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Abstract

The LogicGuard project aims at developing a specification and verification formalism for
runtime network monitoring based on predicate logic. This report documents the initial steps
in this development, describing the syntax and semantics of the LogicGuard abstract language
LGAL.

1 Introduction

Runtime verification is an approach to the analysis of computing systems that bridges the gap
between ad-hoc informal testing and fully formal verification. Roughly, it extracts some traces
of runs of executable systems and applies verification methods to those traces. This approach
is more lightweight than fully formal verification, because it analyzes only certain traces against
specific properties. There is no need to model and verify the entire system. On the other hand,
it is more formal than testing, because it specifies and verifies the desired properties formally. In
this way, runtime verification combines advantages of scaling up relatively well yet being formally
rigorous: Covering relatively small part of the system reduces the complexity of the approach and
contributes to its scalability, while dealing formally with those parts brings rigor and confidence
in the results. On the back side, it might consume systems resources and reduce its performance,
especially if the verification component is a part of the system itself.

Instead of static analysis of a system before its execution, runtime verification, as the name also
indicates, performs dynamic, runtime system analysis. This becomes particularly important for
the systems that can not be completely verified statically. In the process of runtime verification,
the system is being continuously monitored to see whether the desired properties hold. In case
of their violation, certain predefined steps are performed, such as, for instance, issuing a warning,
logging violation details, correcting errors, etc.

In runtime verification, to establish a correctness result in a state of the runtime system based
on the past or future states, one can not use methods that work for an isolated single state (such
as, e.g., from [15]). We need a special tool, the “monitor”, which checks the sequence of states and
reacts on the violation of the desired property. Such a tool can either be constructed by the user
(imperative approach), or can be generated automatically from a specification of the correctness
property in a suitable logic (declarative approach). The former one is more error-prone, since the
user has to construct programs and prove its properties manually. In the declarative approach,
the basic techniques for the generation of monitors from specifications of system runs originate
from the area of model checking [11]. However, unlike model checking, in runtime specification
there is no need to prove the correctness result for all possible executions of the system model: It
is enough to specialize it to only one such path, the actual system execution.

Various formalisms for the specification of system runs have been developed and used in the
context of model checking and runtime specification. We do not go into the details of their
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description here, but just mention several prominent representatives: Languages over infinitely
long words, called ω-regular languages, and automata that recognize them [8, 9, 24]; star-free
ω-regular languages and linear temporal logic LTL [20, 13]; extensions of LTL: ETL [25], FTL [1],
µTL [3, 23], etc. Based on these formalisms, various runtime verification frameworks and systems
have been developed: Eagle [5, 4], its rule-based version RuleR [6, 7], MOP (Monitoring-Oriented
Programming) [10, 19], EVEREST [22], MaC [16], PathExplorer [14]. Temporal Rover [12], etc.

The goal of the LogicGuard project is to investigate to what extent classical predicate logic
formulas are suitable as the basis for the specification and efficient runtime verification of system
runs. In comparison to the above mentioned formalisms, predicate logic has a relatively intuitive
semantics, which helps to describe complex relationships in a natural way, keeping the gap be-
tween an interesting property and its specification small. To address the problem of efficiency,
certain restricted fragment of predicate logic will be considered. A prototype implementation will
help to carry out systematic experiments and to indicate the directions of improvements and op-
timizations. The specific focus of the project is on computer and network security, concentrating
on predicate logic specifications of security properties of network traffic. Specification formulas
will be interpreted over streams of messages. Furthermore, a prototype implementation of the
translation mechanism is planned, which is supposed to automatically generate runtime monitors
from the specifications.

In this paper we describe the initial steps in this development, describing the syntax and
semantics of the fragment of predicate logic we plan to use for runtime network monitoring.
We call this abstract language the LogicGuard Abstract Language (LGAL). Its has four-valued
semantics, which corresponds to our intuition behind monitoring: A property being monitored
over the given stream can be either true, false, or the monitoring can be interrupted because of
an error. These are, so to say, the “definite cases”. Yet another possibility is that, at the given
time point, it is not known whether the property is true or false or whether an error will occur.

The basic model of runtime network monitoring can be illustrated by the drawing in Figure 1:
The network traffic is modeled by the global stream. At each position, the stream contains a
message, which is a pair (t, v) of the time stamp t and the value v. The messages in the stream
are linearly ordered according to the time stamp. Some messages may contain the unknown value
?V as the second component instead of some definite value. Such messages are interpreted as
time “ticks”, indicating the progress of time. The formula that should be monitored is interpreted
over that stream. During monitoring some local streams may be generated, over which certain
subformulas are checked. Their results are then combined1 into the final result, which can be
either true (t), false (f), error (�F), or the unknown value (?F), if the monitor did not manage to
get one of the other three values. Then the verification system should give warnings etc. about
violations, i.e., when the monitored formula evaluates to f .

Global stream Ð→ . . .

(t, v)

Local streams Ð→ . . . . . .

F1 F2/\

Monitor

t, f ,�F or ?FTruth values Ð→

Figure 1: Basic Model of Runtime Network Monitoring.

1In Figure 1, we denoted the subformulas by F1 and F2 and used conjunction (/\) as an example of combination.
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In the following two sections we describe and explain syntax and semantics of LGAL. In the
last section we illustrate how a file download monitor can be specified in this language. The
appendix contains the reference material.

2 Syntax

The language distinguishes three kinds of terms: for streams, positions, and values. Intuitively,
stream terms are supposed to model the stream of messages on the network, position terms refer to
particular positions in such streams, while value terms model the contents of messages. Formulas
are constructed in the usual way.

More specifically, the alphabet of the LGAL consists of the sets of symbols given below. They
are grouped into four classes: variables, logical symbols (whose semantics is fixed), nonlogical
symbols (with no predefined semantics), and auxiliary symbols. The sets are pairwise disjoint.

The variables are:

• position variables, denoted XP2,

• value variables XV, containing the variable this,

• stream variables XS,

• formula variables XF.

Logical symbols:

• Constant position function symbols 0,1, . . .,

• Binary position function symbols + and −,

• Binary value function symbols � and @,

• Binary position predicate symbols < and =<,

• Connectives: true,false,∼,/\,\/,=>,<=>.

• Quantifiers:

– forall, exists, monitor,

– term quantifiers: max,min,num,complete combine,partial combine,construct,

– local binders: formula,position,value,stream.

Nonlogical symbols:

• Fixed arity function symbols:

– value function symbols FV,

– stream function symbols FS.

• Fixed arity predicate symbols:

– value predicate symbols PV.

2Symbols in SANS SERIF font denote symbol categories in the alphabet. For concrete symbols, we use lower
case letters, with or without indices, e.g. xp.
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The auxiliary symbols are the specifiers in, with, until, satisfying, the parentheses (, ),
square brackets [, ], comma, colon, =. (The latter does not stand for equality but, rather, is used
with the binders.)

One can notice that the alphabet is quite similar to an alphabet of a (many-sorted) first-order
language with the exception of formula variables, term quantifiers, and local binders. The purpose
of term quantifiers is to construct stream terms, position terms, or value terms. Local binders are
nothing else than the let construct (for formulas and for three kinds of terms), which is quite
common in some programming languages. This also justifies the use of formula variables: They
are used by binders. Table 2 gives a compact view of the notation for variables, function, and
predicate symbols for the reference:

Variables
Function symbols Predicate symbols

Logical Nonlogical Logical Nonlogical

Position XP +,−,0,1, . . . <,=<
Value XV �,@ FV PV

Stream XS FS

Formula XF

Table 1: Notation for variables, function symbols, and predicate symbols.

To make the explanation more precise, we need to show how formulas and terms of LGAL are
constructed. As we have already mentioned, there are three kinds of terms in LGAL: Position terms
(TP), value terms (TV), and stream terms (TS). We use T to denote either of them: T ∶= TP ∣ TV ∣ TS.
Formulas are denoted by F. Monitor is denoted by M. Definitions of their grammars use auxiliary
syntactic categories of bindings (BIND), constraints (CONSTR), and position ranges (RAN).

Formulas and Monitor:

F ∶∶= XF ∣ BIND ∶ F
∣ true ∣ false ∣ PV(T1, . . . ,Tn)
∣ ∼F ∣ F1 /\F2 ∣ F1 \/F2 ∣ F1 =>F2 ∣ F1 <=>F2
∣ forall XP in TS with RAN ∶ F ∣ exists XP in TS with RAN ∶ F

PV is assumed to be n-ary with n ≥ 0. As one can see, the formula syntax is more or less standard.
The exact semantics will be explained in the next section.

The notions of bound and free variables, variable renaming, closed and open formula are defined
as usual. Note that in our expressions variables can be bound not only by forall and exists,
but also by term quantifiers and local binders discussed below.

A monitor is defined as

M ∶∶= monitor XP ∶ F.

The quantifier monitor binds XP in the whole expression. The intuition behind a monitor formula
is similar to a universally quantified one: It is supposed to be true if F is true for all XP. However,
during monitoring, we are interested in those positions XP for which F is violated. Therefore, as we
will see later, the semantics of monitor XP ∶ F is defined in a special way to reflect this requirement.

Bindings:

BIND ∶∶= formula XF = F ∣ position XP = TP ∣ value XV = TV ∣ stream XS = TS.

The intuitive reading of, for instance, position XP = TP is “let XP be the position term TP”. We
will consider only the bindings where variables XP,XV,XS, and XF do not occur in the right hand
sides of the corresponding equalities, i.e., they do not occur, respectively, in TP,TV,TS, and F.
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Constraints:

CONSTR ∶∶= ε ∣ satisfying F CONSTR ∣ BIND CONSTR.

Here ε stands for the empty constraint. We postpone explanation of constraints until their usage
is considered.

Position Ranges:

RAN ∶∶= TP PP XP ∣ TP1 PP1 XP PP2 TP2 Default value for TP1 PP1 ∶ 0=<
PP ∶∶= < ∣ =<

The range expressions are supposed to restrict the ranges for position variables (used in the
quantifiers below). From above, the ranges can be bounded or unbounded. From below, they are
always bounded. Default values help to avoid too verbose notation.

Position Terms:

TP ∶∶= XP ∣ BIND ∶ TP
∣ 0 ∣ TP+N ∣ TP−N
∣ max XP in TS with RAN ∶ F ∣ min XP in TS with RAN ∶ F

N ∶∶= 0 ∣ 1 ∣ ⋯

Given a position term value XV = TV ∶ TP, we would read it as “let XV be the value term TV in
the position term TP.” The position term max XP in TS with RAN ∶ F reads as “the maximal
position XP in the stream TS within the range RAN, for which the formula F holds.” As for the
terms TP+N and TP−N, one of the motivations of using them is the possibility to look beyond the
range bounds of a variable. For instance, to see whether there was some relevant activity recorded
in the positions smaller than the lower bound of the range by a given fixed value. This can help,
to some extent, model timeouts, when for certain time nothing happened.

Value Terms:

TV ∶∶= XV ∣ BIND ∶ TV
∣ TS�TP ∣ TS@TP

∣ FV(T1, . . . ,Tn) ∣ num XP in TS with RAN ∶ F
∣ complete combine[TV0,FV] XP in TS with RAN CONSTR until F ∶ TV1
Default value for F in “until F” ∶ false

The intuition behind the terms TS�TP and TS@TP is, respectively, “the time stamp of the message
at position TP in the stream TS” and “the content of the message at the position TP in the stream
TS”. (Our streams will consist of messages that have the time stamp and content.) The term
num XP in TS with RAN ∶ F reads as “the number of all positions XP in the stream TS within the
range RAN, for which the formula F holds.”

The combination term is more complex. It is supposed to construct a value term. The intended
meaning is better understood if we explain it procedurally. Starting from the initial term TV0, it
should combine into a single value term (with the help of the combination function FV) all those
value terms TV1 that are selected for each position XP. These are the positions taken (incrementally)
from the stream TS within the range RAN until F succeeds, for which the constraint CONSTR holds.
The variable this, when it appears in F, should be instantiated with the value term constructed
up to the moment when F is evaluated. It should be noted that the scopes of bindings that appear
in CONSTR last till the end of the complete combine expression, including TV1.
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Stream Terms:

TS ∶∶= XS ∣ BIND ∶ TS
∣ FS(T1, . . . ,Tn)
∣ partial combine[TV0,FV] XP in TS with RAN CONSTR until F ∶ TV1
Default value for F in “until F” ∶ false

∣ construct XP in TS with RAN CONSTR ∶ TV
∣ construct XP in TS1 with RAN CONSTR ∶ TS2

Partial combination is quite similar to complete combination, but instead of constructing a single
value term, it constructs a stream of all intermediate value terms that are used in complete combi-
nation in the process of constructing the value term. The variable this, when it appears in F, refers
to the stream constructed up to the moment when F is evaluated. construct XP in TS with RAN

CONSTR ∶ TV constructs a stream in the following way: For each position XP in the stream TS within
the range RAN satisfying the constraint CONSTR, the value term TV is put in stream that is being
constructed. Similarly, construct XP in TS1 with RAN CONSTR ∶ TS2 constructs a stream by
joining the TS2’s together for each position XP in the stream TS1 within the range RAN satisfying
the constraint CONSTR.

We finish this section with an example illustrating various syntactic categories:

Example 1.

stream xs = construct xp in s1 with 0=< xp

value xv = s1@xp satisfying s1�xp ≺ s2�0/\p(xv) ∶ xv

∶
forall xp in xs with 0=< xp ∶ q(xs@xp)=> r(xs@xp)

In this formula s1 and s2 stand for stream constants, p, q, and r are unary value predicates, and
≺ is a binary value predicate. The formula states that for all positions 0=< xp in the stream xs, if
q holds for the value xs@xp of xs at the position xp, then r holds for the same value. The stream
xs is constructed by selecting those messages from the stream s1 that chronologically precede any
message in the stream s2 and satisfy the predicate p. The syntax tree of the formula is shown in
Figure 2. Note that except the specifiers, the auxiliary symbols of the alphabet are not displayed.
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stream

xs

XS

construct

xp

XP in

s1

TS with

0

TP

=<

PP

RAN

xp

XP

value

xv

XV

s1

TS @

TV

xp

TP

satisfying

≺

PV

s1

TS �

TV

xp

TP

s2

TS �

TV

0

TP

F

p

XP

xv

TV

F/\

F

CONSTRBIND

CONSTR

TS

xv

BIND

forall XP

xp

in XS

xs

with RAN

XP PP TP

0 =< xp

q

PV

xs

XS @

xp

TP

TV

F

r

PV

xs

XS @

xp

TP

TV

F

F

F

F

Figure 2: Syntax tree of the formula from Example 1.
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3 Semantics

To define semantics of our language, we start with introducing semantic domains. After that,
the syntactic constructs will be connected to these domains and to their corresponding operations
with the help of the valuation function.

3.1 Semantic Domains and Environments

We choose mnemonic names for semantic domains, to underline their connection with syntactic
categories. Their definitions and connections to syntactic constructs are given in Table 2.

Domain Definition Corresponding syntactic category

Stream N→Message Stream terms
Message (Time × (Value ∪ {?V})) ∪ {?M}
Time N Value terms (the time stamp of a message)
Value N +Char∗ Value terms (general)
Position N Position terms
MK {t, f , ?F,�F} Formulas

Table 2: Semantic domains.

In the table, →,×,+, ∗ are constructors of compound domains: → for the function domain, ×
for the product domain, + for the sum domain, and ∗ for the Kleene closure. N stands for the set
of natural numbers, Char for characters, ?V is the unknown value, ?M is the unknown message, ?F
is the unknown truth value, and �F is the error truth value. (F in the index stands for “formula”.)
The name MK is an abbreviation of McCarthy-Kleene: The reason is that ?F and �F behave like
Kleene’s undefined truth value [17] and McCarthy’s error value [18], respectively. Below we will
use also unknown and error positions ?P and �P and error values �V.

We distinguish between unknown and error truth values having in mind the following difference:
A formula that evaluates to the error value immediately propagates it to the entire context around
it, forcing the context to get also the error value. To give an analogy with programming, it is a
critical error that forces to abort the evaluation. On the other hand, the unknown truth value does
not force the same behavior: A formula can still evaluate to t or f even if some of its subformula
evaluates to ?F.

The idea is to compute the truth value of the monitor formula over the given Stream domain.
The elements of this domain are streams. They are infinite sequences of messages. Each message
is either a pair of the time value and the message content, or an unknown message. We assume
that all our streams s have the following properties:

• Ascending Time Property: For all i ∈ N, if s(i) ≠ ?M and s(i + 1) ≠ ?M, then the time value
at s(i) does not exceed the time value at s(i + 1).

• Continuous Unknown Messages Property: For all i ∈ N, if s(i) = ?M, then s(i + 1) = ?M.

The evaluation of syntactic objects naturally depends on the assignment of values to the vari-
ables. This is what the environments are responsible for. They map identifiers to the corresponding
values. In our case, these are mappings from variables to the corresponding semantic domains as
it is shown in Table 3. One can notice that there are some peculiarities there: First, our en-
vironment can be erroneous, because the mapping might map a variable to the corresponding
error value. To express such a possibility, we have the lifting with the erroneous environment �E.
Moreover, we will use an extended environment, that records the “current time point” (a natural
number). The reason is that the semantics of our language constructs will depend on the current
time, which divides streams from the Stream semantic domain between finite observable initial
part and infinite non-observable tail stream. As time progresses, more of the “non-observable”
part becomes “observable”. We do not have an explicit current time variable in our language. To

8



evaluate a monitor (to compute its truth value) over a given stream (or streams), we proceed by
evaluating it for all time points, starting from some minimal value (say, 0) for the current time
and monotonically increasing it. Therefore, instead of an explicit mapping, CurrTime is added to
the extended environment.

Environment Definition

Env EnvFormula ×EnvPosition ×EnvValue ×EnvStream
EnvExtended EnvFormula ×EnvPosition ×EnvValue ×EnvStream ×CurrTime
EnvFormula XF→ {t, f , ?F}
EnvPosition XP→ Position
EnvValue XV→ Value
EnvStream XS→ Stream
CurrTime Time
�E Error environment

Table 3: Environments.

3.2 Valuation Function

The valuation function J⋅K operates on a syntactic construct and returns a function from the
environment to a semantic domain.

Auxiliary Functions. We start with auxiliary definitions that are used in several places later:3

time ∶ Message → Time value ∶ Message → Value ∪ {?V}
time(m) = (let (t, v) =m ∶ t) value(m) = (let (t, v) =m ∶ v)

In the definitions below P stands for the powerset, e↓i for the i’s projection of an environment e,
and e↓i[X↦ V ] for the environment e′ with the property that e′(X) = V and e′(Y) = e↓i(Y) for all
Y ≠ X.

For an extended environment e, we define a function current time that simply returns the
projection of e on its last component, the current time:

current time ∶ EnvExtended → CurrTime

current time(e) = e↓5

The function collect will be used in the definitions of quantifier semantics. Given a position
variable, semantics of a stream term, of a range, and of a formula, it returns a function from an
extended environment to a set of pairs (position, truth value), defined as follows:

collect ∶ XP × TS × (EnvExtended → (XP ×Position ×Position) ∪ {?P,�P})
× (EnvExtended →MK )
→ EnvExtended

→ (P(Position ×MK ) × {complete range, incomplete range}) ∪ {?P,�P}
collect[XP,TS, JRANK, JFK](e) =

let r = JRANK(e) ∶
if r = �P then

�P
else if r = ?P then

?P

3We denote auxiliary semantic functions with underlined identifiers.
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else

let (XP1, from, to0) = c ∶
if XP1 ≠ XP then

�P
else

let p0 = max
pos

∶ JTSK(e)(pos) ≠ ?M ∧ JTS�posK(e) ≤ current time(e) ∶

let to = min(p0, to0) ∶
if to < from then

?P

else

let flag =
if to = to0 then

complete range

else

incomplete range ∶
let pairs = {(p, JFK(e↓1, e↓2[XP↦ p], e↓3, e↓4, e↓5)) ∣ from ≤ p ≤ to} ∶
(pairs,flag).

From this definition one can notice that although RAN can be unbounded from above, the set
collect computes is always finite. It is because we consider only those positions from TS, which
contain messages with the time stamp not exceeding the current time point current time(e). The
formula F is then evaluated for all those selected positions.

Semantics of Monitors and Formulas. Our logic is a four-valued logic where binary connec-
tives are not commutative. The interpretations of the connectives are similar to [2] and are given
by the following tables:

not t f ?F �F
f t ?F �F

and t f ?F �F
t t f ?F �F
f f f f f

?F ?F f ?F �F
�F �F �F �F �F

or t f ?F �F
t t t t t
f t f ?F �F

?F t ?F ?F �F
�F �F �F �F �F

implies t f ?F �F
t t f ?F �F
f t t t t

?F t ?F ?F �F
�F �F �F �F �F

iff t f ?F �F
t t f ?F t
f f t ?F �F

?F ?F ?F ?F �F
�F �F �F �F �F

We use these operators in the definition of the valuation function for the monitors and formulas.
For a monitor M = monitor XP ∶ F, the valuation JMK collects positions of violations of JFK, where
XP points to “current position”:

▷ JMK ∶ Env → P(Position)
Jmonitor XP ∶ FK(e) = {p ∈ Position ∶ JFK(e↓1, e↓2[XP↦ p], e↓3, e↓4) = f}.

The truth value of a formula F in the given environment is defined as ?F if it is ?F at all time
points in the extended environment. If there is a time point at which the truth value of F is not
?F, we take the minimal such time point, evaluate F in the extended environment at that time
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point, and take the obtained truth value as the result:

▷ JFK ∶ Env →MK

JFK(e) =
if (∃ t ∈ N ∶ JFK(e↓1, e↓2, e↓3, e↓4, t) ≠ ?F) then

let t = min
t∈N

∶ JFK(e↓1, e↓2, e↓3, e↓4, t) ≠ ?F ∶ JFK(e↓1, e↓2, e↓3, e↓4, t)

else

?F.

Truth value of formulas over an extended environment is defined as follows:

▷ JFK ∶ EnvExtended →MK

JXFK(e) = e↓1(XF).
JBIND ∶ FK(e) = (let e1 = JBINDK(e) ∶ if e1 = �E then �F else JFK(e1)).
JtrueK(e) = t.

JfalseK(e) = f .

JPV(T1, . . . ,Tn)K(e) =
let v1 = JT1K(e), . . . , vn = JTnK(e) ∶
if (∃1 ≤ i ≤ n ∶ vi = �V ∨ vi = �P) then �F else JPVK(v1, . . . , vn).

J∼FK(e) = (let b = JFK(e) ∶ not(b)).
JF1 /\F2K(e) = (let b1 = JF1K(e), b2 = JF2K(e) ∶ and(b1, b2)).
JF1 \/F2K(e) = (let b1 = JF1K(e), b2 = JF2K(e) ∶ or(b1, b2)).
JF1 =>F2K(e) = (let b1 = JF1K(e), b2 = JF2K(e) ∶ implies(b1, b2)).
JF1 <=>F2K(e) = (let b1 = JF1K(e), b2 = JF2K(e) ∶ iff(b1, b2)).

The above definitions are more or less straightforward. Just to emphasize on how the error truth
value is obtained, we comment on the semantics of BIND ∶ F and PV(T1, . . . ,Tn). The valuation of
BIND changes the environment (we will see this definition a bit later), because it binds variables
with the corresponding values (position, value, stream terms, or formulas), which might raise an
error. Therefore, the environment might become erroneous and it causes BIND ∶ F to be evaluated
to �F. In the case of PV(T1, . . . ,Tn), error in the evaluation of the arguments makes the truth
value of the formula equal to �F.

The valuation function for quantified formulas is defined as follows:

Jforall XP in TS with RAN ∶ FK(e) =
let collected = collect[XP,TS, JRANK,F](e) ∶
if collected = �P then

�F
else if collected = ?P then

let b0 = JFK(e↓1, e↓2[XP↦ ?P], e↓3, e↓4, e↓5) ∶
if b0 = f

f

else if b0 = �F
�F

else

?F

else
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let (pairs,flag) = collected ∶
if (∀(p, b) ∈ pairs ∶ b = t) then

if flag = complete range then

t

else

?F

else if (∀(p, b) ∈ pairs ∶ b = t ∨ b = ?F) then

?F

else

let p1 = min
p

∶ (p, b) ∈ pairs ∧ (b = f ∨ b = �F) ∶

let (p1, b1) ∈ pairs ∶
b1.

Jexists XP in TS with RAN ∶ FK(e) =
let collected = collect[XP,TS, JRANK,F](e) ∶
if collected = �P then

�F
else if collected = ?P then

let b0 = JFK(e↓1, e↓2[XP↦ ?P], e↓3, e↓4, e↓5) ∶
if b0 = t

t

else if b0 = �F
�F

else

?F

else

let (pairs,flag) = collected ∶
if (∀(p, b) ∈ pairs ∶ b = f) then

if flag = complete range then

f

else

?F

else if (∀(p, b) ∈ pairs ∶ b = f ∨ b = ?F) then

?F

else

let p1 = min
p

∶ (p, b) ∈ pairs ∧ (b = t ∨ b = �F) ∶

let (p1, b1) ∈ pairs ∶
b1.

Both definitions rely on the output of the collect function. Notice that this output may contain
a pair (p,�F), i.e., evaluating F to �F does not cause collect itself to become erroneous. The
information contained in the set the collect function computes is used to establish the truth value
of the quantified formula. And if for some position p in TS the formula F evaluates to �F, it does
not automatically mean that, say, forall XP in TS with RAN ∶ F to have the error truth value
as well. It might be that for some position p0 < p, forall XP in TS with RAN ∶ F fails. Since our
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logic is sequential, in such a case the valuation function should return (for the given environment)
f and not �F. This is in accordance to the intuition that an universally quantified formula can be
seen, in general, as an infinite conjunction. (In our case it is finite, because the output of collect
is always finite.) Hence, it should follow the rules for the interpretation of conjunction, which in
our case is not commutative. Note that here and below the meta-quantifiers and meta-connectives
∀,∃,∧,∨, . . . in semantic functions are the ordinary two-valued (non-sequential) ones.

Semantics of Bindings, Constraints, and Position Ranges. Bindings change environ-
ments:

▷ JBINDK ∶ EnvExtended → EnvExtended ∪ {�E}
Jformula XF = FK(e) =

let b = JFK(e) ∶
if b = �F then �E else (e↓1[XF↦ b], e↓2, e↓3, e↓4, e↓5).

Jposition XP = TPK(e) =
let p = JTPK(e) ∶
if p = �P then �E else (e↓1, e↓2[XP↦ p], e↓3, e↓4, e↓5).

Jvalue XV = TVK(e) =
let v = JTVK(e) ∶
if v = �V then �E else (e↓1, e↓2, e↓3[XV↦ v], e↓4, e↓5).

Jstream XS = TSK(e) =
let s = JTSK(e) ∶
(e↓1, e↓2, e↓3, e↓4[XS↦ s], e↓5).

The valuation of constraints returns a pair of an environment and a truth value:

▷ JCONSTRK ∶ EnvExtended → EnvExtended ×MK

JεK(e) = (e, t).
Jsatisfying F CONSTRK(e) =

let b = JFK(e) ∶
if b ≠ t then (e, b) else JCONSTRK(e).

JBIND CONSTRK(e) =
let e1 = JBINDK(e) ∶
if e1 = �E then (�E,�F) else JCONSTRK(e).

The valuation of a range gives a triple of a position variable and lower and upper bounds of its
range (the bounds are positions). It may happen that the output is the error position or an
unknown position.

▷ JRANK ∶ EnvExtended → (XP ×Position ×Position ∪ {∞}) ∪ {?P,�P}
JTP1 PP1 XP PP2 TP2K(e) =

let from =
if PP1 = “<” then

JTP1K(e) + 1

else

JTP1K(e) ∶
let to =

if PP2 = “<” then
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JTP2K(e) − 1

else

JTP2K(e) ∶
if from = �P ∨ to = �P then

�P
else if from = ?P ∨ to = ?P then

?P

else

(XP, from, to).
JTP PP XPK(e) =

let from =
if pp1 = “<” then

JTPK(e) + 1

else

JTPK(e) ∶
if from = �P then

�P
else if from = ?P then

?P

else

(XP, from,∞).

Semantics of Position Terms. The valuation function for position terms is defined as follows:

▷ JTPK ∶ EnvExtended → Position ∪ {?P,�P}
JXPK(e) = e↓2(XP).
JBIND ∶ TPK(e) = (let e1 = JBINDK(e) ∶ if e1 = �E then �P else JTPK(e1)).
J0K(e) = 0, J1K(e) = 1, . . . .

JTP+NK(e) = JTPK(e) + JNK(e)).
JTP−NK(e) = max(JTPK(e) − JNK(e),0).
Jmax XP in TS with RAN ∶ FK(e) =

let collected = collect[XP,TS, JRANK, JFK](e) ∶
if collected = �P then

�P
else if collected = ?P then

?P

else

let (pairs,flag) = collected ∶
if (∃ (p, b) ∈ pairs ∶ b = �F) then

�P
else if (∀ (p, b) ∈ pairs ∶ b ≠ t) then

?P

else if flag = incomplete range then

?P
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else

max
p

∶ (p, b) ∈ pairs ∧ b = t.

Jmin XP in TS with RAN ∶ FK(e) =
let collected = collect[XP,TS, JRANK, JFK](e) ∶
if collected = �P then

�P
else if collected = ?P then

?P

else

let (pairs,flag) = collected ∶
if (∀ (p, b) ∈ pairs ∶ b ≠ t ∧ b ≠ �F) then

?P

else if flag = incomplete range then

if (∃ (p, b) ∈ pairs ∶ b = �F) then

�P
else

?P

else

let p0 = min
p

∶ (p, b) ∈ pairs ∧ (b = t ∨ b = �F) ∶

let (p0, b0) ∈ pairs ∶
if b0 = t then

p0

else

�P.

The definition should be self-explanatory. One can see how collect is used in the definition of
semantics of quantified expressions.

Semantics of Value Terms. Except the terms involving complete combine, semantics of value
terms can be defined easily. We first show this easy part and then consider the complete combine

terms in detail.

▷ JTVK ∶ EnvExtended → Value ∪ {?V,�V}
JXVK(e) = e↓3(XV).
JBIND ∶ TVK(e) = (let e1 = JBINDK(e) ∶ if e1 = �E then �V else JTVK(e1)).
JTS�TPK(e) = time or value[TS,TP, time](e).
JTS@TPK(e) = time or value[TS,TP,value](e).
JFV(T1, . . . ,Tn)K(e) =

let v1 = JT1K(e), . . . , JTnK(e) ∶
if (∃ 1 ≤ i ≤ n ∶ vi = �V ∨ vi = �P) then �V else JFVK(v1, . . . , vn).

Jnum XP in TS with RAN ∶ FK(e) =
let collected = collect[XP,TS, JRANK, JFK](e) ∶
if collected = �P then

�V
else if collected = ?P then
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?V

else

let (pairs,flag) = collected ∶
if (∃(p, b) ∈ pairs ∶ b = �F) then

�V
else if flag = incomplete range then

?V

else

#(p, b) ∈ pairs ∶ b = t.

The auxiliary function time or value used above should return (for the given environment) either
the time stamp or the content value from the message in the given stream at the given position:

time or value ∶ TS × TP × {time,value} → EnvExtended → Value ∪ {?V,�V}
time or value[TS,TP, time or value](e) =

let p = JTPK(e), s = JTSK(e) ∶
if p = �P then

�V
else if p = ?P then

?V

else if s(p) = ?M then

�V
else

if current time(e) < time(s(p)) then

�V
else

if time or value = time then

time(s(p))
else

value(s(p)).

This function first checks whether the position itself is a valid one, i.e., whether it is neither �P
and ?P. If this is not the case, then it looks at the stream message at that position. It may happen
that this message is ?M.4 In that case the function gives back the unknown value. Otherwise, it
is checked whether the position is within the currently observable part of TS. If not, again the
unknown value is returned. If yes, then the time stamp or the content value is extracted from the
message with the help of time and value functions, respectively.

Now we turn to complete combine. Its intuitive meaning has already been mentioned when
value terms were introduced. Now we put the concrete definition of its semantics.

Jcomplete combine[TV0,FV] XP in TS with RAN CONSTR until F ∶ TV1K(e) =
let r = JRANK(e) ∶
if r = �P then

�V
else if r = ?P then

4This can happen if the stream TS was constructed so that its finite prefix contain full messages, while the rest,
by default, is filled in with ?M. We will see stream construction in the section about semantics of stream terms.
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?V

else

let (XP1, from, to0) = r ∶
if XP1 ≠ XP then

�V
else

let p0 = max
pos

∶ JTSK(e)(pos) ≠ ?M ∧ JTS�posK(e) ≤ current time(e) ∶

let to = min(p0, to0) ∶
if to < from then

�V
else

let flag =
if to < to0 then

incomplete range

else

complete range ∶
let acc = JTV0K(e) ∶
if acc = �V ∨ acc = ?V then

acc

else

let combine values = JFVK(e) ∶
value comb[XP,CONSTR,F,TV, combine values,flag , e](from, to,acc).

In this definition, the main task is delegated to the complete combine function value comb[XP,
CONSTR,F,TV, combine values,flag , e] on the last line. (Its definition comes below.) Before that,
some “preparatory work” is done, which involves computing the position range for the variable XP

in the stream TS and “preparing” the accumulator, the start value, to which the next values are
combined with the help of the combination function. We discuss both steps in more detail:

Computing the range: We need to evaluate RAN and see, whether it is �P, ?P, or a triple
(XP1, from, to0) fixing the range of some position variable XP1. In the first two cases the
value of the complete combine term should be the �V and ?V, respectively. In the third
case we check whether XP1 is the same as XP, i.e., whether RAN gives the range for XP or for
some other variable. If it is the other variable, it is considered to be an error and the value of
the complete combine term is �V. Otherwise, we have the range (from, to0) for XP, which
should be refined with respect to the current time current time(e): We find the maximal
position in the stream TS such that the message at that position has the time stamp smaller
than the current time. We can not go beyond that position: The “currently observable”
part of the stream TS ends there. So, the upper bound of the range should be the minimum
between that position and to0, and at the same time not smaller than the lower bound from.
If such an upper bound does not exist, then we again get the error value. Otherwise, it is
denoted by to, and the range of XP is (from, to). Besides, we pass the information to the
function value comb whether the range was completely or incompletely observable. It will be
needed for “external” functions (operating on values) to mark or to determine completeness
of a particular value.

Preparing the accumulator: The accumulator is supposed to be the value of the term TV0. If it
gives an error, then the value of the complete combine term is an error as well. Otherwise,
we compute value comb[XP,CONSTR,F,TV, combine values,flag , e]. This is a function whose
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application to the already computed range of XP and the accumulator gives the result of the
evaluation of the complete combine term.

The function value comb is defined as follows:

value comb ∶
(XP × CONSTR × F × TV × (Value ∪ {?V} ×Value ∪ {?V} → Value ∪ {?V,�V})
× {complete range, incomplete range} ×Env)

→ Position ×Position ×Value

→ Value ∪ {?V,�V}
value comb[XP,CONSTR,F,TV, combine values,flag , e](from, to,acc) =

let (e1, b1) = JCONSTRK(e↓1, e↓2[XP↦ from], e↓3, e↓4, e↓5) ∶
if b1 = �F then

�V
else if b1 = ?F then

?V

else if b = f then

acc

else

let v = JTVK(e1) ∶
if v = �V then

�V
else

let newacc = combine values(acc, v) ∶
if newacc = �V then

�V
else

let b2 = JFK(e1↓1, e1↓2, e1↓3[this↦ newacc], e1↓4, e1↓5) ∶
if b2 = �F then

�V
else if b2 = ?F then

?V

else if b2 = t then

newacc

else if from ≥ to then

if flag = complete range then

newacc

else

?V

else

let from1 = from + 1 ∶
value comb[XP,CONSTR,F,TV, combine values,flag , e](from1, to,newacc).

Hence, value comb[XP,CONSTR,F,TV, combine values, e] is a recursive function that operates on a
triple of two positions and a value and returns back a value (including unknown and error values).
Given such a triple (from, to,acc), recursion is supposed to go through the numbers between from
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and to. At each step, the function evaluation either stops returning a value (including ?V and �V),
or generates a new triple (from + 1, to, combine values(acc, v)) where v is obtained from TV, and
proceeds with recursion. In fact, one can see that value comb is a primitive recursive function.
The boundary cases are any of the following (from indicates the current position):

• when CONSTR does not evaluate to t in the environment updated by assigning from to XP,

• when TV evaluates to �V in the updated environment,

• when combine values returns �V while trying to compute the new accumulator newacc,

• when the until condition F, after replacing this with newacc in it, does not evaluate to f
in the updated environment,

• when the upper bound of the range is reached, i.e., when from ≥ to.

If none of these conditions hold, evaluation proceeds by recursion. At the end, when either CONSTR
fails, F succeeds, or from exceeds to when the range is complete, the result of function evaluation
is a value of the form combine values(⋯(combine values(combine values(acc, v1), v2) . . . , vn) for
some n ≥ 1. In the other terminal cases the result is either ?V or �V.

Semantics of Stream Terms. Semantics of stream variables, bindings, and simple stream
terms can be defined easily:

▷ TS ∶ EnvExtended → Stream

JXSK(e) = e↓4(XS)
JBIND ∶ TSK(e) = (let e1 = JBINDK(e) ∶ if e1 = �E then ?ωM else JTSK(e1)).
JFS(T1, . . . ,Tn)K(e) = (let s1 = JT1K(e), . . . , s1 = JTnK(e) ∶ JFSK(s1, . . . , sn)).

Note that for BIND ∶ TS, if JBINDK(e) is �E, then JBIND ∶ TSK(e) returns ?ωM and not an error value,
unlike the valuations for formulas and position and value terms. The reason is that we do not
have erroneous streams.

The semantics of partial combine is largely similar to complete combine. The main differ-
ence is that while the result of complete combine is a value of the form

combine values(⋯(combine values(combine values(acc, v1), v2) . . . , vn),

the semantics of partial combine is a stream whose known messages have contents of the form

acc, combine values(acc, v1), combine values(combine values(acc, v1), v2), . . . ,
combine values(⋯(combine values(combine values(acc, v1), v2) . . . , vn),

followed by the stream of unknown messages ?ωM. The known messages look like all partial results
computed in the course of computing combine values(⋯(combine values(combine values(acc, v1),
v2) . . . , vn). This is where the name partial combine comes from, compared to complete combine

for the value case. The formal definition follows:

Jpartial combine[TV0,FV] XP in TS with RAN CONSTR until F ∶ TV1K(e) =
let current time = current time(e) ∶
if current time = 0 then

?ωM

else

let r = JRANK(e) ∶
if r = �P then
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?ωM

else if r = ?P then

((current time, ?V), ?ωM)
else

let (XP1, from, to0) = r ∶
if XP1 ≠ XP then

?ωM

else

let p0 = max
pos

∶ JTSK(e)(pos) ≠ ?M ∧ JTS�posK(e) ≤ current time ∶

let to = min(p0, to0) ∶
if to < from then

?ωM

else

let v = JTV0K(e) ∶
if v = �V then

?ωM

else

let acc = ((current time, v), ?ωM) ∶
let combine values = JFVK(e) ∶
let s1 = stream comb[XP,CONSTR,F,TV1, combine values, e](from, to,acc) ∶
let s2 = Jpartial combine[TV0,FV] XP in TS with RAN CONSTR

until F ∶ TV1K(e↓1, e↓2, e↓3, e↓4, current time − 1) ∶
diff and append(s1, s2).

According to this definition, first it is checked whether the current time point current time is 0 or
not. For simplicity, the time points are expressed with natural numbers and 0 indicates the starting
time. Since we assume that at the starting time point no stream is observable, partial combine

for the case current time = 0 should construct ?ωM, the completely unobservable stream. If we are
not at the starting time, then again, like in the case of complete combine, we prepare the input
for the corresponding function stream comb in two steps: First, computing the range and, second,
preparing the accumulator.

Computing the range: We need to evaluate RAN and see, whether it is �P, ?P, or a triple
(XP1, from, to0) fixing the range of some position variable XP1. In the first case the value
of the partial combine term is the unobservable stream ?ωM. In the second case, with the
unknown position ?P, we assume that only time tick is propagated to the result stream. That
means, the propagated message has the current time stamp and the unknown value, hence
the result stream has the form ((current time, ?V), ?ωM). In the third case we check whether
XP1 is the same as XP, i.e., whether RAN gives the range for XP or for some other variable. If
it is the other variable, then the value of the partial combine term is ?ωM. Otherwise, we
have the range (from, to0) for XP, which should be refined with respect to the current time
current time: We find the maximal position in the stream TS such that the message at that
position has the time stamp smaller than the current time. This is where the “currently
observable” part of the stream TS ends. Hence, the upper bound of the range should be the
minimum between that position and to0, and at the same time not smaller than the lower
bound from. If such an upper bound does not exist, then we again get the unobservable
stream. Otherwise, it is denoted by to, and the range of XP is (from, to).

Preparing the accumulator: The accumulator is supposed to be the stream whose observable part
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is the message consisting of the current time stamp and the value of the term TV0. If the
latter gives an error, then the value of the partial combine term is the unobservable stream
?+M. Otherwise, we compute stream comb[XP,CONSTR,F, TV1, combine values, e]. This is a
function whose application to the already computed range of XP and the accumulator gives
the stream that is very close to the intended result of the valuation of partial combine: The
right content is there, but the observable messages all carry the same time stamp, the current
time current time, no matter whether they have been put into the stream at current time or
could have been there at the same position also if the stream was constructed in earlier time
points. To make the time stamps correct, we compute the value of the partial combine

term recursively at the time point current time − 1 and then compare that result with the
current result: The difference between them are those messages that appear in the stream
at the time point current time. This is the job of diff and append (defined below): It takes
the observable part of the stream at current time −1, appends to it the observable messages
of the stream at current time that were not there at current time − 1, and forms the result
stream.

Note that, unlike complete combine, there is no check in partial combine whether the range
is complete or not. The reason is that complete combine is supposed to perform the complete
combination of the values within the range. If the range is incomplete, complete combination is
not possible. As for partial combine, it has to put on a stream the results of partial combinations
within the range and there is no requirement for completeness of those combined values there.

The function stream comb is defined as follows:

stream comb ∶
(XP × CONSTR × F × TV × (Value ∪ {?V} ×Value ∪ {?V} → Value ∪ {?V,�V}) ×Env)
→ Position ×Position × Stream

→ Stream

stream comb[XP,CONSTR,F,TV, combine values, e](from, to,acc) =
let (e1, b1) = JCONSTRK(e↓1, e↓2[XP↦ from], e↓3, e↓4, e↓5) ∶
if b1 ≠ t then

acc

else

let v = JTVK(e1) ∶
if v = �V then

acc

else

let newacc = combine and join(acc, v, combine values, current time(e1)) ∶
let b2 = JFK(e1↓1, e1↓2, e1↓3[this↦ newacc], e1↓4, e1↓5) ∶
if b2 ≠ f then

newacc

else if from ≥ to then

newacc

else

let from1 = from + 1 ∶
stream comb[XP,CONSTR,F,TV, combine values, e](from1, to,newacc).

Compared to value comb, one can see that there are fewer boundary cases here. The reason is
that here we return a stream even if CONSTR or F (after replacing this with newacc) evaluates
to error or unknown values, while value comb leads in such cases to an error or unknown result.
Otherwise, the structures of the definitions of stream comb and value comb are pretty similar.
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The actual work of putting messages on the stream in stream comb is done by the auxiliary
function called combine and join, which a bit more involved that its counterpart value combination
function from value comb. In fact, the value combination function combine values is one of the
parameters of combine and join. The other parameters are the stream acc itself, a value v to
be put in acc, and the current time point current time. Putting a new message on the stream
corresponds to placing it after the last observable position. The time stamp is current time. As
for its content, it is either ?V, or is obtained by combining the last value (≠ ?V) from the observable
part of the stream acc with the value v. In this way, in the observable part of the new stream we
keep the observable part of acc and add a new message obtained by extending the last known (i.e.,
whose content ≠ ?V) message. This guarantees that the Ascending Time Property is retained.

combine and join ∶
Stream ×Value ∪ {?V} × (Value ∪ {?V} ×Value ∪ {?V} → Value ∪ {?V,�V}) ×Time

→ Stream

combine and join(s, v, combine values, current time) =
let ((t1, v1), . . . , (tn, vn), ?ωM) = s ∶
if v = ?V then

stream join(s, ((current time, v), ?ωM))
else

let k = max
i

∶ vi ≠ ?V ∶

let newval = combine values(vk, v) ∶
if newval = �V then

stream join(s, ((current time, ?V), ?ωM))
else

stream join(s, ((current time,newval), ?ωM)).

The auxiliary function stream join used above and also later, is defined easily:

stream join ∶ Stream × Stream → Stream

stream join(s1, s2) =
let ((t1, v1), . . . , (tn, vn), ?ωM) = s1 ∶
((t1, v1), . . . , (tn, vn))∥s2.

where ∥ stands for prepending a finite sequence of messages to a stream. Note that stream join is
always used with the first argument having the finite observable part.

To finish the definition of the semantics of partial combine, we need to define the auxiliary
function diff and append:

diff and append ∶ Stream × Stream → Stream

diff and append(new stream,old stream) =
let ((t, v1), . . . , (t, vn), ?ωM) = new stream (n ≥ 0) ∶
let ((t′1, v′1), . . . , (t′m, v′m), ?ωM) = old stream (m ≥ 0) ∶
((t′1, v′1), . . . , (t′m, v′m))∥((t, vm+1), . . . , (t, vn), ?ωM)

The way how diff and append is used in partial combine guarantees that n ≥m and t ≥ t′m. The
resulting stream is obtained from old stream by appending to its observable part those observable
messages from the new stream that are located in the positions greater that the position of (t′m, v′m)
in old stream. In this sense, we take a “difference” between new stream and old stream and append
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it to the end of (the observable part of) old stream. Hence, we have the Ascending Time Property
in the resulting stream.

The next stream terms are the construct terms. There are two versions of them, one that
constructs a stream from the given value(s) and the other that joins together existing streams.
We give a generic definition of their valuations below, where value or stream replaces TV and TS:

Jconstruct XP in TS with RAN CONSTR ∶ value or streamK(e) =
let current time = current time(e) ∶
if current time = 0 then

?ωM

else

let r = JRANK(e) ∶
if r = �P ∨ r = ?P then

?ωM

else

let (XP1, from, to0) = r ∶
if XP1 ≠ XP then

?ωM

else

let p0 = max
pos

∶ JTSK(e)(pos) ≠ ?M ∧ JTS�posK(e) ≤ current time ∶

let to = min(p0, to0) ∶
if to < from then

?ωM

else

let s1 = stream construct[XP,CONSTR, value or stream, e](from, to, ?ωM) ∶
let s2 = Jconstruct XP in TS with RAN CONSTR ∶ value or streamK

(e↓1, e↓2, e↓3, e↓4, current time − 1) ∶
diff and append(s1, s2).

The meaning of this term is a stream constructed from the valuations of value or stream, taken
for all XP’s from TS within RAN satisfying CONSTR. Like the previous stream construction terms,
also here we do the similar “preparatory” work before delegating the task to the recursive function
stream construct, which constructs the first approximation of the result stream. The difference
and append method discussed about helps also here to get the right time stamps on the messages
in the final stream.

The function stream construct is defined in the following way:

stream construct ∶
(XP × CONSTR × (TV + TS) ×Env) → Position ×Position × Stream → Stream

stream construct[XP,CONSTR, value or stream, e](from, to,acc) =
let (e1, b1) = JCONSTRK(e↓1, e↓2[XP↦ from], e↓3, e↓4, e↓5) ∶
if b1 ≠ t then

acc

else

let v or s = Jvalue or streamK(e1) ∶
cases v or s of

isValue(v) Ð→ if v = �V then acc else let str = ((current time(e1), v), ?ωM) ∶
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isStream(s) Ð→ let str = s ∶
let newacc = stream join(acc, str) ∶
if from ≥ to then

newacc

else

let from1 = from + 1

stream construct[XP,CONSTR, v or s, e](from1, to,newacc).

We think there is no need to explain this definition in detail, since it uses the constructions and
ideas we have already explained earlier. The only new thing is related to the fact that since
value or stream can be value or term, we need to have a recognizer to know in which case we are.
This is achieved in the standard way, with the help of the cases statement and the disassemblers
isValue and isStream, with their intended meaning.

Semantics of Nonlogical Symbols. We have not defined semantics of FV, FS, and PV above.
Nonlogical symbols do not have a fixed semantics. Their meaning may vary from one interpretation
to another. Therefore, we only fix the type of their valuation function:

JFVK ∶ (Value ∪ {?V} +Position ∪ {?P} + Stream)∗ → Value ∪ {?V,�V}
JFSK ∶ (Value ∪ {?V} +Position ∪ {?P} + Stream)∗ → Stream

JPVK ∶ (Value ∪ {?V} +Position ∪ {?P} + Stream)∗ →MK

4 Example: File Download Monitor

In this section we describe an example illustrating how a file download monitor can be modeled
in our language. It is supposed to monitor the input TCP/IP stream to detect viruses in multi-
part/multi-file downloads. The scenario is as follows:

• The goal is to prevent download of files containing malware.

– Monitor must not forward last TCP/IP package of the file.

– In general, only the complete file can be analyzed for malware (because it may need to
be decompressed).

file.zip → file

• A file may be split into multiple parts.

– Each part may be hosted on a different server under a different name.

file.zip.001, file.zip.002, ...

• A part may be transferred in multiple downloads.

– Each download consists of a range of bytes from the part.

GET /file.zip.001 HTTP/1.1

Range: bytes=500-999

– Downloads may refer to different hosts and use different protocols.

HTTP, FTP, ...
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We suppose that the TCP/IP stream is preprocessed before it is passed to the monitor so that
it can be adequately modeled by the stream construct of our language. Such a transformation
includes, in particular, rearranging messages in the stream in such a way that they are ordered
with respect to the time stamp they carry, to guarantee the Ascending Time Property. The
preprocessing itself is not modeled in the language.

Typically, one would be interested to answer the questions:

• Related to analyzing the file:

– Does the file contain a virus?

• Related to combining parts to files:

– Does a certain part belong to a certain file?

– Does a collection of parts represent the whole file?

• Related to combining downloads to parts:

– Does a certain download belong to a certain part?

– Does a collection of downloads represent the whole part?

To fix the terminology, we say that each message in the input TCP/IP stream is a pair of the time
stamp and the message content (value) that we call the packet. When it does not cause confusion,
we do not distinguish between a message and its content. Logically, the TCP/IP stream may be
structured into different substreams consisting of messages exchanged between the same source
and destination or vice versa. That means, two messages m1 = (t1,packet1) and m2 = (t2,packet2)
belong to the same such substream, if the sources and destinations of m1 and m2 are the same,
or if the source of m1 is the destination of m2 and the source of m2 is the destination of m1. We
assume that each message carries the information about its source and destination in the packet
part and there are means to extract it from there.

For the given TCP/IP stream, we would like to construct new streams that we call connec-
tions. One feature of connections is that all messages in the same connection share the same
source/destination as discussed above. Let us illustrate a connection construction on an example.
Let (t1,packet1), (t2,packet2), (t3,packet3), . . . be the input TCP/IP stream. Assume that the
messages at every fourth position (t1,packet1), (t5,packet5), (t9,packet9), . . . form the substream
whose messages share the same source and destination in the way described above. Let us denote
this stream by s0. Assume also that (the contents of) some message triples in s0 can be combined
into one coherent piece of information. The triples are formed from the messages at the following
positions:

• 1,3,5

• 2,4,6

• 7,9,11

• 8,10,12

• 13,15,17

• . . .

That means that, for instance, one such a piece can be formed from the packets packet1,packet9,
and packet17. Let current time be the current time and comb be the combination function. Then
the connection conn should have the form:

(current time,packet1), (current time + 1, comb(packet1,packet9)),
(current time + 2, comb(comb(packet1,packet9),packet17)),
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(current time + 3,packet5), (current time + 4, comb(packet5,packet13)),
(current time + 5, comb(comb(packet5,packet13),packet21)),
(current time + 6,packet25), . . .

In this stream, the messages comb(comb(packet1,packet9),packet17) and comb(comb(packet5,
packet13),packet21) are called the complete ones, because they represent that coherent piece of
information we were talking about. The other messages are partial. We assume that there are
means to determine whether a message is partial or complete.

Once we have connections, we can form new streams from them. One such stream can be
the stream http: A message (t, v) from a connection stream is put in http if v forms a complete
http download. Again, we assume that there are means to check whether a message content is a
complete http download. We can form also the stream ftp of ftp downloads. This construction is
slightly more involved than the http stream construction. Finally, we can merge the http and ftp
streams together to form the downloads stream.

Now, in the downloads stream (td1,download1), (td2,download2), (td3,download3), . . ., where each
download is either a http or an ftp complete download, several messages may correspond to the
same file part. For instance,

• combining download1 and download3 gives part 1 of the first file: file1.zip.001,

• combining download2, download7, download8, and download9 gives part 1 of the second file:
file2.zip.001,

• combining download4 and download6 gives part 2 of the second file: file2.zip.002,

• download5 gives part 2 of the first file file1.zip.002.

From the downloads stream, we can form the stream parts whose messages are such file parts:
(tp1,file1.zip.001), (t

p
2,file2.zip.001), (tp3,file2.zip.002), (tp4,file1.zip.002), . . . . These

file parts themselves are complete.
Finally, the monitor will use the stream parts to combine file parts into files and check whether

they contain virus. Of course, the actual check for the viruses is beyond the language.
Now we show how these ideas can be expressed in our language. Instead of writing one

large formula for the monitor, we use definitions of some functions and predicates as a shorthand
notation to make it more comprehensible. To ease reading, we also add keywords predicate,
function, stream, etc. to those definitions. These defined symbols are written in serif, variables in
italic. The external functions, whose definitions are not provided, are written in small caps.

The top-level monitor is the formula:

monitor current position ∶
value part = parts@current position

∶ start file(current position,part) =>

value file = get file(current position,part)
∶ NoVirus(file).

The predicate start file is true if no part in the past (restricted by the given Timeout) referred
to the same file as the current one:

predicate start file(current position,part)<=>
CompletePart(part)/\
∼ exists pos in parts with current position −Timeout=<pos < current position ∶

SameFile(part ,parts@pos).

The function get file gets file whose first part has currently started:

function get file(current position,part) =
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value set =
complete combine[EmptySet,AddPart]

pos in parts

with current position =<pos

value part0 = parts@pos

satisfying SameFile(part ,part0)
until CompleteSet(this)

∶ part0

∶ File(set).

The monitor, as one can see, works on the parts stream. We give now its definition based on the
ideas above:

stream parts =
construct

start in downloads

with 0=< start

value download = downloads@start

satisfying start part(start ,download)
∶ complete combine[EmptyPart,AddDownload]

now in downloads

with start =<now

value download0 = downloads@now

satisfying SamePart(download ,download0)
satisfying CompleteDownload(download0)
until CompletePart(this)

∶ download0.

The predicate start part is true if no download in the past referred to the current part:

predicate start part(start ,download)<=>
CompleteDownload(download)/\
∼ exists pos in downloads with start −Timeout<pos < start ∶

SamePart(download ,downloads@pos).

The downloads stream is obtained by merging the http and ftp downloads streams, where merging
is an external function:

stream downloads =Merge(http, ftp).

The http downloads stream is constructed from the connections stream relatively easily, we just
extract complete http downloads from there:

stream http =
construct

current position in connections

with 0=< current position

∶ CompleteHTTPDownload(connections@current position).
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Construction of the ftp stream is more involved. First, we construct an intermediate stream of ftp
requests and then put requests and the corresponding ftp downloads together:

stream ftprequests =
construct

current position in connections

with 0=< current position

value request = connections@current position

satisfying CompleteFTPRequest(request)
∶ request .

stream ftp =
construct

current position in ftprequests

with 0=< current position

value request = ftprequests@current position

position p =
min

pos in connections

with 0=<pos

value connection = connections@pos

∶ CompleteFTPDownload(connection)/\
ftprequests�current position ≤ connections�pos /\

FTPMatch(request , connection)
∶ FTPDownload(request , connections@p).

Both http and ftp downloads stream use the connections stream, which is constructed from the
given tcpip stream in the following way:

stream connections =
construct

start in tcpip

with 0=< start

value packet0 = tcpip@start

satisfying start connection(packet0)
∶ partial combine[EmptyConnection,AddPacket]

pos in tcpip

with start =<pos

value packet1 = tcpip@pos

satisfying same connection(packet0,packet1)
until end connection(packet0,packet1)

∶ packet .

Here we used the predicates start connection, same connection, and end connection. Their defi-
nitions follow. start connection succeeds on a packet that starts a connection:

predicate start connection(packet) <=> Syn(packet)/\∼Ack(packet).
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same connection is true if both of its arguments belong to the same connection:

predicate same connection(packet0,packet1) <=>

(Source(packet0) Ô Source(packet1)/\Dest(packet0) ÔDest(packet1))\/
(Source(packet0) ÔDest(packet1)/\Dest(packet0) Ô Source(packet1)).

The binary predicate Ô is interpreted as the syntactic equality over values.
Finally, end connection is true if its second argument closes the connection started by the first

argument:

predicate end connection(packet0,packet1) <=>

Fin(packet1)\/
(Reset(packet1)/\Source(packet1) ÔDest(packet0))\/
(Syn(packet1)/\∼Ack(packet1)).

The first line in the body of the definition (Fin(packet1)) corresponds to the normal end. The
next line models the server reset, the last one – new start.
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[16] Moonjoo Kim, Mahesh Viswanathan, Hanêne Ben-Abdallah, Sampath Kannan, Insup Lee,
and Oleg Sokolsky. Formally specified monitoring of temporal properties. In ECRTS, pages
114–122. IEEE Computer Society, 1999.

[17] Stephen C. Kleene. Introduction to Metamathematics. North Holland, 1952.

[18] John McCarthy. A basis for a mathematical theory of computation. In Computer Program-
ming and Formal Systems, pages 33–70. North-Holland, 1963.

[19] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Rosu. An
overview of the mop runtime verification framework. International Journal on Software Tools
for Technology Transfer, 14(3):249–289, 2012.

[20] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE Computer
Society, 1977.

[21] David A. Schmidt. Denotational Semantics. Allyn & Bacon, 1986.

[22] George Spanoudakis, Christos Kloukinas, and Khaled Mahbub. The serenity runtime mon-
itoring framework. In Spyros Kokolakis, Antonio Maña Gómez, and George Spanoudakis,
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A Syntax of the LGAL

A.1 Notation

The alphabet (terminal symbols)

XP : Position variables
XV : Value variables (containing the variable this)
XS : Stream variables
XF : Formula variables

0,1, . . ., : Constant position function symbols (logical)
+,− : Binary position function symbols (logical)

�,@ : Binary value function symbols (logical)
FV : Fixed arity value function symbols (nonlogical)
FS : Fixed arity stream function symbols (nonlogical)

<,=< : Binary position predicate symbols (logical)
PV : Fixed arity value predicate symbols (nonlogical)

true,false : Nullary Connectives
∼ : Unary connective

/\,\/,=>,<=> : Binary connectives
forall, exists, monitor : Formula quantifiers

max,min : Quantifiers for position terms
num,complete combine : Quantifiers for value terms

partial combine,construct : Quantifiers for stream terms
formula,position,value,stream : Local binders

in, with, until, satisfying : Specifiers (auxiliary symbols)
(, ), [, ],“,”,“ ∶ ” : Punctuation marks (auxiliary symbols)

= : Special symbol for local binding (auxiliary symbol)

Defined (nonterminal) symbols

M : Monitor
F : Formula

BIND : Binding
CONSTR : Constraint

RAN : Position range
PP : Position predicate
N : Position constant
TP : Position term
TV : Value term
TS : Stream term
T : Term

A.2 Definitions

M ∶∶= monitor XP ∶ F.

F ∶∶= XF ∣ BIND ∶ F
∣ true ∣ false ∣ PV(T1, . . . ,Tn)
∣ ∼F ∣ F1 /\F2 ∣ F1 \/F2 ∣ F1 =>F2 ∣ F1 <=>F2
∣ forall XP in TS with RAN ∶ F ∣ exists XP in TS with RAN ∶ F

BIND ∶∶= formula XF = F ∣ position XP = TP ∣ value XV = TV ∣ stream XS = TS.
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CONSTR ∶∶= ε ∣ satisfying F CONSTR ∣ BIND CONSTR.

Remark: ε stands for the empty constraint.

RAN ∶∶= TP PP XP ∣ TP1 PP1 XP PP2 TP2 Default value for TP1 PP1 ∶ 0=<

PP ∶∶= < ∣ =<

TP ∶∶= XP ∣ BIND ∶ TP
∣ 0 ∣ TP+N ∣ TP−N
∣ max XP in TS with RAN ∶ F ∣ min XP in TS with RAN ∶ F

N ∶∶= 0 ∣ 1 ∣ ⋯

TV ∶∶= XV ∣ BIND ∶ TV
∣ TS�TP ∣ TS@TP

∣ FV(T1, . . . ,Tn) ∣ num XP in TS with RAN ∶ F
∣ complete combine[TV0,FV] XP in TS with RAN CONSTR until F ∶ TV1
Default value for F in “until F” ∶ false

TS ∶∶= XS ∣ BIND ∶ TS
∣ FS(T1, . . . ,Tn)
∣ partial combine[TV0,FV] XP in TS with RAN CONSTR until F ∶ TV1
Default value for F in “until F” ∶ false

∣ construct XP in TS with RAN CONSTR ∶ TV
∣ construct XP in TS1 with RAN CONSTR ∶ TS2

T ∶∶= TP ∣ TV ∣ TS
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B Semantics of the LGAL

B.1 Notation

Unknowns and Errors

?P : Unknown position
�P : Error position
?V : Unknown value
�V : Error value
?F : Unknown truth value
�F : Error truth value
?M : Unknown (unobservable) message
?ωM : Unknown (unobservable) stream
�E : Error environment

Domain Constructors

→ : Function domain
× : Product domain
+ : Sum domain
∗ : Kleene closure
P : Powerset

Semantic Domains

Stream : N→Message, for stream terms
Message : (Time × (Value ∪ {?V})) ∪ {?M}

Time : N, for value terms (the time stamp of a message)
Value : N +Char∗, for value terms (general)

Position : N, for position terms
MK : {t, f , ?F,�F}, for formulas (McCarthy-Kleene)

Environments

Env : EnvFormula ×EnvPosition ×EnvValue ×EnvStream
EnvExtended : EnvFormula ×EnvPosition ×EnvValue ×EnvStream ×CurrTime
EnvFormula : XF→ {t, f , ?F}
EnvPosition : XP→ Position

EnvValue : XV→ Value
EnvStream : XS→ Stream
CurrTime : Time

�E : Error environment

Additional Operations

∥ : (m1, . . . ,mn)∥s stands for prepending the finite sequence of
messages m1, . . . ,mn to the stream s.

B.2 Valuation Function

▷ JMK ∶ Env → P(Position)
Jmonitor XP ∶ FK(e) = {p ∈ Position ∶ JFK(e↓1, e↓2[XP↦ p], e↓3, e↓4) = f}

▷ JFK ∶ Env →MK

JFK(e) =
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if (∃ t ∈ N ∶ JFK(e↓1, e↓2, e↓3, e↓4, t) ≠ ?F) then

let t = min
t∈N

∶ JFK(e↓1, e↓2, e↓3, e↓4, t) ≠ ?F ∶ JFK(e↓1, e↓2, e↓3, e↓4, t)

else

?F

▷ JFK ∶ EnvExtended →MK

JXFK(e) = e↓1(XF).
JBIND ∶ FK(e) = (let e1 = JBINDK(e) ∶ if e1 = �E then �F else JFK(e1)).
JtrueK(e) = t.

JfalseK(e) = f .

JPV(T1, . . . ,Tn)K(e) =
let v1 = JT1K(e), . . . , vn = JTnK(e) ∶
if (∃1 ≤ i ≤ n ∶ vi = �V ∨ vi = �P) then �F else JPVK(v1, . . . , vn).

J∼FK(e) = (let b = JFK(e) ∶ not(b)).
JF1 /\F2K(e) = (let b1 = JF1K(e), b2 = JF2K(e) ∶ and(b1, b2)).
JF1 \/F2K(e) = (let b1 = JF1K(e), b2 = JF2K(e) ∶ or(b1, b2)).
JF1 =>F2K(e) = (let b1 = JF1K(e), b2 = JF2K(e) ∶ implies(b1, b2)).
JF1 <=>F2K(e) = (let b1 = JF1K(e), b2 = JF2K(e) ∶ iff(b1, b2)).
Jforall XP in TS with RAN ∶ FK(e) =

let collected = collect[XP,TS, JRANK,F](e) ∶
if collected = �P then

�F
else if collected = ?P then

let b0 = JFK(e↓1, e↓2[XP↦ ?P], e↓3, e↓4, e↓5) ∶
if b0 = f

f

else if b0 = �F
�F

else

?F

else

let (pairs,flag) = collected ∶
if (∀(p, b) ∈ pairs ∶ b = t) then

if flag = complete range then

t

else

?F

else if (∀(p, b) ∈ pairs ∶ b = t ∨ b = ?F) then

?F

else

let p1 = min
p

∶ (p, b) ∈ pairs ∧ (b = f ∨ b = �F) ∶

let (p1, b1) ∈ pairs ∶
b1.
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Jexists XP in TS with RAN ∶ FK(e) =
let collected = collect[XP,TS, JRANK,F](e) ∶
if collected = �P then

�F
else if collected = ?P then

let b0 = JFK(e↓1, e↓2[XP↦ ?P], e↓3, e↓4, e↓5) ∶
if b0 = t

t

else if b0 = �F
�F

else

?F

else

let (pairs,flag) = collected ∶
if (∀(p, b) ∈ pairs ∶ b = f) then

if flag = complete range then

f

else

?F

else if (∀(p, b) ∈ pairs ∶ b = f ∨ b = ?F) then

?F

else

let p1 = min
p

∶ (p, b) ∈ pairs ∧ (b = t ∨ b = �F) ∶

let (p1, b1) ∈ pairs ∶
b1.

▷ JBINDK ∶ EnvExtended → EnvExtended ∪ {�E}
Jformula XF = FK(e) =

let b = JFK(e) ∶
if b = �F then �E else (e↓1[XF↦ b], e↓2, e↓3, e↓4, e↓5).

Jposition XP = TPK(e) =
let p = JTPK(e) ∶
if p = �P then �E else (e↓1, e↓2[XP↦ p], e↓3, e↓4, e↓5).

Jvalue XV = TVK(e) =
let v = JTVK(e) ∶
if v = �V then �E else (e↓1, e↓2, e↓3[XV↦ v], e↓4, e↓5).

Jstream XS = TSK(e) =
let s = JTSK(e) ∶
(e↓1, e↓2, e↓3, e↓4[XS↦ s], e↓5).

▷ JCONSTRK ∶ EnvExtended → EnvExtended ×MK

JεK(e) = (e, t).
Jsatisfying F CONSTRK(e) =
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let b = JFK(e) ∶
if b ≠ t then (e, b) else JCONSTRK(e).

JBIND CONSTRK(e) =
let e1 = JBINDK(e) ∶
if e1 = �E then (�E,�F) else JCONSTRK(e).

▷ JRANK ∶ EnvExtended → (XP ×Position ×Position ∪ {∞}) ∪ {?P,�P}
JTP1 PP1 XP PP2 TP2K(e) =

let from =
if PP1 = “<” then

JTP1K(e) + 1

else

JTP1K(e) ∶
let to =

if PP2 = “<” then

JTP2K(e) − 1

else

JTP2K(e) ∶
if from = �P ∨ to = �P then

�P
else if from = ?P ∨ to = ?P then

?P

else

(XP, from, to).
JTP PP XPK(e) =

let from =
if pp1 = “<” then

JTPK(e) + 1

else

JTPK(e) ∶
if from = �P then

�P
else if from = ?P then

?P

else

(XP, from,∞).

▷ JTPK ∶ EnvExtended → Position ∪ {?P,�P}
JXPK(e) = e↓2(XP).
JBIND ∶ TPK(e) = (let e1 = JBINDK(e) ∶ if e1 = �E then �P else JTPK(e1)).
J0K(e) = 0, J1K(e) = 1, . . . .

JTP+NK(e) = JTPK(e) + JNK(e)).
JTP−NK(e) = max(JTPK(e) − JNK(e),0).
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Jmax XP in TS with RAN ∶ FK(e) =
let collected = collect[XP,TS, JRANK, JFK](e) ∶
if collected = �P then

�P
else if collected = ?P then

?P

else

let (pairs,flag) = collected ∶
if (∃ (p, b) ∈ pairs ∶ b = �F) then

�P
else if (∀ (p, b) ∈ pairs ∶ b ≠ t) then

?P

else if flag = incomplete range then

?P

else

max
p

∶ (p, b) ∈ pairs ∧ b = t.

Jmin XP in TS with RAN ∶ FK(e) =
let collected = collect[XP,TS, JRANK, JFK](e) ∶
if collected = �P then

�P
else if collected = ?P then

?P

else

let (pairs,flag) = collected ∶
if (∀ (p, b) ∈ pairs ∶ b ≠ t ∧ b ≠ �F) then

?P

else if flag = incomplete range then

if (∃ (p, b) ∈ pairs ∶ b = �F) then

�P
else

?P

else

let p0 = min
p

∶ (p, b) ∈ pairs ∧ (b = t ∨ b = �F) ∶

let (p0, b0) ∈ pairs ∶
if b0 = t then

p0

else

�P.

▷ JTVK ∶ EnvExtended → Value ∪ {?V,�V}
JXVK(e) = e↓3(XV).
JBIND ∶ TVK(e) = (let e1 = JBINDK(e) ∶ if e1 = �E then �V else JTVK(e1)).
JTS�TPK(e) = time or value[TS,TP, time](e).
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JTS@TPK(e) = time or value[TS,TP,value](e).
JFV(T1, . . . ,Tn)K(e) =

let v1 = JT1K(e), . . . , JTnK(e) ∶
if (∃ 1 ≤ i ≤ n ∶ vi = �V ∨ vi = �P) then �V else JFVK(v1, . . . , vn).

Jnum XP in TS with RAN ∶ FK(e) =
let collected = collect[XP,TS, JRANK, JFK](e) ∶
if collected = �P then

�V
else if collected = ?P then

?V

else

let (pairs,flag) = collected ∶
if (∃(p, b) ∈ pairs ∶ b = �F) then

�V
else if flag = incomplete range then

?V

else

#(p, b) ∈ pairs ∶ b = t.

Jcomplete combine[TV0,FV] XP in TS with RAN CONSTR until F ∶ TV1K(e) =
let r = JRANK(e) ∶
if r = �P then

�V
else if r = ?P then

?V

else

let (XP1, from, to0) = r ∶
if XP1 ≠ XP then

�V
else

let p0 = max
pos

∶ JTSK(e)(pos) ≠ ?M ∧ JTS�posK(e) ≤ current time(e) ∶

let to = min(p0, to0) ∶
if to < from then

�V
else

let flag =
if to < to0 then

incomplete range

else

complete range ∶
let acc = JTV0K(e) ∶
if acc = �V ∨ acc = ?V then

acc

else
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let combine values = JFVK(e) ∶
value comb[XP,CONSTR,F,TV, combine values,flag , e](from, to,acc).

value comb ∶
(XP × CONSTR × F × TV × (Value ∪ {?V} ×Value ∪ {?V} → Value ∪ {?V,�V})
× {complete range, incomplete range} ×Env)

→ Position ×Position ×Value

→ Value ∪ {?V,�V}
value comb[XP,CONSTR,F,TV, combine values,flag , e](from, to,acc) =

let (e1, b1) = JCONSTRK(e↓1, e↓2[XP↦ from], e↓3, e↓4, e↓5) ∶
if b1 = �F then

�V
else if b1 = ?F then

?V

else if b = f then

acc

else

let v = JTVK(e1) ∶
if v = �V then

�V
else

let newacc = combine values(acc, v) ∶
if newacc = �V then

�V
else

let b2 = JFK(e1↓1, e1↓2, e1↓3[this↦ newacc], e1↓4, e1↓5) ∶
if b2 = �F then

�V
else if b2 = ?F then

?V

else if b2 = t then

newacc

else if from ≥ to then

if flag = complete range then

newacc

else

?V

else

let from1 = from + 1 ∶
value comb[XP,CONSTR,F,TV, combine values,flag , e](from1, to,newacc).

▷ TS ∶ EnvExtended → Stream

JXSK(e) = e↓4(XS)
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JBIND ∶ TSK(e) = (let e1 = JBINDK(e) ∶ if e1 = �E then ?ωM else JTSK(e1)).
JFS(T1, . . . ,Tn)K(e) = (let s1 = JT1K(e), . . . , s1 = JTnK(e) ∶ JFSK(s1, . . . , sn)).
Jpartial combine[TV0,FV] XP in TS with RAN CONSTR until F ∶ TV1K(e) =

let current time = current time(e) ∶
if current time = 0 then

?ωM

else

let r = JRANK(e) ∶
if r = �P then

?ωM

else if r = ?P then

((current time, ?V), ?ωM)
else

let (XP1, from, to0) = r ∶
if XP1 ≠ XP then

?ωM

else

let p0 = max
pos

∶ JTSK(e)(pos) ≠ ?M ∧ JTS�posK(e) ≤ current time ∶

let to = min(p0, to0) ∶
if to < from then

?ωM

else

let v = JTV0K(e) ∶
if v = �V then

?ωM

else

let acc = ((current time, v), ?ωM) ∶
let combine values = JFVK(e) ∶
let s1 = stream comb[XP,CONSTR,F,TV1, combine values, e](from, to,acc) ∶
let s2 = Jpartial combine[TV0,FV] XP in TS with RAN CONSTR

until F ∶ TV1K(e↓1, e↓2, e↓3, e↓4, current time − 1) ∶
diff and append(s1, s2).

stream comb ∶
(XP × CONSTR × F × TV × (Value ∪ {?V} ×Value ∪ {?V} → Value ∪ {?V,�V}) ×Env)
→ Position ×Position × Stream

→ Stream

stream comb[XP,CONSTR,F,TV, combine values, e](from, to,acc) =
let (e1, b1) = JCONSTRK(e↓1, e↓2[XP↦ from], e↓3, e↓4, e↓5) ∶
if b1 ≠ t then

acc

else

let v = JTVK(e1) ∶
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if v = �V then

acc

else

let newacc = combine and join(acc, v, combine values, current time(e1)) ∶
let b2 = JFK(e1↓1, e1↓2, e1↓3[this↦ newacc], e1↓4, e1↓5) ∶
if b2 ≠ f then

newacc

else if from ≥ to then

newacc

else

let from1 = from + 1 ∶
stream comb[XP,CONSTR,F,TV, combine values, e](from1, to,newacc).

Jconstruct XP in TS with RAN CONSTR ∶ value or streamK(e) =
let current time = current time(e) ∶
if current time = 0 then

?ωM

else

let r = JRANK(e) ∶
if r = �P ∨ r = ?P then

?ωM

else

let (XP1, from, to0) = r ∶
if XP1 ≠ XP then

?ωM

else

let p0 = max
pos

∶ JTSK(e)(pos) ≠ ?M ∧ JTS�posK(e) ≤ current time ∶

let to = min(p0, to0) ∶
if to < from then

?ωM

else

let s1 = stream construct[XP,CONSTR, value or stream, e](from, to, ?ωM) ∶
let s2 = Jconstruct XP in TS with RAN CONSTR ∶ value or streamK

(e↓1, e↓2, e↓3, e↓4, current time − 1) ∶
diff and append(s1, s2).

stream construct ∶
(XP × CONSTR × (TV + TS) ×Env) → Position ×Position × Stream → Stream

stream construct[XP,CONSTR, value or stream, e](from, to,acc) =
let (e1, b1) = JCONSTRK(e↓1, e↓2[XP↦ from], e↓3, e↓4, e↓5) ∶
if b1 ≠ t then

acc

else
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let v or s = Jvalue or streamK(e1) ∶
cases v or s of

isValue(v) Ð→ if v = �V then acc else let str = ((current time(e1), v), ?ωM) ∶
isStream(s) Ð→ let str = s ∶

let newacc = stream join(acc, str) ∶
if from ≥ to then

newacc

else

let from1 = from + 1

stream construct[XP,CONSTR, v or s, e](from1, to,newacc).

JFVK ∶ (Value ∪ {?V} +Position ∪ {?P} + Stream)∗ → Value ∪ {?V,�V}
JFSK ∶ (Value ∪ {?V} +Position ∪ {?P} + Stream)∗ → Stream

JPVK ∶ (Value ∪ {?V} +Position ∪ {?P} + Stream)∗ →MK

B.3 Auxiliary Functions

time ∶ Message → Time

time(m) = (let (t, v) =m ∶ t)

value ∶ Message → Value ∪ {?V}
value(m) = (let (t, v) =m ∶ v)

current time ∶ EnvExtended → CurrTime

current time(e) = e↓5

collect ∶ XP × TS × (EnvExtended → (XP ×Position ×Position) ∪ {?P,�P})
× (EnvExtended →MK )
→ EnvExtended

→ (P(Position ×MK ) × {complete range, incomplete range}) ∪ {?P,�P}
collect[XP,TS, JRANK, JFK](e) =

let r = JRANK(e) ∶
if r = �P then

�P
else if r = ?P then

?P

else

let (XP1, from, to0) = c ∶
if XP1 ≠ XP then

�P
else

let p0 = max
pos

∶ JTSK(e)(pos) ≠ ?M ∧ JTS�posK(e) ≤ current time(e) ∶

let to = min(p0, to0) ∶
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if to < from then

?P

else

let flag =
if to = to0 then

complete range

else

incomplete range ∶
let pairs = {(p, JFK(e↓1, e↓2[XP↦ p], e↓3, e↓4, e↓5)) ∣ from ≤ p ≤ to} ∶
(pairs,flag).

time or value ∶ TS × TP × {time,value} → EnvExtended → Value ∪ {?V,�V}
time or value[TS,TP, time or value](e) =

let p = JTPK(e), s = JTSK(e) ∶
if p = �P then

�V
else if p = ?P then

?V

else if s(p) = ?M then

�V
else

if current time(e) < time(s(p)) then

�V
else

if time or value = time then

time(s(p))
else

value(s(p)).

combine and join ∶
Stream ×Value ∪ {?V} × (Value ∪ {?V} ×Value ∪ {?V} → Value ∪ {?V,�V}) ×Time

→ Stream

combine and join(s, v, combine values, current time) =
let ((t1, v1), . . . , (tn, vn), ?ωM) = s ∶
if v = ?V then

stream join(s, ((current time, v), ?ωM))
else

let k = max
i

∶ vi ≠ ?V ∶

let newval = combine values(vk, v) ∶
if newval = �V then

stream join(s, ((current time, ?V), ?ωM))
else

stream join(s, ((current time,newval), ?ωM)).
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stream join ∶ Stream × Stream → Stream

stream join(s1, s2) =
let ((t1, v1), . . . , (tn, vn), ?ωM) = s1 ∶
((t1, v1), . . . , (tn, vn))∥s2.

Remark: In stream join, s1 has the finite observable part.

diff and append ∶ Stream × Stream → Stream

diff and append(new stream,old stream) =
let ((t, v1), . . . , (t, vn), ?ωM) = new stream (n ≥ 0) ∶
let ((t′1, v′1), . . . , (t′m, v′m), ?ωM) = old stream (m ≥ 0) ∶
((t′1, v′1), . . . , (t′m, v′m))∥((t, vm+1), . . . , (t, vn), ?ωM).

not t f ?F �F
f t ?F �F

and t f ?F �F
t t f ?F �F
f f f f f

?F ?F f ?F �F
�F �F �F �F �F

or t f ?F �F
t t t t t
f t f ?F �F

?F t ?F ?F �F
�F �F �F �F �F

implies t f ?F �F
t t f ?F �F
f t t t t

?F t ?F ?F �F
�F �F �F �F �F

iff t f ?F �F
t t f ?F t
f f t ?F �F

?F ?F ?F ?F �F
�F �F �F �F �F
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