)

After every arrival of a message on an external stream the
present state of all streams (including the newly arrived

message) is passed to these steps. A formula then either
produces a Boolean answer or another step while a stream
produces a set of messages and, if the stream has not yet
terminated, another step; the resulting steps capture the
suspended states of the evaluation of the phrases which are
to be activated again by the arrival of another message on
some external stream. The state of a monitor thus consists of
the suspended states of the evaluation of all phrases in the
specification (in particular formulas and stream terms) as is
illustrated in the right part of Fig. 5. Additionally the
monitor buffers all the messages produced on external and
internal streams as is illustrated in the left part of Fig. 5; this
state is used to prepare the new “present” which after the
arrival of the next message is passed to the captured steps,
thus re-activating the suspended execution.

However the buffering of the complete “histories” of all
streams is clearly not sustainable: since monitors must be
able to operate for an indefinite amount of time within a
bounded amount of memory, the stream histories must be
eventually pruned. For this purpose, we have devised a
static analysis [13] which determines the amount of
“history” that has to be preserved for every stream for the
operation of the monitor. In a simplified form, this analysis
is based on the logical judgment

𝑒 ⊢ 𝐹: (ℎ, 𝑑)

which determines for every formula (and in general for
every phrase) F evaluated in environment e an upper bound
h for the number of messages from the past (“history”) that
may have to be investigated for the evaluation of F and the
number d of messages from the future (“delay”) that may
have to be awaited until the evaluation of F can be
completed; the latter is needed since in a compound formula
the result of one phrase 𝐹1 may be required before the
evaluation of another phrase 𝐹2 can begin. The delay
imposed by the evaluation of 𝐹1 increases the history
requirements of 𝐹2 and thus of the whole phrase
correspondingly (it is for this reason that the default for the
evaluation of most compound phrases is the “parallel”
evaluation of its components rather than the “sequential”
one). Only specifications for which the analysis can impose
an upper bound on the history requirements will be actually
allowed for subsequent execution.

The information determined by the analysis is passed to the
runtime system in the form of a two-dimensional table
𝐻(𝑠, 𝑡) that for arrival of a new message delivered to stream
s determines how many messages need to be preserved on

Fig. 5. The runtime state of a monitor.

www.embedded-world.eu

stream t after the message has been processed. The
soundness of the analysis has been formally proved for a
core version of the specification language [10]. Its
implementation is currently under way; as soon as it will be
completed, we will be able to commence with tests and
benchmarks on perpetually running monitors generated
from LogicGuard specifications.

VI. CONCLUSIONS

The LogicGuard stream specification language and
monitoring system represent a novel approach to monitoring
properties of streams of events, in particular (but not limited
to) violations of security properties as determined by the
sequence of messages observed at some network interface.
This approach sets itself apart from other approaches such
as the rule based specification formalisms of stateful
firewalls by its flexibility and its high level of abstraction
that are provided by its foundations in predicate logic and
set theory.

By logical quantification over stream positions the
language is able to describe properties that not only
comprise a single message that is currently observed in the
stream but that depend on multiple messages and that may
thus take the history of the stream into account; the resulting
monitor “loops” over the messages in the network and
preserves in its state the information from the past of the
stream relevant for processing future packages. By nested
quantification “multi-level” properties may be described
that depend on the relationship between messages on one
level and messages on another level; for each message on
one level an instance of the monitor is generated that
processes the messages on the inner level. Furthermore, by
constructing “virtual streams” that combine multiple
messages from a lower-level stream into a single message of
a higher-level stream, the layer of abstraction of the
specification may be raised in analogy to a protocol stack
where a corresponding transformation takes place.

The LogicGuard monitoring system mechanically
generates from every specification an executable monitor;
this monitor takes one message at a time and reports those
violations of the specification that can be deduced from this
message. Rather than manually coding programs for
monitoring complex properties, which is a tedious and error-
prone task, we leave the task of the generation of the
monitor to an automatic system.

However, the generality of the LogicGuard specification
language comes at a price: not for every specification that
can be expressed in the language also an efficient monitor
can be generated; in particular, for some specifications a
monitor may have to preserve an unbounded amount of the
history of the monitored stream in its buffer. We have thus
devised an static analysis that allows to deduce from the text
of a specification the amount of the stream history that
needs to be buffered. Only specifications for which the
analysis is able to determine a finite upper bound on the
amount of history to be preserved are actually amenable to
monitoring; at every step of the execution the monitor will
prune from its buffer those messages that it will
subsequently not require any more. In this form monitors

may operate for an indefinite amount of time within a finite
amount of memory.

Our future work will focus on evaluating our system on
more and more application scenarios and thus exhibit its
practical usefulness for these. Furthermore, we will work on
a more in-depth analysis of the time and space requirements
of the generated monitors; our goal is to devise classes of
specifications and corresponding specification patterns for
which efficient monitoring is always possible.

REFERENCES

[1] A.M. Ahmed, „Online network intrusion detection system using
temporal logic and stream data processing,“ Ph.D. thesis, University
of Liverpool, UK, 2013.

[2] H. Barringer, A. Goldberg, K. Havelund, K. Sen, “Program
monitoring with LTL in Eagle,” IPDPS’04, 18th International Parallel
and Distributed Processing Symposium — Workshop 16 PADTAD.
Santa Fe, NM, USA, April 30, 2004.

[3] H. Barringer, D. Rydeheard, K. Havelund, “Rule systems for run-time
monitoring: from Eagle to RuleR,” Journal of Logic and Comput.
20(3), pp. 675–706, 2010.

[4] S. A. Boyer; „SCADA: Supervisory Control and Data Acquisition“,
ISA – The Instrumentation, Systems, and Automation Society, 2004.

[5] C. Büchi, “Weak second-order arithmetic and finite automata,”
Zeitschrift für mathematische Logik und Grundlagen der Mathematik
6, pp. 66–92, 1960.

[6] F. Chen, G. Rosu, “MOP: an efficient and generic runtime
verification framework,” 22nd ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications (OOPSLA
’07). pp. 569–588. ACM, New York, 2007.

[7] J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, et al., “Mona:
monadic second-order logic in practice,” Tools and Algorithms for
the Construction and Analysis of Systems, First International
Workshop, TACAS ’95, LNCS 1019, 1995.

[8] T. Kutsia, W. Schreiner, “LogicGuard abstract language”. Technical
Report 12-08, RISC, Johannes Kepler University, Linz, Austria,
2012.

[9] T. Kutsia, W. Schreiner, “Translation mechanism for the LogicGuard
abstract language”, Technical Report 12-11, RISC, Johannes Kepler
University, Linz, Austria, 2012.

[10] T. Kutsia, W. Schreiner, “Verifying the soundness of resource
analysis for LogicGuard monitors (revised version)”, Technical
Report 14-08, RISC, Johannes Kepler University, Linz, Austria,
September 2014.

[11] LogicGuard II, http://www.risc.jku.at/projects/LogicGuard2, 2014.

[12] P. Naldurg, K. Sen, P. Thati, “A temporal logic based framework for
intrusion detection,” Formal Techniques for Networked and
Distributed Systems (FORTE 2004), LNCS, vol. 3236, pp. 359–376.
Springer, Berlin, 2004.

[13] W. Schreiner, T. Kutsia, “A resource analysis for LogicGuard
monitors,” Technical Report, RISC, Johannes Kepler University,
Linz, Austria, December 2013.

[14] W. Schreiner, T. Kutsia, M. Krieger, B. Ahmad, H. Otto, M.
Rumerstorfer, “Monitoring network traffic by predicate logic”,
Technical Report, RISC, Johannes Kepler University, Linz, Austria,
September 2014.

[15] W. Schreiner, T. Kutsia, M. Krieger, B. Ahmad, H. Otto, M.
Rumerstorfer, “The LogicGuard stream monitoring specification
language: tutorial and reference manual”, Technical Report, RISC,
Johannes Kepler University, Linz, Austria, 2015 (to appear).

[16] G. Spandoudakis, C. Kloukindas, K. Mahbub: “The runtime
monitoring frameworkof SERENITY,” Security and Dependability
for Ambient Intelligence, chapter 13, pp. 213–237, no. 13 in
Information Security Series, Springer, 2009.

http://www.risc.jku.at/projects/LogicGuard2

