
Verifying the Soundness of Resource Analysis for

LogicGuard Monitors

Part 1∗

Temur Kutsia Wolfgang Schreiner

RISC, Johannes Kepler University Linz

{kutsia,schreine}@risc.jku.at

December 16, 2013

Abstract

In a companion paper (Wolfgang Schreiner, Temur Kutsia. A Resource Analysis for Log-
icGuard Monitors. RISC Technical report, December 5, 2013) we described a static analysis
to determine whether a specification expressed in the LogicGuard language gives rise to a
monitor that can operate with a finite amount of resources, notably with finite histories of
the streams that are monitored. Here we prove the soundness of the analysis with respect to
a formal operational semantics. The analysis is presented for an abstract core language that
monitors a single stream.

Contents

1 Introduction 2

2 The Core Language and Resource Analysis 2

3 Operational Semantics 5

4 Soundness of Resource Analysis 9

5 Conclusion 13

A Proofs 14
A.1 Theorem 1: Soundness Theorem . 14
A.2 Proposition 1: The Invariant Statement . 24
A.3 Lemma 1: Soundness Lemma for Formulas . 34
A.4 Lemma 2: Equivalence of Left- and Right-Recursive Definitions of n-Step Reductions 44
A.5 Lemma 3: History Cut-Off Lemma . 51
A.6 Lemma 4: n-Step Reductions to done Formulas for TN, TCS, TCP 64
A.7 Lemma 5: Soundness Lemma for Universal Formulas 89
A.8 Lemma 6: Monotonicity of Reduction to done . 90
A.9 Lemma 7: Shifting Lemma . 96
A.10 Lemma 8: Triangular Reduction Lemma . 97

∗The project “LogicGuard: The Efficient Checking of Time-Quantified Logic Formulas with Applications in
Computer Security” is sponsored by the FFG BRIDGE program, project No. 832207.

1

1 Introduction

The goal of the LogicGuard project is to investigate to what extent classical predicate logic for-
mulas are suitable as the basis for the specification and efficient runtime verification of system
runs. The specific focus of the project is on computer and network security, concentrating on
predicate logic specifications of security properties of network traffic. Properties are expressed by
quantified formulas interpreted over sequences of messages; the quantified variable denotes a po-
sition in the sequence. Using the ordering of stream positions and nested quantification, complex
properties can be formulated. Furthermore, to raise the level of abstraction, a higher-level stream
may be constructed from a lower-level stream by a notation analogous to classical set builders. A
translator generates from the specification an executable monitor.

The main ideas of these developments have been presented in [4] and [3]; in [1], the syntax and
semantics of (an early abstract form of) the specification language are given; in [2], the translation
of a specification to an executable monitor is described. A prototype of the translator and of the
corresponding runtime system have been implemented and are operational.

The current implementation assumes that the whole “history” of a stream is preserved, i.e.,
that all received messages are stored in memory; thus the memory requirements of a monitor
continuously grow. In practice, however, we are only interested in monitors that operate for an
indefinite amount of time within a bounded amount of memory.

In [5], we tried to fill this gap by presenting a static analysis that

1. is able to determine whether a given specification can be monitored with a finite amount of
history (and that may consequently generate a warning/error message, if not) and that

2. generates corresponding information in an easily accessible form such that after each exe-
cution step the runtime system of the monitor may appropriately prune the histories of the
streams on which it operates.

One part of [5] was devoted to presenting the main ideas of the analysis by an abstract core
language, which is only a skeleton of the real language; in particular it only monitors a single
stream and does not support the construction of virtual streams. In this report, we use this
language to formalize the operational semantics of the monitor execution and prove the soundness
of the analysis presented in this report with respect to that semantics.

This paper is organized as follows: In Sect. 2 we briefly recall the definitions of the core language
and the resource analysis from [5]. In Sect. 3 the operational semantics of the core language is
described. In Sect. 4 the main result is formulated: soundness of the resource analysis with respect
to the operational semantics. This section contains also all the lemmas needed for proving the
soundness theorem. The detailed proof of one of the lemmas (Lemma 5) is the subject of the
second, forthcoming part of this report. All the other proofs can be found in the Appendix.

2 The Core Language and Resource Analysis

The core language is depicted in Figure 1.

M ::= monitor X : F

F ::= @X | ~F | F1 && F2 | F1 /\ F2 | forall X in B1..B2 : F

B ::= 0 | infinity | X | B + N | B −N

N ::= 0 | 1 | 2 | . . .

X ::= x | y | z | . . .

Figure 1: The Core Language

2

A specification in the core language describes a single monitor that controls a single stream
of Boolean values where the atomic predicate @X denotes the value on the stream at the position
X, ~X denotes negation, F1 && F2 denotes sequential conjunction (the evaluation of F2 is delayed
until the value of F1 becomes available), F1 /\ F2 describes parallel evaluation (both formulas are
evaluated simultaneously until becomes false or both become true) and forall X in B1..B2 : F
evaluates F at all positions in the range denoted by the interval B1 . . . B2 until one instance
becomes false or all instances have become true; the creation of a new instance F [n] is triggered
by the arrival of the message number n on the stream.

This language is interpreted over a single stream of messages carrying truth values. We assume
that a monitor M in this language is executed as follows: whenever a new message arrives on the
stream, an instance F [p/X] of the monitor body F is created where p denotes the position of the
message in the stream. All instances are evaluated on every subsequently arriving message which
may or may not let the instance evaluate to a definite truth value; whenever an instance evaluates
to such a value, this instance is discarded from the set; the positions of instances with negative
truth values are reported as “violations” of the monitor.

A formula F in a monitor instance is evaluated as follows:

• the predicate @X is immediately evaluated to the truth value of the message at position X
of the stream (see below for further explanation);

• ~F first evaluates F and then negates the result;

• F1 && F2 first evaluates F1 and, if the result is true, then also evaluates F2;

• F1 /\ F2 evaluates both F1 and F2 “in parallel” until the value of one subformula determines
the value of the total formula;

• forall X in B1..B2 : F first determines the bounds of the position interval [B1, B2]; it
then creates for every position p in the interval, as soon as the messages in the stream reach
that position, an instance F [p/X] of the formula body. All instances are evaluated on the
subsequently arriving messages until all instances have been evaluated to “true” (and no
more instances are to be generated) or some instance has been evaluated to “false”.

We assume that the monitoring formula M is closed, i.e., every occurrence of a position variable
X in it is bound by a quantifier monitor or forall. Since by the evaluation strategies for these
quantifiers, a formula instance is created only when the messages have reached the position assigned
to the quantified variable, every occurrence of predicate @X can be immediately evaluated without
delay.

We are interested in determining bounds for the resources used by the monitor, i.e., in particular
in the following questions:

1. From the position where a monitor instance is created, how many “look-back” positions are
required to evaluate the formula? This value determines the size of the “history” of past
messages that have to be preserved in an implementation of the monitor.

2. How many instances can be active at the same time? This value determines the size that
has to be reserved for the set of instances in the implementation of the monitor.

The basic idea for the analysis is a sort of “abstract interpretation” of the monitor where in a
top-down fashion every position variable X is annotated as X(l,u) where the interval [p + l, p + u]
denotes those positions that the variables can have in relation to the position p of the “current”
message of the stream; in a bottom up step, we then annotate every formula F with a pair (h, d)
where h is (an upper bound of) the size of the “history” (the number of past messages) required
for the evaluation of F and d is (an upper bound of) the number of future messages that may be
required such that the evaluation of F may be “delayed” by this number of steps.

The basic idea is formalized in Figures 2 and 3 by a rule system with three kinds of judgements:

3

`M : N∞ × N∞ Environment ` F : N∞ × N∞ Environment ` B : Z∞ × Z∞

[JX K 7→ (0, 0)] ` F : (h, d)
` (monitor X : F) : (h, d)

e ` @X : (0, 0)
e ` F : (h, d)
e ` ~F : (h, d)

e ` F1 : (h1, d1), e ` F2 : (h2, d2)
e ` F1 && F2 : (max∞(h1, h2 +∞ d1),max∞(d1, d2))

e ` F1 : (h1, d1), e ` F2 : (h2, d2)
e ` F1 /\ F2 : (max∞(h1, h2),max∞(d1, d2))

e ` B1 : (l1, u1), e ` B2 : (l2, u2)
e[JX K 7→ (l1, u2)] ` F : (h′, d′)
h = max∞(h′,N∞(−∞l1))
d = max∞(d′,N∞(u2))
e ` forall X in B1..B2 :(h, d)

e ` 0 : (0, 0) e ` infinity : (∞,∞)
JX K 6∈ domain(e)
e ` X : (0, 0)

JX K ∈ domain(e)
e ` X : e(JX K)

e ` B : (l, u)
e ` B+N : (l +∞ JN K, u +∞ JN K)

e ` B : (l, u)
e ` B-N : (l −∞ JN K, u−∞ JN K)

Figure 2: The Analysis of the Core Language

Environment := V ariable→ Z∞ × Z∞
N∞ := N ∪ {∞},Z∞ := Z ∪ {∞,−∞}

max∞ : N× N∞ → N∞
max∞(n1, n2) := if n2 =∞ then ∞ else max(n1, n2)

+∞ : N∞ × N∞ → N∞
n1 +∞ n2 := if n1 =∞∨ n2 =∞ then ∞ else n1 + n2

−∞ : N∞ × N→ N∞
n1 −∞ n2 := if n1 =∞ then ∞ else max(0, n1 − n2)

−∞ : Z∞ → Z∞
−∞i := if i =∞ then −∞ else if i = −∞ then ∞ else− i

N : Z∞ → N∞
N(i) := if i = −∞∨ i < 0 then 0 else i

Figure 3: The Semantic Algebras of the Analysis

4

• ` M : (h, d) states that the evaluation of the denoted monitor requires at most h messages
from the past of the stream and at most d old monitor instances.

• e ` F : (h, d) states that the evaluation of formula F requires at most h messages from
the past of the stream and at most d messages from the future of the stream. e denotes a
partial mapping of variables to pairs (l, u) denoting the lower bound and upper bound of
the interval relative to the position of the “current” message.

• e ` B : (l, u) determines the lower bound l and upper bound u for the position denoted by
an interval bound B.

We have (h, d) ∈ N∞×N∞ where N∞ = N∪{∞}; a value of∞ indicates that the corresponding
resource (history/instance set) cannot be bounded by the analysis. We have e(X) ∈ Z∞ × Z∞
where Z∞ = Z ∪ {∞,−∞}; a value of ∞ respectively −∞ indicates that the position cannot be
bounded from above respectively from below by the analysis. We have (l, u) ∈ Z∞ × Z∞; a value
of ∞ for u indicates that the corresponding interval has no upper bound; a value of −∞ for l
indicates that the interval has no lower bound.

In [5] one can find more detailed illustration of the resource analysis, based on examples.

3 Operational Semantics

In this section we describe formalization of the operational interpretation of a monitor by a trans-
lation T : Monitor → TMonitor from the abstract syntax domain Monitor to a domain TMonitor
denoting the runtime representation of the monitor. First, we list the domains used in the formal-
ization, together with their definitions:

TMonitor := TM of Variable × TFormula × P(TInstance)

TInstance := N× TFormula × Context

Context := (Variable
part.→ N)× (Variable

part.→ Message)

TFormula := done of Bool | next of TFormulaCore

TFormulaCore :=

TV of Variable |
TN of TFormula |

TCS of TFormula × TFormula |
TCP of TFormula × TFormula |

TA of Variable × BoundValue × BoundValue × TFormula |
TA0 of Variable × N× N∞ × TFormula |
TA1 of Variable × N∞ × TFormula × P(TInstance)

BoundValue := Context→ N∞

Translation. The translation is defined for monitors, formulas, and bounds. Monitors are trans-
lated into TMonitor ’s (translated monitors), formulas are translated into TFormula’s (translated
formulas), and bounds are translated into BoundValue’s:

T : Monitor → TMonitor

T (monitor X : F) := TM (X,T (F), ∅)

T : Formula → TFormula

T (@X) := next(TV (X))

T (~F) := next(TN (T (F)))

5

T (F1 && F2) := next(TCS (T (F1), T (F2)))

T (F1 /\ F2) := next(TCP(T (F1), T (F2)))

T (forall X in B1..B2 : F) := next(TA(X,T (B1), T (B2), T (F)))

T : Bound → BoundValue

T (0)(c) := 0

T (∞)(c) :=∞
T (X)(c) := c.1(X)

T (B + N)(c) := T (B)(c) + JN K
T (B + N)(c) := T (B)(c)− JN K

One-Step Operational Semantics. Apart from the quantified position variable X and the
translation f = T (F) of the body of this monitor, the representation maintains the set fs of
instances of f which for certain values of X could not yet be evaluated to a truth value. The
execution of the monitor is formalized by an operational semantics with a small step transition
relation→n,ms,m,rs where n is the index of the next message m arriving on the stream, ms denotes
the sequence of messages that have previously arrived (the stream history), and rs denotes the
set of those positions for which it can be determined by the current step that they violate the
specification. In this step, first a new instance mapping X to the pair (n,m) is created and added
to the instance set and all instances in this set are evaluated; rs becomes the set of positions of
those instances yielding “false”, the new instance set fs1 preserves all those instances that could
not yet be evaluated to a definite truth value:

TMonitor →N,Messageω,Message,P(nat) TMonitor

fs0 = fs ∪ {(n, f, [X 7→ (n,m)])}
rs = {n ∈ N | ∃g ∈ TFormula, c ∈ Context : (n, g, c) ∈ fs0 ∧

` g →n,ms,m,c done(false)}
fs1 = {(n, g0, c) ∈ TInstance | ∃g ∈ TFormula : (n, g, c) ∈ fs0 ∧

` g →n,ms,m,c next(g1)}
TM (X, f, fs)→n,ms,m,rs TM (X, f, fs1)

As one can see from this definition, the monitor operation is based on an operational semantics of
formula evaluation. The rules for the latter are given below:

TFormula →N,Messageω,Message,Context TFormula

Atomic formula:

X ∈ dom(c.2)
next(TV (X))→(p,ms,m, c) done(c.2(X))

X /∈ dom(c.2)
next(TV (X))→(p,ms,m, c) done(false)

Negation:

f →(p,ms,m, c) next(f
′)

next(TN (f))→(p,ms,m, c) next(TN (next(f ′))

f →(p,ms,m, c) done(true)
next(TN (f))→(p,ms,m, c) next(TN (done(false))

f →(p,ms,m, c) done(false)
next(TN (f))→(p,ms,m, c) next(TN (done(true))

6

Sequential Conjunction:

f1 →(p,ms,m, c) next(f
′
1)

next(TCS (f1, f2))→(p,ms,m, c) next(TCS (next(f ′1), f2)

f1 →(p,ms,m, c) done(false)
next(TCS (f1, f2))→(p,ms,m, c) done(false)

f1 →(p,ms,m, c) done(true)
f2 →(p,ms,m, c) f

′
2

next(TCS (f1, f2))→(p,ms,m, c) f
′
2

Parallel Conjunction:

f1 →(p,ms,m, c) next(f
′
1)

f2 →(p,ms,m, c) next(f
′
2)

next(TCP(f1, f2))→(p,ms,m, c) next(TCP(next(f ′1),next(f ′2))

f1 →(p,ms,m, c) next(f
′
1)

f2 →(p,ms,m, c) done(true)
next(TCP(f1, f2))→(p,ms,m, c) next(f

′
1)

f1 →(p,ms,m, c) next(f
′
1)

f2 →(p,ms,m, c) done(false)
next(TCP(f1, f2))→(p,ms,m, c) done(false)

f1 →(p,ms,m, c) done(false)
next(TCP(f1, f2))→(p,ms,m, c) done(false)

f1 →(p,ms,m, c) done(true)
f2 →(p,ms,m, c) f

′
2

next(TCP(f1, f2))→(p,ms,m, c) f
′
2

Universal Quantification:

p1 = b1(c)
p1 =∞
next(TA(X, b1, b2, f))→(p,ms,m, c) done(true)

p1 = b1(c)
p2 = b2(c)
p1 6=∞
next(TA0 (X, p1, p2, f))→(p,ms,m, c) TA0 ′

next(TA(X, b1, b2, f))→(p,ms,m, c) TA0 ′

p < p1
next(TA0 (X, p1, p2, f))→(p,ms,m, c) next(TA0 (X, p1, p2, f))

p ≥ p1
fs = {(p0, f, (c.1[X 7→ p0], c.2[X 7→ ms(p0 + p− |ms|)])) | p1 ≤ p0 <∞ min∞(p, p2 +∞ 1)}
next(TA1 (X, p2, f, fs))→(p,ms,m, c) TA1 ′

next(TA0 (X, p2, f, fs))→(p,ms,m, c) TA1 ′

7

fs0 = if p >∞ p2 then fs else fs ∪ {(p, f, (c.1[X 7→ p], c.2[X 7→ m]))}
∃t ∈ N, g ∈ TFormula, c ∈ Context : (t, g, c) ∈ fs0∧ ` g →(p,ms,m, c) done(false)
next(TA1 (X, p2, f, fs))→(p,ms,m, c) done(false)

fs0 = if p >∞ p2 then fs else fs ∪ {(p, f, (c.1[X 7→ p], c.2[X 7→ m]))}
¬∃t ∈ N, g ∈ TFormula, c ∈ Context : (t, g, c) ∈ fs0∧ ` g →(p,ms,m, c) done(false)
fs1 = {(t,next(fc), c) ∈ TInstance |

∃g ∈ TFormula : (t, g, c) ∈ fs0∧ ` g →(p,ms,m, c) next(fc)}
fs1 = ∅ ∧ p ≥∞ p2
next(TA1 (X, p2, f, fs))→(p,ms,m, c) done(true)

fs0 = if p >∞ p2 then fs else fs ∪ {(p, f, (c.1[X 7→ p], c.2[X 7→ m]))}
¬∃t ∈ N, g ∈ TFormula, c ∈ Context : (t, g, c) ∈ fs0∧ ` g →(p,ms,m, c) done(false)
fs1 = {(t,next(fc), c) ∈ TInstance |

∃g ∈ TFormula : (t, g, c) ∈ fs0∧ ` g →(p,ms,m, c) next(fc)}
¬(fs1 = ∅ ∧ p ≥∞ p2)
next(TA1 (X, p2, f, fs))→(p,ms,m, c) next(TA1 (X, p2, f, fs1))done(true)

Finally, we give definitions of n-step reduction. There are for versions: right- and left-recursive
with and without history.

Definition 1 (Right-Recursive n-Step Reduction).

Without history. TFormula →∗(N,N,Stream,Environment) TFormula, where the first N is the num-
ber of steps and the second N is the current position.

Ft →∗(0,p,s,e) Ft

n > 0
c = (e, {(X, s(e(X))) | X ∈ dom(e)})
Ft →(p, s↓p, s(p), c) Ft ′

Ft ′ →∗(n−1,p+1,s,e) Ft ′′

Ft ′ →∗(n,p,s,e) Ft ′′

With history. TFormula →∗(N,N,Stream,Environment,Message∗) TFormula, where the first N is the
number of steps, the second N is the current position, and Message∗ is the history.

Ft →∗(0,p,s,e,h) Ft

n > 0
c = (e, {(X, s(e(X))) | X ∈ dom(e)})
Ft →(p, s↑(max(0,p−h),min(p,h)), s(p), c) Ft ′

Ft ′ →∗(n−1,p+1,s,e,h) Ft ′′

Ft ′ →∗(n,p,s,e,h) Ft ′′

Definition 2 (Left-Recursive n-Step Reduction).

Without history. TFormula →l∗
(N,N,Stream,Environment) TFormula, where the first N is the num-

ber of steps and the second N is the current position.

Ft →l∗
(0,p,s,e) Ft

n > 0
Ft →l∗

(n−1,p,s,e) Ft ′

c = (e, {(X, s(e(X))) | X ∈ dom(e)})
Ft ′ →(p+n−1, s↓(p+n−1), s(p+n−1), c) Ft ′′

Ft ′ →l∗
(n,p,s,e) Ft ′′

With history. TFormula →l∗
(N,N,Stream,Environment,Message∗) TFormula, where the first N is the

8

number of steps, the second N is the current position, and Message∗ is the history.

Ft →l∗
(0,p,s,e,h) Ft

n > 0
Ft →l∗

(n−1,p,s,e,h) Ft ′

c = (e, {(X, s(e(X))) | X ∈ dom(e)})
Ft ′ →(p+n−1, s↑(max(0,p+n−1−h),min(p+n−1,h)), s(p+n−1), c) Ft ′′

Ft →l∗
(n,p,s,e,h) Ft ′′

4 Soundness of Resource Analysis

In this section we formulate the main result:

Theorem 1 (Soundness of Resource Analysis for Monitors). The resource analysis of the core
monitor language is sound with respect to its operational semantics, i.e., if the analysis yields for
monitor M natural numbers h and d, then the execution does not maintain more than d monitor
instances and does not require more than the last h messages from the stream. Formally:

∀M ∈ Monitor ,Mt ∈ TMonitor , n ∈ N, s ∈ Messageω, rs ∈ P(N), d, h ∈ N∞ :
`M : (h, d)⇒

(d ∈ N⇒ (` T (M)→∗n,s,rs Mt ⇒ |instances(Mt)| ≤ d)) ∧
(h ∈ N⇒ (` T (M)→∗n,s,rs Mt ⇔ ` T (M)→∗n,s,rs,h Mt))

where instances(TM (X, f, fs)) := fs

The proof of this theorem uses three lemmas and a statement about an invariant of n-step
reductions of translated monitors. These propositions, for their part, rely on four additional lem-
mas. Dependencies between these statements, which give an idea of the high-level proof structure,
are shown in Fig. 4. Below we formulate these lemmas with some informal explanations. The
complete proofs can be found in the appendix.1

Figure 4: Lemma dependencies in the proof of the Soundness Theorem. The triangle indicates
the pending proof.

The Invariant Statement asserts essentially the following: For a monitor M (with the moni-
toring variable X and the monitored formula F), if the analysis yields natural numbers h and d,
and the translated version of M reduces to another translated monitor TM (Y,Ft , It) in n steps,
then the following invariant holds:

1At the time of writing this report, the proof of the Statement 4 of Lemma 4 is not finished.

9

• X and Y are the same and Ft is the translation of F ,

• all elements in the set of instances It contain next formulas, which have been generated at
different steps in the past, but not earlier than d units before from the current step,

• the formulas in the elements of It are obtained by reductions of T (F), and they themselves
will reduce to a done formula in at most d steps from the moment of their creation.

More formally, the invariant definition looks as follows:

Definition 3 (Invariant).

∀X,Y ∈ Variable, F ∈ Formula,Ft ∈ TFormula, It ∈ P(TInstance),
n ∈ N, s ∈ Stream, d ∈ N∞ :

invariant(X,Y, F,Ft , It , n, s, d) :⇔
X = Y ∧ Ft = T (F) ∧ alldiff (It) ∧ allnext(It) ∧
∀t ∈ N,Ft ′ ∈ TFormula, c ∈ Context :

(t,Ft ′, c) ∈ It ∧ d ∈ N⇒
c.1 = {(X, t)} ∧ c.2 = {(X, s(t))} ∧
n− d ≤ t ≤ n− 1 ∧
T (F)→∗n−t,t,s,c.1 Ft ′ ∧
∃b ∈ Bool , d′ ∈ N :

d′ ≤ d ∧ ` Ft ′ →∗max(0,t+d′−n),n,s,c.1 done(b),

where alldiff (It) means that t1 6= t2 for all distinct elements (t1,Ft1, c1), (t2,Ft2, c2) of It , and
allnext(It) denotes the fact that for all (t,Ft , c) ∈ It , Ft is a next formula.

Then the Invariant Statement is formulated in the following way:

Proposition 1 (Invariant Statement).

∀X ∈ Variable, F ∈ Formula, h ∈ N∞, d ∈ N∞, n ∈ N, s ∈ Stream,
rs ∈ P(N), Y ∈ Variable,Ft ∈ TFormula, It ∈ P(TInstance) :

` (monitor X : F) : (h, d) ∧
` T (monitor X : F)→∗n,s,rs TM (Y,Ft , It)⇒

invariant(X,Y, F,Ft , It , n, s, d)

In the course of proving the Soundness Statement, the reasoning moves from the monitor
level to the formula level. Therefore, we need a counterpart of the Soundness Theorem (which is
formulated for monitors) for formulas. This is the first Lemma.

Lemma 1 (Soundness Lemma for Formulas).

∀F, F ′ ∈ Formula, re ∈ RangeEnv , e ∈ Environment ,Ft ∈ TFormula, n, p ∈ N,
s ∈ Stream, d ∈ N∞, h ∈ N :

` (re ` F : (h, d)) ∧
∀Y ∈ dom(e) : re(Y).1 + p ≤ e(Y) ≤ re(Y).2 + p⇒

(d ∈ N⇒
∃b ∈ Bool , d′ ∈ N :

d′ ≤ d + 1 ∧ ` T (F)→∗d′,p,s,e done(b)) ∧
(∀h′ ∈ N : h′ ≥ h⇒

(T (F)→∗n,p,s,e Ft ⇔ T (F)→∗n,p,s,e,h′ Ft)).

The second lemma states equivalence of left- and right-recursive definitions of n-step reductions.
This is a technical result which helps to simplify proofs of the Soundness Theorem, Invariant
Statement, and in Lemma 4 below.

10

Lemma 2 (Equivalence of Left- and Right-Recursive Definitions of n-Step Reductions).

(a) ∀n, p ∈ N, s ∈ Stream, e ∈ Environment ,Ft1,Ft2 ∈ TFormula :
Ft1 →∗n,p,s,e Ft2 ⇔ Ft1 →l∗

n,p,s,e Ft2.

(b) ∀n, p ∈ N, s ∈ Stream, e ∈ Environment ,Ft1,Ft2 ∈ TFormula, h ∈ N :
Ft1 →∗n,p,s,e,h Ft2 ⇔ Ft1 →l∗

n,p,s,e,h Ft2.

The next lemma establishes the limit on the number of past messages needed for a single
monitoring step to be equivalent to such a step performed with the full history. Both the Soundness
Theorem and the Soundness Lemma use it.

Lemma 3 (History Cut-Off Lemma).

∀F ∈ Formula, F t ∈ TFormula, p, q ∈ N, s ∈ Stream, h, d ∈ N,
e ∈ Environment , re ∈ RangeEnv :

let c := (e, {(X, s(e(X))) | X ∈ dom(e)}) :
` (re ` F : (h, d)) ∧
q ≤ p ∧ ∀Y ∈ dom(e) : re(Y).1 + q ≤ e(Y) ≤ re(Y).2 + q ⇒
∀h′ ∈ N : h′ ≥ h⇒

T (F)→p,s↓(p),s(p),c Ft
⇔
T (F)→p,s↑(max(0,p−h′),min(p,h′)),s(p),c Ft

The Soundness Lemma requires yet two auxiliary propositions. The first of them, Lemma 4
below, establishes the conditions of reduction of translated TN (negation), TCS (sequential con-
junction), and TCP (parallel conjunction) formulas into done formulas:

Lemma 4 (n-Step Reductions to done Formulas for TN, TCS, TCP).

Statement 1. TN Formulas:

∀F ∈ Formula, n, p ∈ N, s ∈ Stream, e ∈ Environment , F t ∈ TFormula :

T (F)→∗n,p,s,e done(false)⇒ next(TN (T (F)))→∗n,p,s,e done(true) ∧
T (F)→∗n,p,s,e done(true)⇒ next(TN (T (F)))→∗n,p,s,e done(false)

Statement 2. TCS Formulas:

∀p ∈ N, s ∈ Stream, e ∈ Environment :

∀Ft1,Ft2 ∈ TFormula, n ∈ N :
n > 0 ∧ Ft1 →∗n,p,s,e done(false)⇒

next(TCS (Ft1,Ft2))→∗n,p,s,e done(false) ∧
∀Ft1,Ft2 ∈ TFormula, n1, n2 ∈ N, b ∈ Bool :

n1 > 0 ∧ n2 > 0 ∧ Ft1 →∗n1,p,s,e done(true) ∧ Ft2 →∗n2,p,s,e done(b)⇒
next(TCS (Ft1,Ft2))→∗max(n1,n2),p,s,e

done(b)

11

Statement 3. TCP Formulas:

∀p ∈ N, s ∈ Stream, e ∈ Environment ,Ft1,Ft2 ∈ TFormula, n1, n2 ∈ N :

n1 > 0 ∧ Ft1 →∗n1,p,s,e done(false) ∧ Ft2 →∗n2,p,s,e done(true)⇒
next(TCP(Ft1,Ft2))→∗n1,p,s,e done(false)

∧
n1 > 0 ∧ n2 > 0 ∧ Ft1 →∗n1,p,s,e done(false) ∧ Ft2 →∗n2,p,s,e done(false)⇒

next(TCP(Ft1,Ft2))→∗min(n1,n2),p,s,e
done(false)

∧
n1 > 0 ∧ n2 > 0 ∧ Ft1 →∗n1,p,s,e done(true) ∧ Ft2 →∗n2,p,s,e done(true)⇒

next(TCP(Ft1,Ft2))→∗max(n1,n2),p,s,e
done(true)

∧
n1 > 0 ∧ n2 > 0 ∧ Ft1 →∗n1,p,s,e done(true) ∧ Ft2 →∗n2,p,s,e done(false)⇒

next(TCP(Ft1,Ft2))→∗n2,p,s,e done(false)

The other auxiliary statement needed in the proof of Lemma 1 is Lemma 5 below, which
formulates a special case of the soundness statement for universally quantified formulas. Its proof
will be given in the forthcoming second part of this report.

Lemma 5 (Soundness Lemma for Universal Formulas).

∀F ∈ Formula, X ∈ Variable, B1, B2 ∈ Bound :

R(F)⇒ R(forall X in B1..B2 : F)

where

R(F):⇔
∀re ∈ RangeEnv , e ∈ Environment , s ∈ Stream, d ∈ N∞, h ∈ N :
` (re ` F : (h, d)) ∧ d ∈ N ∧
∀Y ∈ dom(e) : re(Y).1 + p ≤ e(Y) ≤ re(Y).2 + p⇒

(∀p ∈ N, ∃b ∈ Bool , d′ ∈ N : d′ ≤ d + 1∧ ` T (F)→∗d′,p.s.e done(b))

Proving of Lemma 4 requires a couple of other statements. Besides Lemma 2 above, there are
two other lemmas: for monotonicity and for shifting. The Monotonicity Lemma states that if a
translated formula reduces to a done formula, then starting from that moment on it will always
reduce to the same done formula:

Lemma 6 (Monotonicity of Reduction to done).

∀Ft ∈ TFormula, p, k ∈ N, s ∈ Stream, c ∈ Context , b ∈ Bool :

k ≥ p⇒
Ft →p,s↓(p),s(p),c done(b)⇒ Ft →k,s↓(k),s(k),c done(b).

The Shifting Lemma expresses a simple fact: If a next formula reduced to a done formula in
n + 1 steps starting from the stream position p, then the same reduction will take n steps if it
starts at position p + 1:

Lemma 7 (Shifting Lemma).

∀f ∈ TFormulaCore, n, p ∈ N, s ∈ Stream, e ∈ Environment , b ∈ Bool :

n > 0⇒
next(f)→∗n+1,p,s,e done(b)⇒ next(f)→∗n,p+1,s,e done(b).

Lemma 7 requires a so called Triangular Reduction Lemma, shown below. The latter, for itself,
relies on Lemma 6.

12

Lemma 8 (Triangular Reduction Lemma).

∀f1, f2 ∈ TFormulaCore,Ft ∈ TFormula, p ∈ N, s ∈ Stream, c ∈ Context :

next(f1)→p,s↓(p),s(p),c next(f2) ∧ next(f2)→p+1,s↓(p+1),s(p+1),c Ft ⇒
next(f1)→p+1,s↓(p+1),s(p+1),c Ft .

5 Conclusion

The goal of resource analysis of the core LogicGuard language is two-fold: To determine the
maximal size of the stream history required to decide a given instance of the monitor formula, and
to determine the maximal delay in deciding a given instance. Ultimately, it determines whether
a specification expressed in this language gives rise to a monitor that can operate with a finite
amount of resources. This report presents propositions needed to prove soundness of resource
analysis of the core LogicGuard language with respect to the operational semantics.

Acknowledgments

The authors thank the project partner companies: SecureGuard GmbH and RISC Software GmbH.

References

[1] Temur Kutsia and Wolfgang Schreiner. LogicGuard Abstract Language. RISC Report Se-
ries 12-08, Research Institute for Symbolic Computation (RISC), University of Linz, Schloss
Hagenberg, 4232 Hagenberg, Austria, 2012.

[2] Temur Kutsia and Wolfgang Schreiner. Translation Mechanism for the LogicGuard Abstract
Language. RISC Report Series 12-11, Research Institute for Symbolic Computation (RISC),
Johannes Kepler University Linz, Schloss Hagenberg, 4232 Hagenberg, Austria, 2012.

[3] Wolfgang Schreiner. Applying Predicate Logic to Monitoring Network Traffic. Invited talk at
PAS 2013 - Second International Seminar on Program Verification, Automated Debugging and
Symbolic Computation, Beijing, China, October 23-25, 2013.

[4] Wolfgang Schreiner. Generating Network Monitors from Logic Specifications. Invited Talk at
FIT 2012, 10th International Conference on Frontiers of Information Technology, Islamabad,
Pakistan, December 17-19, 2012.

[5] Wolfgang Schreiner and Temur Kutsia. A Resource Analysis for LogicGuard Monitors. Techni-
cal report, Research Institute for Symbolic Computation (RISC), Johannes Kepler University,
Linz, Austria, December 5 2013.

13

A Proofs

A.1 Theorem 1: Soundness Theorem

Soundness Theorem for Monitors:

∀ X∈Variable, F∈Formula, h∈N∞, d∈N∞, n∈N, s∈Stream, rs∈P(N),
Y∈Variable Ft∈TFormula, It∈P(Instance):
let M = monitor X : F, Mt = TM(Y,Ft,It) :

` M: (h,d) ⇒
(d∈N ⇒ (` T(M) →*(n,s,rs) Mt ⇒ |It| ≤ d)) ∧
(h∈N ⇒ (` T(M) →*(n,s,rs) Mt ⇔ ` T(M) →*(n,s,rs,h) Mt))

PROOF:

We split the soundness statement into two formulas:

(a) ∀ X∈Variable, F∈Formula, h∈N∞, d∈N∞, n∈N, s∈Stream, rs∈P(N),
Y∈Variable Ft∈TFormula, It∈P(Instance):
let M = monitor X : F, Mt = TM(Y,Ft,It) :

` M: (h,d) ⇒
(d∈N ⇒ (` T(M) →*(n,s,rs) Mt ⇒ |It| ≤ d))

and

(b) ∀ X∈Variable, F∈Formula, h∈N∞, d∈N∞, n∈N, s∈Stream, rs∈P(N),
Y∈Variable Ft∈TFormula, It∈P(Instance):
let M = monitor X : F, Mt = TM(Y,Ft,It) :

` M: (h,d) ⇒
(h∈N ⇒ (` T(M) →*(n,s,rs) Mt ⇔ ` T(M) →*(n,s,rs,h) Mt))

Proof of (a)

We take Xf, Ff, Yf, Ftf, Itf, hf, df, nf, sf, rsf arbitrary buf fixed.

Assume

(1) ` (monitor Xf : Ff): (hf,df)

(2) df∈N
(3) T(monitor Xf : Ff) →*(nf,sf,rsf) TM(Yf,Ftf,Itf)

Prove

[4] |Itf| ≤ df

From (1,2,3), we know that

(5) invariant(Xf,Yf,Ff,Ftf,Itf,nf,sf,df)

holds. That means, we know

(6) Xf = Yf

14

(7) Ftf = T(Ff)

(8) alldiffs(Itf)

(9) allnext(Itf)

(10) ∀ t∈N, Ft∈TFormula, c∈Context:
(t,Ft,c) ∈ Itf ⇒
c.1={(Xf,t)} ∧ c.2={(Xf,sf(t))} ∧
T(Ff) →* (n-t,t,s,c.1) Ft1 ∧
nf-df ≤ t ≤ nf-1 ∧
∃b∈Bool ∃d’∈N :

d’≤df ∧ ` Ft →*(max(0,t+df’-nf),nf,sf,c.1) done(b)

From (10), we know that the tags of the elements of Itf are between nf-df and

nf-1 inclusive. From (8), we know that no two elements of Itf have the same tag.

Hence, Itf can contain at most (nf-1)-(nf-df)+1 = df elements. Hence, (5) holds.

Proof of (b)

Parametrization:

Q(n) :⇔
∀ X∈Variable, F∈Formula, h∈N∞, d∈N∞, s∈Stream, rs∈P(N),

Y∈Variable Ft∈TFormula, It∈P(Instance):
let M = monitor X : F, Mt = TM(Y,Ft,It) :

` M: (h,d) ⇒
(h∈N ⇒ (` T(M) →*(n,s,rs) Mt ⇔ ` T(M) →*(n,s,rs,h) Mt))

We want to show

∀n∈N: Q(n).

For this is suffices to show

1. Q(0)

2. ∀n∈N: Q(n) ⇒ Q(n+1)

Proof of 1

Q(0)

∀ X∈Variable, F∈Formula, h∈N∞, d∈N∞, s∈Stream, rs∈P(N),
Y∈Variable Ft∈TFormula, It∈P(Instance):
let M = monitor X : F, Mt = TM(Y,Ft,It) :

` M: (h,d) ⇒
(h∈N ⇒ (` T(M) →*(0,s,rs) Mt ⇔ ` T(M) →*(0,s,rs,h) Mt))

We take Xf, Ff, Yf, Ftf, cf, Itf, df, hf, sf, rsf arbitrary buf fixed.

Assume

15

(1) ` (monitor Xf : Ff): (hf,df)

(2) hf∈N

Prove

[3] ` T(monitor Xf : Ff) →*(0,sf,rsf) TM(Yf,Ftf,Itf) ⇔
` T(monitor Xf : Ff) →*(0,sf,rsf,hf) TM(Yf,Ftf,Itf)

Direction (⇒). Assume

(4) ` T(monitor Xf : Ff) →*(0,sf,rsf) TM(Yf,Ftf,Itf)

Prove

[5] ` T(monitor Xf : Ff) →*(0,sf,rsf,hf) TM(Yf,Ftf,Itf)

From (4), by the def. of →*(0,sf,rsf), we get

(6) T(monitor Xf : Ff) = TM(Yf,Ftf,Itf).

and

(7) rsf = ∅.

From (6,7) and the def. of →*(0,sf,rsf,hf) we obtain [5].

Direction (⇐=) can be proved analogously.

Hence, Q(0) holds.

========

Proof of 2

Take arbitrary n∈N.

Assume Q(n), i.e.

(1) ∀ X∈Variable, F∈Formula, h∈N∞, d∈N∞, s∈Stream, rs∈P(N),
Y∈Variable Ft∈TFormula, It∈P(Instance):
let M = monitor X : F, Mt = TM(Y,Ft,It) :

` M: (h,d) ⇒
(h∈N ⇒ (` T(M) →*(n,s,rs) Mt ⇔ ` T(M) →*(n,s,rs,h) Mt))

Prove Q(n+1), i.e.,

[2] ∀ X∈Variable, F∈Formula, h∈N∞, d∈N∞, s∈Stream, rs∈P(N),
Y∈Variable Ft∈TFormula, It∈P(Instance):
let M = monitor X : F, Mt = TM(Y,Ft,It) :

` M: (h,d) ⇒
(h∈N ⇒ (` T(M) →*(n+1,s,rs) Mt ⇔ ` T(M) →*(n+1,s,rs,h) Mt))

16

We take Xf, Ff, hf, df, sf, rsf, Yf, Ftf, Itf arbitrary but fixed.

Assume

(3) ` (monitor Xf : Ff): (hf, df)

(4) hf∈N

and prove

[5] ` T(monitor Xf : Ff) →*(n+1,sf,rsf) TM(Yf,Ftf,Itf) ⇔
` T(monitor Xf : Ff) →*(n+1,sf,rsf,hf) TM(Yf,Ftf,Itf)

To prove (5), we need to prove

[5.1]

` T(monitor Xf : Ff) →*(n+1,sf,rsf) TM(Yf,Ftf,Itf) ⇒
` T(monitor Xf : Ff) →*(n+1,sf,rsf,hf) TM(Yf,Ftf,Itf).

and

[5.2]

` T(monitor Xf : Ff) →*(n+1,sf,rsf,hf) TM(Yf,Ftf,Itf) ⇒
` T(monitor Xf : Ff) →*(n+1,sf,rsf) TM(Yf,Ftf,Itf).

Proof of [5.1]

Since T(monitor Xf : Ff)=TM(Xf,T(Ff),∅), we assume

(6) ` TM(Xf,T(Ff),∅) →*(n+1,sf,rsf) TM(Yf,Ftf,Itf)

and prove

[7] ` TM(Xf,T(Ff),∅) →*(n+1,sf,rsf,hf) TM(Yf,Ftf,Itf).

From (3) and (6), by the invariant statement, we know

(8) Yf=Xf, Ftf=T(Ff)

From (6) by the definition of →* we know that there exist Y’, Ft’, It’,

rs1’ and rs2’ such that

(9) rsf=rs1’∪rs2’
(10) ` TM(Xf,T(Ff),∅) →*(n,sf,rs1’) TM(Y’,Ft’,It’)

(11) ` TM(Y’,Ft’,It’) →(n,sf↓(n),sf(n),rs2’) TM(Xf,T(Ff),Itf)

From (10), by the definition of →, (and by the invariant) we have

(12) Y’=Xf, Ft’=T(Ff).

From (10), by (1,3,4), and (12) we get

(13) ` TM(Xf,T(Ff),∅) →*(n,sf,rs1’,hf) TM(Xf,T(Ff),Itf)

17

From (11) by (12) we have

(14) ` TM(Xf,T(Ff),It’) →(n,sf↓(n),sf(n),rs2’) TM(Xf,T(Ff),Itf)

From (14), by definition of → for TMonitors we know

(15) rs2’ = { t ∈ N | ∃g∈TFormula,c∈Context: (t,g,c)∈It0 ∧
` g →(n,sf↓(n),sf(n),c) done(false) }

(16) Itf = { (t,g1,c) ∈ TInstance | ∃g∈TFormula: (t,g,c)∈It0 ∧
` g →(n,sf↓(n),sf(n),c) next(g1) }

where

(17) It0 = It’ ∪ {(n,T(Ff),({(X,n)},{X,sf(n)}))}

To prove (7), by the definition of →* with h-cutoff for TMonitors, and (12),

we need to prove that there exist Y*,Ft*, It*, rs1* and rs2* such that

(18) rs1*∪rs2*=rsf
(19) ` TM(Xf,T(Ff),∅) →*(n,sf,rs1*,hf) TM(Y*,Ft*,It*)

(20) TM(Y*,Ft*,It*) →(n,s↑(max(0,n-hf),min(n,hf)),s(n),rs2*) TM(Xf,T(Ff),Itf).

We can take rs1*=rs1’, rs2*=rs2’, Y*=Xf, Ft*=Ftf=T(Ff), It*=It’. Then (18) holds

due to (9) and (19) holds due to (13). Hence, we need to prove only (20), which

after instantiating the variables has the form

(21) TM(Xf,T(Ff),It’) →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),rs2’)
TM(Xf,T(Ff),Itf).

By definition of → for TMonitors, to prove (21), we need to prove

[22] rs2’ = { t ∈ N |

∃g∈TFormula,c∈Context: (t,g,c)∈It0 ∧
` g →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),c) done(false) }

and

[23] Itf = { (t,g1,c) ∈ TInstance |

∃g∈TFormula: (t,g,c)∈It0 ∧
` g →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),c) next(g1) }

where Itf0 is defined as in (17).

Hence, by (15) and [22], we need to prove

[24] { t ∈ N | ∃g∈TFormula,c∈Context: (t,g,c)∈It0 ∧
` g →(n,sf↓(n),sf(n),c) done(false) }

=

{ t ∈ N |

∃g∈TFormula,c∈Context: (t,g,c)∈It0 ∧
` g →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),c) done(false) }

By (16) and [23], we need to prove

18

[25] { (t,g1,c) ∈ TInstance | ∃g∈TFormula: (t,g,c)∈It0 ∧
` g →(n,sf↓(n),sf(n),c) next(g1) }

=

{ (t,g1,c) ∈ TInstance |

∃g∈TFormula: (t,g,c)∈It0 ∧
` g →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),c) next(g1) }

To prove [24], we need to show

[26] ∀t ∈ N :

∃g∈TFormula,c∈Context:
(t,g,c)∈It0 ∧ ` g →(n,sf↓(n),sf(n),c) done(false)

⇔
∃g∈TFormula,c∈Context:
(t,g,c)∈It0 ∧ ` g →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),c) done(false).

To prove (25), we need to show

[27] ∀t ∈ N, g1∈TFormula, c∈Context
∃g∈TFormula:
(t,g,c)∈It0 ∧ ` g →(n,sf↓(n),sf(n),c) next(g1)

⇔
∃g∈TFormula:
(t,g,c)∈It0 ∧ ` g →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),c) next(g1).

Proof of [26, =⇒].

We take t0 arbitrary but fixed. Let g∈TFormula and c∈Context be such that

(26.1) (t0,g,c)∈It0 and

(26.2) ` g →(n,sf↓(n),sf(n),c) done(false)

hold. We need to find g*∈TFormula and c*∈Context such that

[26.3] (t0,g*,c*)∈It0 and

[26.4] ` g* →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),c*) done(false)

hold. We take g*=g and c*=c. Then (26.3) holds because of (26.1). Hence, we

only need to prove

[26.4] ` g →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),c) done(false)

Since (t0,g,c)∈It0, we have either

(26.5) (t0,g,c)∈It’, or

(26.6) t0=n, g=T(Ff), c=({(Xf,n)},{Xf,sf(n)}).

Let first consider the case (26.5).

We had

19

(3) ` (monitor Xf : Ff): (hf, df)

(10) ` TM(Xf,T(Ff),∅) →*(n,sf,rs1’) TM(Y’,Ft’,It’)

From (3) and (10), by the invariant statement, we have

(26.7) invariant(Xf,Y’,Ff,Ft’,It’,n,sf,df)

The invariant (26.7) implies

(12) Y’=Xf, Ft’=T(Ff)

and by (26.5) the following:

(26.8) T(Ff) →* (n-t0,t0,sf,c.1) g.

From (26.8), by Lemma 2 we get

(26.9) T(Ff) →l* (n-t0,t0,sf,c.1) g.

From (26.5) and (26.7) we get

(26.10) c.1={(Xf,t0)}, c.2={(X,sf(t0))}={(X,sf(c.1(Xf)))}

Since by the invariant n-t0+1>0, from (26.9), (26.2), (26.10), by the

definition of →l*, we get

(26.11) T(Ff) →l* (n-t0+1,t0,sf,c.1) done(false).

From (26.11), by Lemma 2, we get

(26.12) T(Ff) →* (n-t0+1,t0,sf,c.1) done(false).

From (3) by the definition of `, there exists re0∈RangeEnv such

(26.13) re0 ` Ff: (hf, df) and

(26.14) re0(Xf) = (0,0)

From (26.10) and (26.14) the following is satisfied

(26.15) ∀Y∈dom(c.1): re0(Y).1+t0 ≤ c.1(Y) ≤ re0(Y).2+t0.

Hence, from (26.13), (26.15), (26.12) and the Statement 2 of Lemma 1

(taking F=Ff, re=re0, e=c.1, Ft=g, n=n-t0, p=t0, s=sf, d=df, h=h’=hf)

we get

(26.16) T(Ff) →* (n-t0+1,t0,sf,c.1,hf) done(false).

From (26.16), by Lemma 2 we get

(26.17) T(Ff) →l* (n-t0+1,t0,sf,c.1,hf) done(false).

Since by the invariant n-t0+1>0, from (26.17), by the definition of →l* with

history, there exists Ft0∈TFormula such that

20

(26.18) T(Ff) →l* (n-t0,t0,sf,c.1,hf) Ft0,

(26.19) Ft0 →(n,s↑(max(0,n-hf),min(n,hf)), s(n), c) done(false).

From (26.18), by Lemma 2, we get

(26.20) T(Ff) →* (n-t0,t0,sf,c.1,hf) Ft0.

From (26.20), by (26.13), (26.15), and Statement 2 of Lemma 1 we get

(26.21) T(Ff) →* (n-t0,t0,sf,c.1) Ft0.

From (26.21) and (26.8), since the rules for → are deterministic and

→* is defined based on →, we conclude

(26.22) Ft0=g.

From (26.22) and (26.19), we get [26.4]

Now we consider the case (26.6):

(26.6) t0=n, g=T(Ff), c=({(Xf,n)},{Xf,sf(n)}).

Under (26.6), the formula (26.2) now looks as

(26.23) ` T(Ff) →(n,sf↓(n),sf(n),c) done(false)

We need to prove [26.4], which, by (26.6) has the form

[26.24] ` T(Ff) →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),({(X,n)},{X,sf(n)})) done(false)

From (3) by the definition of `, there exists re0∈RangeEnv such

(26.25) re0 ` Ff: (hf, df) and

(26.26) re0(Xf) = (0,0)

From (26.25) and (26.26) the following is satisfied

(26.27) ∀Y∈dom(c.1): re0(Y).1+n ≤ c.1(Y) ≤ re0(Y).2+n.

From (26.25), (26.27), the definition of c in (26.6), and Lemma 5

(instantiating F=Ff, Ft=done(false), p=n, s=sf, h=h’=hf, d=df, e=c.1)

we get [26.24].

Proof of [26, ⇐=].

The direction (⇐=) can proved analogously to the direction (=⇒). This is easy to

see, because the proof of (⇐=) relies on Statement 2 of Lemma 1 and on Lemma 3.

Both of these propositions assert equivalence between a formula expressed in the

version of →* (resp. →) without history and a formula expressed in the

version of →* (resp. →) with history. Hence, for proving [26, =⇒] we can use

Statement 2 of Lemma 1 and Lemma 3 in the direction opposite to the one used

in the proof of [26, ⇐=].

21

Proof of [27]

Proof of [27] is analogous to the proof of [26]. This is easy to see, because

[27] and [26] differ only with a TFormula in the right hand side of →*, and the

proof of [26] does not depend on what stands in that side. Hence, we can replace

done(false) in the proof of [26] with next(g1) and we obtain the proof of [27].

Proof of [5.2].

We assume

(28) ` TM(Xf,T(Ff),∅) →*(n+1,sf,rsf,hf) TM(Yf,Ftf,Itf)

and want to prove

[29] ` TM(Xf,T(Ff),∅) →*(n+1,sf,rsf) TM(Yf,Ftf,Itf).

From (28), by the definition of →* with cut-off for TMonitors, we know that

there exist Yf’, Ftf’, Itf’, rs1’, rs2’, such that

(30) rs1’∪rs2’=rsf
(31) ` TM(Xf,T(Ff),∅) →*(n,sf,rs1’,hf) TM(Yf’,Ftf’,Itf’) and

(32) TM(Yf’,Ftf’,Itf’) →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),rs2’)
TM(Yf,Ftf,Itf)

From the definitions of →* and → we can see that Yf’=Xf, Ftf’=T(Ff).

To prove [29], by the definition of →* for TMonitors, we need to find such

Yf*, Ftf*, Itf*, rs1*, and rs2* that

[33] rs1*∪rs2*=rsf
[34] ` TM(Xf,T(F),∅) →*(n,sf,rs1*) TM(Yf*,Ftf*,Itf*) and

[35] TM(Yf*,Ftf*,Itf*) →(n,sf↓n,sf(n),rs2*) TM(Xf,T(Ff),Itf)

We take Yf*=Xf, Ftf*=T(F), Itf*= Itf’, rs1*=rs1’, rs2*=rs2’. Then:

- [33] follows from (30).

- [34] follows from (31) by (3,4) and the induction hypothesis (1).

Hence, it is only left to prove the following instance of [35]:

[36)] TM(Xf,T(Ff),Itf’) →(n,sf↓n,sf(n),rs2’) TM(Xf,T(Ff),Itf)

To show it, by the definition of → for TMonitors,

we need to prove

[37] rs2’ = { t ∈ N |

∃g∈TFormula,c∈Context: (t,g,c)∈It0 ∧
` g →(n,sf↓n,sf(n),c) done(false) }

22

and

[38] Itf = { (t,g1,c) ∈ TInstance |

∃g∈TFormula: (t,g,c)∈It0 ∧
` g →(n,sf↓n,sf(n),c) next(g1) }

where It0 = Itf’ ∪ {(n,T(Ff),({(X,n)},{X,sf(n)}))}

On the other hand, from (32) we know that

(39) rs2’ = { t ∈ N |

∃g∈TFormula,c∈Context: (t,g,c)∈It0’ ∧
` g →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),c) done(false) }

and

(40) Itf = { (t,g1,c) ∈ TInstance |

∃g∈TFormula: (t,g,c)∈It0’ ∧
` g →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),c) next(g1) }

where It0’ is defined exactly as It0: It0’=It0.

Hence, by [37] and (39), we need to prove

[41] { t ∈ N |

∃g∈TFormula,c∈Context: (t,g,c)∈It0 ∧
` g →(n,sf↑n,sf(n),c) done(false) }

=

{ t ∈ N |

∃g∈TFormula,c∈Context: (t,g,c)∈It0 ∧
` g →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),c) done(false) }

But this is exactly [24] which we have already proved. Hence, [41] holds.

By (40) and [38], we need to prove

[42] { (t,g1,c) ∈ TInstance |

∃g∈TFormula: (t,g,c)∈It0 ∧
` g →(n,sf↓n,sf(n),c) next(g1) }

=

{ (t,g1,c) ∈ TInstance |

∃g∈TFormula: (t,g,c)∈It0’ ∧
` g →(n,sf↑(max(0,n-hf),min(n,hf)),sf(n),c) next(g1) }

But this is exactly [25] which we have already proved. Hence, [42] holds.

It means, we proved also [35]. It finished the proof of [5.2] and, hence, of the

soundness theorem.

23

A.2 Proposition 1: The Invariant Statement

Invariant Statement

∀X∈Variable, F∈Formula, h∈N∞, d∈N∞, n∈N, s∈Stream, rs∈P(N),
Y∈Variable Ft∈TFormula, It∈P(TInstance):
` (monitor X : F): (h,d) ∧
` T(monitor X : F) →*(n,s,rs) TM(Y,Ft,It) ⇒
invariant(X,Y,F,Ft,It,n,s,d)

PROOF

Parameterization

P(n):⇔
∀ X∈Variable, F∈Formula, h∈N∞, d∈N∞, s∈Stream, rs∈P(N),

Y∈Variable Ft∈TFormula, It∈P(Instance):
` (monitor X : F): (h,d) ∧
` T(monitor X : F) →*(n,s,rs) TM(Y,Ft,It) ⇒
invariant(X,Y,F,Ft,It,n,s,d)

We want to show

∀n∈N: P(n)

For this it suffices to show

1. P(0)

2. ∀n∈N: P(n) ⇒ P(n+1)

Proof of 1

P(0)

∀ X∈Variable, F∈Formula, h∈N∞, d∈N∞, s∈Stream, rs∈P(N),
Y∈Variable Ft∈TFormula, c∈Context, It∈P(Instance):

` (monitor X : F): (h,d) ∧
` T(monitor X : F) →*(0,s,rs) TM(Y,Ft,It) ⇒
invariant(X,Y,F,Ft,It,0,s,d)

We take Xf,Ff,df,hf,sf,rsf,Yf,Ftf,Itf arbitrary but fixed.

Assume

(1) ` (monitor Xf : Ff): (hf,df)

// (2) df∈N
(3) T(monitor Xf : Ff) →*(0,sf,rsf) TM(Yf,Ftf,Itf)

and show

[a] invariant(Xf,Yf,Ff,Ftf,Itf,0,sf,df)

24

From (3) and def. →*, we know

(4) rsf = ∅
(5) T(monitor Xf : Ff) = TM(Yf,Ftf,Itf)

From (5) and Def. of T(M), we know

(6) Yf = Xf

(7) Ftf = T(Ff)

(8) Itf = ∅

From (6,7,8) and the definitions of alldiff, allnext, and the invariant,

we get [a].

=============================

Proof of 2

∀n∈N: P(n) ⇒ P(n+1)

Take arbitrary n∈N.

Assume P(n), i.e.,

(1) ∀ X∈Variable, F∈Formula, h∈N∞, d∈N∞, s∈Stream, rs∈P(N),
Y∈Variable, Ft∈TFormula, It∈P(Instance):

` (monitor X : F) : (h,d) ∧
` T(monitor X : F) →*(n,s,rs) TM(Y,Ft,It) ⇒
invariant(X,Y,F,Ft,It,n,s,d)

Show P(n+1), i.e.,

(a) ∀ X∈Variable, F∈Formula, h∈N∞, d∈N∞, s∈Stream, rs∈P(N),
Y∈Variable Ft∈TFormula, It∈P(Instance) :

` (monitor X : F) : (h,d) ∧
` T(monitor X : F) →*(n+1,s,rs) TM(Y,Ft,It) ⇒
invariant(X,Y,F,Ft,It,n+1,s,d)

We take Xf,Ff,df,hf,sf,rsf,Yf,Ftf,Itf arbitrary but fixed.

Assume

(2) ` (monitor Xf : Ff) : (hf,df)

// (3) df∈N
(4) T(monitor Xf : Ff) →*(n+1,sf,rsf) TM(Yf,Ftf,Itf)

and show

[b] invariant(Xf,Yf,Ff,Ftf,Itf,n+1,sf,df)

From (4) and def. →* for TMonitors, we know for some rs1,rs2 and

Mt=TM(X’,Ft’,It’)

(5) ` T(monitor Xf : Ff) →*(n,sf,rs1) TM(X’,Ft’,It’)

25

(6) ` TM(X’,Ft’,It’) →(n,sf↓n,sf(n),rs2) TM(Yf,Ftf,Itf)

(7) rsf = rs1∪rs2

From (6) by the definition of → for TMonitors, we know

(8) X’=Yf,

(9) Ft’=Ftf, and

(10) Itf = {(t0,next(Fc1),c0) ∈ TInstance |

∃ Ft0∈Tformula such that (t0,Ft0,c0)∈It0 and

` Ft0 → (n,sf↓n,sf(n),c0) next(Fc1)}

where

(11) It0 = It’ ∪ {(n,Ftf,({(Yf,n)},{(Yf,sf(n))}))}

From (1), for X=Xf, F=Ff, h=hf, d=df, s=sf, rs=rs1, Y=Yf, Ft=Ftf,

and It= It’, we obtain

(12) ` (monitor Xf : Ff) : (hf,df) ∧
` T(monitor Xf : Ff) →*(n,sf,rs1) TM(Yf,Ftf,It’) ⇒
invariant(Xf,Yf,Ff,Ftf,It’,n,sf,df)

From (14,2,3,5,8,9) we obtain

(13) invariant(Xf,Yf,Ff,Ftf,It’,n,sf,df)

It means, we know

(14) Xf = Yf

(15) Ftf = T(Ff)

(16) alldiffs(It’)

(17) allnext(It’)

(18) ∀ t∈N, Ft∈TFormula, c∈Context:
(t,Ft,c) ∈ It’ ∧ d∈N ⇒

c.1={(Xf,t)} ∧ c.2={(Xf,sf(t))} ∧
n-df ≤ t ≤ n-1 ∧
T(Ff) →* (n-t,t,sf,c.1) Ft ∧
∃b∈Bool ∃d’∈N :

d’≤df ∧ ` Ft →*(max(0,t+d’-n),n,sf,c.1) done(b)

Showing [b] means that we want to show

[b1] Xf = Yf

[b2] Ftf = T(Ff)

[b3] alldiff(Itf)

[b4] allsnext(Itf)

[b5] ∀ t∈N, Ft∈TFormula, c∈Context:
(t,Ft,c) ∈ Itf ∧ d∈N ⇒
c.1={(Xf,t)} ∧ c.2={(Xf,sf(t))} ∧
n+1-df ≤ t ≤ n ∧
T(Ff) →* (n+1-t,t,sf,c.1) Ft ∧
∃b∈Bool ∃d’∈N :

d’≤df ∧ ` Ft →*(max(0,t+d’-n-1),n+1,sf,c.1) done(b)

26

Proof of [b1]

[b1] is proved by (14).

Proof of (b2)

[b2] is proved by (15).

Proof of [b3]

From (10) one can see that the elements (t,Ft,c) in Itf inherit their tag t from

It0, which is It’ ∪ {(n,Ftf,(cp,cm))}. From (18) we know alldiff(It’). From (18)

we have t ≤ n-1 for all (t,Ft1,c) ∈ It’. Adding {(n,Ftf,cf)} to It’, will

guarantee all instances in It0 have different tags. Since these tags are

transfered to Itf, we conclude that [b3] holds.

Proof of [b4]

(b4) follows directly from (10), since every element in Itf has a form

(t,next(Fc),c).

Proof of [b5]

Recall that we have to prove

∀ t∈N, Ft∈TFormula, c∈Context:
(t,Ft,c) ∈ Itf ∧ d∈N ⇒

c.1={(Xf,t)} ∧ c.2={(Xf,sf(t))} ∧
n+1-df ≤ t ≤ n ∧
T(Ff) →* (n+1-t,t,sf,c.1) Ft ∧
∃b∈Bool ∃d’∈N :

d’≤df ∧ ` Ft →*(max(0,t+d’-n-1),n+1,sf,c.1) done(b)

We take tb, Ftb, cb arbitrary but fixed, assume

(19) (tb,Ftb,cb) ∈ Itf ∧ d∈N

and prove

[b5.1] cb.1={(Xf,tb)} ∧ cb.2={(Xf,sf(tb))}

[b5.2] n+1-df ≤ tb ≤ n

[b5.3] T(Ff) →* (n+1-tb,tb,sf,cb.1) Ftb ∧
[b5.4] ∃b∈Bool ∃d’∈N :

d’≤df ∧ ` Ftb →*(max(0,tb+d’-n-1),n+1,sf,cb.1) done(b)

From (19) and (b4) we know that there exists Fcb∈TFormulaCore such that

(20) Ftb=next(Fcb)

27

From (19), (20) and (10) of we know there exists Ft0∈TFormula such that

(21) (tb,Ft0,cb) ∈ It0 and

(22) ` Ft0 → (n,sf↓n,sf(n),cb) next(Fcb).

Proof of [b5.1]

We want to prove

[b5.1] cb.1={(Xf,tb)} ∧ cb.2={(Xf,sf(tb))}

From (21) and (11), we have two cases:

(C1) (tb,Ft0,cb) = (n,Ftf,({(X’,n)},{(X’,sf(n))})) and

(C2) (tb,Ft0,cb) ∈ It’.

In case (C1) we have tb=n, Ft0 = Ftf, and cb = ({(X’,n)},{(X’,sf(n))}).

From the latter, by (8) and (14), we have cb = ({(Xf,n)},{(Xf,sf(n))}) and,

hence, since tb=n, we get cb.1={(Xf,tb)} and cb.2={(Xf,sf(tb))}, which proves

(b5.1) for the case (C1).

In case (C2), [b5.1] follows from (18).

Hence, [b5.1] is proved.

Proof of [b5.2]

We want to prove

[b5.2] n+1-df ≤ tb ≤ n.

Again, from (21) and (11), we have two cases:

(C1) (tb,Ft0,cb) = (n,Ftf,({(X’,n)},{(X’,sf(n))})) and

(C2) (tb,Ft0,cb) ∈ It’.

The case (C1)

In case (C1) we have tb=n, Ft0 = Ftf, and cb = ({(X’,n)},{(X’,sf(n))}).

From the latter, by (8) and (14), we have cb = ({(Xf,n)},{(Xf,sf(n))}).

To show [b5.2], it just remains to prove

[23] df > 0.

Assume by contradiction that df=0. Then from (2) we get that there exists

re0∈RangeEnv such that re0(Xf) = (0,0) and

(24) re0 ` Ff:(hf,0)

Now we apply Statement 1 of Lemma 1 with F=Ff, re=re0, e={(Xf,n)}, s=sf,

28

d=df=0, h=hf, s=sf, p=n, and since T(Ff)=Ftf by (17), we obtain

(25) ∃b∈Bool ∃d’∈N: d’≤1 ∧ ` Ftf →*(d’,n,sf,{(Xf,n)}) done(b))

From (25), there exist bl∈Bool and dl’∈N such that

(26) dl’≤1 and

(27) Ftf →*(dl’,n,sf,{(Xf,n)}) done(bl).

Note that since Ftf = T(Ff), by the definition of the translation T, Ftf is a

’next’ formula. Hence, dl’6=0, because otherwise by (27) and the definition of →*

we would get Fft=done(bl), which would contradict the fact that Ftf is a ’next’

formula. Therefore, from (26) we get

(28) dl’=1.

From (27) and (28) we get

(29) Ftf →*(1,n,sf,{(Xf,n)}) done(bl).

From (29), by the definition of →* for TFormulas, we get that there exists

Ft’ such that

(30) Ftf →(n,sf↓n,sf(n),({(Xf,n)},{(Xf,sf(n))})) Ft’

(31) Ft’ →*(0,n+1,sf,{(Xf,n)}) done(bl).

On the other hand, from (22), by Ft0=Ftf and (b5.1) we get

(32) Ftf →(n,sf↓n,sf(n),({(Xf,n)},{(Xf,sf(n))})) next(Fcb)

From (30) and (32) and by the fact that the reduction → is deterministic (one

can not perform two different reductions from Ftf with the same

n,sf↓n,sf(n),and ({(Xf,n)},{(Xf,sf(n))}): This can be seen by inspecting

the rules for →), we obtain

(33) Ft’=next(Fcb).

Then from (31) and (33) we get

(34) next(Fcb) →*(0,n+1,sf,({(Xf,n)},{(Xf,sf(n))) done(bl).

But this contradicts the definition of →*: A ’next’ formula can not be reduced

to a ’done’ formula in 0 steps. Hence, the obtained contradiction proves [23]

and, therefore, [b5.2] for the case (C1).

Now we consider the case (C2).

From (tb,Ft0,cb) ∈ It’, by (18), we get

(35) n-df ≤ tb ≤ n-1.

In order to prove [b5.2], we need to show

[36] n+1-df ≤ tb.

29

Assume by contradiction that n+1-df > tb. By (35) it means n-df = tb.

From (18) with t=tb, Ft=Ft0, c=cb we get

(37) ∃b∈Bool ∃d’∈N :

d’≤df ∧ ` Ft0 →*(max(0,tb+d’-n),sf,cb.1) done(b)

Since tb+d’-n = n-df+d’-n = d’-df, from (37), we obtain that there exist b and

d’ such that

(38) d’≤df ∧ ` Ft0 →*(max(0,d’-df),sf,cb.1) done(b)

holds. But then max(0,d’-df)=0 and we get

(39) Ft0 →*(0,sf,cb.1) done(b)

which, by definition of →* for TFormulas, implies

(40) Ft0 = done(b).

However, this contradicts (22) and the definition of → for TFormulas, because

no ’done’ formula can be reduced. Hence, (36) holds, which implies [b5.2] also

in this case.

Proof of [b5.3]

We have to prove T(Ff) →* (n+1-tb,tb,sf,cb.1) Ftb, which, by Lemma 2, is equivalent

to proving

(41) T(Ff) →l* (n+1-tb,tb,sf,cb.1) Ftb

Since n+1-tb>0 (by b5.2), by the definition of →l*, proving (41) reduces to

proving that there exists such a Ft’ that

[42] T(Ff) →l* (n-tb,tb,sf,cb.1) Ft’ and

[43] Ft’ →(n,sf↓(n),s(n),c’) Ftb

where c’=(cb.1,{(X,sf(cb.1(X))) | X ∈ dom(cb.1)}). But since dom(cb.1)={Xf},

we actually get

(44) c’=cb.

Let us take Ft’=Ft0. Then (43) follows from (22). To prove (41), we reason as follows:

From (21), we know that (tb,Ft0,cb) ∈ It0. By (11) and (14), we have

(45) It0 = It’ ∪ {(n,Ftf,({(Xf,n)},{(Xf,sf(n))}))}

Let us first consider the case when (tb,Ft0,cb) ∈ It’. From (18) we have

(46) T(Ff) →* (n-tb,tb,sf,cb.1) Ft0

From (46), by Lemma 2, we get (42).

30

Now assume (tb,Ft0,cb)∈{(n,Ftf,({(Xf,n)},{(Xf,sf(n))}))}. That means, taking

tb=n, Ft0=Ftf, and cb=({(Xf,n)},{(Xf,sf(n))}). Then, from (42), we need to prove

[47] T(Ff) →l* (0,n,sf,{(Xf,n)}) Ftf.

This follows from the definition of →l* and [b2].

Hence, [b5.3] is proved.

Proof of [b5.4]

Recall that we took tb, Ftb, cb arbitrary but fixed and assumed

(21) (tb,Ftb,cb) ∈ Itf.

We are looking for b*∈Bool and d’*∈N such that

[48] d’*≤df and

[49] ` Ftb →*(max(0,tb+d’*-n-1),n+1,sf,cb.1) done(b*)

hold.

From (21) and (b4) we know that there exists Fcb∈TFormulaCore such that

(50) Ftb=next(Fcb)

From (21), by (11) there are two cases:

(C1) (tb,Ft0,cb) = (n,Ftf,({(X’,n)},{(X’,sf(n))}))

(C2) (tb,Ft0,cb) ∈ It’

Case (C1):

From (C1) we know

(51) tb = n

(52) Ft0 = Ftf

(53) cb = ({(Xf,n)},{(Xf,sf(n))})

From (51), to show [b5.3], it suffices to show

[b5.3.a] ∃b∈Bool, d’∈N:
d’≤df ∧ ` Ftb →*(max(0,d’-1),n+1,sf,cb.1) done(b)

From (53), we know

(54) cb.1 = {(Xf,n)}

(55) cb.2 = {(Xf,sf(n))}

From (2) and the definition of ` we have some re∈RangeEnv such that

(56) re(Xf) = (0,0)

(57) re ` Ff: (hf,df)

31

From (Statement 1 of Lemma 1,57,19,15), we have some b1∈Bool and d1’∈N
such that

(58) d1’≤df+1
(59) ` Ftf →*(d1’,n,sf,{(Xf,n)}) done(b1)

From (20,59) and the definition of →*, we know for some Ftb’∈TInstance

(60) d1’ > 0

(61) ` Ftf →(n,sf↓n,sf(n),({(Xf,n)},{(Xf,sf(n))})) Ftb’

(62) ` Ftb’ →*(d1’-1,n+1,sf,{(Xf,n)}) done(b1)

From (22,52,53), we know

(63) ` Ftf → (n,sf↓n,sf(n),({(Xf,n)},{(Xf,sf(n))})) Ftb

From (61,63) and the fact that the rules for → are deterministic

(i.e., ∀Ftf,Ftb,Ftb’: (` Ftf → Ftb) ∧ (` Ftf → Ftb’) ⇒ Ftb = Ftb’,

a lemma easy to prove), we know

(64) Ftb’ = Ftb

From (62,64), we know

(65) ` Ftb →*(d1’-1,n+1,sf,{(Xf,n)}) done(b1)

From (60), we know

(66) d1’-1 = max(0,d1’-1)

From (58,65,66,54), we know [b5.3.a] with b:=b1 and d:=d1’-1.

Case (C2).

Recall that in this case (tb,Ft0,cb) ∈ It’.

By the induction hypothesis (18) there exist bi∈Bool and di’∈N such that

(67) di’≤df and

(68) ` Ft0 →*(max(0,tb+di’-n),n,sf,cb.1) done(bi)

This implies that

(69) tb+di’-n>0,

otherwise we would have Ft0=done(bi), which contradicts the assumption

(tb,Ft0,cb) ∈ It’ and (20). Hence, we have

(70) ` Ft0 →*(tb+di’-n,n,sf,cb.1) done(bi)

Therefore, we can apply the definition →* for TFormulas to (70) and (22),

concluding ` next(Fcb) →*(tb+di’-n-1,n+1,sf,cb.1) done(bi) and, hence

32

(71) ` Ftb →*(tb+di’-n-1,n+1,sf,cb.1) done(bi)

Now we can take d’*=d’ and b*=bi. From (59) we get

(72) tb+di*’-n-1 = max(0,tb+di*’-n-1).

From (71) and (72) we get [49]. From (67) and the assumption d’*=d’ we get [48].

Hence, [b5.3] is true also in case (b6.2 C2).

This finishes the invariant proof.

33

A.3 Lemma 1: Soundness Lemma for Formulas

∀F,F’∈Formula, re∈RangeEnv, e∈Environment, Ft∈TFormula, n∈N, p∈N,
s∈Stream, d∈N∞, h∈N:
` (re ` F: (h,d)) ∧ ∀Y∈dom(e): re(Y).1+p ≤ e(Y) ≤ re(Y).2+p ⇒
(d∈N ⇒

∃b∈Bool, ∃d’∈N:
d’≤d+1 ∧ ` T(F) →*(d’,p,s,e) done(b)) ∧

(∀h’∈N: h’≥h ⇒
(T(F) →* (n,p,s,e) Ft ⇔
T(F) →* (n,p,s,e,h’) Ft))

==

We split the lemma in two parts:

Statement 1.

∀F∈Formula, re∈RangeEnv, e∈Environment, s∈Stream, d∈N∞, h∈N, p∈N:
` (re ` F: (h,d)) ∧ ∀Y∈dom(e): re(Y).1+p ≤ e(Y) ≤ re(Y).2+p ⇒
(d∈N ⇒

∃b∈Bool ∃d’∈N:
d’≤d+1 ∧ ` T(F) →*(d’,p,s,e) done(b))

Statement 2.

∀F∈Formula, re∈RangeEnv, e∈Environment, Ft∈TFormula, n∈N, p∈N,
s∈Stream, d∈N∞, h∈N, h’∈N:
` (re ` F: (h,d)) ∧ ∀Y∈dom(e): re(Y).1+p ≤ e(Y) ≤ re(Y).2+p ∧ h’≥h ⇒

(T(F) →* (n,p,s,e) Ft ⇔
T(F) →* (n,p,s,e,h’) Ft)

==

Statement 1.

∀F∈Formula, re∈RangeEnv, e∈Environment, s∈Stream, d∈N∞, h∈N:
` (re ` F: (h,d)) ∧ ∀Y∈dom(e): re(Y).1+p ≤ e(Y) ≤ re(Y).2+p ⇒
(d∈N ⇒

∀p∈N ∃b∈Bool ∃d’∈N:
d’≤d+1 ∧ ` T(F) →*(d’,p,s,e) done(b))

Parametrization

R(F) :⇔

∀re∈RangeEnv, e∈Environment, s∈Stream, d∈N∞, h∈N:
` (re ` F: (h,d)) ∧ ∀Y∈dom(e): re(Y).1+p ≤ e(Y) ≤ re(Y).2+p ∧ d∈N⇒

(∀p∈N ∃b∈Bool ∃d’∈N:
d’≤d+1 ∧ ` T(F) →*(d’,p,s,e) done(b))

We want to prove

34

∀F∈Formula: R(F)

By structural induction over F:

C1: F=@X. Then T(F) = next(TV(X)).

We take ref, ef, sf, df, hf, pf arbitrary but fixed. Assume

(1.1) ` (ref ` @X: (hf,df))

(1.2) df∈N,
(1.3) ∀Y∈dom(ef): ref(Y).1+pf ≤ ef(Y) ≤ ref(Y).2+pf

and look for b*∈Bool and d*’∈N such that

[1.4] d*’≤df+1 and

[1.5] ` next(TV(X)) →*(d*’,pf,sf,ef) done(b*)

hold.

From (1.1) we get

(1.6) hf=0 and

(1.7) df=0.

We define

(1.8) c = (ef,{(X,sf(ef(X))) | X ∈ dom(ef)}),

and take

(1.9) d*’=1

and

(1.10) b* =

if X∈dom(c.2)) then

c.2(X)

else

false

From (1.7,1.9), we see that d*’ satisfies [1.4]. Hence, we only need to prove

the following formula obtained from [1.5]:

[1.11] ` next(TV(X)) →*(1,pf,sf,ef) done(b*).

where b* is defined in (1.10). By the definition of →*, to prove [1.11],

we need to find Ft’∈TFormula such that

[1.12] next(TV(X)) →(pf,sf↓pf,sf(pf),c) Ft’ and

[1.13] Ft’ →*(0,pf+1,sf,ef) done(b*)

hold, where c is defined as in (1.8).

35

We take Ft’=done(b*). Then [1.12] holds by (1.10) and the definition of → for

next(TV(X)), and [1.13] holds by the definition of →*.

C2. F = ~F1. Then T(F) = next(TN(T(F1))).

We take ref, ef, sf, df, hf, pf arbitrary but fixed. Assume

(2.1) ` (ref ` ¬F1: (hf,df))

(2.2) df∈N,
(2.2) ∀Y∈dom(ef): ref(Y).1+pf ≤ ef(Y) ≤ ref(Y).2+pf

and look for such b*∈Bool and d*’∈N such that

[2.4] d*’≤df+1 and

[2.5] ` next(TN(T(F1))) →*(d*’,pf,sf,ef) done(b*)

hold.

From (2.1) by the definition of the ` relation we get

(2.6) ` (re ` F1): (hf,df).

From (2.6) and the induction hypothesis there exist bi∈Bool and di’∈N such that

(2.7) di’≤df+1 and

(2.8) ` T(F1) →*(di’,pf,sf,ef) done(bi).

We take

(2.9) d*’=di’

and define

(2.10) b* :=

if bi = true then

false

else

true

By (2.7,2.9), the inequality [2.4] holds. From (2.8), (2.9), (2.10), by the

Statement 1 of the Lemma 4 we get [2.5].

C3. F = F1&F2. Then T(F) = next(TCS(T(F1),T(F2))).

We take ref, ef, sf, df, hf, pf arbitrary but fixed. Assume

(3.1) ` (ref ` F1&F2: (hf,df)),

(3.2) df∈N,

36

(3.3) ∀Y∈dom(ef): ref(Y).1+pf ≤ ef(Y) ≤ ref(Y).2+pf

and look for such b*∈Bool and d*’∈N such that

[3.4] d*’≤df+1 and

[3.5] ` next(TCS(T(F1),T(F2))) →*(d*’,pf,sf,ef) done(b*)

From (3.1), by the definition of the ` relation we get

(3.6) ` (ref ` F1: (h1,d1)

(3.7) ` (ref ` F2: (h2,d2)

such that h1,d1,h2,d2∈N and

(3.8) df = max∞(d1,d2) = max(d1,d2)

From (3.6) and the induction hypothesis there exist b1i∈Bool and d1i’∈N such

that

(3.9) d1i’≤d1+1 and

(3.10) ` T(F1) →*(d1i’,pf,sf,ef) done(b1i).

From (3.7) and the induction hypothesis there exist b2i∈Bool and d2i’∈N such

(3.11) d2i’≤d2+1 and

(3.12) ` T(F2) →*(d2i’,pf,sf,ef) done(b2i).

From (3.10) and (3.12) we have

(3.13) d1i’>0 and

(3.14) d2i’>0

(Otherwise we would have a ’next’ formula reducing to a ’done’ formula in

0 steps, which is impossible.)

We proceed by case distinction over b1i.

b1i = false

We take

(3.15) b*=b1i=false and

(3.16) d*’=d1i’.

From (3.8,3.9,3.16) we get [3.4]. From (3.10, 3.13, 3.15, 3.16) and Statement 2

of Lemma 4 we get [3.5].

b1i = true.

We take

(3.17) b*=b2i’ and

(3.18) d*’=max(d1i’,d2i’).

37

From (3.18, 3.9, 3.11) we get

(3.19) d*’=max(d1i’,d2i’) ≤ max(d1+1, d2+1)=max(d1,d2)+1 = df+1

Hence, (3.19) gives [3.4].

From (3.10, 3.12, 3.13, 3.14, 3.18) and Statement 2 of Lemma 4 we get [3.5].

C4. F = F1/\F2. Then T(F) = next(TCP(T(F1),T(F2))).

We take ref, ef, sf, df, hf, pf arbitrary but fixed. Assume

(4.1) ` (re ` F1∧F2: (hf,df)),

(4.2) df∈N,
(4.3) ∀Y∈dom(ef): ref(Y).1+pf ≤ ef(Y) ≤ ref(Y).2+pf

and look for such b*∈Bool and d*’∈N such that

[4.4] d*’≤df+1 and

[4.5] ` next(TCP(T(F1),T(F2))) →*(d*’,pf,sf,ef) done(b*)

From (4.1), by the definition of the ` relation we get

(4.6) ` (re ` F1: (h1,d1)

(4.7) ` (re ` F2: (h2,d2)

such that h1,d1,h2,d2∈N and

(4.8) df = max∞(d1,d2) = max(d1,d2)

From (4.6) and the induction hypothesis there exist b1i∈Bool and d1i’∈N such

that

(4.9) d1i’≤d1+1 and

(4.10) ` T(F1) →*(d1i’,pf,sf,ef) done(b1i).

From (4.7) and the induction hypothesis there exist b2i∈Bool and d2i’∈N such

(4.11) d2i’≤d2+1 and

(4.12) ` T(F2) →*(d2i’,pf,sf,ef) done(b2i).

From (4.10) and (4.12) we have

(4.13) d1i’>0 and

(4.14) d2i’>0

(Otherwise we would have a ’next’ formula reducing to a ’done’ formula in

0 steps, which is impossible.)

We proceed by case distinction over b1i and b2i.

b1i = false, b2i = true

38

We take

(4.15) b* = false,

(4.16) d*’= d1i’.

From (4.8, 4.9, 4.16) we get d*’=d1i’≤ d1+1 ≤ max(d1,d2)+1 =df+1 and, hence [4.4].

From (4.10, 4.12, 4.13, 4.14, 4.15, 4.16) and the case [TCP1] of the

Statement 3 of Lemma 4 we get [4.5].

b1i = false, b2i = false

We take

(4.17) b* = false,

(4.18) d*’= min(d1i’,d2i’).

From (4.9,4.11,4.18) we get

(4.19) d*’=min(d1i’,d2i’) ≤ min(d1+1,d2+1) = min(d1,d2)+1 ≤ max(d1,d2)+1 = df+1.

Hence, (4.19) proves [4.4].

From (4.10, 4.12, 4.13, 4.14, 4.17, 4.18) and the case [TCP2] of the

Statement 3 of Lemma 4 we get [4.5].

b1i = true, b2i = true

We take

(4.20) b*=b2i’ and

(4.21) d*’=max(d1i’,d2i’).

From (4.20, 4.9, 4.11) we get

(4.22) d*’=max(d1i’,d2i’) ≤ max(d1+1, d2+1)=max(d1,d2)+1=df+1

Hence, (4.22) gives [4.4].

From (4.10, 4.12, 4.13, 4.14, 4.20, 4.22) and the case [TCP3] of the

Statement 3 of Lemma 4 we get [4.5].

b1i = true, b2i = false

We take

(4.23) b*=b2i’ and

(4.24) d*’=d2i’.

From (4.18, 4.9, 4.11) we get

(4.25) d*’=d2i’ ≤ d2+1 ≤ max(d1+1, d2+1)=max(d1,d2)+1=df+1

Hence, (4.25) gives [4.4].

39

From (4.10, 4.12, 4.13, 4.14, 4.23, 4.24) and the case [TCP4] of the

Statement 3 of Lemma 4 we get [4.5].

C5. F = forall X in B1..B2:F1. Then T(F) = next(TA(X,T(B1),T(B2),T(F1)))

This case follows from the induction hypothesis and Lemma 5.

It finishes the proof of Statement 1 of Lemma 1.

==

Statement 2.

∀F∈Formula, re∈RangeEnv, e∈Environment, Ft∈TFormula, n∈N, p∈N,
s∈Stream, d∈N∞, h∈N, h’∈N:
` (re ` F: (h,d)) ∧ ∀Y∈dom(e): re(Y).1+p ≤ e(Y) ≤ re(Y).2+p ∧ h’≥h ⇒

(T(F) →* (n,p,s,e) Ft ⇔
T(F) →* (n,p,s,e,h’) Ft)

Proof

Parametrization:

S(n) :⇔
∀F∈Formula, re∈RangeEnv, e∈Environment, Ft∈TFormula, p∈N,
s∈Stream, d∈N∞, h∈N, h’∈N:
` (re ` F: (h,d)) ∧ ∀Y∈dom(e): re(Y).1+p ≤ e(Y) ≤ re(Y).2+p ∧ h’≥h ⇒

(T(F) →* (n,p,s,e) Ft ⇔
T(F) →* (n,p,s,e,h’) Ft)

We need to prove

(a) S(0)

(b) ∀n∈N: S(n) ⇒ S(n+1)

Proof of (a)

We take Ff∈Formula, ref∈RangeEnv, ef∈Environment, Ftf∈TFormulas, pf∈N,
sf∈Stream, df∈N∞, hf∈N, hf’∈N arbitrary but fixed, assume

(a.1) ` (ref ` Ff: (hf,df))

(a.2) ∀Y∈dom(ef): ref(Y).1+pf ≤ ef(Y) ≤ ref(Y).2+pf

(a.3) hf’≥hf

and prove

(a.4) T(Ff) →* (0,pf,sf,ef) Ftf ⇔
T(Ff) →* (0,pf,sf,ef,hf’) Ftf

40

(=⇒)

Assume

(a.5) T(Ff) →* (0,pf,sf,ef) Ftf

and prove

(a.6) T(Ff) →* (0,pf,sf,ef,hf’) Ftf.

From (a.5), by the definition of →* without history, we have Ftf=T(Ff).

Then (a.6) follows from the definition of →* with history.

(⇐=). Analogous.

Proof of (b)

We assume

(b.1)

∀F∈Formula, re∈RangeEnv, e∈Environment, Ft∈TFormula, p∈N, s∈Stream,
d∈N, h∈N, h’∈N:
` (re ` F: (h,d)) ∧ ∀Y∈dom(e): re(Y).1+p ≤ e(Y) ≤ re(Y).2+p ∧ h’≥h ⇒

(T(F) →* (n,p,s,e) Ft ⇔
T(F) →* (n,p,s,e,h’) Ft)

and prove

[b.2]

∀F∈Formula, re∈RangeEnv, e∈Environment, Ft∈TFormula, p∈N, s∈Stream,
d∈N, h∈N, h’∈N:
` (re ` F: (h,d)) ∧ ∀Y∈dom(e): re(Y).1+p ≤ e(Y) ≤ re(Y).2+p ∧ h’≥h ⇒

(T(F) →* (n+1,p,s,e) Ft ⇔
T(F) →* (n+1,p,s,e,h’) Ft)

We take Ff, ref, ef, Ftf, pf, sf, df, hf, hf’ arbitrary but fixed. Assume

(b.3) ` (ref ` Ff: (hf,df))

(b.4) ∀Y∈dom(ef): ref(Y).1+pf ≤ ef(Y) ≤ ref(Y).2+pf

(b.5) hf’≥hf

and prove

(b.6) T(Ff) →* (n+1,pf,sf,ef) Ftf ⇔
T(Ff) →* (n+1,pf,sf,ef,hf’) Ftf

(=⇒) Assume

(b.7) T(Ff) →* (n+1,pf,sf,ef) Ftf

and prove

[b.8] T(Ff) →* (n+1,pf,sf,ef,hf’) Ftf

41

From (b.7), by the definition of →* without history, we know for some

Ft’∈TFormula

(b.9) T(Ff) → (pf,sf↓pf, sf(pf),c) Ft’

(b.10) Ft’ →* (n, pf+1, sf, ef) Ftf,

(b.11) c:= (ef, {(X, sf(ef(X))) | X in dom(ef)}).

Then from (b.3), (b.4), (b.11), (b.5), (b.9) and Lemma 3 we get

(b.12) T(Ff) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) Ft’.

Assume Ft’ is a ’next’ formula, i.e., there exists F’∈Formula such that

(b.13) Ft’=T(F’).

From (b.3), (b.4), (b.5), (b.10), by the induction hypothesis (b.1) we get

(b.14) Ft’ →* (n, pf+1, sf, ef, hf’) Ftf.

If Ft’ is a ’done’ formula, then from (b.10) by the definition of →* without

history we get n=0. Then, (b.14) again holds by the definition of →* with

history.

From (b.11), (b.12) and (b.14), by the definition of →* with history

we get [b.8].

(⇐=) Assume

(b.15) T(Ff) →* (n+1,pf,sf,ef,hf’) Ftf

and prove

[b.16] T(Ff) →* (n+1,pf,sf,ef) Ftf

From (b.15), by the definition of →* without history, we know for some

Ft’∈TFormula

(b.17) T(Ff) → (pf,sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf),c) Ft’

(b.18) Ft’ →* (n, pf+1, sf, ef, hf’) Ftf,

where

(b.19) c:= (ef, {(X, sf(ef(X))) | X in dom(ef)}).

Then from (b.3), (b.19), (b.4), (b.5), (b.18) and Lemma 3 we get

(b.20) T(Ff) → (pf, sf↓pf, sf(pf), c) Ft’.

Assume Ft’ is a ’next’ formula, i.e., there exists F’∈Formula such that

(b.21) Ft’=T(F’).

42

From (b.3), (b.4), (b.5), (b.18) by the induction hypothesis (b.1) we get

(b.22) Ft’ →* (n, pf+1, sf, ef) Ftf.

If Ft’ is a ’done’ formula, then from (b.18) by the definition of →* without

history we get n=0. Then, (b.22) again holds by the definition of →* with

history.

From (b.19), (b.20) and (b.22), by the definition of →* with history

we get [b.16].

It finishes the proof of Statement 2 of Lemma 1.

43

A.4 Lemma 2: Equivalence of Left- and Right-Recursive Definitions of
n-Step Reductions

Lemma 2 (Equivalence of Left- and Right-Recursive Definitions of n-Step Reductions):

(a) ∀n,p∈N, s∈Stream, e∈Environment, Ft1,Ft2∈TFormula
Ft1 →* (n,p,s,e) Ft2 ⇔
Ft1 →l* (n,p,s,e) Ft2

(b) ∀n,p∈N, s∈Stream, e∈Environment, Ft1,Ft2∈TFormula, h∈N
Ft1 →* (n,p,s,e,h) Ft2 ⇔
Ft1 →l* (n,p,s,e,h) Ft2

Proof of (a)

Parametrization:

S(n,Ft1,Ft2,p,s,e) :⇔
Ft1 →* (n,p,s,e) Ft2 ⇔ Ft1 →l* (n,p,s,e) Ft2

We want to prove

[G] ∀Ft1,Ft2∈TFormula,p∈N, s∈Stream, e∈Environment,∀n∈N:
S(n,Ft1,Ft2,p,s,e).

We take Ftf1,Ftf2,pf,sf, and ef arbitrary but fixed.

We have to prove

[G1] ∀k,n∈N: S(k,Ftf1,Ftf2,pf,sf,ef)∧n>k ⇒ S(n,Ftf1,Ftf2,pf,sf,ef).

Proof of [G1]

We take n arbitrary but fixed, assume

(1) ∀k<n: Ftf1 →* (k,pf,sf,ef) Ftf2 ⇔ Ftf1 →l* (k,pf,sf,ef) Ftf2

and prove

[2] Ftf1 →* (n,pf,sf,ef) Ftf2 ⇔ Ftf1 →l* (n,pf,sf,ef) Ftf2.

(=⇒):

We assume

(3) Ftf1 →*(n,pf,sf,ef) Ftf2

and prove

[4] Ftf1 →l*(n,pf,sf,ef) Ftf2.

44

From (3) we know that there exists Ft’∈TFormula such that

(5) Ftf1 →(pf,sf↓pf,sf(pf),c) Ft’ and

(6) Ft’ →*(n-1,pf+1,sf,ef) Ftf2

hold, where c = (ef,{(X,sf(ef(X))) | X ∈ dom(ef)}).

From (6), by the induction hypothesis we get

(7) Ft’ →l*(n-1,pf+1,sf,ef) Ftf2.

From (7), by the definition of →l*, there are two alternatives:

(i) n-1 = 0

(ii) n-1 > 0.

In case (i), we get

(8) Ft’= Ftf2.

From (8) and (5) we get

(9) Ftf1 →(pf,sf↓pf,sf(pf),c) Ftf2.

On the other hand, by the definition of →l* we have

(10) Ftf1 →l*(0,pf,sf,ef) Ftf1.

From (10) and (9), by the definition of →l*, we get

(11) Ftf1 →l*(1,pf,sf,ef) Ftf2.

Since n-1=0, we get that [4] holds:

[4] Ftf1 →l* (n,pf,sf,ef) Ftf2.

Case (ii)

From (7), by the definition of →l*, there exists Ft’’∈TFormula such that

(12) Ft’ →l*(n-2,pf+1,sf,ef) Ft’’

(13) Ft’’ →(pf+n-1,sf↓(pf+n-1),sf(pf+n-1),c) Ftf2,

where c = (ef,{(X,sf(ef(X))) | X ∈ dom(ef)}).

From (12), by the induction hypothesis, we get

(14) Ft’ →*(n-2,pf+1,sf,ef) Ft’’.

From (5) and (14), by the definition of →* we get

(15) Ftf1 →*(n-1,pf,sf,ef) Ft’’.

From (15), by the induction hypothesis, we get

45

(16) Ftf1 →l*(n-1,pf,sf,ef) Ft’’.

From (16) and (13), by the definition of →l*, we get

[4] Ftf1 →l*(n,pf,sf,ef) Ftf2.

(⇐=)

We assume

(17) Ftf1 →l* (n,pf,sf,ef) Ftf2

and prove

[18] Ftf1 →* (n,pf,sf,ef) Ftf2.

From (17), by the definition of →l*, we know that there exists

Ft’∈TFormula such that

(19) Ftf1 →l*(n-1,pf,sf,ef) Ft’ and

(20) Ft’ →(pf+n-1,sf↓(pf+n-1),sf(pf+n-1),c) Ftf2,

hold, where c = (ef,{(X,sf(ef(X))) | X ∈ dom(ef)}).

From (19), by the induction hypothesis we get

(21) Ftf1 →*(n-1,pf,sf,ef) Ft’

from (20), by the definition of →l*, there are two alternatives:

(i) n-1 = 0

(ii) n-1 > 0.

Case (i)

In this case, from (21) we get Ft’=Ftf1, which together with (20) and the fact

n-1=0 implies

(22) Ftf1 →(pf,sf↓pf,sf(pf),c) Ftf2.

On the other hand, by the definition of →* we have

(23) Ftf2 →*(0,pf+1,sf,ef) Ftf2.

From (22) and (23), by the definition of →*, w get

(24) Ftf2 →*(1,pf,sf,ef) Ftf2.

Since n-1=0, from (24) we get [18].

Case (ii)

From (21), by the definition of →*, there exists Ft’’∈TFormula such that

46

(25) Ftf1 →(pf,sf↓pf,sf(pf),c) Ft’’

(26) Ft’’ →*(n-2,pf+1,sf,ef) Ft’,

where c = (ef,{(X,sf(ef(X))) | X ∈ dom(ef)}).

From (26), by the induction hypothesis, we get

(27) Ft’’ →l*(n-2,pf+1,sf,ef) Ft’.

From (27) and (20), by the definition of →l* we get

(28) Ft’’ →l*(n-1,pf+1,sf,ef) Ftf2.

From (28), by the induction hypothesis we get

(29) Ft’’ →*(n-1,pf+1,sf,ef) Ftf2.

From (25) and (29), by the definition of →*, we get

[18] Ftf1 →*(n,pf,sf,ef) Ftf2.

===

Proof of (b)

Parametrization:

Q(n,Ft1,Ft2,p,s,e,h) :⇔
Ft1 →* (n,p,s,e,h) Ft2 ⇔ Ft1 →l* (n,p,s,e,h) Ft2

We want to prove

(G) ∀Ft1,Ft2∈TFormula,p∈N, s∈Stream, e∈Environment,h∈N, ∀n∈N :

S(n,Ft1,Ft2,p,s,e,h).

We take Ftf1,Ftf2,pf,sf,ef, and hf arbitrary but fixed.

We have to prove

(G1) ∀k,n∈N: S(k,Ftf1,Ftf2,pf,sf,ef,hf)∧n>k ⇒ S(n,Ftf1,Ftf2,pf,sf,ef,hf).

Proof of (G1)

We take n arbitrary but fixed, assume n>k and

(1) ∀k<n: Ftf1 →* (k,pf,sf,ef,hf) Ftf2 ⇔ Ftf1 →l* (k,pf,sf,ef,hf) Ftf2

and prove

(2) Ftf1 →* (n,pf,sf,ef,hf) Ftf2 ⇔ Ftf1 →l* (n,pf,sf,ef,hf) Ftf2.

47

(=⇒):

We assume

(3) Ftf1 →*(n,pf,sf,ef,hf) Ftf2

and prove

(4) Ftf1 →l*(n,pf,sf,ef,hf) Ftf2.

From (3) we know that there exists Ft’∈TFormula such that

(5) Ftf1 →(pf,s↑(max(0,pf-hf),min(pf,hf)),sf(pf),c) Ft’ and

(6) Ft’ →*(n-1,pf+1,sf,ef,hf) Ftf2

hold, where c = (ef,{(X,sf(ef(X))) | X ∈ dom(ef)}).

From (6), by the induction hypothesis we get

(7) Ft’ →l*(n-1,pf+1,sf,ef,hf) Ftf2.

From (7), by the definition of →l*, there are two alternatives:

(i) n-1 = 0

(ii) n-1 > 0.

In case (i), we get

(8) Ft’= Ftf2.

From (8) and (5) we get

(9) Ftf1 →(pf,s↑(max(0,pf-hf),min(pf,hf)),sf(pf),c) Ftf2.

On the other hand, by the definition of →l* we have

(10) Ftf1 →l*(0,pf,sf,ef,hf) Ftf1.

From (10) and (9), by the definition of →l*, we get

(11) Ftf1 →l*(1,pf,sf,ef,hf) Ftf2.

Since n-1=0, we get that [4] holds:

[4] Ftf1 →l* (n,pf,sf,ef,hf) Ftf2.

Case (ii)

From (7), by the definition of →l* with history, there exists Ft’’∈TFormula
such that

(12) Ft’ →l*(n-2,pf+1,sf,ef,hf) Ft’’

(13) Ft’’ →(pf+n-2,sf↑(max(0,pf+n-2-hf),min(pf+n-2,hf)),sf(pf+n-2),c) Ftf2,

48

where c = (ef,{(X,sf(ef(X))) | X ∈ dom(ef)}).

From (12), by the induction hypothesis, we get

(14) Ft’ →*(n-2,pf+1,sf,ef,hf) Ft’’.

From (5) and (14), by the definition of →* with history we get

(15) Ftf1 →*(n-1,pf,sf,ef,hf) Ft’’.

From (15), by the induction hypothesis, we get

(16) Ftf1 →l*(n-1,pf,sf,ef,hf) Ft’’.

From (16) and (13), by the definition of →* with history, we get

[4] Ftf1 →l*(n,pf,sf,ef,hfx) Ftf2.

(⇐=)

We assume

(17) Ftf1 →l* (n,pf,sf,ef,hf) Ftf2

and prove

[18] Ftf1 →* (n,pf,sf,ef,hf) Ftf2.

From (17), by the definition of →l* with history, we know that there exists

Ft’∈TFormula such that

(19) Ftf1 →l*(n-1,pf,sf,ef) Ft’ and

(20) Ft’ →(pf+n-1,s↑(max(0,pf+n-1-hf),min(pf+n-1,hf)),sf(pf+n-1),c) Ftf2,

hold, where c = (ef,{(X,sf(ef(X))) | X ∈ dom(ef)}).

From (19), by the induction hypothesis we get

(21) Ftf1 →*(n-1,pf,sf,ef,hf) Ft’

from (20), by the definition of →l* with history, there are two alternatives:

(i) n-1 = 0

(ii) n-1 > 0.

Case (i)

In this case, from (21) we get Ft’=Ftf1, which together with (20) and the fact

n-1=0 implies

(22) Ftf1 →(pf,s↑(max(0,pf-hf),min(pf,hf)),sf(pf),c) Ftf2.

On the other hand, by the definition of →* with history we have

49

(23) Ftf2 →*(0,pf+1,sf,ef,hf) Ftf2.

From (22) and (23), by the definition of →* with history, w get

(24) Ftf2 →*(1,pf,sf,ef,hf) Ftf2.

Since n-1=0, from (24) we get [18].

Case (ii)

From (21), by the definition of →* with history, there exists Ft’’∈TFormula
such that

(25) Ftf1 →(pf,s↑(max(0,pf-hf),min(pf,hf)),sf(pf),c) Ft’’

(26) Ft’’ →*(n-2,pf+1,sf,ef,hf) Ft’,

where c = (ef,{(X,sf(ef(X))) | X ∈ dom(ef)}).

From (26), by the induction hypothesis, we get

(27) Ft’’ →l*(n-2,pf+1,sf,ef,hf) Ft’.

From (27) and (20), by the definition of →l* with history we get

(28) Ft’’ →l*(n-1,pf+1,sf,ef,hf) Ftf2.

From (28), by the induction hypothesis we get

(29) Ft’’ →*(n-1,pf+1,sf,ef,hf) Ftf2.

From (25) and (29), by the definition of →*, we get

[18] Ftf1 →*(n,pf,sf,ef,hf) Ftf2.

50

A.5 Lemma 3: History Cut-Off Lemma

Lemma 3 (History Cut-Off Lemma):

∀F∈Formula, Ft∈TFormula, p,q∈N, s∈Stream, h∈N, d∈N, e∈Environment, re∈RangeEnv:
` (re ` F : (h,d)) ∧ q≤p ∧ ∀Y∈dom(e): re(Y).1+q ≤ e(Y) ≤ re(Y).2+q ⇒
let c:=(e, {(X, s(e(X))) | X ∈ dom(e)})

∀h’∈N : h’≥h ⇒
T(F) → (p, s↓p, s(p), c) Ft

⇔
T(F) → (p, s↑(max(0,p-h’),min(p,h’)), s(p), c) Ft

Proof

Parametrization:

S(F) :⇔
∀Ft∈Tformula, p,q∈N, s∈Stream, h∈N, d∈N, e∈Environment, re∈RangeEnv:
` (re ` F : (h,d)) ∧ q≤p ∧ ∀Y∈dom(e): re(Y).1+q ≤ e(Y) ≤ re(Y).2+q ⇒
let c:=(e, {(X, s(e(X))) | X ∈ dom(e)})

∀h’∈N : h’≥h ⇒
T(F) → (p, s↓p, s(p), c) Ft

⇔
T(F) → (p, s↑(max(0,p-h’),min(p,h’)), s(p), c) Ft

We prove ∀F∈Formula S(F) by structural induction over F.

CASE 1. F = @X. T(F) = next(TV(X)).

We take ref,Ftf,pf,qf,sf,hf,df,ef arbitrary but fixed. Assume

(1.1) ` (ref ` F : (hf,df))

(1.1’) qf ≤ pf

(1.2) ∀Y∈dom(ef): ref(Y).1+qf ≤ ef(Y) ≤ ref(Y).2+qf

Define

(1.3) c:=(ef, {(X, sf(ef(X))) | X ∈ dom(ef)})

Take hf’ arbitrary but fixed. Assume

(1.4) hf’≥hf

And prove

[1.5] T(F) → (pf, sf↓pf, sf(pf), c) Ftf

⇔
T(F) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) Ftf.

T(F)=next(TV(X)). By the definition of → for next(TV(X)), Ftf in [1.5]

depends only whether X∈dom(c.1), which is the same in both sides if the

equivalence. Hence, [1.5] holds.

51

CASE 2. F = ~F1. T(F) = next(TN(T(F1))).

--

We take ref,Ftf,pf,qf,sf,hf,df,ef arbitrary but fixed. Assume

(2.1) ` (ref ` F : (hf,df))

(2.1’) qf ≤ pf

(2.2) ∀Y∈dom(ef): ref(Y).1+qf ≤ ef(Y) ≤ ref(Y).2+qf

Define

(2.3) c:=(ef, {(X, sf(ef(X))) | X ∈ dom(ef)})

Take hf’ arbitrary but fixed. Assume

(2.4) hf’≥hf

And prove

[2.5] T(F) → (pf, sf↓pf, sf(pf), c) Ftf

⇔
T(F) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) Ftf.

From (2.1),by the definition of → for next(TN(T(F1))), we get

(2.6) ` (ref ` ~F1 : (hf,df)).

We prove [2.5] in both directions.

(=⇒) We assume

(2.7) T(~F1) → (pf, sf↓pf, sf(pf), c) Ftf

and prove

[2.8] T(F) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) Ftf.

From (2.7), we prove [2.8] by case distinction over Ftf:

C1. Ftf=next(TN(next(f’))) for some f’∈TFormulaCore, such that

(2.8) T(F1) → (pf, sf↓pf, sf(pf), c) next(f’).

From (2.8), by (2.6), (2.1’), (2.2), (2.3), (2.4), and the

induction hypothesis, we get

(2.9) T(F1) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) next(f’).

From (2.9), by the definition of → for T(¬F), we get [2.8].

C2. Ftf=done(false). This happens when

(2.10) T(F1) → (pf, sf↓pf, sf(pf), c) done(true).

52

From (2.10), by (2.6), (2.1’), (2.2), (2.3), (2.4), and the

induction hypothesis, we get

(2.11) T(F1) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) done(true).

From (2.11), by the definition of → for T(~F), we get [2.8].

C3. Ftf=done(false). Similar to the cacse C2.

(⇐=) We assume

(2.12) T(~F) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) Ftf

and prove

[2.13] T(~F1) → (pf, sf↓pf, sf(pf), c) Ftf.

[2.13] can be proved by the same reasoning as the case (=⇒) above. It finishes

the proof of CASE2.

CASE 3. F = F1&F2. T(F) = next(TCS(T(F1),T(F2))).

We take ref,Ftf,pf,qf,sf,hf,df,ef arbitrary but fixed. Assume

(3.1) ` (ref ` F : (hf,df))

(3.1’) qf ≤ pf

(3.2) ∀Y∈dom(ef): ref(Y).1+qf ≤ ef(Y) ≤ ref(Y).2+qf

Define

(3.3) c:=(ef, {(X, sf(ef(X))) | X ∈ dom(ef)})

Take hf’∈N arbitrary but fixed. Assume

(3.4) hf’≥hf

And prove

[3.5] T(F) → (pf, sf↓pf, sf(pf), c) Ftf

⇔
T(F) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) Ftf.

From (3.1) and the assumption that hf∈N, df∈N, by the definition of ` for F1&F2,

there exist h1,d1,h2,d2∈N such that

(3.6) ` (ref ` F1 : (h1,d1))

(3.7) ` (ref ` F2 : (h2,d2))

(3.8) hf=max(h1,h2+d1).

We prove [3.5] in both directions.

(=⇒) We assume

53

(3.9) T(F1&F2) → (pf, sf↓pf, sf(pf), c) Ftf

and prove

[3.10] T(F1&F2) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) Ftf.

From (3.9), we prove [3.10] by case distinction over Ftf:

C1. Ftf=next(TCS(next(f1),T(F2))) for some f1∈TFormulaCore such that

(3.11) T(F1) → (pf, sf↓pf, sf(pf), c) next(f1).

From (3.11), by (3.6),(3.1’),(3.3),(3.6),(3.8), and the induction hypothesis,

we get

(3.12) T(F1) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) next(f’).

From (3.12), by the definition of → for T(F1&F2), we get [3.10].

C2. Ftf=done(false). This happens when

(3.13) T(F1) → (pf, sf↓pf, sf(pf), c) done(false).

From (3.13), by (3.6),(3.1’),(3.2),(3.3),(3.4),(3.8), and the

induction hypothesis, we get

(3.14) T(F1) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) done(false).

From (3.14), by the definition of → for T(F1&F2), we get [3.10].

C3. Ftf=Ft2 for some Ft2∈TFormula. This happens when we have

(3.15) T(F1) → (pf, sf↓pf, sf(pf), c) done(true) and

(3.16) T(F2) → (pf, sf↓pf, sf(pf), c) Ft2.

From (3.4,3.8), we have

(3.17) hf’≥hf≥h1
(3.18) hf’≥hf≥h2

From (3.15), by (3.6),(3.1’),(3.2),(3.3),(3.17), we get

(3.19) T(F1) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) done(true)

From (3.16), (3.7),(3.1’),(3.2),(3.3),(3.18), we get

(3.20) T(F2) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) Ft2.

From (3.19) and (3.20), by the definition of → for T(F1&F2), we get [3.10].

(⇐=) We assume

(3.21) T(F1&F2) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) Ftf.

54

and prove

[3.22] T(F1&F2) → (pf, sf↓pf, sf(pf), c) Ftf

[3.22] can be proved by the same reasoning as the case (=⇒) above. It finishes

the proof of CASE3.

CASE 4. F = F1/\F2. T(F) = next(TCP(T(F1),T(F2))).

We take ref,Ftf,pf,qf,sf,hf,df,ef arbitrary but fixed. Assume

(4.1) ` (ref ` F : (hf,df))

(4.1’) qf ≤ pf

(4.2) ∀Y∈dom(ef): ref(Y).1+qf ≤ ef(Y) ≤ ref(Y).2+qf

Define

(4.3) c:=(ef, {(X, sf(ef(X))) | X ∈ dom(ef)})

Take hf’ arbitrary but fixed. Assume

(4.4) hf’≥hf

And prove

[4.5] T(F) → (pf, sf↓pf, sf(pf), c) Ftf

⇔
T(F) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) Ftf

From (4.1) and the assumption that hf∈N, df∈N, by the definition of ` for F1∧F2,
there exist h1,d1,h2,d2∈N such that

(4.6) ` (ref ` F1 : (h1,d1))

(4.7) ` (ref ` F2 : (h2,d2))

(4.8) hf=max(h1,h2).

From (4.4,4.8), we have

(4.9) hf’≥hf≥h1
(4.10) hf’≥hf≥h2

We prove [4.5] in both directions.

(=⇒) We assume

(4.11) T(F1/\F2) → (pf, sf↓pf, sf(pf), c) Ftf

and prove

[4.12] T(F1/\F2) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) Ftf.

From (4.11), we prove [4.10] by case distinction over Ftf:

55

C1. Ftf=next(TCS(next(f1),next(f2))) for some f1,f2∈TFormulaCore such that

(4.13) T(F1) → (pf, sf↓pf, sf(pf), c) next(f1).

(4.14) T(F2) → (pf, sf↓pf, sf(pf), c) next(f2).

From (4.13), by (4.6),(4.1’),(4.3),(4.9), and the induction hypothesis,

we get

(4.15) T(F1) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) next(f1).

From (4.14), by (4.7),(4.1’),(4.3),(4.10), and the induction hypothesis,

we get

(4.16) T(F2) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) next(f2).

From (4.15,4.16), by the definition of → for T(F1∧F2), we get [4.12].

C2. Ftf=next(f1) for some f1∈TFormulaCore such that

(4.17) T(F1) → (pf, sf↓pf, sf(pf), c) next(f1).

(4.18) T(F2) → (pf, sf↓pf, sf(pf), c) done(true).

By the same reasoning as in C1 above we get that [4.12] holds.

C3. Ftf=done(false). This happens in one of the following possible cases:

C3.1

(4.19) T(F1) → (pf, sf↓pf, sf(pf), c) next(f1).

(4.20) T(F2) → (pf, sf↓pf, sf(pf), c) done(false).

By the same reasoning as in C1 above we get that [4.12] holds.

C3.2

(4.21) T(F1) → (pf, sf↓pf, sf(pf), c) done(false).

From (4.21), by (4.6),(4.1’),(4.3),(4.9), and the induction hypothesis,

we get

(4.22) T(F1) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) done(false).

From (4.22), by the definition of → for T(F1∧F2), we get [4.12].

C4. Ftf=Ft2 for some Ft2∈TFormula. This happens when

(4.23) T(F1) → (pf, sf↓pf, sf(pf), c) done(true).

(4.24) T(F2) → (pf, sf↓pf, sf(pf), c) Ft2.

By the same reasoning as in C1 above we get that [4.12] holds.

(⇐=) We assume

(4.25) T(F1/\F2) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c) Ftf.

56

and prove

[4.26] T(F1/\F2) → (pf, sf↓pf, sf(pf), c) Ftf

[4.26] can be proved by the same reasoning as the case (=⇒) above.

It finishes the proof of CASE 4.

CASE 5. F = forall X in B1..B2:F1 T(F) = next(TA(X, T(B1), T(B2), T(F1))).

--

We take Ftf,pf,qf,sf,hf,df,ef arbitrary but fixed. Assume

(5.1) ` (ref ` F : (hf,df))

(5.1’) qf ≤ pf

(5.2) ∀Y∈dom(ef): ref(Y).1+pf ≤ ef(Y) ≤ ref(Y).2+pf

Define

(5.3) cf:=(ef, {(X, sf(ef(X))) | X ∈ dom(ef)})

Take hf’ arbitrary but fixed. Assume

(5.4) hf’≥hf

And prove

[5.5] T(F) → (pf, sf↓pf, sf(pf), cf) Ftf

⇔
T(F) → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), cf) Ftf

Let b1,b2∈BoundValue and Ft1∈TFormula be such that

(5.6) b1=T(B1)

(5.7) b2=T(B2)

(5.7’) Ft1=T(F1)

We prove [5.5] in both directions.

(=⇒) We assume

(5.8) next(TA(X,b1,b2,Ft1)) → (pf, sf↓pf, sf(pf), cf) Ftf

and prove

[5.9] next(TA(X,b1,b2,Ft1))

→(pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), cf) Ftf.

CASE 1:

(5.10) Ftf=done(true) with b1(cf)=∞.

b1(cf)=∞ imply [5.9].

57

CASE 2:

(5.13) Ftf is arbitrary

From (5.8), by the definition of → for forall, there exists p1,p2,TA0’ such that

(5.14) p1 = b1(cf)

(5.15) p2 = b2(cf)

(5.16) p1 6= ∞
(5.17) next(TA0(X,p1,p2,Ft1)) → (pf, sf↓pf, sf(pf), cf) TA0’.

To prove [5.9], we should find such p1*,p2*,TA0’* that

[5.18] p1* = b1(cf)

[5.19] p2* = b2(cf)

[5.20] p1* 6= ∞
[5.21] next(TA0(X,p1*,p2*,Ft1))

→(pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), cf) TA0’*.

We take p1*=p1, p2*=p2, TA0’*=TA0’. Then [5.18-5.20] follow from (5.14-5.16) and

we need to prove only

[5.22] next(TA0(X,p1,p2,Ft1))

→(pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), cf) TA0’.

Subcase 1.

(5.23) pf < p1.

In this case from (5.17) we have TA0’=next(TA0(X,p1,p2,Ft1)). Then [5.22]

follows from the definition of → for forall.

Subcase 2.

(5.24) pf ≥ p1.

We introduce the notation:

(5.25) ms := sf↑(max(0,pf-hf’),min(pf,hf’))

By definition of →, to prove [5.22], we need to prove

[5.26] next(TA1(X,p2,Ft1,fs)) → (pf, ms, sf(pf), cf) TA0’,

where

(5.27) fs = {(p0,Ft1,(cf.1[X7→p0],c.2[X7→ms(p0+pf-|ms|)])) |

p1 ≤ p0 <∞ min∞(pf,p2+∞1)}.

We prove [5.26] by case distinction over TA0’ from (5.17).

(c1) TA0’=done(false)

We prove

58

[c1.1] next(TA1(X,p2,Ft1,fs)) → (pf, ms, sf(pf), cf) done(false).

To prove [c1.1], by Def.→ we need to prove

[c1.2] ∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs0 ∧ ` g →(pf,ms,sf(pf),c) done(false),

where

(c1.3) fs0 =

if pf >∞ p2 then fs else fs ∪ {(pf,Ft1,(cf.1[X7→pf],cf.2[X7→sf(pf)]))}

On the other hand, from (5.17) by (c1) we know

(c1.4) next(TA1(X,p2,Ft1,fs’)) →(pf,sf↓pf,sf(pf),c) done(false)

where (since p0+pf-|sf↓pf|=p0)

(c1.5) fs’ = {(p0,Ft1,(cf.1[X7→p0],c.2[X7→(sf↓pf)(p0)])) |

p1 ≤ p0 <∞ min∞(pf,p2+∞1)}.

From (c1.4) we know

(c1.6) ∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs1 ∧ ` g →(pf,sf↓pf,sf(pf),c) done(false),

where

(c1.7) fs1 =

if pf >∞ p2 then fs’ else fs’ ∪ {(pf,Ft1,(cf.1[X7→pf],cf.2[X7→sf(pf)]))}

From (c1.6), take (t1,g1,c1) arbitrary but fixed such that

(c1.8) (t1,g1,c1)∈fs1 and

(c1.9) ` g1 →(pf,sf↓pf,sf(pf),c1) done(false).

From (c1.8), (c1.7), (c1.5) we see that

(c1.10) g1=Ft1

and, hence, T(F1)=g1.

Let h1,d1∈N be such that

(c1.11) (ref ` F1 : (h1,d1))

From (c1.8), (c1.7), (c1.5), we have

(c1.12) c1 = (cf.1[X7→t1],c.2[X 7→(sf↓pf)(t1)]).

Note that

(c1.12) t1 ≤ pf

59

and for all Y∈dom(cf.1[X 7→t1]), we have

(c1.13) ref(Y).1+t1 ≤ cf.1[X7→t1](Y) ≤ ref(Y).2+t1

We apply the induction hypothesis with G=Ft1, Ft= done(false), re=ref, p=pf, q=t1,

s=sf, h=hg, d=dg, e=cf.1[X7→t1]. From (c1.11) and (c1.13), and by defining

c as c1 in (c1.12), we obtain

(c1.14) ∀h1’∈N : h1’≥h1 ⇒
Ft1 → (pf, sf↓(pf), sf(pf), c1) done(false)

⇔
Ft1 → (pf, sf↑(max(0,pf-h1’),min(pf,h1’)), sf(pf), c1) done(false)

Since (c1.14) is true for all h1’≥h1, it is true, in particular, for hf’,

because by (5.4) we have hf’≥hf, and in itself, hf≥h1 by the analysis rules

for forall formulas. Hence, from (c1.14) we get

(c1.15)

Ft1 → (pf, sf↓(pf), sf(pf), c1) done(false)

⇔
Ft1 → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c1) done(false)

From (c1.15) and (c1.9) we get

(c1.16) Ft1 → (pf, sf↑(max(0,pf-hf’),min(pf,hf’)), sf(pf), c1) done(false)

(c1.16), by (5.25), proves the second conjunct of [c1.2].

Hence, it remains to prove the first conjunct of [c1.2]:

[c1.3] (t1,g1,c1)∈fs0.

By (c1.8), (t1,g1,c1)∈fs1. By (c1.7) it means either

(c1.17) (t1,g1,c1)=(pf,Ft1,(cf.1[X7→pf],cf.2[X 7→sf(pf)]))

or

(c1.18) (t1,g1,c1)∈fs’.

From (c1.17) we get [c1.3] due to the definition of fs0 in (c1.2).

From (c1.18) we have

(c1.19) (t1,g1,c1)=(p0,Ft1,(cf.1[X7→p0],c.2[X7→(sf↓pf)(p0)]))

for some p1 ≤ p0 <∞ min∞(pf,p2+∞1). Note that

(c1.20) (sf↓pf)(p0)=ms(p0+pf-|ms|).

From (c1.20), (c1.19) and the definition of fs in(5.24) we get

(c1.21) (t1,g1,c1)∈fs.

60

From (c1.2) we have fs ⊆ fs0 and, hence, [c1.3] holds also in this case.

(c2) TA0’=done(true)

We prove

[c2.1] next(TA1(X,p2,Ft1,fs)) → (pf, ms, sf(pf), cf) done(true).

To prove [c2.1], by Def.→ we need to prove

[c2.2] ¬∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs0 ∧ ` g →(pf,ms,sf(pf),c) done(false) and

[c2.3] fs1 = ∅ ∧ pf ≥∞ p2

where

(c2.4) fs0 =

if pf >∞ p2 then fs else fs ∪ {(pf,Ft1,(cf.1[X7→pf],cf.2[X 7→sf(pf)]))}

(c2.5) fs1 = { (t,next(fc),c) ∈ TInstance |

∃g∈TFormula: (t,g,c)∈fs0 ∧ ` g →(pf,ms,sf(pf),c) next(fc) }

On the other hand, from (5.17) by (c2) we know

(c2.6) next(TA1(X,p2,Ft1,fs’)) →(pf,sf↓pf,sf(pf),cf) done(true)

where (since p0+pf-|sf↓pf|=p0)

(c2.7) fs’ = {(p0,Ft1,(c.1[X7→p0],c.2[X7→(sf↓pf)(p0)])) |

p1 ≤ p0 <∞ min∞(pf,p2+∞1)}

From (c2.6), by Def.→ we know

(c2.8) ¬∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs0’ ∧ ` g →(pf,sf↓pf,sf(pf),c) done(false) and

(c2.9) fs1’ = ∅ ∧ pf ≥∞ p2

where

(c2.10) fs0’ =

if pf >∞ p2 then fs’ else fs’ ∪ {(pf,f,(cf.1[X7→pf],cf.2[X 7→sf(pf)]))}

(c2.11) fs1’ = { (t,next(fc),c) ∈ TInstance |

∃g∈TFormula: (t,g,c)∈fs0’ ∧ ` g →(pf,sf↓pf,sf(pf),c) next(fc) }

Note that for all

(c2.12) ∀p0: p1 ≤ p0 <∞ min∞(pf,p2+∞1) ⇒ (sf↓pf)(p0)=ms(p0+pf-|ms|).

Therefore, from (5.24) and (c2.7) we get

(c2.13) fs = fs’,

which, by (c2.4) and (c2.10), implies

61

(c2.14) fs0=fs0’.

To prove [c2.2], we take

(c2.15) (t0,g0,c0)∈fs0

and prove that

[c2.16] g0 →(pf,ms,sf(pf),c0) done(false) does not hold.

From (c2.15) and (c2.14) we have

(c2.17) (t0,g0,c0)∈fs0’.

From (c2.17) and (c2.8) we know

(c2.18) g0 →(pf,sf↓pf,sf(pf),c0) done(false) does not hold.

From (c2.18), by the induction hypothesis, we get [c2.16]

To prove [c2.3], note that from (c2.11) and (c2.9) we have that

for all (t,g,c)∈fs0’, ` g →(pf,sf↓pf,sf(pf),c) next(fc) does not hold, which,

by (c2.14), is claimed for all (t,g,c)∈fs0. It means, for each (t,g,c)∈fs0
there exists b∈Bool such that

(c2.19) ` g →(pf,sf↓pf,sf(pf),c) done(b).

From (c2.19), by the induction hypothesis, we get that for each (t,g,c)∈fs0
there exists b∈Bool such that

(c2.20) ` g →(pf,ms,sf(pf),c) done(b).

From (c2.20) we get

(c2.21) fs1 = ∅.

From (c2.21) and the second conjunct of (c2.9) we get [c2.3]

(c3) TA0’=next(TA1(X,p2,Ft1,fs’))

We prove

[c3.1] next(TA1(X,p2,Ft1,fs)) → (pf, ms, sf(pf), cf) next(TA1(X,p2,Ft1,fs’)).

To prove [c3.1], by Def.→ we need to prove

[c3.2] ¬∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs0 ∧ ` g →(pf,ms,sf(pf),c) done(false) and

[c3.3] ¬(fs1 = ∅ ∧ pf ≥∞ p2)

where

62

(c3.4) fs0 = if pf >∞ p2 then fs else fs ∪ {(pf,f,(cf.1[X7→p],cf.2[X7→sf(pf)]))}

(c3.5) fs1 = { (t,next(fc),c) ∈ TInstance |

∃g∈TFormula: (t,g,c)∈fs0 ∧ ` g →(p,ms,sf(pf),c) next(fc) }

On the other hand, from (5.17) by (c3) we know

(c3.6) next(TA1(X,p2,Ft1,fs’’)) →(pf,sf↓pf,sf(pf),cf) next(TA1(X,p2,Ft1,fs’))

where (since p0+pf-|sf↓pf|=p0)

(c3.7) fs’’ = {(p0,Ft1,(c.1[X7→p0],c.2[X7→(sf↓pf)(p0)])) |

p1 ≤ p0 <∞ min∞(pf,p2+∞1)}

From (c3.6), by Def.→ we know

(c3.8) ¬∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs0’’ ∧ ` g →(pf,sf↓pf,sf(pf),c) done(false) and

(c3.9) ¬(fs1’’ = ∅ ∧ pf ≥∞ p2)

where

(c3.10) fs0’’ =

if pf >∞ p2 then fs’’ else fs’’ ∪ {(pf,f,(cf.1[X7→pf],cf.2[X7→sf(pf)]))}

(c3.11) fs1’’ = { (t,next(fc),c) ∈ TInstance |

∃g∈TFormula:
(t,g,c)∈fs0’’ ∧ ` g →(pf,sf↓pf,sf(pf),c) next(fc) }.

[c3.2] can be proved analogously to [c2.2] above. The proof relies to the fact

(c3.12) fs0’’=fs0.

To prove [c3.3], we assume pf <∞ p2 and prove

[c3.13] fs1 6= ∅.

From the assumption pf <∞ p2 and (c3.9) we obtain

(c3.14) fs1’’ 6= ∅.

Then (c3.14) means that for some (t1,g1,c1)∈fs0’’,

(c3.15) ` g1 →(pf,sf↓pf,sf(pf),c1) next(fc).

By the induction hypothesis, from (c3.15) we get

(c3.16) ` g1 →(pf,ms,sf(pf),c1) next(fc).

Then (c3.16) proves [c3.13]

(⇐=) This direction can be proved with the same reasoning as (=⇒).

It finishes the proof of CASE 5.

It finishes the proof of Lemma 3.

63

A.6 Lemma 4: n-Step Reductions to done Formulas for TN, TCS, TCP

Statement 1. TN Formulas.

∀F∈Formula, n∈N, p∈N, s∈Stream, e∈Environment, Ft∈TFormula :

T(F) →*(n,p,s,e) done(false) ⇒ next(TN(T(F))) →*(n,p,s,e) done(true) ∧
T(F) →*(n,p,s,e) done(true) ⇒ next(TN(T(F))) →*(n,p,s,e) done(false)

Proof

We take Ff, sf, ef arbitrary but fixed and prove the formula

∀n∈N, p∈N :

T(Ff) →*(n,pf,sf,ef) done(false) ⇒
next(TN(T(Ff))) →*(n,pf,sf,ef) done(true)

∧
T(Ff) →*(n,pf,sf,ef) done(true) ⇒

next(TN(T(Ff))) →*(n,p,s,e) done(false)

by induction over n. Since T(Ff) is a next formula, for n=0 the antecedents of

both conjuncts are false and the statement is trivially true.

Assume

(TN.1) ∀p∈N:
T(Ff) →*(n,p,sf,ef) done(false) ⇒
next(TN(T(Ff))) →*(n,p,sf,ef) done(true)

(TN.2) ∀p∈N:
T(Ff) →*(n,pf,sf,ef) done(true) ⇒
next(TN(T(Ff))) →*(n,p,s,e) done(false)

Prove

[TN.3] ∀p∈N:
T(Ff) →*(n+1,p,sf,ef) done(false) ⇒
next(TN(T(Ff))) →*(n+1,p,sf,ef) done(true)

and

[TN.4] ∀p∈N:
T(Ff) →*(n+1,p,sf,ef) done(true) ⇒
xsnext(TN(T(Ff))) →*(n+1,p,s,e) done(false)

To prove [TN.3], we take pf arbitrary but fixed, assume

(TN.5) T(Ff) →*(n+1,pf,sf,ef) done(false)

and prove

[TN.6] next(TN(T(Ff))) →*(n+1,pf,sf,ef) done(true)

From (TN.5) by definition →* without history we know that there exists

Ft∈TFormula such that

(TN.7) T(Ff) →(pf,sf↓pf,sf(pf),c) Ft

(TN.8) Ft →*(n,pf+1,sf,ef) done(false)

64

where c = (ef,{(X,sf(ef(X))) | X ∈ dom(ef)}).

We proceed by case distinction over Ft.

Case ’next’: If Ft is a next formula, then there exists F1∈Formula such that

(TN.9) Ft=T(F1)

From (TN.9) and (TN.8) by (TN.1) we get

(TN.10) next(TN(T(F1))) →*(n,pf+1,sf,ef) done(true)

From (TN.7) by the definition of → we get

(TN.11) next(TN(T(Ff))) →(pf,sf↓pf,sf(pf),c) next(TN(T(F1)))

From (TN.11) and (TN.10) by the definition of →* without history we get [TN.6].

Case ’done’: If Ft is a ’done’ formula, then by (TN.8), we have

(TN.12) n=0 and

(TN.13) Ft=done(false).

From (TN.7) and (TN.13), by the definition of →, we get

(TN.14) next(TN(T(Ff))) →(pf,sf↓pf,sf(pf),c) done(true).

On the other hand, from the definition of →* we know

(TN.15) done(true) →*(0,pf+1,sf,ef) done(true).

From (TN.14), (TN.15), (TN.12), by the definition of →* we get [TN.6].

Hence, we proved [TN.6] for both cases of Ft. This proves [TN.3].

[TN.4] can be proved analogously.

Statement 2. TCS Formulas.

∀ p∈N, s∈Stream, e∈Environment :

∀Ft1,Ft2∈TFormula, n∈N,
n>0 ∧ Ft1 →*(n,p,s,e) done(false) ⇒
next(TCS(Ft1,Ft2)) →*(n,p,s,e) done(false) ∧

∀Ft1,Ft2∈TFormula, n1,n2∈N, b∈Bool:
n1>0 ∧ n2>0 ∧Ft1 →*(n1,p,s,e) done(true) ∧ Ft2 →*(n2,p,s,e) done(b) ⇒
next(TCS(Ft1,Ft2)) →*(max(n1,n2),p,s,e) done(b)

Proof

We split the statement in two:

[TCS1] ∀p∈N, s∈Stream, e∈Environment,
Ft1,Ft2∈TFormula, n∈N :

n>0 ∧ Ft1 →*(n,p,s,e) done(false) ⇒

65

next(TCS(Ft1,Ft2)) →*(n,p,s,e) done(false)

[TCS2] ∀p∈N, s∈Stream, e∈Environment, Ft1,Ft2∈TFormula, n1,n2∈N, b∈Bool :

n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,s,e) done(true) ∧ Ft2 →*(n2,p,s,e) done(b) ⇒
next(TCS(Ft1,Ft2)) →*(max(n1,n2),p,s,e) done(b).

Proof of [TCS1]

We take sf,ef arbitrary but fixed and define

Φ(n) :⇔
∀p∈N, Ft1,Ft2∈TFormula:

n>0 ∧ Ft1 →*(n,p,sf,ef) done(false) ⇒
next(TCS(Ft1,Ft2)) →*(n,p,sf,ef) done(false))

We prove ∀n∈N: Φ(n) by induction over n. For n=0 the formula is trivially true.

We start the induction from 1. Prove:

[TCS1.a] Φ(1) and

[TCS1.b] ∀n∈N: Φ(n) ⇒ Φ(n+1)

Proof of [TCS1.a]

We take pf,Ft1f,Ft2f arbitrary but fixed and assume

(TCS1.1) 1>0

(TCS1.2) Ft1f →*(1,pf,sf,ef) done(false).

We want to prove

[TCS1.3] next(TCS(Ft1f,Ft2f)) →*(1,pf,sf,ef) done(false).

From (TCS1.2), by the definition of →* without history, there exists

Ft∈TFormula such that

(TCS1.4) Ft1f →(p,sf↓pf,sf(pf),c) Ft and

(TCS1.5) Ft →*(0,pf+1,sf,ef) done(false)

where

(TCS1.6) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

From (TCS1.5), by the definition of →* without history, we get

(TCS1.7) Ft=done(false).

From (TCS1.7) and (TCS1.4), by the definition of → for TCS, we get

(TCS1.8) next(TCS(Ft1f,Ft2f)) →(p,sf↓pf,sf(pf),c) done(false).

From (TCS1.8, TCS1.5, TCS1.7, TCS1.6), by the definition of →* without history,

we get [TCS1.2].

66

This finishes the proof of [TCS1.a]

Proof of [TCS1.b]

We take n arbitrary but fixed, assume

(TCS1.8) ∀p∈N, Ft1,Ft2∈TFormula:
n>0 ∧ Ft1 →*(n,p,sf,ef) done(false) ⇒
next(TCS(Ft1,Ft2)) →*(n,p,sf,ef) done(false))

and prove

[TCS1.9] ∀p∈N, Ft1,Ft2∈TFormula:
n+1>0 ∧ Ft1 →*(n+1,p,sf,ef) done(false) ⇒
next(TCS(Ft1,Ft2)) →*(n+1,p,sf,ef) done(false)).

To prove [TCS1.9], we take pf,Ft1f,Ft2f arbitrary but fixed, assume

(TCS1.10) n+1>0

(TCS1.11) Ft1f →*(n+1,pf,sf,ef) done(false)

and prove

[TCS1.12] next(TCS(Ft1f,Ft2f)) →*(n+1,p,sf,ef) done(false)).

From (TCS1.11), by the definition of →* without history, there exists

Ft∈TFormula such that

(TCS1.13) Ft1f →(pf,sf↓pf, sf(pf),c) Ft

(TCS1.14) Ft →*(n,pf+1,sf,ef) done(false)

where

(TCS1.15) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

We proceed by case distinction over Ft.

Case 1. Ft=next(f) for some f∈TFormulaCore

From (TCS1.13), by the definition of → for TCS, we get

(TCS1.16) next(TCS(Ft1f,Ft2f)) →(pf,sf↓pf, sf(pf),c) next(TCS(Ft,Ft2f))

Since Ft is a ’next’ formula, we have

(TCS1.17) n>0.

From (TCS1.17) and (TCS1.14), by the induction hypothesis (TCS1.8) we get

(TCS1.18) next(TCS(Ft,Ft2f)) →*(n,pf+1,sf,ef) done(false)

From (TCS1.10), (TCS1.15), (TCS1.16), and (TCS1.18), by the definition of →*

67

without history, we get [TCS1.12]

Case 2. Ft=done(b) for some b∈Bool

In this case we have

(TCS1.19) n=0 (a ’done’ formula can be reduced only in 0 steps)

(TCS1.20) b=false.

Then from (TCS1.13) and (TCS1.20), by the definition of → for TCS we get

(TCS1.21) next(TCS(Ft1f,Ft2f)) →(pf,sf↓pf, sf(pf),c) done(false).

From (TCS1.14), (TCS1.19), and (TCS1.20), we have

(TCS1.22) done(false) →*(0,pf+1,sf,ef) done(false).

From (TCS1.19), (TSC1.15), (TSC1.21), (TCS1.22), by the definition of →*

without history, we get [TCS1.12].

This finishes the proof of [TCS1].

==

Proof of [TCS2]

Recall

[TCS2] ∀s∈Stream, e∈Environment,p∈N, Ft1,Ft2∈TFormula, n1,n2∈N, b∈Bool:
n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,s,e) done(true) ∧ Ft2 →*(n2,p,s,e) done(b) ⇒
next(TCS(Ft1,Ft2)) →*(max(n1,n2),p,s,e) done(b).

We take sf,ef,bf arbitrary but fixed and define

Φ(n1) :⇔
∀p∈dsN, Ft1,Ft2∈TFormula,n2∈N :

n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,sf,ef) done(true) ∧ Ft2 →*(n2,p,sf,ef) done(bf) ⇒
next(TCS(Ft1,Ft2)) →*(max(n1,n2),p,sf,ef) done(bf).

We need to prove ∀n1∈N: Φ(n1). We use induction. Prove:

[TCS2.a] : Φ(1)
[TCS2.b] ∀n1∈N: Φ(n1) ⇒ Φ(n1+1).

Proof of [TCS2.a]

We need to prove

∀n2,p∈dsN, Ft1,Ft2∈TFormula :

1>0 ∧ n2>0 ∧ Ft1 →*(1,p,sf,ef) done(true) ∧ Ft2 →*(n2,p,sf,ef) done(bf) ⇒
next(TCS(Ft1,Ft2)) →*(max(1,n2),p,sf,ef) done(bf).

68

We take n2,pf,Ft1f,Ft2f arbitrary but fixed. Assume

(TCS1.a.1) n2>0

(TCS1.a.2) Ft1f →*(1,pf,sf,ef) done(true)

(TCS1.a.3) Ft2f →*(n2,pf,sf,ef) done(bf)

and prove

[TCS1.a.4] next(TCS(Ft1f,Ft2f)) →*(max(1,n2),pf,sf,ef) done(bf).

From (TCS1.a.2), by the definition of →*, we have for some Ft’

(TCS1.a.5) Ft1f →(pf,sf↓pf,sf(pf),c) Ft’

(TCS1.a.6) Ft’ →*(0,pf+1,sf,ef) done(true)

where

(TCS1.a.7) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

From (TCS1.a.6), by the definition pf →*, we know

(TCS1.a.8) Ft’=done(true).

From (TCS1.a.5) and (TCS1.a.8) we have

(TCS1.a.9) Ft1f →(pf,sf↓pf,sf(pf),c) done(true).

From (TCS1.a.3), by the definition of →*, we have for some Ft’’

(TCS1.a.10) Ft2f →(pf,sf↓pf,sf(pf),c) Ft’’

(TCS1.a.11) Ft’’→* (n2-1,pf+1,sf,ef) done(bf),

where c is defined as in (TCS1.a.7).

From (TCS1.a.9) and (TCS1.a.10), by the definition of → for TCS, we have

(TCS1.a.13) next(TCS(Ft1f,Ft2f)) → (pf,sf↓pf,sf(pf),c) Ft’’.

From (TCS1.a.13), (TCS1.a.7), and (TCS1.a.11), by the definition of →*, we have

(TCS1.a.14) next(TCS(Ft1f,Ft2f)) → (n2,pf,sf,ef) done(bf).

From (TCS1.a.1), we have n2=max(1,n2). Therefore, (TCS1.a.14) proves [TCS1.a.4]

This finishes the proof of [TCS2.a].

Proof of [TCS2.b]

We take n1 arbitrary but fixed. Assume Φ(n1), i.e.,

(TCS2.b.1) ∀n2,p∈dsN, Ft1,Ft2∈TFormula :

n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,sf,ef) done(true) ∧

69

Ft2 →*(n2,p,sf,ef) done(bf)

⇒
next(TCS(Ft1,Ft2)) →*(max(n1,n2),p,sf,ef) done(bf).

and prove

[TCS2.b.2] ∀n2,p∈dsN, Ft1,Ft2∈TFormula :

n1+1>0 ∧ n2>0 ∧ Ft1 →*(n1+1,p,sf,ef) done(true) ∧
Ft2 →*(n2,p,sf,ef) done(bf)

⇒
next(TCS(Ft1,Ft2)) →*(max(n1+1,n2),p,sf,ef) done(bf).

To prove [TCS2.b.2], we take n2, pf, Ft1f, Ft2f arbitrary but fixed. Assume

(TCS2.b.3) n1+1>0

(TCS2.b.4) n2>0

(TCS2.b.5) Ft1f →*(n1+1,pf,sf,ef) done(true)

(TCS2.b.6) Ft2f →*(n2,pf,sf,ef) done(bf)

and prove

[TCS2.b.7] next(TCS(Ft1f,Ft2f)) →*(max(n1+1,n2),pf,sf,ef) done(bf).

From (TCS2.b.5), by the definition of →*, we have for some Ft’

(TCS2.b.8) Ft1f →(pf,sf↓pf,sf(pf),c) Ft’

(TCS2.b.9) Ft’ →*(n1,pf+1,sf,ef) done(true)

where

(TCS2.b.10) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

From (TCS2.b.6), by the definition of →*, we have for some Ft’’

(TCS2.b.11) Ft2f →(pf,sf↓pf,sf(pf),c) Ft’’

(TCS2.b.12) Ft’’ →*(n2-1,pf+1,sf,ef) done(bf),

where c is defined as in (TCS2.b.10).

Case n1=0

In this case we have Ft’=done(true) and from (TCS2.b.8) we get

(TCS2.b.13) Ft1f →(pf, sf↓pf,sf(pf),c) done(true).

From (TCS2.b.13) and (TCS2.b.11), by the definition of → for TCS, we have

(TCS2.b.14) next(TCS(Ft1f,Ft2f)) →(pf,sf↓pf,sf(pf),c) Ft’’.

From (TCS2.b.4), (TCS2.b.10), (TCS2.b.14), (TCS2.b.12) by the definition of →*, we get

(TCS2.b.15) next(TCS(Ft1f,Ft2f)) →*(n2,pf,sf,ef) done(bf).

70

By (TCS2.b.4) and n1=0, we have n2=max(1,n2)=max(n1+1,n2).

Hence, (TCS2.b.16) proves [TCS2.b.7].

Case n1>0, n2-1>0

In this case Ft’=next(f’) for some f’∈TFormulaCore.
Therefore, from (TCS3.b.8), by the definition of → for TCS we have

(TCS2.b.16) next(TCS(Ftf1,Ftf2)) →(pf,sf↓pf, sf(pf),c) next(TCS(Ft’,Ft2f)).

Since n2-1>0 and, hence, n2>0, from (TCS2.b.6) by the Shifting Lemma 7 we get

(TCS2.b.17) Ft2f →*(n2-1,pf+1,sf,ef) done(bf)

From n1>0, n2-1>0, (TCS2.b.9), (TCS2.b.17), by the induction hypothesis

(TCS2.b.1) we get

(TCS2.b.18) next(TCS(Ft’,Ft2f)) →*(max(n1,n2-1),pf+1,sf,ef) done(bf)

From max(n1,n2-1)+1>0, (TCS2.b.10), (TCS2.b.16), (TCS2.b.18) we get

(TCS2.b.18) next(TCS(Ft1f,Ft2f)) →*(max(n1,n2-1)+1,pf,sf,ef) done(bf)

Since max(n1,n2-1)+1=max(n1+1,n2), (TCS2.b.18) proves [TCS2.b.7]

Case 2. n1>0, n2-1=0

In this case from (TCS2.b.12) we have Ft’’=done(bf), which from (TCS2.b.12) gives

(TCS2.b.19) Ft2f →(pf,sf↓pf,sf(pf),c) done(bf).

From (TCS2.b.5), by Lemma 2, we have

(TCS2.b.23) Ft1f →l*(n1+1,pf,sf,ef) done(true).

From (TCS2.b.23), by the definition of →l*, we obtain for some Ft0

(TCS2.b.24) Ft1f →l*(n1,pf,sf,ef) Ft0

(TCS2.b.25) Ft0 →(pf+n1,s↓(pf+n1),s(pf+n1),c) done(true),

where c is defined as in (TCS2.b.10).

From (TCS2.b.19), by the Lemma 6, we have

(TCS2.b.26) Ft2f →(pf+n1,sf↓(pf+n1),sf(pf+n1),c) done(bf).

From (TCS2.b.25) and (TCS2.b.26), by the definition of → for TCS, we get

(TCS2.b.27) next(TCS(Ft0,Ft2f)) → (pf+n1,sf↓(pf+n1),sf(pf+n1),c) done(bf).

From (TCS2.b.24), by Lemma 2 we have

71

(TCS2.b.28) Ft1f →*(n1,pf,sf,ef) Ft0.

Moreover, (TCS2.b.23) implies that Ft1f is not a ’done’ formula. Also, from (TCS2.b.25)

since pf+n1>0 due to n1>0, we have that Ft0 is a ’next’ formula.

Hence, there exists f0∈TFormulaCore such that

(TCS2.b.29) Ft0=next(f0)

and from (TCS2.b.28) we have

(TCS2.b.30) Ft1f →*(n1,pf,sf,ef) next(f0).

Now we would like to use the following proposition, which will be proved below:

(Prop) ∀Ft1,Ft2∈TFormula, n∈N, f∈TFormulaCore, p∈N, s∈Stream, e∈Environment:
n>0 ⇒
Ft1→*(n,p,s,e) next(f) ⇒
next(TCS(Ft1,Ft2)) →*(n,p,s,e) next(TCS(next(f),Ft2))

Using (Prop) under the assumptions n1>0 and (TCS2.b.30), we obtain

(TCS2.b.31) next(TCS(Ft1f,Ft2f)) →*(n1,pf,sf,ef) next(TCS(next(f0),Ft2f))

which, by (TCS2.b.29) and Lemma 2 is

(TCS2.b.32) next(TCS(Ft1f,Ft2f)) →l*(n1,pf,sf,ef) next(TCS(Ft0,Ft2f))

From n1+1>0, (TCS2.b.10), (TCS2.b.32), (TCS2.b.27), by the definition of →l* we get

(TCS2.b.33) next(TCS(Ft1f,Ft2f)) →l*(n1+1,pf,sf,ef) done(bf)

Since n2=1, we have n1+1=max(n1+1,1)=max(n1+1,n2). Therefore, from (TCS2.b.33) by

Lemma 2 we obtain [TCS2.b.7]

This finishes the proof of [TCS2.b].

This finishes the proof of [TCS2].

This finishes the proof of the Statement 2 of Lemma 4.

Proof of (Prop)

Parametrization:

Θ(n) :⇔
∀Ft1,Ft2∈TFormula, f∈TFormulaCore, p∈N, s∈Stream, e∈Environment:

n>0 ⇒
Ft1→*(n,p,s,e) next(f) ⇒
next(TCS(Ft1,Ft2)) →*(n,p,s,e) next(TCS(next(f),Ft2))

We need to prove ∀n∈N: Θ(n). Induction:

72

[Prop.a] Θ(1)

[Prop.b] ∀n∈N: Θ(n)⇒Θ(n+1)

Proof of [Prop.a]

We take Ft1f, Ft2f, f0, pf, sf, ef arbitrary but fixed. Assume

(p1) Ft1f→*(1,pf,sf,ef) next(f0)

and prove

[p2] next(TCS(Ft1f,Ft2f)) →*(1,pf,sf,ef) next(TCS(next(f0),Ft2f)).

From (p1), by the definition of →* there exists Ft’∈TFormula such that

(p3) Ft1f →(pf,sf↓pf,sf(pf),c) Ft’

(p4) Ft’ →*(0,pf+1,sf,ef) next(f0)

where

(p5) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

From (p4), we have Ft’=next(f0) and, hence, from (p3) we get

(p6) Ft1f →(pf,sf↓pf,sf(pf),c) next(f0).

From (p6), by the definition of → for TCS, we have

(p7) next(TCS(Ft1f,Ft2f)) →(pf,sf↓pf,sf(pf),c) next(TCS(next(f0),Ft2f)).

On the other hand, we have by the dfinition of →*:

(p8) next(TCS(next(f0),Ft2f)) →*(0,pf+1,sf,ef) next(TCS(next(f0),Ft2f)).

From (p7), (p5), (p8), by the definition of →* we get [p2].

Proof of [Prop.b]

We take n arbitraty but fixed, assume

(p9) ∀Ft1,Ft2∈TFormula, f∈TFormulaCore, p∈N, s∈Stream, e∈Environment:
n>0 ⇒
Ft1→*(n,p,s,e) next(f) ⇒
next(TCS(Ft1,Ft2)) →*(n,p,s,e) next(TCS(next(f),Ft2))

and prove

[p10] ∀Ft1,Ft2∈TFormula, f∈TFormulaCore, p∈N, s∈Stream, e∈Environment:
n+1>0 ⇒
Ft1→*(n+1,p,s,e) next(f) ⇒
next(TCS(Ft1,Ft2)) →*(n+1,p,s,e) next(TCS(next(f),Ft2)).

To prove (p10), we take Ft1f,Ft2f,f0,pf,sf,ef arbitrary but fixed, assume

73

(p11) Ft1f→*(n+1,pf,sf,ef) next(f0)

and prove

[p12] next(TCS(Ft1f,Ft2f)) →*(n+1,pf,sf,ef) next(TCS(next(f0),Ft2f)).

Case n>0

From (p11), by the definition of →*, we obtain for some Ft’∈TFormula

(p13) Ft1f →(pf,sf↓pf,sf(pf),c) Ft’

(p14) Ft’ →*(n,pf+1,sf,ef) next(f0)

where

(p15) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

Since n>0, from (p14) and the induction hypothesis (p9) we obtain

(p16) next(TCS(Ft’,Ft2f)) →*(n,pf+1,sf,ef) next(TCS(next(f0),Ft2f)).

Morover, Ft’ is a ’next’ formula. Therefore, from (p13), by the definition of

→ for TCS we have

(p17) next(TCS(Ftf1,Ft2f)) →(pf,sf↓pf,sf(pf),c) next(TCS(Ft’,Ft2f)).

From (p16), (p15), (p17), since n+1>9, by the definition of →* we get [p12].

Case n=0

In this [p12] can be proved as it has been done in the base case [Prop.a]

This finishes the proof of [Prop.b] and, hence of (Prop).

Statement 3. TCP Formulas.

Lemma 4 (n-Step Reductions to Done Formulas).

Statement 3. (TCP formulas)

∀p∈N, s∈Stream, e∈Environment, Ft1,Ft2∈TFormula, n1,n2∈N:
n1>0 ∧ Ft1 →*(n1,p,s,e) done(false) ∧ Ft2 →*(n2,p,s,e) done(true) ⇒
next(TCP(Ft1,Ft2)) →*(n1,p,s,e) done(false)

∧
n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,s,e) done(false) ∧ Ft2 →*(n2,p,s,e) done(false)⇒
next(TCP(Ft1,Ft2)) →*(min(n1,n2),p,s,e) done(false)

∧
n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,s,e) done(true) ∧ Ft2 →*(n2,p,s,e) done(true) ⇒
next(TCP(Ft1,Ft2)) →*(max(n1,n2),p,s,e) done(true)

∧
n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,s,e) done(true) ∧ Ft2 →*(n2,p,s,e) done(false) ⇒
next(TCP(Ft1,Ft2)) →*(n2,p,s,e) done(false)

Proof

74

We split the statement in four:

[TCP1] ∀p∈N, s∈Stream, e∈Environment, Ft1,Ft2∈TFormula, n1,n2∈N :

n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,s,e) done(false) ∧ Ft2 →*(n2,p,s,e) done(true) ⇒
next(TCP(Ft1,Ft2)) →*(n1,p,s,e) done(false)

[TCP2] ∀p∈N, s∈Stream, e∈Environment, Ft1,Ft2∈TFormula, n1,n2∈N :

n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,s,e) done(false) ∧
Ft2 →*(n2,p,s,e) done(false)

⇒
next(TCP(Ft1,Ft2)) →*(min(n1,n2),p,s,e) done(false)

[TCP3] ∀p∈N, s∈Stream, e∈Environment, Ft1,Ft2∈TFormula, n1,n2∈N :

n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,s,e) done(true) ∧ Ft2 →*(n2,p,s,e) done(true) ⇒
next(TCP(Ft1,Ft2)) →*(max(n1,n2),p,s,e) done(true).

[TCP4] ∀p∈N, s∈Stream, e∈Environment, Ft1,Ft2∈TFormula, n1,n2∈N :

n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,s,e) done(true) ∧ Ft2 →*(n2,p,s,e) done(false) ⇒
next(TCP(Ft1,Ft2)) →*(n2,p,s,e) done(false).

==

Proof of [TCP1]

We take sf,ef arbitrary but fixed and define

Φ(n) :⇔
∀p∈N, s∈Stream, e∈Environment, Ft1,Ft2∈TFormula, n1,n2∈N :

n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,s,e) done(false) ∧ Ft2 →*(n2,p,s,e) done(true) ⇒
next(TCP(Ft1,Ft2)) →*(n1,p,s,e) done(false)

We prove ∀n1∈N: Φ(n1) by induction over n1. For n1=0 the formula is trivially true.

We start the induction from 1. Prove:

[TCP1.a] Φ(1) and

[TCP1.b] ∀n1∈N: Φ(n1) ⇒ Φ(n1+1)

Proof of [TCP1.a]

We take pf,Ft1f,Ft2f,n2 arbitrary but fixed. 1>0 is satisfied. Assume

(TCP1.1) n2>0

(TCP1.2) Ft1f →*(1,pf,sf,ef) done(false).

(TCP1.3) Ft2f →*(n2,p,s,e) done(true).

We want to prove

[TCP1.4] next(TCP(Ft1f,Ft2f)) →*(1,pf,sf,ef) done(false).

75

From (TCP1.2), by the definition of →* without history, there exists

Ft∈TFormula such that

(TCP1.5) Ft1f →(p,sf↓pf,sf(pf),c) Ft and

(TCP1.6) Ft →*(0,pf+1,sf,ef) done(false)

where

(TCP1.7) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

From (TCP1.6), by the definition of →* without history, we get

(TCP1.8’) Ft=done(false).

which from (TCP1.5) gives

(TCP1.9’) Ft1f →(p,sf↓pf,sf(pf),c) done(false) and

From (TCP1.9’) and (TCP1.3), by the definition of → for TCP, we get

(TCP1.10’) next(TCP(Ft1f,Ft2f)) →(p,sf↓pf,sf(pf),c) done(false).

From (TCP1.10’, TCP1.6, TCP1.8’, TCP1.7), by the definition of →*

without history, we get [TCP1.4].

Proof of [TCP1.b]

We take n1 arbitrary but fixed, assume

(TCP1.8) ∀p∈N, Ft1,Ft2∈TFormula, n2∈N :

n1>0 ∧ n2>0 ∧
Ft1 →*(n1,p,s,e) done(false) ∧ Ft2 →*(n2,p,s,e) done(true) ⇒
next(TCP(Ft1,Ft2)) →*(n1,p,s,e) done(false)

and prove

[TCP1.9] ∀p∈N, Ft1,Ft2∈TFormula, n2∈N :

n1+1>0 ∧ n2>0 ∧
Ft1 →*(n1+1,p,s,e) done(false) ∧ Ft2 →*(n2,p,s,e) done(true) ⇒
next(TCP(Ft1,Ft2)) →*(n1+1,p,s,e) done(false)

To prove [TCP1.9], we take pf,Ft1f,Ft2f,n2 arbitrary but fixed, assume

(TCP1.10) n+1>0

(TCP1.11) n2>0

(TCP1.12) Ft1f →*(n1+1,pf,sf,ef) done(false)

(TCP1.13) Ft2f →*(n2,pf,sf,ef) done(true)

and prove

[TCP1.14] next(TCP(Ft1f,Ft2f)) →*(n1+1,pf,sf,ef) done(false).

From (TCP1.12), by (TCP1.10) and the definition of →* without history,

76

there exists Ft’∈TFormula such that

(TCP1.15) Ft1f →(pf,sf↓pf, sf(pf),c) Ft’

(TCP1.16) Ft’ →*(n1,pf+1,sf,ef) done(false)

where

(TCP1.17) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

From (TCP1.13), by (TCP1.11) and the definition of →* without history,

there exists Ft’’∈TFormula such that

(TCP1.18) Ft2f →(pf,sf↓pf, sf(pf),c) Ft’’

(TCP1.19) Ft’’ →*(n2-1,pf+1,sf,ef) done(true)

where c is defined as in (TCP1.17).

Case n1>0, n2-1>0

In this case Ft’=next(f’), Ft’’=next(f’’) for some f’,f’’∈TFormulaCore.
Therefore, from (TCP1.15,TCP1.18), by the definition of → for TCP we have

(TCP1.20) next(TCP(Ftf1,Ftf2)) →(pf,sf↓pf, sf(pf),c) next(TCP(Ft’,Ft’’)).

From n1>0, n2-1>0, (TCP1.16,TCP1.19), by the induction hypothesis (TCP1.8)

we have

(TCP1.21) next(TCP(Ft’,Ft’’)) →*(n1,pf+1,sf,ef) done(false).

From n1+1>0, (TCP1.17), (TCP1.20), (TCP1.21), by the definition of →* we have

(TCP1.22) next(TCP(Ftf1,Ftf2)) →*(n1+1,pf,sf,ef) done(false)

which is [TCP1.14]

Case n1>0, n2-1=0

In this case Ft’=next(f’) for some f’∈TFormulaCore and, from (TCP1.18)

(TCP1.23) Ft2f →(pf,sf↓pf, sf(pf),c) done(true).

Therefore, from (TCP1.15,TCP1.23), by the definition of → for TCP we have

(TCP1.24) next(TCP(Ftf1,Ftf2)) →(pf,sf↓pf, sf(pf),c) Ft’

From n1+1>0, (TCP1.17), (TCP1.24), (TCP1.16), by the definition of →*

we get [TCP1.14].

Case n1=0

In this case Ft’’=next(f’’) for some f’’∈TFormulaCore and, from (TCP1.15)

77

(TCP1.25) Ft1f →(pf,sf↓pf, sf(pf),c) done(false).

From (TCP1.25) by the definition of → for TCP we have

(TCP1.26) next(TCP(Ftf1,Ftf2)) →(pf,sf↓pf, sf(pf),c) done(false).

From n1+1>0, (TCP1.17), (TCP1.26), (TCP1.16), by the definition of →*

we get [TCP1.14].

This finishes the proof of (b) and, therefore, the proof of [TCP1].

==

Proof of [TCP2]

Recall

[TCP2] ∀p∈N, s∈Stream, e∈Environment, Ft1,Ft2∈TFormula, n1,n2∈N :

n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,s,e) done(false) ∧
Ft2 →*(n2,p,s,e) done(false)

⇒
next(TCP(Ft1,Ft2)) →*(min(n1,n2),p,s,e) done(false)

Proof

We take sf,ef arbitrary but fixed and define

Φ(n) :⇔
∀p∈N, s∈Stream, e∈Environment, Ft1,Ft2∈TFormula, n1,n2∈N :

n1>0 ∧ n2>0 ∧
Ft1 →*(n1,p,s,e) done(false) ∧ Ft2 →*(n2,p,s,e) done(false) ⇒

next(TCP(Ft1,Ft2)) →*(min(n1,n2),p,s,e) done(false)

We prove ∀n1∈N: Φ(n1) by induction over n1. For n1=0 the formula is

trivially true.

We start the induction from 1. Prove:

[TCP2.a] Φ(1) and

[TCP2.b] ∀n1∈N: Φ(n1) ⇒ Φ(n1+1)

Proof of [TCP2.a]

We take pf,Ft1f,Ft2f,n2 arbitrary but fixed. 1>0 is satisfied. Assume

(TCP2.1) n2>0

(TCP2.2) Ft1f →*(1,pf,sf,ef) done(false).

(TCP2.3) Ft2f →*(n2,p,s,e) done(false).

We want to prove

[TCP2.4] next(TCP(Ft1f,Ft2f)) →*(min(1,n2),pf,sf,ef) done(false).

78

From (TCP2.2), by the definition of →* without history, there exists

Ft∈TFormula such that

(TCP2.5) Ft1f →(p,sf↓pf,sf(pf),c) Ft and

(TCP2.6) Ft →*(0,pf+1,sf,ef) done(false)

where

(TCP2.7) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

From (TCP2.6), by the definition of →* without history, we get

(TCP2.8) Ft=done(false).

which from (TCP2.5) gives

(TCP2.9) Ft1f →(p,sf↓pf,sf(pf),c) done(false).

From (TCP2.9) and (TCP2.3), by the definition of → for TCP, we get

(TCP2.10) next(TCP(Ft1f,Ft2f)) →(p,sf↓pf,sf(pf),c) done(false).

From (TCP2.10, TCP2.6, TCP2.8, TCP2.7), by the definition of →*

without history, we get next(TCP(Ft1f,Ft2f)) →*(1,pf,sf,ef) done(false),

but since by (TCP2.1) we have 1=min(1,n2), we actually proved [TCP2.4].

Proof of [TCP2.b]

We take n1 arbitrary but fixed, assume

(TCP2.8) ∀p∈N, Ft1,Ft2∈TFormula, n2∈N :

n1>0 ∧ n2>0 ∧
Ft1 →*(n1,p,s,e) done(false) ∧ Ft2 →*(n2,p,s,e) done(false) ⇒

next(TCP(Ft1,Ft2)) →*(min(n1,n2),p,s,e) done(false)

and prove

[TCP2.9] ∀p∈N, Ft1,Ft2∈TFormula, n2∈N :

n1+1>0 ∧ n2>0 ∧
Ft1 →*(n1+1,p,s,e) done(false) ∧ Ft2 →*(n2,p,s,e) done(false) ⇒

next(TCP(Ft1,Ft2)) →*(min(n1+1,n2),p,s,e) done(false).

To prove [TCP2.9], we take pf,Ft1f,Ft2f,n2 arbitrary but fixed, assume

(TCP2.10) n+1>0

(TCP2.11) n2>0

(TCP2.12) Ft1f →*(n1+1,pf,sf,ef) done(false)

(TCP2.13) Ft2f →*(n2,pf,sf,ef) done(false)

and prove

[TCP2.14] next(TCP(Ft1f,Ft2f)) →*(min(n1+1,n2),pf,sf,ef) done(false).

From (TCP2.12), by (TCP2.10) and the definition of →* without history,

79

there exists Ft’∈TFormula such that

(TCP2.15) Ft1f →(pf,sf↓pf, sf(pf),c) Ft’

(TCP2.16) Ft’ →*(n1,pf+1,sf,ef) done(false)

where

(TCP2.17) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

From (TCP2.13), by (TCP2.11) and the definition of →* without history,

there exists Ft’’∈TFormula such that

(TCP2.18) Ft2f →(pf,sf↓pf, sf(pf),c) Ft’’

(TCP2.19) Ft’’ →*(n2-1,pf+1,sf,ef) done(false)

where c is defined as in (TCP2.17).

Case n1>0, n2-1>0

In this case Ft’=next(f’), Ft’’=next(f’’) for some f’,f’’∈TFormulaCore.
Therefore, from (TCP2.15,TCP2.18), by the definition of → for TCP we have

(TCP2.20) next(TCP(Ftf1,Ftf2)) →(pf,sf↓pf, sf(pf),c) next(TCP(Ft’,Ft’’)).

From n1>0, n2-1>0, (TCP2.16,TCP2.19), by the induction hypothesis (TCP2.8)

we have

(TCP2.21) next(TCP(Ft’,Ft’’)) →*(min(n1,n2-1),pf+1,sf,ef) done(false).

From n1+1>0, (TCP2.17), (TCP2.20), (TCP2.21), by the definition of →* we have

(TCP2.22) next(TCP(Ftf1,Ftf2)) →*(min(n1,n2-1)+1,pf,sf,ef) done(false)

which is [TCP2.14]

Case n1>0, n2-1=0

In this case Ft’=next(f’) for some f’∈TFormulaCore and, from (TCP2.18) we have

(TCP2.23) Ft2f →(pf,sf↓pf, sf(pf),c) done(false).

Therefore, from (TCP2.15,TCP2.23), by the definition of → for TCP we have

(TCP2.24) next(TCP(Ftf1,Ftf2)) →(pf,sf↓pf, sf(pf),c) done(false)

From 1>0, (TCP2.17), (TCP2.24), (TCP2.19), by the definition of →* we get

(TCP2.25) next(TCP(Ftf1,Ftf2)) →*(1,pf,sf,ef) done(false)

But by n1>0 and n2=1 we have 1=min(n1+1,n2). Hence, (TCP2.25) proves [TCP2.14].

Case n1=0

In this case Ft’’=next(f’’) for some f’’∈TFormulaCore and, from (TCP2.15)

80

we have

(TCP2.26) Ft1f →(pf,sf↓pf, sf(pf),c) done(false).

From (TCP2.26) by the definition of → for TCP we have

(TCP2.27) next(TCP(Ftf1,Ftf2)) →(pf,sf↓pf, sf(pf),c) done(false).

From 1>0, (TCP2.17), (TCP2.27), (TCP2.16), by the definition of →* we get

(TCP2.28) next(TCP(Ftf1,Ftf2)) →*(1,pf,sf,ef) done(false).

But by n1=0 and n2>0 we have 1=min(n1+1,n2). Hence, (TCP2.28) proves [TCP2.14].

This finishes the proof of (b) and, therefore, the proof of [TCP2].

===

Proof of [TCP3]

[TCP3] ∀p∈N, s∈Stream, e∈Environment, Ft1,Ft2∈TFormula, n1,n2∈N, b∈Bool :

n1>0 ∧ n2>0 ∧
Ft1 →*(n1,p,s,e) done(true) ∧ Ft2 →*(n2,p,s,e) done(true) ⇒

next(TCP(Ft1,Ft2)) →*(max(n1,n2),p,s,e) done(true).

Proof

We take sf,ef arbitrary but fixed and define

Φ(n1) :⇔
∀p∈dsN, Ft1,Ft2∈TFormula, n2∈N :

n1>0 ∧ n2>0 ∧
Ft1 →*(n1,p,sf,ef) done(true) ∧ Ft2 →*(n2,p,sf,ef) done(true) ⇒
next(TCP(Ft1,Ft2)) →*(max(n1,n2),p,sf,ef) done(true).

We need to prove ∀n1∈N: Φ(n1). We use induction. Prove:

[TCP3.a] ∀n2∈N: Φ(1)
[TCP3.b] ∀n1∈N: Φ(n1) ⇒ Φ(n1+1).

Proof of [TCP3.a]

We need to prove

∀n2,p∈dsN, Ft1,Ft2∈TFormula :

1>0 ∧ n2>0 ∧
Ft1 →*(1,p,sf,ef) done(true) ∧ Ft2 →*(n2,p,sf,ef) done(true) ⇒
next(TCP(Ft1,Ft2)) →*(max(1,n2),p,sf,ef) done(true).

We take n2,pf,Ft1f,Ft2f arbitrary but fixed. Assume

81

(TCP3.a.1) n2>0

(TCP3.a.2) Ft1f →*(1,pf,sf,ef) done(true)

(TCP3.a.3) Ft2f →*(n2,pf,sf,ef) done(true)

and prove

[TCP3.a.4] next(TCP(Ft1f,Ft2f)) →*(max(1,n2),pf,sf,ef) done(true).

From (TCP3.a.2), by the definition of →*, we have for some Ft’

(TCP3.a.5) Ft1f →(pf,sf↓pf,sf(pf),c) Ft’

(TCP3.a.6) Ft’ →*(0,pf+1,sf,ef) done(true)

where

(TCP3.a.7) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

From (TCP3.a.6), by the definition pf →*, we know

(TCP3.a.8) Ft’=done(true).

From (TCP3.a.5) and (TCP3.a.8) we have

(TCP3.a.9) Ft1f →(pf,sf↓pf,sf(pf),c) done(true).

From (TCP3.a.3), by the definition of →*, we have for some Ft’’

(TCP3.a.10) Ft2f →(pf,sf↓pf,sf(pf),c) Ft’’

(TCP3.a.11) Ft’’→* (n2-1,pf+1,sf,ef) done(true),

where c is defined as in (TCP3.a.7).

From (TCP3.a.9) and (TCP3.a.10), by the definition of → for TCP, we have

(TCP3.a.13) next(TCP(Ft1f,Ft2f)) → (pf,sf↓pf,sf(pf),c) Ft’’.

From (TCP3.a.13), (TCP3.a.7), and (TCP3.a.11), by the definition of →*, we have

(TCP3.a.14) next(TCP(Ft1f,Ft2f)) →* (n2,pf,sf,ef) done(true).

From (TCP3.a.1), we have n2=max(1,n2). Therefore, (TCP3.a.14) proves [TCP3.a.4]

This finishes the proof of [TCP3.a].

Proof of [TCP3.b]

We take n1 arbitrary but fixed. Assume Φ(n1), i.e.,

(TCP3.b.1) ∀n2,p∈dsN, Ft1,Ft2∈TFormula :

n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,sf,ef) done(true) ∧
Ft2 →*(n2,p,sf,ef) done(true)

82

⇒
next(TCP(Ft1,Ft2)) →*(max(n1,n2),p,sf,ef) done(true).

and prove

[TCP3.b.2] ∀n2,p∈dsN, Ft1,Ft2∈TFormula :

n1+1>0 ∧ n2>0 ∧ Ft1 →*(n1+1,p,sf,ef) done(true) ∧
Ft2 →*(n2,p,sf,ef) done(true)

⇒
next(TCP(Ft1,Ft2)) →*(max(n1+1,n2),p,sf,ef) done(true).

To prove [TCP3.b.2], we take n2, pf, Ft1f, Ft2f arbitrary but fixed. Assume

(TCP3.b.3) n1+1>0

(TCP3.b.4) n2>0

(TCP3.b.5) Ft1f →*(n1+1,pf,sf,ef) done(true)

(TCP3.b.6) Ft2f →*(n2,pf,sf,ef) done(true)

and prove

[TCP3.b.7] next(TCP(Ft1f,Ft2f)) →*(max(n1+1,n2),pf,sf,ef) done(true).

From (TCP3.b.5), by the definition of →*, we have for some Ft’

(TCP3.b.8) Ft1f →(pf,sf↓pf,sf(pf),c) Ft’

(TCP3.b.9) Ft’ →*(n1,pf+1,sf,ef) done(true)

where

(TCP3.b.10) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

From (TCP3.b.6), by the definition of →*, we have for some Ft’’

(TCP3.b.11) Ft2f →(pf,sf↓pf,sf(pf),c) Ft’’

(TCP3.b.12) Ft’’ →*(n2-1,pf+1,sf,ef) done(true)

where c is defined as in (TCP3.b.10).

Case 1. n1=0

In this case we have Ft’=done(true) and from (TCP3.b.8) we get

(TCP3.b.13) Ft1f →(pf, sf↓pf,sf(pf),c) done(true).

From (TCP3.b.13) and (TCP3.b.11), by the definition of → for TCP, we have

(TCP3.b.14) next(TCP(Ft1f,Ft2f)) →(pf,sf↓pf,sf(pf),c) Ft’’.

From (TCP3.b.4), (TCP3.b.10), (TCP3.b.14), (TCP3.b.12) by the definition of →*

we get

(TCP3.b.15) next(TCP(Ft1f,Ft2f)) →*(n2,pf,sf,ef) done(true).

83

By (TCP3.b.4) and n1=0, we have n2=max(1,n2)=max(n1+1,n2). Hence, (TCP3.b.15)

proves [TCP3.b.7].

Case n1>0, n2-1>0

In this case Ft’=next(f’), Ft’’=next(f’’) for some f’,f’’∈TFormulaCore.
Therefore, from (TCP3.b.8,TCP3.b.11), by the definition of → for TCP we have

(TCP3.b.16) next(TCP(Ftf1,Ftf2)) →(pf,sf↓pf, sf(pf),c) next(TCP(Ft’,Ft’’)).

From n1>0, n2-1>0, (b9,b12), by the induction hypothesis (TCP3.b.1) we have

(TCP3.b.17) next(TCP(Ft’,Ft’’)) →*(max(n1,n2-1),pf+1,sf,ef) done(true).

From n1+1>0, (TCP3.b.10), (TCP3.b.16), (TCP3.b.17), by the definition of →*

we have

(TCP3.b.18) next(TCP(Ftf1,Ftf2)) →*(max(n1,n2-1)+1,pf,sf,ef) done(true)

which is [TCP3.b.7]

Case n1>0, n2-1=0

In this case Ft’=next(f’) for some f’∈TFormulaCore. From (TCP3.b.11) we have

(TCP3.b.19) Ft2f →(pf,sf↓pf, sf(pf),c) done(true).

From (TCP3.b.8,TCP3.b.19), by the definition of → for TCP we have

(TCP3.b.20) next(TCP(Ftf1,Ftf2)) →(pf,sf↓pf, sf(pf),c) Ft’

From n1+1>0, (TCP3.b.10), (TCP3.b.20), (TCP3.b.9), by the definition of →*

we get

(TCP3.b.21) next(TCP(Ftf1,Ftf2)) →*(n1+1,pf,sf,ef) done(true)

But by n1>0 and n2=1 we have n1+1=max(n1+1,n2). Hence, from (TCP3.b.21)

we get [TCP3.b.7].

This finishes the proof of [TCP3.b].

This finishes the proof of [TCP3].

==

Proof of [TCP4]

[TCP4] ∀p∈N, s∈Stream, e∈Environment, Ft1,Ft2∈TFormula, n1,n2∈N :

n1>0 ∧ n2>0 ∧
Ft1 →*(n1,p,s,e) done(true) ∧ Ft2 →*(n2,p,s,e) done(false) ⇒

84

next(TCP(Ft1,Ft2)) →*(n2,p,s,e) done(false).

Proof

We take sf,ef,bf arbitrary but fixed and define

Φ(n1) :⇔
∀p∈dsN, Ft1,Ft2∈TFormula, n2∈N :

n1>0 ∧ n2>0 ∧
Ft1 →*(n1,p,sf,ef) done(true) ∧ Ft2 →*(n2,p,sf,ef) done(false) ⇒
next(TCP(Ft1,Ft2)) →*(n2,p,sf,ef) done(false).

We need to prove ∀n1∈N: Φ(n1). We use induction. Prove:

[TCP4.a] ∀n2∈N: Φ(1)
[TCP4.b] ∀n1∈N: Φ(n1) ⇒ Φ(n1+1).

Proof of [TCP4.a]

We need to prove

∀n2,p∈dsN, Ft1,Ft2∈TFormula :

1>0 ∧ n2>0 ∧
Ft1 →*(1,p,sf,ef) done(true) ∧ Ft2 →*(n2,p,sf,ef) done(false) ⇒
next(TCP(Ft1,Ft2)) →*(n2,p,sf,ef) done(false).

We take n2,pf,Ft1f,Ft2f arbitrary but fixed. Assume

(TCP4.a.1) n2>0

(TCP4.a.2) Ft1f →*(1,pf,sf,ef) done(true)

(TCP4.a.3) Ft2f →*(n2,pf,sf,ef) done(false)

and prove

[TCP4.a.4] next(TCP(Ft1f,Ft2f)) →*(n2,pf,sf,ef) done(false).

From (TCP4.a.2), by the definition of →*, we have for some Ft’

(TCP4.a.5) Ft1f →(pf,sf↓pf,sf(pf),c) Ft’

(TCP4.a.6) Ft’ →*(0,pf+1,sf,ef) done(true)

where

(TCP4.a.7) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

From (TCP4.a.6), by the definition pf →*, we know

(TCP4.a.8) Ft’=done(true).

From (TCP4.a.5) and (TCP4.a.8) we have

(TCP4.a.9) Ft1f →(pf,sf↓pf,sf(pf),c) done(true).

85

From (TCP4.a.3), by the definition of →*, we have for some Ft’’

(TCP4.a.10) Ft2f →(pf,sf↓pf,sf(pf),c) Ft’’

(TCP4.a.11) Ft’’→* (n2-1,pf+1,sf,ef) done(false),

where c is defined as in (TCP4.a.7).

From (TCP4.a.9) and (TCP4.a.10), by the definition of → for TCP, we have

(TCP4.a.13) next(TCP(Ft1f,Ft2f)) → (pf,sf↓pf,sf(pf),c) Ft’’.

From (TCP4.a.13), (TCP4.a.7), and (TCP4.a.11), by the definition of →*, we have

(TCP4.a.14) next(TCP(Ft1f,Ft2f)) →* (n2,pf,sf,ef) done(false).

(TCP4.a.14) is [TCP4.a.4].

This finishes the proof of [TCP4.a].

Proof of [TCP4.b]

We take n1 arbitrary but fixed. Assume Φ(n1), i.e.,

(TCP4.b.1) ∀n2,p∈dsN, Ft1,Ft2∈TFormula :

n1>0 ∧ n2>0 ∧ Ft1 →*(n1,p,sf,ef) done(true) ∧
Ft2 →*(n2,p,sf,ef) done(false)

⇒
next(TCP(Ft1,Ft2)) →*(n2,p,sf,ef) done(false).

and prove

[TCP4.b.2] ∀n2,p∈dsN, Ft1,Ft2∈TFormula :

n1+1>0 ∧ n2>0 ∧ Ft1 →*(n1+1,p,sf,ef) done(true) ∧
Ft2 →*(n2,p,sf,ef) done(bf)

⇒
next(TCP(Ft1,Ft2)) →*(false,p,sf,ef) done(false).

To prove [TCP4.b.2], we take n2, pf, Ft1f, Ft2f arbitrary but fixed. Assume

(TCP4.b.3) n1+1>0

(TCP4.b.4) n2>0

(TCP4.b.5) Ft1f →*(n1+1,pf,sf,ef) done(true)

(TCP4.b.6) Ft2f →*(n2,pf,sf,ef) done(false)

and prove

[TCP4.b.7] next(TCP(Ft1f,Ft2f)) →*(n2,pf,sf,ef) done(false).

From (TCP4.b.5), by the definition of →*, we have for some Ft’

(TCP4.b.8) Ft1f →(pf,sf↓pf,sf(pf),c) Ft’

86

(TCP4.b.9) Ft’ →*(n1,pf+1,sf,ef) done(true)

where

(TCP4.b.10) c=(ef, {(X,sf(ef(X)))| X∈dom(ef)}).

From (TCP4.b.6), by the definition of →*, we have for some Ft’’

(TCP4.b.11) Ft2f →(pf,sf↓pf,sf(pf),c) Ft’’

(TCP4.b.12) Ft’’ →*(n2-1,pf+1,sf,ef) done(false)

where c is defined as in (TCP4.b.10).

Case 1. n1=0

In this case we have Ft’=done(true) and from (TCP4.b.8) we get

(TCP4.b.13) Ft1f →(pf, sf↓pf,sf(pf),c) done(true).

From (TCP4.b.13) and (TCP4.b.11), by the definition of → for TCP, we have

(TCP4.b.14) next(TCP(Ft1f,Ft2f)) →(pf,sf↓pf,sf(pf),c) Ft’’.

From (TCP4.b.4), (TCP4.b.10), (TCP4.b.14), (TCP4.b.12) by the definition of →*,

we get

(TCP4.b.15) next(TCP(Ft1f,Ft2f)) →*(n2,pf,sf,ef) done(false).

Hence, (TCP4.b.15) proves [TCP4.b.7].

Case n1>0, n2-1>0

In this case Ft’=next(f’), Ft’’=next(f’’) for some f’,f’’∈TFormulaCore.
Therefore, from (TCP4.b.8,TCP4.b.11), by the definition of → for TCP we have

(TCP4.b.16) next(TCP(Ftf1,Ftf2)) →(pf,sf↓pf, sf(pf),c) next(TCP(Ft’,Ft’’)).

From n1>0, n2-1>0, (b9,b12), by the induction hypothesis (TCP4.b.1) we have

(TCP4.b.17) next(TCP(Ft’,Ft’’)) →*(n2-1,pf+1,sf,ef) done(false).

From (TCP4.b.4), (TCP4.b.10), (TCP4.b.16), (TCP4.b.17), by the definition of →*

we have

(TCP4.b.18) next(TCP(Ftf1,Ftf2)) →*(n2,pf,sf,ef) done(false)

which is [TCP4.b.7]

Case n1>0, n2-1=0

In this case Ft’=next(f’) for some f’∈TFormulaCore. From (TCP4.b.11) we have

87

(TCP4.b.19) Ft2f →(pf,sf↓pf, sf(pf),c) done(false).

From (TCP4.b.8,TCP4.b.19), by the definition of → for TCP we have

(TCP4.b.23) next(TCP(Ftf1,Ftf2)) →(pf,sf↓pf, sf(pf),c) done(false).

From (TCP4.b.12), by n2-1=0 and bf=false we have

(TCP4.b.24) done(false) →*(n2-1,pf+1,sf,ef) done(false)

From (TCP4.b.4), (TCP4.b.10), (TCP4.b.23), (TCP4.b.24) by the definition of →*

we get

(TCP4.b.20) next(TCP(Ftf1,Ftf2)) →*(n2,pf,sf,ef) done(false)

which is [TCP4.b.7]

This finishes the proof of [TCP4.b].

This finishes the proof of [TCP4].

This finishes the proof of the Statement 3 of Lemma 4.

88

A.7 Lemma 5: Soundness Lemma for Universal Formulas

Lemma 5. (Soundness Lemma for Universal Formulas)

∀F∈Formula, X∈Variable, B1,B2∈Bound:
R(F) ⇒ R(forall X in B1..B2: F)

where

R(F) :⇔
∀re∈RangeEnv, e∈Environment, s∈Stream, d∈N∞, h∈N:
` (re ` F: (h,d)) ∧ d∈N ∧ ∀Y∈dom(e): re(Y).1+p ≤ e(Y) ≤ re(Y).2+p ⇒
(∀p∈N ∃b∈Bool ∃d’∈N:
d’≤d+1 ∧ ` T(F) →*(d’,p,s,e) done(b))

89

A.8 Lemma 6: Monotonicity of Reduction to done

∀ Ft∈TFormula, p∈N, s∈Stream, c∈Context, b∈Bool :

∀ k ≥ p:

Ft →(p,s↓p,s(p),c) done(b) ⇒
Ft →(k,s↓k,s(k),c) done(b)

PROOF

We take pf,sf,bf,kf arbitrary but fixed, assume

(1) kf ≥ pf

and prove

(2) ∀ Ft∈TFormula ∀c∈Context:
Ft →(pf,sf↓pf,s(pf),c) done(bf) ⇒

Ft →(kf,sf↓kf,sf(kf),c) done(bf)

We prove (2) by structural induction over Ft:

C1. Ft=next(TV(X))

We take cf arbitrary but fixed, assume

(1.1) next(TV(X)) →(pf,sf↓pf,s(pf),cf) done(bf)

and prove

(1.2) next(TV(X)) →(kf,sf↓kf,sf(kf),cf) done(bf)

By definition of →, the value of bf depends only on cf, which is the same in

(1.1) and (1.2). Hence, (1.1) implies (1.2)

It proves C1.

C2. Ft=next(TN(f)) for some f∈TFormula

We take cf arbitrary but fixed, assume

(2.1) next(TN(f)) →(pf,sf↓pf,s(pf),cf) done(bf)

and prove

(2.2) next(TN(f)) →(kf,sf↓kf,sf(kf),cf) done(bf)

From (2.1), by the definition of →, we have

(2.3) f →(pf,sf↓pf,s(pf),cf) done(b1)

where

(2.4) b1 = if bf = false true else false.

90

By the induction hypothesis, from (2.3) we get

(2.5) f →(kf,sf↓kf,s(kf),cf) done(b1).

From (2.5), by the definition of → and (2.4) we get (2.2).

It proves C2.

C3. Ft=next(TCS(f1,f2)) for some f1,f2∈TFormula

We take cf arbitrary but fixed, assume

(3.1) next(TCS(f1,f2)) →(pf,sf↓pf,s(pf),cf) done(bf)

and prove

(3.2) next(TCS(f1,f2)) →(kf,sf↓kf,sf(kf),cf) done(bf)

From (3.1) we have two alternatives:

(a) We have

(3.3) bf=false and

(3.4) f1 →(pf,sf↓pf,s(pf),cf) done(false).

By the induction hypothesis, from (3.4) we get

(3.5) f1 →(kf,sf↓kf,s(kf),cf) done(false).

From (3.5), by the definition of → we get (3.2).

(b) We have

(3.6) f1 →(pf,sf↓pf,s(pf),cf) done(true)

(3.7) f2 →(pf,sf↓pf,s(pf),cf) done(bf).

By the induction hypothesis, we get from (3.6) and (3.7) respectively

(3.8) f1 →(kf,sf↓kf,s(kf),cf) done(true)

(3.9) f2 →(kf,sf↓pf,s(kf),cf) done(bf).

From (3.8) and (3.9), by the definition of → we get (3.2).

It proves C3.

C4. Ft=next(TCP(f1,f2)) for some f1,f2∈TFormula

We take cf arbitrary but fixed, assume

(4.1) next(TCP(f1,f2)) →(pf,sf↓pf,s(pf),cf) done(bf)

91

and prove

(4.2) next(TCP(f1,f2)) →(kf,sf↓kf,sf(kf),cf) done(bf)

From (4.1) we have three alternatives:

(a) We have

(4.3) bf=false

(4.4) f1 →(pf,sf↓pf,s(pf),cf) next(f1’) for some f1’∈TFormulaCore
(4.5) f2 →(pf,sf↓pf,s(pf),cf) done(false).

From (4.4) and (4.5) we obtain by the induction hypothesis, respectively,

(4.6) f1 →(kf,sf↓kf,s(kf),cf) next(f1’)

(4.7) f2 →(kf,sf↓kf,s(kf),cf) done(false).

From (4.6) and (4.7), by the definition of → and (4.3) we get (4.2).

(b) We have

(4.8) bf=false and

(4.9) f1 →(pf,sf↓pf,s(pf),cf) done(false).

By the induction hypothesis, from (4.4) we get

(4.5) f1 →(kf,sf↓kf,s(kf),cf) done(false).

From (3.5), by the definition of → we get (4.2).

(c) We have

(4.6) f1 →(pf,sf↓pf,s(pf),cf) done(true)

(4.8) f2 →(pf,sf↓pf,s(pf),cf) done(bf).

By the induction hypothesis, we get from (3.6) and (3.7) respectively

(4.9) f1 →(kf,sf↓kf,s(kf),cf) done(true)

(4.10) f2 →(kf,sf↓pf,s(kf),cf) done(bf).

From (4.9) and (4.10), by the definition of → we get (4.2).

It proves C4.

C5. Ft=next(TA(X,b1,b2,f))

We take cf arbitrary but fixed, assume

92

(5.1) next(TA(X,b1,b2,f)) →(pf,sf↓pf,s(pf),cf) done(bf)

and prove

[5.2] next(TA(X,b1,b2,f)) →(kf,sf↓kf,sf(kf),cf) done(bf)

(a) bf=true.

From (5.1) we have

p1 = b1(cf)

p1 = ∞

which immediately imply [5.2].

(b) bf=false

To prove [5.2], we need to find p1*,p2* such that

[5.3] p1* = b1(cf)

[5.4] p2* = b2(cf)

[5.5] p1* 6= ∞
[5.6] next(TA0(X,p1*,p2*,f)) →(kf,sf↓kf,sf(kf),cf) done(false)

From (5.1) we know

(5.7) p1 = b1(cf)

(5.8) p2 = b2(cf)

(5.9) p1 6= ∞
(5.10) next(TA0(X,p1,p2,f)) →(pf,sf↓pf,sf(pf),cf) done(false)

We take p1*=p1,p2*=p2. Then [5.3-5.5] follow from (5.7-5.9) and we need to prove

[5.11] next(TA0(X,p1,p2,f)) →(kf,sf↓kf,sf(kf),cf) done(false).

By Def.→, to prove [5.11], we need to prove

[5.12] kf ≥ p1

[5.13] next(TA1(X,p2,f,fsk)) →(kf,sf↓kf,sf(kf),cf) done(false)

where

(5.14) fsk = {(p0,f,(cf.1[X7→p0],cf.2[X7→(sf↓kf)(p0)])) |

p1 ≤ p0 <∞ min∞(kf,p2+∞1)}

From (5.10), by the definition of →, we know

(5.15) pf≥p1
(5.16) next(TA1(X,p2,f,fsp)) →(pf,sf↓pf,sf(pf),cf) done(false)

where

93

(5.17) fsp = {(p0,f,(cf.1[X7→p0],cf.2[X7→(sf↓pf)(p0)])) |

p1 ≤ p0 <∞ min∞(pf,p2+∞1)}

Then [5.12] follows from (1) and (5.15).

To prove [5.13], by Def.→ we need to prove

[5.18] ∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs0k ∧ ` g →(kf,sf↓kf,sf(kf),c) done(false)

where

(5.19) fs0k =

if kf >∞ p2 then fsk else fsk ∪ {(kf,f,(cf.1[X7→kf],cf.2[X 7→sf(kf)]))}

From (5.16) we know that there exist tp∈N,gp∈TFormula,cp∈Context such that

(5.20) (tp,gp,cp)∈fs0p
(5.21) gp →(pf,sf↓pf,sf(pf),cp) done(false)

where

(5.22) fs0p =

if pf >∞ p2 then fsp else fsp ∪ {(pf,f,(cf.1[X7→pf],cf.2[X 7→sf(pf)]))}

Since by (1) kf≥pf, from (5.14) and (5.17) we have

(5.23) fsp ⊆ fsk.

Also, we have either

(5.25) (pf,f,(cf.1[X7→pf],cf.2[X 7→sf(pf)])∈fsk
(when kf>pf, since (sf↓pf)(kf)=sf(pf))

or

(5.26) (pf,f,(cf.1[X7→pf],cf.2[X 7→sf(pf)])∈fs0k, (kf=pf).

From (5.25) and (5.26) we get

(5.27) (pf,f,(cf.1[X7→pf],cf.2[X 7→sf(pf)])∈fs0k, when kf≥pf.

From (1), (5.23), (5.27), (5.19), (5.22) we get

(5.28) fs0p ⊆ fs0k.

Then from (5.20) we get

(5.29) (tp,gp,cp)∈fs0k.

From (5.21) and (2) we get

(5.30) gp →(kf,sf↓kf,sf(kf),cp) done(false)

94

From (5.29) and (5.30) we obtain [5.18].

It proves C5.

It finishes the proof of Lemma 6.

95

A.9 Lemma 7: Shifting Lemma

∀ f∈TFormulaCore, n,p∈N: s∈Stream, e∈Environment, b∈Bool:
n>0 ⇒
next(f) →*(n+1,p,s,e) done(b) ⇒ next(f) →*(n,p+1,s,e) done(b)

Proof

We take f,n,p,s,e,b arbitrary but fixed, assume

(1) n>0

(2) next(f) →*(n+1,p,s,e) done(b)

and show

[3] next(f) →*(n,p+1,s,e) done(b).

From (2), by the definition of →*, there exists Ft’∈TFormula such that

(4) next(f) →(p,s↓p,s(p),c) Ft’

(5) Ft’ →*(n,p+1,s,e) done(b)

where

(6) c = (e,{(X,s(e(X))) | X ∈ dom(e)}).

Since n>0 by (1), we have that Ft’ is a ’next’ formula, say next(f’).

Then from (5), by the definition of →*, we know that there exists

Ft’’∈TFormula such that

(7) next(f’) →(p+1,s↓(p+1),s(p+1),c) Ft’’

(8) Ft’’ →*(n-1,p+2,s,e) done(b).

In order to prove [3], by the definition of →*, we need to find such a

Ft0∈TFormula that

[9] next(f) →(p+1,s↓(p+1),s(p+1),c) Ft0

[10] Ft0 →*(n-1,p+2,s,e) done(b).

We take Ft0=Ft’’. Then [10] follows from (8). We only need to prove [9]:

Given

(4) next(f) → (p,s↓p,s(p),c) next(f’)

(7) next(f’) →(p+1,s↓(p+1),s(p+1),c) Ft’’

Prove:

[9] next(f) →(p+1,s↓(p+1),s(p+1),c) Ft’’.

It follows from Lemma 8.

96

A.10 Lemma 8: Triangular Reduction Lemma

Lemma 8 (Triangular Reduction G).

∀G1,G2∈TFormulaCore, Ft∈TFormula, p∈N, s∈Stream, c∈Context :

next(G1) →(p,s↓p,s(p),c) next(G2) ∧ next(G2) →(p+1,s↓(p+1),s(p+1),c) Ft

⇒
next(G1) →(p+1,s↓(p+1),s(p+1),c) Ft.

Proof

Φ ⊆ TFormulaCore

Φ(G1) :⇔
∀G2∈TFormulaCore, Ft∈TFormula, p∈N, s∈Stream, c∈Context :

next(G1) →(p,s↓p,s(p),c) next(G2) ∧ next(G2) →(p+1,s↓(p+1),s(p+1),c) Ft

⇒
next(G1) →(p+1,s↓(p+1),s(p+1),c) Ft.

We prove

(G) ∀G’∈TFormulaCore : Φ(G’).

Case (C1) G’ = TN(Ft) for some Ft ∈ TFormula

We show

Φ(G’)

Take F2f,Ftf,pf,sf,cf arbitrary but fixed.

Assume

(C1.1) next(TN(Ft)) →(pf,sf↓pf,sf(pf),cf) next(G2f)

(C1.2) next(G2f) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf

Show

[C1.a] next(TN(Ft)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

From (C1.1) and Def.→, we know for some G2’ ∈ TFormula

(C1.3) G2f = TN(next(G2’))

(C1.4) next(TN(Ft)) →(pf,sf↓pf,sf(pf),cf) next(TN(next(G2’)))

(C1.5) Ft →(pf,sf↓pf,sf(pf),cf) next(G2’)

From (C1.2,C1.3), we thus have

(C1.6) next(TN(next(G2’))) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf

From (C1.5) and Def. →, we know for some G ∈ TFormulaCore

(C1.7) Ft = next(G)

97

(C1.8) next(G) →(pf,sf↓pf,sf(pf),cf) next(G2’)

From (C1.7) and [C1.a], it suffices to show

[C1.b] next(TN(next(G))) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

From (C1,C1.8) and the induction assumption, we know Φ(G) and thus

(C1.9)

∀G2∈TFormulaCore, Ft∈TFormula, p∈N, s∈Stream, c∈Context :

next(G) →(p,s↓p,s(p),c) next(G2) ∧ next(G2) →(p+1,s↓(p+1),s(p+1),c) Ft

⇒
next(G) →(p+1,s↓(p+1),s(p+1),c) Ft.

From (C1.6) and Def.→, we have 3 cases.

Case C1.c1. there exists some Fc’∈TFormulaCore such that

(C1.c1.1) next(G2’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc’)

(C1.c1.2) Ftf=next(TN(next(Fc’)))

From (C1.c1.2) and [C1.b], ut suffices thus to show

[C1.c1.b] next(TN(next(G))) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(TN(next(Fc’)))

From (C1.9), (C1.8), (C1.c1.1), we have

(C1.c1.3) next(G) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc’)

From (C1.c1.3) and Def. →, we know [C1.c1.b].

This proves the case C1.c1.

Case C1.c2. we have

(C1.c2.1) next(G2’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(true)

(C1.c2.2) Ftf=done(false)

From (C1.c2.2) and [C1.b], it suffices thus to show

[C1.c2.b] next(TN(next(G))) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false)

From (C1.9), (C1.8), (C1.c2.1), we have

(C1.c22.3) next(G) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(true).

From (C1.c2.3) and Def. →, we know [C1.c2.b].

This proves the case C1.c2.

Case C1.c3. we have

98

(C1.c3.1) next(G2’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false)

(C1.c3.2) Ftf=done(true)

It suffices thus to show

[C1.c3.b] next(TN(next(G))) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(true)

From (C1.9), (C1.8) (C1.c3.1), we have

(C1.c3.3) next(G) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false).

From (C1.c3.3) and Def. →, we know [C1.c3.b].

This proves the case C1.c3.

This finishes the proof of case C1.

Case (C2) G’ = TCS(Ft1,Ft2) for some Ft1,Ft2 ∈ TFormula.

We show

Φ(G’)

Take F2f,Ftf,pf,sf,cf arbitrary but fixed.

Assume

(C2.1) next(TCS(Ft1,Ft2)) →(pf,sf↓pf,sf(pf),cf) next(G2f)

(C2.2) next(G2f) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf

Show

[C2.a] next(TCS(Ft1,Ft2)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

From (C2.1), by Def.→, we have two cases:

Case C2.c1. There exists Fc1∈TFormulaCore such that

(C2.c1.1) G2f = TCS(next(Fc1),Ft2)

(C2.c1.2) next(TCS(Ft1,Ft2)) →(pf,sf↓pf,sf(pf),cf) next(TCS(next(Fc1),Ft2))

(C2.c1.3) Ft1 →(pf,sf↓pf,sf(pf),cf) next(Fc1)

From (C2.2) and (C2.c1.1) we have

(C2.c1.4) next(TCS(next(Fc1),Ft2)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

From (C2.c1.3) and Def.→, we know for some Fc0 ∈ TFormulaCore

(C2.c1.5) Ft1 = next(Fc0)

(C2.c1.6) next(Fc0) →(pf,sf↓pf,sf(pf),cf) next(Fc1)

99

From (C2.c1.5) and [C2.a], we need to show

[C2.c1.b] next(TCS(next(Fc0),Ft2)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

From (C2),(C2.c1.5) and the induction hypothesis, we know Φ(Fc0) and thus

(C2.c1.7)

∀G2∈TFormulaCore, Ft∈TFormula, p∈N, s∈Stream, c∈Context :

next(Fc0) →(p,s↓p,s(p),c) next(G2) ∧ next(G2) →(p+1,s↓(p+1),s(p+1),c) Ft

⇒
next(Fc0) →(p+1,s↓(p+1),s(p+1),c) Ft.

From (C2.c1.4), we have the following cases.

Case C2.c1.c1. There exists Fc’∈TFormulaCore such that

(C2.c1.c1.1) Ftf = next(TCS(next(Fc’),Ft2))

(C2.c1.c1.2) next(TCS(next(Fc1),Ft2))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) next(TCS(next(Fc’),Ft2)).

(C2.c1.c1.3) next(Fc1) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc’).

From (C2.c1.c1.1) and [C2.c1.b], we need to show

[C2.c1.c1.b] next(TCS(next(Fc0),Ft2))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) next(TCS(next(Fc’),Ft2)).

In this case from (C2.c1.6), (C2.c1.c1.3), and (C2.c1.7) we have

(C2.c1.c1.4) next(Fc0) →(p+1,s↓(p+1),s(p+1),c) next(Fc’).

From (C2.c1.c1.4), by the definition of →, we get [C2.c1.c1.b].

This proves the case C2.c1.c1.

Case C2.c1.c2.

(C2.c1.c2.1) Ftf = done(false)

(C2.c1.c2.2) next(TCS(next(Fc1),Ft2))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false).

(C2.c1.c2.3) next(Fc1) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false).

From (C2.c1.c2.1) and [C2.c1.b], we need to show

[C2.c1.c2.b] next(TCS(next(Fc0),Ft2))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false).

From (C2.c1.6), (C2.c1.c2.3) and (C2.c1.7) we have

(C2.c1.c2.4) next(Fc0) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false).

From (C2.c1.c2.4), by the definition of →, we get [C2.c1.c2.b].

This proves the case C2.c1.c2.

100

Case C2.c1.c3. There exists Ft2’∈TFormula such that

(C2.c1.c3.1) Ftf = Ft2’

(C2.c1.c3.2) next(TCS(next(Fc1),Ft2)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ft2’.

(C2.c1.c3.3) next(Fc1) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(true).

(C2.c1.c3.4) Ft2 →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ft2’.

From (C2.c1.c3.1) and [C2.c1.b], we need to show

[C2.c1.c3.b] next(TCS(next(Fc0),Ft2)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ft2’.

From (C2.c1.6), (C2.c1.c3.3), and (C2.c1.7) we have

(C2.c1.c3.5) next(Fc0) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(true).

From (C2.c1.c3.5) and (C2.c1.c3.4), by Def.→, we get [C2.c1.c3.b].

This proves the case C2.c1.c2.

This proves the case C2.c1.

Case C2.c2.

Recall that we consider alternatives of G2f in

(C2.1) next(TCS(Ft1,Ft2)) →(pf,sf↓pf,sf(pf),cf) next(G2f)

Case C2.c1 considered the case when G2f = TCS(next(Fc1),Ft2).

According to Def.→, the other alternative for G2f is the following:

There exists G2’∈TFormulaCore such that

(C2.c2.1) G2f = G2’

(C2.c2.2) next(TCS(Ft1,Ft2)) →(pf,sf↓pf,sf(pf),cf) next(G2’)

(C2.c2.3) Ft1 →(pf,sf↓pf,sf(pf),cf) done(true)

(C2.c2.4) Ft2 →(pf,sf↓pf,sf(pf),cf) next(G2’)

From (C2.2) and (C2.c2.1) we have

(C2.c2.5) next(G2’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

From (C2.c2.3) and Def.→, we know for some Fc1 ∈ TFormulaCore

(C2.c2.6) Ft1 = next(Fc1)

(C2.c2.7) next(Fc1) →(pf,sf↓pf,sf(pf),cf) done(true)

From (C2.c2.4) and Def.→, we know for some Fc2 ∈ TFormulaCore

(C2.c2.8) Ft2 = next(Fc2)

(C2.c2.9) next(Fc2) →(pf,sf↓pf,sf(pf),cf) next(G2’)

From (C2.c2.6), (C2.c2.8) and [C2.a], we need to show

101

[C2.c2.b] next(TCS(next(Fc1),next(Fc2))) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

From (C2.c2.7), by Lemma 6, we know

(C2.c2.10) next(Fc1) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(true).

From (C2), (C2.c2.8) and the induction hypothesis, we know Φ(Fc2) and thus

(C2.c2.11)

∀G2∈TFormulaCore, Ft∈TFormula, p∈N, s∈Stream, c∈Context :

next(Fc2) →(p,s↓p,s(p),c) next(G2) ∧ next(G2) →(p+1,s↓(p+1),s(p+1),c) Ft

⇒
next(Fc2) →(p+1,s↓(p+1),s(p+1),c) Ft.

From (C2.c2.9), (C2.c2.5), and (C2.c2.11), we get

(C2.c2.11) next(Fc2) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

From (C2.c2.10) and (C2.c2.11), by Def.→, we get [C2.c2.b].

This proves the case C2.c2.

This finsihes the proof of case C2.

Case (C3) G’ = TCP(Ft1,Ft2) for some Ft1,Ft2 ∈ TFormula.

We show

Φ(G’)

Take F2f,Ftf,pf,sf,cf arbitrary but fixed.

Assume

(C3.1) next(TCP(Ft1,Ft2)) →(pf,sf↓pf,sf(pf),cf) next(G2f)

(C3.2) next(G2f) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf

Show

[C3.a] next(TCP(Ft1,Ft2)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

From (C3.1), by Def.→, we have three cases.

Case C3.c1

There exists Fc1,Fc2∈TFormulaCore such that

(C3.c1.1) G2f = TCP(next(Fc1),next(Fc2))

(C3.c1.2) Ft1 →(pf,sf↓pf,sf(pf),cf) next(Fc1)

(C3.c1.3) Ft2 →(pf,sf↓pf,sf(pf),cf) next(Fc2)

(C3.c1.4) next(TCP(Ft1,Ft2)) →(pf,sf↓pf,sf(pf),cf) next(TCP(next(Fc1),next(Fc2)))

102

From (C3.2) and (C3.c1.1) we have

(C3.c1.5) next(TCP(next(Fc1),next(Fc2))) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf

From (C3.c1.2) and Def.→, we know for some Fc1’∈TFormulCore

(C3.c1.6) Ft1 = next(Fc1’)

(C3.c1.7) next(Fc1’) →(pf,sf↓pf,sf(pf),cf) next(Fc1)

From (C3.c1.3) and Def.→, we know for some Fc2’∈TFormulCore

(C3.c1.8) Ft2 = next(Fc2’)

(C3.c1.9) next(Fc2’) →(pf,sf↓pf,sf(pf),cf) next(Fc2)

From (C3.c1.6), (C3.c1.8) and [C3.a], we need to show

[C3.c1.b] next(TCP(next(Fc1’),next(Fc2’))) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

From (C3), (C3.c1.6) and the induction hypothesis, we know Φ(Fc1’) and thus

(C3.c1.10)

∀G2∈TFormulaCore, Ft∈TFormula, p∈N, s∈Stream, c∈Context :

next(Fc1’) →(p,s↓p,s(p),c) next(G2) ∧ next(G2) →(p+1,s↓(p+1),s(p+1),c) Ft

⇒
next(Fc1’) →(p+1,s↓(p+1),s(p+1),c) Ft.

From (C3), (C3.c1.8) and the induction hypothesis, we know Φ(Fc2’) and thus

(C3.c1.11)

∀G2∈TFormulaCore, Ft∈TFormula, p∈N, s∈Stream, c∈Context :

next(Fc2’) →(p,s↓p,s(p),c) next(G2) ∧ next(G2) →(p+1,s↓(p+1),s(p+1),c) Ft

⇒
next(Fc2’) →(p+1,s↓(p+1),s(p+1),c) Ft.

From (C3.c1.5), by Def.→, we have the following five cases.

Case C3.c1.c1

There exist Fc1’’, Fc2’’∈TFormulaCore such that

(C3.c1.c1.1) Ftf = next(TCP(next(Fc1’’),next(Fc2’’)))

(C3.c1.c1.2) next(Fc1) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc1’’)

(C3.c1.c1.3) next(Fc2) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc2’’)

(C3.c1.c1.4) next(TCP(next(Fc1),next(Fc2)))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) next(TCP(next(Fc1’’),next(Fc2’’)))

From (C3.c1.c1.1) and [C3.c1.b] we need to prove

[C3.c1.c1.b] next(TCP(next(Fc1’),next(Fc2’)))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) next(TCP(next(Fc1’’),next(Fc2’’))).

From (C3.c1.7), (C3.c1.c1.2), and (C3.c1.10) we have

103

(C3.c1.c1.5) next(Fc1’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc1’’).

From (C3.c1.9), (C3.c1.c1.3), and (C3.c1.11) we have

(C3.c1.c1.6) next(Fc2’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc2’’)

From (C3.c1.c1.5) and (C3.c1.c1.6), by Def.→ we get [C3.c1.c1.b].

This proves case the C3.c1.c1.

Case C3.c1.c2

There exist Fc1’’∈TFormulaCore such that

(C3.c1.c2.1) Ftf = next(Fc1’’)

(C3.c1.c2.2) next(Fc1) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc1’’)

(C3.c1.c2.3) next(Fc2) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(true)

(C3.c1.c2.4) next(TCP(next(Fc1),next(Fc2)))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc1’’)

From (C3.c1.c2.1) and [C3.c1.b] we need to prove

[C3.c1.c2.b] next(TCP(next(Fc1’),next(Fc2’)))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc1’’).

From (C3.c1.7), (C3.c1.c2.2), and (C3.c1.10) we have

(C3.c1.c2.5) next(Fc1’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc1’’).

From (C3.c1.9), (C3.c1.c2.3), and (C3.c1.11) we have

(C3.c1.c2.6) next(Fc2’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(true).

From (C3.c1.c2.5) and (C3.c1.c2.6), by Def.→ we get [C3.c1.c2.b].

This proves the case C3.c1.c2.

Case C3.c1.c3

There exist Fc1’’∈TFormulaCore such that

(C3.c1.c3.1) Ftf = done(false)

(C3.c1.c3.2) next(Fc1) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc1’’)

(C3.c1.c3.3) next(Fc2) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false)

(C3.c1.c3.4) next(TCP(next(Fc1),next(Fc2)))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false)

From (C3.c1.c3.1) and [C3.c1.b] we need to prove

[C3.c1.c2.b] next(TCP(next(Fc1’),next(Fc2’)))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false).

104

From (C3.c1.7), (C3.c1.c3.2), and (C3.c1.10) we have

(C3.c1.c3.5) next(Fc1’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc1’’).

From (C3.c1.9), (C3.c1.c3.3), and (C3.c1.11) we have

(C3.c1.c3.6) next(Fc2’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false).

From (C3.c1.c3.5) and (C3.c1.c3.6), by Def.→ we get [C3.c1.c3.b].

This proves the case C3.c1.c3.

Case C3.c1.c4

(C3.c1.c4.1) Ftf = done(false)

(C3.c1.c4.2) next(Fc1) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false)

(C3.c1.c4.3) next(TCP(next(Fc1),next(Fc2)))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false)

From (C3.c1.c4.1) and [C3.c1.b] we need to prove

[C3.c1.c4.b] next(TCP(next(Fc1’),next(Fc2’)))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false).

From (C3.c1.7), (C3.c1.c4.2), and (C3.c1.10) we have

(C3.c1.c4.5) next(Fc1’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false).

From (C3.c1.c4.5) by Def.→ we get [C3.c1.c4.b].

This proves the case C3.c1.c4.

Case C3.c1.c5

There exist Fc2’’∈TFormulaCore such that

(C3.c1.c5.1) Ftf = next(Fc2’’)

(C3.c1.c5.2) next(Fc1) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(true)

(C3.c1.c5.3) next(Fc2) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc2’’)

(C3.c1.c5.4) next(TCP(next(Fc1),next(Fc2)))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc2’’)

From (C3.c1.c5.1) and [C3.c1.b] we need to prove

[C3.c1.c5.b] next(TCP(next(Fc1’),next(Fc2’)))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc2’’).

From (C3.c1.7), (C3.c1.c5.2), and (C3.c1.10) we have

(C3.c1.c5.5) next(Fc1’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(true).

105

From (C3.c1.9), (C3.c1.c5.3), and (C3.c1.11) we have

(C3.c1.c5.6) next(Fc2’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) next(Fc2’’).

From (C3.c1.c5.5) and (C3.c1.c5.6), by Def.→ we get [C3.c1.c5.b].

This proves the case C3.c1.c3.

This proves the case C3.c1.

Case C3.c2

(C3.c2.1) Ft1 →(pf,sf↓pf,sf(pf),cf) next(G2f)

(C3.c2.2) Ft2 →(pf,sf↓pf,sf(pf),cf) done(true)

From (C3.c2.1) and Def.→, we know for some Fc1’∈TFormulCore

(C3.c2.3) Ft1 = next(Fc1’)

(C3.c2.4) next(Fc1’) →(pf,sf↓pf,sf(pf),cf) next(G2f)

From (C3.c2.2) and Def.→, we know for some Fc2’∈TFormulCore

(C3.c2.5) Ft2 = next(Fc2’)

(C3.c2.6) next(Fc2’) →(pf,sf↓pf,sf(pf),cf) done(true)

From (C3.c2.3), (C3.c2.5) and [C3.a], we need to show

[C3.c2.b] next(TCP(next(Fc1’),next(Fc2’))) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

From (C3), (C3.c2.2) and the induction hypothesis, we know Φ(Fc1’) and thus

(C3.c2.7)

∀G2∈TFormulaCore, Ft∈TFormula, p∈N, s∈Stream, c∈Context :

next(Fc1’) →(p,s↓p,s(p),c) next(G2) ∧ next(G2) →(p+1,s↓(p+1),s(p+1),c) Ft

⇒
next(Fc1’) →(p+1,s↓(p+1),s(p+1),c) Ft.

From (C3.c2.4), (C3.2), and (C3.c2.7) we get

(C3.c2.8) next(Fc1’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

From (C3.c2.6), by Lemma 6, we get

(C3.c3.9) next(Fc2’) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(true).

From (C3.c2.8) and (C3.c2.9), by Def.→, we get [C3.c2.b].

This proves the vase C3.c2

106

Case C3.c3

(C3.c3.1) Ft1 →(pf,sf↓pf,sf(pf),cf) done(true)

(C3.c3.2) Ft2 →(pf,sf↓pf,sf(pf),cf) next(G2f)

This case can be proved similarly to case C3.c2.

This finishes the proof of C3.

Case (C4) G’ = TA(X,b1,b2,Ft) for some X∈Variable, b1,b2∈BoundValue,
Ft ∈ TFormula.

We show

Φ(G’)

Take F2f,Ftf,pf,sf,cf arbitrary but fixed.

Assume

(C4.1) next(TA(X,b1,b2,Ft)) →(pf,sf↓pf,sf(pf),cf) next(G2f)

(C4.2) next(G2f) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf

Show

[C4.a] next(TA(X,b1,b2,Ft)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

From (C4.1), by Def.→, we have that there exist p1,p2∈N such that

(C4.3) p1=b1(cf)

(C4.4) p2=b2(cf)

(C4.5) p16=∞
(C4.6) next(TA0(X,p1,p2,Ft)) →(pf,sf↓pf,sf(pf),cf) next(G2f)

To prove [C4.a], by the definition of →, we would have two alternatives:

Ftf=done(true) or Ftf6=done(true). But the case Ftf=done(true) is impossible

because of (C4.5). Hence, we assume Ftf6=done(true) and prove

[C4.a.1] p1=b1(cf)

[C4.a.2] p2=b2(cf)

[C4.a.3] p1 6=∞
[C4.a.4] next(TA0(X,p1,p2,Ft)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

[C4.a.1-3] are immediately proved due to (C4.3-5).

To prove [C4.a.4], from (C4.6), by Def.→, we consider two cases.

Case C4.c1.

In this case from (C4.6) we have

107

(C4.c1.1) pf<p1

(C4.c1.2) next(TA0(X,p1,p2,Ft)) →(pf,sf↓pf,sf(pf),cf) next(TA0(X,p1,p2,Ft))

(C4.c1.3) next(G2f) = next(TA0(X,p1,p2,Ft))

From (C4.2) and (C4.c1.3) we get [C4.a.4]

This finishes the proof of C4.c1.

Case C4.c2.

In this case from (C4.6) we have

(C4.c2.1) pf≥p1
(C4.c2.2) fs = {(p0,Ft,(cf.1[X7→p0],cf.2[X7→sf(p0)])) |

p1 ≤ p0 <∞ min∞(pf,p2+∞1)}

(C4.c2.3) next(TA1(X,p2,Ft,fs)) →(pf,sf↓pf,sf(pf),cf) next(G2f)

From (C4.c2.3), by the definition of →, we know

(C4.c2.4) G2f = TA1(X,p2,Ft,fs1), where

(C4.c2.5) fs0 =

if pf >∞ p2 then fs

else fs ∪ {(pf,Ft,(cf.1[X7→pf],cf.2[X7→sf(pf)]))}

(C4.c2.6) ¬∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs0 ∧ ` g →(pf,sf↓pf,sf(pf),c) done(false)

(C4.c2.7) fs1 = { (t,next(fc),c) ∈ TInstance |

∃g∈TFormula:
(t,g,c)∈fs0 ∧ ` g →(pf,sf↓pf,sf(pf),c) next(fc) }

(C4.c2.8) ¬(fs1 = ∅ ∧ pf ≥∞ p2)

From (C4.2) and (C4.c2.4) we have

(C4.c2.9) next(TA1(X,p2,Ft,fs1)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

Recall that we need to prove

[C4.a.4] next(TA0(X,p1,p2,Ft)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf.

By definition of → and (C4.c2.1), in order to prove [C4.a.4], we need to prove

[C4.a.5] next(TA1(X,p2,Ft,fs’)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf,

where

(C4.c2.10) fs’ = {(p0,Ft,(cf.1[X7→p0],cf.2[X7→sf(p0)])) |

p1 ≤ p0 <∞ min∞(pf+1,p2+∞1)}.

Note that

if pf >∞ p2 then min∞(pf+1,p2+∞1)=min∞(pf,p2+∞1)

else min∞(pf+1,p2+∞1)=pf+1.

Therefore, from (C4.c2.2), (C4.c2.5), and (C4.c2.10) we have

(C4.c2.11) fs’=fs0.

108

Hence, we need to prove

[C4.a.6] next(TA1(X,p2,Ft,fs0)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) Ftf,

We prove [C4.a.6] by case distinction over Ftf.

Ftf = done(false)

In this case, from (C4.c2.9) we get

(C4.c2.12) next(TA1(X,p2,Ft,fs1)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(false)

From (C4.c2.12), by the definition of → for forall we have

(C4.c2.13) ∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs1’ ∧ ` g →(pf+1,sf↓(pf+1),sf(pf+1),c) done(false)

where

(C4.c2.14) fs1’ =

if pf+1 >∞ p2 then fs1

else fs1 ∪ {(pf+1,Ft,(cf.1[X7→pf+1],cf.2[X7→sf(pf+1)]))}.

Take (t1,g1,c1) which is a witness for (C4.c2.13). That means, we have

(C4.c2.13’) (t1,g1,c1)∈fs1’ and

(C4.c2.13’’) g1 →(pf+1,sf↓(pf+1),sf(pf+1),c1) done(false).

Assume first

(C4.c2.15) pf+1>∞ p2, which from (C4.c2.14) gives

--

(C4.c2.16) (t1,g1,c1)∈fs1.

To show [C4.a.6], we need to prove

[C4.a.7] ∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs0’ ∧ ` g →(pf+1,sf↓(pf+1),sf(pf+1),c) done(false)

where

(C4.c2.17) fs0’ =

if pf+1 >∞ p2 then fs0

else fs0 ∪ {(pf+1,Ft,(cf.1[X7→pf+1],cf.2[X7→sf(pf+1)]))}.

From (C4.c2.15) and (C4.c2.17), we have

(C4.c2.18) fs0’=fs0.

from (C4.c2.16), by (C4.c2.7), there exists g0∈TFormula and fc1∈TFormulaCore
such that

(C4.c2.19) g1=next(fc1)

109

(C4.c2.20) (t1,g0,c1)∈fs0
(C4.c2.21) ` g0 →(pf,sf↓pf,sf(pf),c1) next(fc1)

From (C4.c2.21), by the definition of →, there exists fc0∈TFormulaCore
such that

(C4.c2.22) g0=next(fc0).

From (C4.c2.13’), (C4.c2.19), and (C4.c2.13’’) we know

(C4.c2.23) ` next(fc1) →(pf+1,sf↓(pf+1),sf(pf+1),c1) done(false).

From (C4.c2.21), (C4.c2.22), (C4.c2.23), by the induction hypothesis, we get

(C4.c2.24) ` g0 →(pf+1,sf↓(pf+1),sf(pf+1),c1) done(false).

From (C4.c2.18) and (C4.c2.20), we get

(C4.c2.25) (t1,g0,c1)∈fs0’.

From (C4.c2.25) and (C4.c2.24), we get [C4.a.7].

Now assume

(C4.c2.26) pf+1≤∞ p2, which from (C4.c2.14) gives

(C4.c2.27) (t1,g1,c1)∈ fs1 ∪ {(pf+1,Ft,(cf.1[X7→pf+1],cf.2[X7→sf(pf+1)]))}.

Recall:

To show [C4.a.6], we need to prove

[C4.a.7] ∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs0’ ∧ ` g →(pf+1,sf↓(pf+1),sf(pf+1),c) done(false)

where

(C4.c2.17) fs0’ =

if pf+1 >∞ p2 then fs0

else fs0 ∪ {(pf+1,Ft,(cf.1[X7→pf+1],cf.2[X7→sf(pf+1)]))}.

From (C4.c2.26) and (C4.c2.17), we have

(C4.c2.28) fc0’=fs0 ∪ {(pf+1,Ft,(cf.1[X7→pf+1],cf.2[X7→sf(pf+1)]))}.

If (t1,g1,c1)∈ fs1, the proof proceeds as for the case pf+1>∞ p2 above.

Consider

(C4.c2.29) (t1,g1,c1) = (pf+1,Ft,(cf.1[X7→pf+1],cf.2[X7→sf(pf+1)])).

From (C4.c2.28) and (C4.c2.29) we have

(C4.c2.30) (t1,g1,c1)∈fc0’

110

From (C4.c2.30) and (C4.c2.13’’) we get [C4.a.7].

This finishes the proof of the case Ftf=done(false).

Ftf = done(true). The case p1=∞ is excluded due to (C4.5), and Def. of →.

Hence, we need to prove

[C4.a.true.1] next(TA1(X,p2,Ft,fs0)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(true),

which by Def.→ means, we need to prove

[C4.a.true.2] ¬∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs00 ∧ ` g →(pf+1,sf↓(pf+1),sf(pf+1),c) done(false)

[C4.a.true.3] fs01= ∅ ∧ pf+1 ≥∞ p2,

where

(C4.c2.true.1) fs00 =

if pf+1 >∞ p2 then fs0

else fs0 ∪ {(pf+1,Ft,(cf.1[X7→pf+1],c.2[X7→sf(pf+1)]))}

(C4.c2.true.2) fs01 =

{ (t,next(fc),c) ∈ TInstance |

∃g∈TFormula:
(t,g,c)∈fs00 ∧ ` g →(pf+1,sf↓(pf+1),sf(pf+1),c) next(fc) }

On the other hand, from (C4.c2.9) we know

(C4.c2.true.3) next(TA1(X,p2,Ft,fs1)) →(pf+1,sf↓(pf+1),sf(pf+1),cf) done(true).

From (C4.c2.true.3), by Def. →, we know

(C4.c2.true.4) ¬∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs10 ∧ ` g →(pf+1,sf↓(pf+1),sf(pf+1),c) done(false)

(C4.c2.true.5) fs11 = ∅ ∧ pf+1 ≥∞ p2

where

(C4.c2.true.6) fs10 =

if pf+1 >∞ p2 then fs1

else fs1 ∪ {(pf+1,Ft,(cf.1[X7→pf+1],c.2[X7→sf(pf+1)]))}

(C4.c2.true.7) fs11 =

{ (t,next(fc),c) ∈ TInstance |

∃g∈TFormula:
(t,g,c)∈fs10 ∧ ` g →(pf+1,sf↓(pf+1),sf(pf+1),c) next(fc) }

Recall the relationshsip between fs0 and fs1:

(C4.c2.7) fs1 = { (t,next(fc),c) ∈ TInstance |

∃g∈TFormula:
(t,g,c)∈fs0 ∧ ` g →(pf,sf↓pf,sf(pf),c) next(fc)}

111

From (C4.c2.true.6), (C4.c2.true.7), and (C4.c2.true.5) we know that

(C4.c2.true.8) ¬∃fc∈TFormulaCore:
Ft →(pf+1,sf↓(pf+1),sf(pf+1),cf.1[X7→pf+1]) next(fc).

Now assume by contradiction that for some (t0,g0,c0)∈fs0 we have

(C4.c2.true.9) ∃fc∈TFormulaCore: g0 →(pf+1,sf↓(pf+1),sf(pf+1),c0) next(fc)

From (C4.c2.true.9), by Lemma 6, there exist fc0∈TFormulaCore such that

(C4.c2.true.10) g0 →(pf,sf↓(pf),sf(pf),c0) next(fc0)

From (C4.c2.true.9) by (C4.c2.7) we have that there exists fc0∈TFormulaCore
such that

(C4.c2.true.11) (t0,next(fc0),c0)∈fs1.

From (C4.c2.true.11) by (C4.c2.true.6) we get

(C4.c2.true.12) (t0,next(fc0),c0)∈fs10.

From (C4.c2.true.12) by (C4.c2.true.7), (C4.c2.true.5), (C4.c2.true.4), we get

(C4.c2.true.13) next(fc0) →(pf+1,sf↓(pf+1),sf(pf+1),c0) done(true)

From (C4.c2.true.10) and (C4.c2.true.13), by the induction hypothesis, we get

(C4.c2.true.14) g0 →(pf+1,sf↓(pf+1),sf(pf+1),c0) done(true)

But (C4.c2.true.14) contradicts (C4.c2.true.9). Hence, we know that for all

(t,g,c)∈fs0

(C4.c2.true.15) ¬∃fc∈TFormulaCore: g →(pf+1,sf↓(pf+1),sf(pf+1),c) next(fc)

From (C4.c2.true.8) and (C4.c2.true.15) we know that for all

(t,g,c)∈fs00

(C4.c2.true.16) ¬∃fc∈TFormulaCore: g →(pf+1,sf↓(pf+1),sf(pf+1),c) next(fc).

From (C4.c2.true.16) we get

(C4.c2.true.17) fs01= ∅

From (C4.c2.true.17) and the second conjunct of (C4.c2.true.5) we get

[C4.a.true.3].

To prove [C4.a.true.2] note that from (C4.c2.true.4) and (C4.c2.true.6) we have

(C4.c2.true.18) Ft →(pf+1,sf↓(pf+1),sf(pf+1),cf.1[X7→pf+1]) done(false)

does not hold.

Recall that in (C4.c2.6) we have

112

(C4.c2.6) ¬∃t∈N,g∈TFormula,c∈Context:
(t,g,c)∈fs0 ∧ ` g →(pf,sf↓pf,sf(pf),c) done(false)

Hence, for no (t,g,c)∈fs00 we have g →(pf,sf↓pf,sf(pf),c) done(false).

It proves [C4.a.true.2].

Ftf is a ’next’ formula.

Let Ftf = next(TA1(X,p2,Ft,fs2)) for some fs2. Then from [C4.a.6] and

(C4.c2.11),

we need to prove

[C4.a.next.1] next(TA1(X,p2,Ft,fs0))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) next(TA1(X,p2,Ft,fs2))

To prove [C4.a.next.8], we define

(C4.c2.next.1) fs00 :=

if pf+1 >∞ p2 then fs0

else fs0 ∪ {(pf+1,Ft,(cf.1[X7→pf+1],cf.2[X7→sf(pf+1)]))}

(C4.c2.next.2) fs01 :=

{ (t,next(fc),c) ∈ TInstance |

∃g∈TFormula:
(t,g,c)∈fs00 ∧ ` g →(pf+1,sf↓(pf+1),sf(pf+1),c) next(fc) }

and prove

[C4.a.next.2] ¬∃t∈N,g∈FormulaStep,c∈Context:
(t,g,c)∈fs00 ∧ ` g →(pf+1,sf↓(pf+1),sf(pf+1),c) done(false)

[C4.a.next.3] ¬(fs01 = ∅ ∧ pf+1 ≥∞ p2)

On the other hand, from (C4.c2.9) we know

(C4.c2.next.3) next(TA1(X,p2,Ft,fs1))

→(pf+1,sf↓(pf+1),sf(pf+1),cf) next(TA1(X,p2,Ft,fs2)).

From (C4.c2.next.3), by Def.→, we know

(C4.c2.next.4) ¬∃t∈N,g∈FormulaStep,c∈Context:
(t,g,c)∈fs10 ∧ ` g →(pf+1,sf↓(pf+1),sf(pf+1),c) done(false)

(C4.c2.next.5) ¬(fs11 = ∅ ∧ pf+1 ≥∞ p2)

where

(C4.c2.next.6) fs10 =

if pf+1 >∞ p2 then fs1

else fs1 ∪ {(pf+1,Ft,(cf.1[X7→pf+1],cf.2[X7→sf(pf+1)]))}

(C4.c2.next.7) fs11 =

113

{ (t,next(fc),c) ∈ TInstance |

∃g∈TFormula:
(t,g,c)∈fs10 ∧ ` g →((pf+1,sf↓(pf+1),sf(pf+1),c) next(fc) }

Recall the relation between fs0 and fs1:

(C4.c2.7) fs1 =

{ (t,next(fc),c) ∈ TInstance |

∃g∈TFormula:
(t,g,c)∈fs0 ∧ ` g →(pf,sf↓pf,sf(pf),c) next(fc) }

By (C4.c2.6) and (C4.c2.next.1), to prove [C4.a.next.2], it suffices to prove

that

[C4.a.next.4] ` Ft →(pf+1,sf↓(pf+1),sf(pf+1),(cf.1[X7→pf+1],cf.2[X7→sf(pf+1)]))

done(false)

does not hold.

But this directly follows from (C4.c2.next.6) and (C4.c2.next.4).

Hence, [C4.a.next.4] is proved.

To prove [C4.a.next.3], we assume

(C4.c2.next.8) pf+1 ≥∞ p2

and prove

[C4.a.next.5] fs01 6= ∅.

From (C4.c2.next.8) and (C4.c2.next.5) we know

(C4.c2.next.9) fs11 6= ∅.

From (C4.c2.next.9), there exist (t1,g1,c1)∈fs10 and fc1∈TFormulaCore such that

(C4.c2.next.9) ` g1 →(pf+1,sf↓(pf+1),sf(pf+1),c1) next(fc1).

According to (C4.c2.next.6), (t1,g1,c1)∈fs10 means either (t1,g1,c1)∈fs1 or

(t1,g1,c1)=(pf+1,Ft,(cf.1[X7→pf+1],cf.2[X7→sf(pf+1)])

First assume (t1,g1,c1)∈fs1.

By (C4.c2.7), it means that there exist (t0,g0,c0)∈fs0 and fc0∈TFormulaCore
such that

(C4.c2.next.10) ` g0 →(pf,sf↓pf,sf(pf),c0) next(fc0)

(C4.c2.next.11) g1=next(fc0)

Moreover, g0 is a ’next’ formula.

(C4.c2.next.12) g0 = next(fc) for some fc∈TFormulaCore.

Besides, from (C4.c2.7) one can see that

114

(C4.c2.next.13) c0=c1.

Hence, from (C4.c2.next.9--13) we have

(C4.c2.next.14) next(fc) →(pf,sf↓pf,sf(pf),c0) next(fc0)

(C4.c2.next.15) next(fc0)→(pf+1,sf↓(pf+1),sf(pf+1),c0) next(fc1)

From (C4.c2.next.14) and (C4.c2.next.15), by the induction hypothesis,

we obtain that

(C4.c2.next.16) next(fc)→(pf+1,sf↓(pf+1),sf(pf+1),c0) next(fc1)

Hence, we got that for (t0,g0,c0)∈fs0 and fc1∈TFormulaCore

(C4.c2.next.17) g0→(pf+1,sf↓(pf+1),sf(pf+1),c0) next(fc1).

By definition (C4.c2.next.1) of fs00, we have (t0,g0,c0)∈fs00.

Now assume (t1,g1,c1)=(pf+1,Ft,(cf.1[X7→pf+1],cf.2[X7→sf(pf+1)])

Trivially, by definition (C4.c2.next.1) of fs00, we have (t1,g1,c1)∈fs00.

Hence, in both cases we found a triple

(C4.c2.next.18) (t,g,c)∈fs00

such that

(C4.c2.next.19) g→(pf+1,sf↓(pf+1),sf(pf+1),c) next(fc1)

holds. (C4.c2.next.18), (C4.c2.next.19), and (C4.c2.next.2) imply [C4.a.next.5].

This finishes the proof of the case Ftf is a ’next’ formula.

This finishes the proof of C4.c2.

This finishes the proof of C4.

This finishes the proof of Lemma 8.

115

