Verifying the Soundness of Resource Analysis for LogicGuard Monitors Revised Version*

Temur Kutsia Wolfgang Schreiner
RISC, Johannes Kepler University Linz
\{kutsia,schreine\}@risc.jku.at

September 17, 2014

Abstract

In a companion paper (Wolfgang Schreiner, Temur Kutsia. A Resource Analysis for LogicGuard Monitors. RISC Technical report, December 5, 2013) we described a static analysis to determine whether a specification expressed in the LogicGuard language gives rise to a monitor that can operate with a finite amount of resources, notably with finite histories of the streams that are monitored. Here we prove the soundness of the analysis with respect to a formal operational semantics. The analysis is presented for an abstract core language that monitors a single stream.

Contents

1 Introduction 2
2 The Core Language and Resource Analysis 2
3 Operational Semantics 4
4 Soundness of Resource Analysis 9
5 Conclusion 14
A Proofs 16
A. 1 Theorem 1: Soundness Theorem 16
A. 2 Proposition 1: The Invariant Statement 26
A. 3 Lemma 1: Soundness Lemma for Formulas 36
A. 4 Lemma 2: Equivalence of Left- and Right-Recursive Definitions of n-Step Reductions 46
A. 5 Lemma 3: History Cut-Off Lemma 53
A. 6 Lemma 4: n-Step Reductions to done Formulas for TN, TCS, TCP 70
A. 7 Lemma 5: Soundness Lemma for Universal Formulas 95
A. 8 Lemma 6: Monotonicity of Reduction to done 101
A. 9 Lemma 7: Shifting Lemma 106
A. 10 Lemma 8: Triangular Reduction Lemma 107
A. 11 Lemma 9: Soundness of Bound Analysis 126
A. 12 Lemma 10: Invariant Lemma for Universal Formulas 130

[^0]
1 Introduction

The goal of the LogicGuard project is to investigate to what extent classical predicate logic formulas are suitable as the basis for the specification and efficient runtime verification of system runs. The specific focus of the project is on computer and network security, concentrating on predicate logic specifications of security properties of network traffic. Properties are expressed by quantified formulas interpreted over sequences of messages; the quantified variable denotes a position in the sequence. Using the ordering of stream positions and nested quantification, complex properties can be formulated. Furthermore, to raise the level of abstraction, a higher-level stream may be constructed from a lower-level stream by a notation analogous to classical set builders. A translator generates from the specification an executable monitor.

The main ideas of these developments have been presented in [4] and [5]; in [1], the syntax and semantics of (an early abstract form of) the specification language are given; in [2], the translation of a specification to an executable monitor is described. A prototype of the translator and of the corresponding runtime system have been implemented and are operational.

The current implementation assumes that the whole "history" of a stream is preserved, i.e., that all received messages are stored in memory; thus the memory requirements of a monitor continuously grow. In practice, however, we are only interested in monitors that operate for an indefinite amount of time within a bounded amount of memory.

In [6], we tried to fill this gap by presenting a static analysis that

- is able to determine whether a given specification can be monitored with a finite amount of history (and that may consequently generate a warning/error message, if not) and that
- generates corresponding information in an easily accessible form such that after each execution step the runtime system of the monitor may appropriately prune the histories of the streams on which it operates.

One part of [6] was devoted to presenting the main ideas of the analysis by an abstract core language, which is only a skeleton of the real language; in particular it only monitors a single stream and does not support the construction of virtual streams. In this report, we use this language to formalize the operational semantics of the monitor execution and prove the soundness of the analysis presented in this report with respect to that semantics.

This paper is organized as follows: In Sect. 2 we briefly recall the definitions of the core language and the resource analysis from [6]. In Sect. 3 the operational semantics of the core language is described. In Sect. 4 the main result is formulated: soundness of the resource analysis with respect to the operational semantics. This section contains also all the lemmas needed for proving the soundness theorem. The proofs can be found in the Appendix.

This paper is an extended and revised version of [3] and subsumes it: We fixed typos, added Lemma 10 and the proof of Lemma 5, and in some places modified the statements and proofs of the other lemmas.

2 The Core Language and Resource Analysis

The core language is depicted in Figure 1.
A specification in the core language describes a single monitor that controls a single stream of Boolean values where the atomic predicate $@ X$ denotes the value on the stream at the position $X, \sim X$ denotes negation, $F_{1} \& \& F_{2}$ denotes sequential conjunction (the evaluation of F_{2} is delayed until the value of F_{1} becomes available), $F_{1} \wedge F_{2}$ describes parallel evaluation (both formulas are evaluated simultaneously until one of them becomes false or both become true) and forall X in $B_{1} \ldots B_{2}: F$ evaluates F at all positions in the range denoted by the interval $B_{1} \ldots B_{2}$ until one instance becomes false or all instances become true; the creation of a new instance $F[n]$ is triggered by the arrival of the message number n on the stream.

This language is interpreted over a single stream of messages carrying truth values. We assume that a monitor M in this language is executed as follows: whenever a new message arrives on the

```
\(M::=\) monitor \(X: F\)
\(F::=@ X|\quad \sim F| F_{1} \& \& F_{2}\left|F_{1} \backslash F_{2}\right|\) forall \(X\) in \(B_{1} \ldots B_{2}: F\)
\(B::=0 \mid\) infinity \(|X| B+N \mid B-N\)
\(N::=0|1| 2 \mid \ldots\)
\(X::=\mathrm{x}|\mathrm{y}| \mathrm{z} \mid \ldots\)
```

Figure 1: The Core Language
stream, an instance $F[p / X]$ of the monitor body F is created where p denotes the position of the message in the stream. All instances are evaluated on every subsequently arriving message which may or may not let the instance evaluate to a definite truth value; whenever an instance evaluates to such a value, this instance is discarded from the set; the positions of instances with negative truth values are reported as "violations" of the monitor.

A formula F in a monitor instance is evaluated as follows:

- the predicate $@ X$ is immediately evaluated to the truth value of the message at position X of the stream (see below for further explanation);
- ~ F first evaluates F and then negates the result;
- $F_{1} \& \& F_{2}$ first evaluates F_{1} and, if the result is true, then also evaluates F_{2};
- $F_{1} \wedge F_{2}$ evaluates both F_{1} and F_{2} "in parallel" until the value of one subformula determines the value of the total formula;
- forall X in $B_{1} \ldots B_{2}: F$ first determines the bounds of the position interval $\left[B_{1}, B_{2}\right]$; it then creates for every position p in the interval, as soon as the messages in the stream reach that position, an instance $F[p / X]$ of the formula body. All instances are evaluated on the subsequently arriving messages until all instances have been evaluated to "true" (and no more instances are to be generated) or some instance has been evaluated to "false".

We assume that the monitoring formula M is closed, i.e., every occurrence of a position variable in it is bound by a quantifier monitor or forall. Since by the evaluation strategies for these quantifiers, a formula instance is created only when the messages have reached the position assigned to the quantified variable, every occurrence of predicate $@ X$ can be immediately evaluated without delay.

We are interested in determining bounds for the resources used by the monitor, i.e., in particular in the following questions:

1. From the position where a monitor instance is created, how many "look-back" positions are required to evaluate the formula? This value determines the size of the "history" of past messages that have to be preserved in an implementation of the monitor.
2. How many instances can be active at the same time? This value determines the size that has to be reserved for the set of instances in the implementation of the monitor.

The basic idea for the analysis is a sort of "abstract interpretation" of the monitor where in a top-down fashion every position variable X is annotated as $X^{(l, u)}$ where the interval $[p+l, p+u]$ denotes those positions that the variables can have in relation to the position p of the "current" message of the stream; in a bottom up step, we then annotate every formula F with a pair (h, d) where h is (an upper bound of) the size of the "history" (the number of past messages) required for the evaluation of F and d is (an upper bound of) the number of future messages that may be required such that the evaluation of F may be "delayed" by this number of steps.

The basic idea is formalized in Figures 2 and 3 by a rule system with three kinds of judgements:

$$
\begin{gathered}
\vdash M: \mathbb{N}^{\infty} \times \mathbb{N}^{\infty} \text { Environment } \vdash F: \mathbb{N}^{\infty} \times \mathbb{N}^{\infty} \quad \text { Environment } \vdash B: \mathbb{Z}^{\infty} \times \mathbb{Z}^{\infty} \\
\frac{[\llbracket X \rrbracket \mapsto(0,0)] \vdash F:(h, d)}{\vdash(\operatorname{monitor} X: F):(h, d)} \\
e \vdash \mathbb{}+(0,0) \quad \frac{e \vdash F:(h, d)}{e \vdash \sim F:(h, d)} \\
\frac{e \vdash F_{1}:\left(h_{1}, d_{1}\right), e \vdash F_{2}:\left(h_{2}, d_{2}\right)}{e \vdash F_{1} \& \& F_{2}:\left(\max ^{\infty}\left(h_{1}, h_{2}+^{\infty} d_{1}\right), \max ^{\infty}\left(d_{1}, d_{2}\right)\right)} \\
\frac{e \vdash F_{1}:\left(h_{1}, d_{1}\right), e \vdash F_{2}:\left(h_{2}, d_{2}\right)}{e \vdash F_{1} / \backslash F_{2}:\left(\max ^{\infty}\left(h_{1}, h_{2}\right), \max ^{\infty}\left(d_{1}, d_{2}\right)\right)} \\
e \vdash B_{1}:\left(l_{1}, u_{1}\right), e \vdash B_{2}:\left(l_{2}, u_{2}\right) \\
e\left[\llbracket X \rrbracket \mapsto\left(l_{1}, u_{2}\right)\right] \vdash F:\left(h^{\prime}, d^{\prime}\right) \\
h=\max ^{\infty}\left(h^{\prime}, \mathbb{N}^{\infty}\left(-l_{1}\right)\right) \\
\frac{d=\max ^{\infty}\left(d^{\prime}, \mathbb{N}^{\infty}\left(u_{2}\right)\right)}{e \vdash \mathrm{forall} X \operatorname{in} B_{1} \cdot B_{2}:(h, d)} \\
e \vdash 0:(-\infty, 0) \quad e \vdash \operatorname{infinity:(\infty ,\infty)} \frac{\llbracket X \rrbracket \notin \operatorname{domain}(e)}{e \vdash X:(0,0)} \frac{\llbracket X \rrbracket \in d o m a i n(e)}{e \vdash X: e(\llbracket X \rrbracket)} \\
\frac{e \vdash B:(l, u)}{e \vdash B+N:\left(l+^{\infty} \llbracket N \rrbracket, u+^{\infty} \llbracket N \rrbracket\right)} \frac{e \vdash B:(l, u)}{e \vdash B-N:(l-\infty \llbracket N \rrbracket, u-\infty \llbracket N \rrbracket)}
\end{gathered}
$$

Figure 2: The Analysis of the Core Language

- $\vdash M:(h, d)$ states that the evaluation of the monitor M requires at most h messages from the past of the stream and at most d old monitor instances.
- $e \vdash F:(h, d)$ states that the evaluation of formula F requires at most h messages from the past of the stream and at most d messages from the future of the stream. e denotes a partial mapping of variables to pairs (l, u) denoting the lower bound and upper bound of the interval relative to the position of the "current" message.
- $e \vdash B:(l, u)$ determines the lower bound l and upper bound u for the position denoted by an interval bound B.

We have $(h, d) \in \mathbb{N}^{\infty} \times \mathbb{N}^{\infty}$ where $\mathbb{N}^{\infty}=\mathbb{N} \cup\{\infty\}$; a value of ∞ indicates that the corresponding resource (history/instance set) cannot be bounded by the analysis. We have $e(X) \in \mathbb{Z}^{\infty} \times \mathbb{Z}^{\infty}$ where $\mathbb{Z}^{\infty}=\mathbb{Z} \cup\{\infty,-\infty\}$; a value of ∞, respectively $-\infty$, indicates that the position cannot be bounded from above, respectively from below, by the analysis. We have $(l, u) \in \mathbb{Z}^{\infty} \times \mathbb{Z}^{\infty}$; a value of ∞ for u indicates that the corresponding interval has no upper bound; a value of $-\infty$ for l indicates that the interval has no lower bound.

In [6] one can find more detailed illustration of the resource analysis, based on examples.

3 Operational Semantics

In this section we describe formalization of the operational interpretation of a monitor by a translation T : Monitor \rightarrow TMonitor from the abstract syntax domain Monitor to a domain TMonitor denoting the runtime representation of the monitor. First, we list the domains used in the formal-

$$
\begin{aligned}
& \text { Environment :=Variable } \rightarrow \mathbb{Z}^{\infty} \times \mathbb{Z}^{\infty} \\
& \mathbb{N}^{\infty}:=\mathbb{N} \cup\{\infty\}, \mathbb{Z}^{\infty}:=\mathbb{Z} \cup\{\infty,-\infty\} \\
& <^{\infty} \subseteq \mathbb{N} \times \mathbb{N}^{\infty} \\
& n_{1}<^{\infty} n_{2}: \Leftrightarrow n_{2}=\infty \vee n_{1}<n_{2} \\
& \leq^{\infty} \subseteq \mathbb{N} \times \mathbb{N}^{\infty} \\
& n_{1} \leq^{\infty} n_{2}: \Leftrightarrow n_{2}=\infty \vee n_{1} \leq n_{2} \\
& >^{\infty} \subseteq \mathbb{N} \times \mathbb{N}^{\infty} \\
& n_{1}>^{\infty} n_{2}: \Leftrightarrow n_{2} \neq \infty \wedge n_{1}>n_{2} \\
& \geq^{\infty} \subseteq \mathbb{N} \times \mathbb{N}^{\infty} \\
& n_{1} \geq n_{2}: \Leftrightarrow n_{2} \neq \infty \wedge n_{1} \geq n_{2} \\
& m a x^{\infty}: \mathbb{N} \times \mathbb{N}^{\infty} \rightarrow \mathbb{N}^{\infty} \\
& m a x^{\infty}\left(n_{1}, n_{2}\right):=\text { if } n_{2}=\infty \text { then } \infty \text { else } \max \left(n_{1}, n_{2}\right) \\
& +^{\infty}: \mathbb{N}^{\infty} \times \mathbb{N}^{\infty} \rightarrow \mathbb{N}^{\infty} \\
& n_{1}+\infty n_{2}:=\text { if } n_{1}=\infty \vee n_{2}=\infty \text { then } \infty \text { else } n_{1}+n_{2} \\
& -\infty: \mathbb{N}^{\infty} \times \mathbb{N} \rightarrow \mathbb{N}^{\infty} \\
& n_{1}-\infty n_{2}:=\text { if } n_{1}=\infty \text { then } \infty \text { else } \max \left(0, n_{1}-n_{2}\right) \\
& -\infty: \mathbb{Z}^{\infty} \rightarrow \mathbb{Z}^{\infty} \\
& -\infty i=\text { if } i=\infty \text { then }-\infty \text { else if } i=-\infty \text { then } \infty \text { else }-i \\
& \mathbb{N}: \mathbb{Z}^{\infty} \rightarrow \mathbb{N}^{\infty} \\
& \mathbb{N}(i):=\text { if } i=-\infty \vee i<0 \text { then } 0 \text { else } i
\end{aligned}
$$

Figure 3: The Semantic Algebras of the Analysis
ization, together with their definitions (\mathbb{P} stands for the powerset and $\xrightarrow{\text { part. }}$ for the partial function):

$$
\begin{aligned}
\text { TMonitor } & :=\text { TM of Variable } \times \text { TFormula } \times \mathbb{P}(\text { TInstance }) \\
\text { TInstance } & :=\mathbb{N} \times \text { TFormula } \times \text { Context } \\
\text { Context } & :=(\text { Variable } \xrightarrow{\text { part. }} \mathbb{N}) \times(\text { Variable } \xrightarrow{\text { part. }} \text { Message }) \\
\text { TFormula } & :=\text { done of Bool } \mid \text { next of TFormulaCore }
\end{aligned}
$$

TFormulaCore :=

```
    TV of Variable
    TN of TFormula
    TCS of TFormula \(\times\) TFormula
    TCP of TFormula \(\times\) TFormula \(\mid\)
    TA of Variable \(\times\) BoundValue \(\times\) BoundValue \(\times\) TFormula \(\mid\)
TAO of Variable \(\times \mathbb{N} \times \mathbb{N}^{\infty} \times\) TFormula \(\mid\)
```

TA1 of Variable $\times \mathbb{N}^{\infty} \times$ TFormula $\times \mathbb{P}($ TInstance $)$
BoundValue $:=$ Context $\rightarrow \mathbb{N}^{\infty}$

Translation. The translation is defined for monitors, formulas, and bounds. Monitors are translated into TMonitor's (translated monitors), formulas are translated into TFormula's (translated formulas), and bounds are translated into BoundValue's:

$$
\begin{aligned}
T: \text { Monitor } & \rightarrow \text { TMonitor } \\
T(\text { monitor } X: F) & :=T M(X, T(F), \emptyset) \\
T: \text { Formula } & \rightarrow \text { TFormula } \\
T(@ X) & :=\boldsymbol{\operatorname { n e x t } (T V (X))} \\
T(\sim F) & :=\boldsymbol{\operatorname { n e x t } (T N (T (F)))} \\
T\left(F_{1} \& \& F_{2}\right) & :=\boldsymbol{\operatorname { n e x t } (T C S (T (F _ { 1 }) , T (F _ { 2 })))} \\
T\left(F_{1} / \backslash F_{2}\right) & :=\boldsymbol{\operatorname { n e x t } (T C P (T (F _ { 1 }) , T (F _ { 2 })))} \\
T\left(\text { forall } X \text { in } B_{1} . B_{2}: F\right) & :=\boldsymbol{\operatorname { n e x t } (T A (X , T (B _ { 1 }) , T (B _ { 2 }) , T (F)))}
\end{aligned}
$$

$$
\begin{aligned}
T: \text { Bound } & \rightarrow \text { BoundValue } \\
T(0)(c) & :=0 \\
T(\infty)(c) & :=\infty \\
T(X)(c) & :=c .1(X) \text { if } X \in \operatorname{dom}(c .1) \\
T(X)(c) & :=0 \text { if } X \notin \operatorname{dom}(c .1) \\
T(B+N)(c) & :=T(B)(c)+\llbracket N \rrbracket \\
T(B+N)(c) & :=T(B)(c)-\llbracket N \rrbracket
\end{aligned}
$$

One-Step Operational Semantics. Apart from the quantified position variable X and the translation $f=T(F)$ of the body of the monitor, the representation maintains the set $f s$ of instances of f which for certain values of X could not yet be evaluated to a truth value. The execution of the monitor is formalized by an operational semantics with a small step transition relation $\rightarrow_{n, m s, m, r s}$ where n is the index of the next message m arriving on the stream, $m s$ denotes the sequence of messages that have previously arrived (the stream history), and rs denotes the set of those positions for which it can be determined by the current step that they violate the specification. In this step, first a new instance mapping X to the pair (p, m) is created and added to the instance set, and all instances in this set are evaluated; rs becomes the set of positions of those instances yielding "false", the new instance set $f s_{1}$ preserves all those instances that could not yet be evaluated to a definite truth value:

$$
\begin{aligned}
& \text { TMonitor } \rightarrow_{\mathbb{N}, \text { Message }}{ }^{\omega}, \text { Message }, \mathbb{P}(\mathbb{N}) \text { TMonitor } \\
& f s_{0}=f s \cup\{(p, f,[X \mapsto(p, m)])\} \\
& r s=\left\{t \in \mathbb{N} \mid \exists g \in \text { TFormula }, c \in \text { Context }:(t, g, c) \in f s_{0} \wedge\right. \\
& \left.\left.\quad \vdash g \rightarrow_{p, m s, m, c} \text { done(false }\right)\right\} \\
& f s_{1}=\left\{(t, \text { next }(f c), c) \in \text { TInstance } \mid \exists g \in \text { TFormula }:(t, g, c) \in f s_{0} \wedge\right. \\
& \left.\quad \vdash g \rightarrow_{p, m s, m, c} \text { next }(f c)\right\} \\
& \hline T M(X, f, f s) \rightarrow_{p, m s, m, r s} \text { TM }\left(X, f, f s_{1}\right)
\end{aligned}
$$

As one can see from this definition, the monitor operation is based on an operational semantics of formula evaluation. The rules for the latter are given below:

$$
\text { TFormula } \rightarrow_{\mathbb{N}, \text { Message }^{\omega}, \text { Message }, \text { Context }} \text { TFormula }
$$

Atomic formula:

$$
\begin{aligned}
& X \in \operatorname{dom}(c .2) \\
& \hline \boldsymbol{\operatorname { n e x t } (T V (X)) \rightarrow _ { (p , m s , m , c) } \operatorname { d o n e } (c . 2 (X))} \\
& X \notin \operatorname{dom}(c .2) \\
& \frac{\operatorname{next}(T V(X)) \rightarrow_{(p, m s, m, c)} \text { done(false) }}{}
\end{aligned}
$$

Negation:

$$
\begin{aligned}
& f \rightarrow_{(p, m s, m, c)} \boldsymbol{\operatorname { n e x t }}\left(f^{\prime}\right) \\
& \hline \boldsymbol{\operatorname { n e x t } (T N (f)) \rightarrow _ { (p , m s , m , c) } \operatorname { n e x t } (T N (\text { next } (f ^ { \prime }))} \\
& f \rightarrow_{(p, m s, m, c)} \text { done(true) } \\
& \hline \boldsymbol{\operatorname { n e x t } (T N (f)) \rightarrow _ { (p , m s , m , c) } \text { done(false })} \\
& f \rightarrow_{(p, m s, m, c)} \text { done(false) } \\
& \hline \boldsymbol{\operatorname { n e x t } (T N (f)) \rightarrow _ { (p , m s , m , c) } \text { done(true })}
\end{aligned}
$$

Sequential Conjunction:

```
\(\frac{f_{1} \rightarrow_{(p, m s, m, c)} \boldsymbol{n e x t}\left(f_{1}^{\prime}\right)}{\left.\boldsymbol{\operatorname { n e x t } ( T C S}\left(f_{1}, f_{2}\right)\right) \rightarrow(p, m s, m, c)} \mathbf{n e x t}\left(T C S\left(\operatorname{next}\left(f_{1}^{\prime}\right), f_{2}\right) \quad\right.\)
\(\frac{f_{1} \rightarrow_{(p, m s, m, c)} \text { done(false) }}{\operatorname{next}\left(\operatorname{TCS}\left(f_{1}, f_{2}\right)\right) \rightarrow_{(p, m s, m, c)} \text { done(false) }}\)
    \(f_{1} \rightarrow(p, m s, m, c)\) done(true)
\(f_{2} \rightarrow(p, m s, m, c) f_{2}^{\prime}\)
\(\boldsymbol{\operatorname { n e x t }}\left(\operatorname{TCS}\left(f_{1}, f_{2}\right)\right) \rightarrow_{(p, m s, m, c)} f_{2}^{\prime}\)
```

Parallel Conjunction:

```
\(f_{1} \rightarrow(p, m s, m, c) \quad \operatorname{next}\left(f_{1}^{\prime}\right)\)
\(f_{2} \rightarrow_{(p, m s, m, c)} \operatorname{next}\left(f_{2}^{\prime}\right)\)
\(\boldsymbol{n e x t}\left(T C P\left(f_{1}, f_{2}\right)\right) \rightarrow_{(p, m s, m, c)} \boldsymbol{\operatorname { n e x t }}\left(T C P\left(\boldsymbol{n e x t}\left(f_{1}^{\prime}\right), \boldsymbol{n e x t}\left(f_{2}^{\prime}\right)\right)\right.\)
\(f_{1} \rightarrow(p, m s, m, c) \operatorname{next}\left(f_{1}^{\prime}\right)\)
\(f_{2} \rightarrow_{(p, m s, m, c)}\) done(true)
\(\boldsymbol{n e x t}\left(T C P\left(f_{1}, f_{2}\right)\right) \rightarrow_{(p, m s, m, c)} \boldsymbol{\operatorname { n e x t }}\left(f_{1}^{\prime}\right)\)
\(f_{1} \rightarrow_{(p, m s, m, c)} \boldsymbol{n e x t}\left(f_{1}^{\prime}\right)\)
\(f_{2} \rightarrow(p, m s, m, c)\) done(false)
\(\operatorname{next}\left(T C P\left(f_{1}, f_{2}\right)\right) \rightarrow_{(p, m s, m, c)}\) done(false)
\(f_{1} \rightarrow(p, m s, m, c)\) done(false)
\(\boldsymbol{\operatorname { n e x t }}\left(T C P\left(f_{1}, f_{2}\right)\right) \rightarrow_{(p, m s, m, c)}\) done(false)
\(f_{1} \rightarrow_{(p, m s, m, c)}\) done(true)
\(\frac{f_{2} \rightarrow(p, m s, m, c) f_{2}^{\prime}}{\boldsymbol{\operatorname { n e x t }}\left(T C P\left(f_{1}, f_{2}\right)\right) \rightarrow_{(p, m s, m, c)} f_{2}^{\prime}}\)
```

Universal Quantification:

```
\(p_{1}=b_{1}(c)\)
\(p_{p}=b_{2}(c)\)
\(p_{1}=\infty \vee p_{1}>^{\infty} p_{2}\)
\(\boldsymbol{\operatorname { n e x t }}\left(T A\left(X, b_{1}, b_{2}, f\right)\right) \rightarrow_{(p, m s, m, c)}\) done(true)
\(p_{1}=b_{1}(c)\)
\(p_{2}=b_{2}(c)\)
\(p_{1} \neq \infty \wedge p_{1} \leq^{\infty} p_{2}\)
\(\operatorname{next}\left(T A O\left(X, p_{1}, p_{2}, f\right)\right) \rightarrow_{(p, m s, m, c)} T A 0^{\prime}\)
\(\boldsymbol{\operatorname { n e x t }}\left(T A\left(X, b_{1}, b_{2}, f\right)\right) \rightarrow_{(p, m s, m, c)} T A 0^{\prime}\)
\(\frac{p<p_{1}}{\boldsymbol{\operatorname { n e x t }}\left(T A 0\left(X, p_{1}, p_{2}, f\right)\right) \rightarrow_{(p, m s, m, c)} \operatorname{next}\left(T A 0\left(X, p_{1}, p_{2}, f\right)\right)}\)
\(p \geq p_{1}\)
\(f s=\left\{\left(p_{0}, f,\left(c .1\left[X \mapsto p_{0}\right], c .2\left[X \mapsto m s\left(p_{0}+p-|m s|\right)\right]\right)\right) \mid p_{1} \leq p_{0}<^{\infty} \min ^{\infty}\left(p, p_{2}+\infty 1\right)\right\}\)
\(\frac{\boldsymbol{\operatorname { n e x t }}\left(T A 1\left(X, p_{2}, f, f s\right)\right) \rightarrow_{(p, m s, m, c)} T A 1^{\prime}}{\boldsymbol{\operatorname { n e x t }}\left(T A 0\left(X, p_{2}, f, f s\right)\right) \rightarrow(p, m s, m, c) T A 1^{\prime}}\)
\(f s_{0}=\) if \(p>^{\infty} p_{2}\) then \(f s\) else \(f s \cup\{(p, f,(c .1[X \mapsto p], c .2[X \mapsto m]))\}\)
\(\exists t \in \mathbb{N}, g \in\) TFormula, \(c \in\) Context \(:(t, g, c) \in f s_{0} \wedge \vdash g \rightarrow_{(p, m s, m, c)}\) done(false)
\(\boldsymbol{n e x t}\left(T A 1\left(X, p_{2}, f, f s\right)\right) \rightarrow_{(p, m s, m, c)}\) done(false)
\(f s_{0}=\) if \(p>^{\infty} p_{2}\) then \(f s\) else \(f s \cup\{(p, f,(c .1[X \mapsto p], c .2[X \mapsto m]))\}\)
\(\neg \exists t \in \mathbb{N}, g \in\) TFormula, \(c \in\) Context \(:(t, g, c) \in f s_{0} \wedge \vdash g \rightarrow_{(p, m s, m, c)}\) done(false)
\(f s_{1}=\{(t, \boldsymbol{n e x t}(f c), c) \in\) TInstance \(\mid\)
                                \(\exists g \in\) TFormula \(\left.:(t, g, c) \in f s_{0} \wedge \vdash g \rightarrow_{(p, m s, m, c)} \operatorname{next}(f c)\right\}\)
\(\frac{f s_{1}=\emptyset \wedge p \geq^{\infty} p_{2}}{\left.\boldsymbol{\operatorname { n e x t }}\left(T A 1\left(X, p_{2}, f, f s\right)\right) \rightarrow_{(p, m s, m, c)} \text { done(true }\right)}\)
\(f s_{0}=\) if \(p>^{\infty} p_{2}\) then \(f s\) else \(f s \cup\{(p, f,(c .1[X \mapsto p], c .2[X \mapsto m]))\}\)
\(\neg \exists t \in \mathbb{N}, g \in\) TFormula, \(c \in\) Context \(:(t, g, c) \in f s_{0} \wedge \vdash g \rightarrow_{(p, m s, m, c)}\) done(false)
\(f s_{1}=\{(t, \boldsymbol{n e x t}(f c), c) \in\) TInstance \(\mid\)
    \(\exists g \in\) TFormula \(\left.:(t, g, c) \in f s_{0} \wedge \vdash g \rightarrow_{(p, m s, m, c)} \operatorname{next}(f c)\right\}\)
\(\neg\left(f s_{1}=\emptyset \wedge p \geq^{\infty} p_{2}\right)\)
\(\boldsymbol{\operatorname { n e x t }}\left(T A 1\left(X, p_{2}, f, f s\right)\right) \rightarrow_{(p, m s, m, c)} \boldsymbol{\operatorname { n e x t }}\left(T A 1\left(X, p_{2}, f, f s_{1}\right)\right)\)
```

Finally, we give definitions of n-step reduction. There are for versions: right- and left-recursive with and without history.

Definition 1 (Right-Recursive n-Step Reduction).
Without history. TFormula $\rightarrow_{(\mathbb{N}, \mathbb{N}, \text { Stream, Environment })}^{*}$ TFormula, where the first \mathbb{N} is the number of steps and the second \mathbb{N} is the current position.

$$
\begin{array}{ll}
& n>0 \\
& c=(e,\{(X, s(e(X))) \mid X \in \operatorname{dom}(e)\}) \\
(0, p, s, e) \\
& F t \rightarrow{ }_{(p, s \downarrow p, s(p), c)}^{*} F t^{\prime} \\
& F t^{\prime} \rightarrow_{(n-1, p+1, s, e)}^{*} F t^{\prime \prime} \\
\hline F t^{\prime} \rightarrow_{(n, p, s, e)}^{*} F t^{\prime \prime}
\end{array}
$$

With history. TFormula $\rightarrow_{(\mathbb{N}, \mathbb{N}, \text { Stream, Environment,Message*) }}^{*}$ TFormula, where the first \mathbb{N} is the
number of steps, the second \mathbb{N} is the current position, and Message* is the history.

$$
\begin{array}{ll}
& n>0 \\
& c=(e,\{(X, s(e(X))) \mid X \in \operatorname{dom}(e)\}) \\
& F t \rightarrow_{(p, s \uparrow(\max (0, p-h), \min (p, h)), s(p), c)}^{*} F t^{\prime} \\
& F t^{\prime} \rightarrow_{(n-1, p+1, s, e, h)}^{*} F t^{\prime \prime} \\
\hline & F t^{\prime} \rightarrow_{(n, p, s, e, h)}^{*} F t^{\prime \prime}
\end{array}
$$

Definition 2 (Left-Recursive n-Step Reduction).
Without history. TFormula $\rightarrow(\mathbb{N}, \mathbb{N}$, Stream, Environment $)$ TFormula, where the first \mathbb{N} is the number of steps and the second \mathbb{N} is the current position.

$$
F t \rightarrow_{(0, p, s, e)}^{l *} F t \quad \begin{aligned}
& n>0 \\
& \\
& F t \rightarrow{ }_{(n-1, p, s, e)}^{l *} F t^{\prime} \\
& \\
& \\
& \\
& \\
& \\
& \\
& F t^{\prime} \rightarrow(e,\{(X, s(e(X))) \mid X \in \operatorname{lom-1,s\downarrow (p+n-1),s(p+n-1),c)}[(n, p, s, e) \\
& F t^{\prime \prime}
\end{aligned}
$$

With history. TFormula $\rightarrow_{(\mathbb{N}, \mathbb{N}, \text { Stream, Environment,Message*) }}^{l *}$ TFormula, where the first \mathbb{N} is the number of steps, the second \mathbb{N} is the current position, and Message* is the history.

$$
\begin{array}{ll}
& n>0 \\
F t \rightarrow \rightarrow_{(0, p, s, e, h)}^{l *} F t \quad & F t \rightarrow_{(n-1, p, s, e, h)}^{l *} F t^{\prime} \\
& c=(e,\{(X, s(e(X))) \mid X \in \operatorname{dom}(e)\}) \\
& F t^{\prime} \rightarrow(p+n-1, s \uparrow(\max (0, p+n-1-h), \min (p+n-1, h)), s(p+n-1), c) F t^{\prime \prime} \\
F t \rightarrow_{(n, p, s, e, h)}^{l *} F t^{\prime \prime}
\end{array}
$$

4 Soundness of Resource Analysis

In this section we formulate the main result:
Theorem 1 (Soundness of Resource Analysis for Monitors). The resource analysis of the core monitor language is sound with respect to its operational semantics, i.e., if the analysis yields for monitor M natural numbers h and d, then the execution does not maintain more than d monitor instances and does not require more than the last h messages from the stream. Formally:

```
\(\forall X, Y \in\) Variable, \(F \in\) Formula, \(F t \in\) TFormula, It \(\in \mathbb{P}(\) Instance \(), n \in \mathbb{N}\), \(s \in\) Stream,
\(r s \in \mathbb{P}(\mathbb{N}), h, d \in \mathbb{N}^{\infty}:\)
let \(M=\) monitor \(X: F, M t=T M(Y, F t, I t)\) :
    \(\vdash M:(h, d) \Rightarrow\)
        \(\left(d \in \mathbb{N} \Rightarrow\left(\vdash T(M) \rightarrow_{n, s, r s}^{*} M t \Rightarrow|I t| \leq d\right)\right) \wedge\)
        \(\left(h \in \mathbb{N} \Rightarrow\left(\vdash T(M) \rightarrow_{n, s, r s}^{*} M t \Leftrightarrow \vdash T(M) \rightarrow_{n, s, r s, h}^{*} M t\right)\right)\).
```

The proof of this theorem uses three lemmas and a statement about an invariant of n-step reductions of translated monitors. These propositions, for their part, rely on additional lemmas. Dependencies between these statements, which give an idea of the high-level proof structure, are shown in Fig. 4. Below we formulate these lemmas with some informal explanations. The complete proofs can be found in the appendix.

The Invariant Statement asserts essentially the following: For a monitor M (with the monitoring variable X and the monitored formula F), if the analysis yields natural numbers h and d, and the translated version of M reduces to another translated monitor $T M(Y, F t, I t)$ in n steps, then the following invariant holds:

Figure 4: Lemma dependencies in the proof of the Soundness Theorem.

- X and Y are the same and $F t$ is the translation of F,
- all elements in the set of instances It contain next formulas, which have been generated at different steps in the past, but not earlier than d units before from the current step,
- the formulas in the elements of It are obtained by reductions of $T(F)$, and they themselves will reduce to a done formula in at most d steps from the moment of their creation.

More formally, the invariant definition looks as follows:
Definition 3 (Invariant).

```
\(\forall X, Y \in\) Variable, \(F \in\) Formula, \(F t \in\) TFormula, It \(\in \mathbb{P}\) (TInstance \()\),
    \(n \in \mathbb{N}, s \in\) Stream, \(d \in \mathbb{N}^{\infty}:\)
        invariant \((X, Y, F, F t, I t, n, s, d): \Leftrightarrow\)
            \(X=Y \wedge F t=T(F) \wedge\) alldiff \((I t) \wedge\) allnext \((I t) \wedge\)
            \(\forall t \in \mathbb{N}, F t^{\prime} \in\) TFormula, \(c \in\) Context :
            \(\left(t, F t^{\prime}, c\right) \in I t \wedge d \in \mathbb{N} \Rightarrow\)
            \(c .1=\{(X, t)\} \wedge c .2=\{(X, s(t))\} \wedge\)
            \(n-d \leq t \leq n-1 \wedge\)
            \(T(F) \underset{n-t, t, s, c .1}{*} F t^{\prime} \wedge\)
                        \(\exists b \in\) Bool, \(d^{\prime} \in \mathbb{N}\) :
                        \(d^{\prime} \leq d \wedge \vdash F t^{\prime} \rightarrow_{\max \left(0, t+d^{\prime}-n\right), n, s, c .1}^{*}\) done \((b)\),
```

where alldiff (It) means that $t_{1} \neq t_{2}$ for all distinct elements $\left(t_{1}, F t_{1}, c_{1}\right),\left(t_{2}, F t_{2}, c_{2}\right)$ of $I t$, and allnext (It) denotes the fact that for all $(t, F t, c) \in I t, F t$ is a next formula.

Then the Invariant Statement is formulated in the following way:

Proposition 1 (Invariant Statement).

```
\(\forall X \in\) Variable, \(F \in\) Formula \(, h \in \mathbb{N}^{\infty}, d \in \mathbb{N}^{\infty}, n \in \mathbb{N}\), \(s \in\) Stream,
    rs \(\in \mathbb{P}(\mathbb{N}), Y \in\) Variable, \(F t \in\) TFormula, It \(\in \mathbb{P}(\) TInstance \():\)
    \(\vdash(\) monitor \(X: F):(h, d) \wedge\)
    \(\vdash T(\) monitor \(X: F) \rightarrow_{n, s, r s}^{*} T M(Y, F t, I t) \Rightarrow\)
                invariant \((X, Y, F, F t, I t, n, s, d)\)
```

In the course of proving the Soundness Statement, the reasoning moves from the monitor level to the formula level. Therefore, we need a counterpart of the Soundness Theorem (which is formulated for monitors) for formulas. This is the first Lemma.

Lemma 1 (Soundness Lemma for Formulas).

```
\(\forall F, F^{\prime} \in\) Formula, re \(\in\) RangeEnv, \(e \in\) Environment, \(F t \in\) TFormula, \(n, p \in \mathbb{N}\),
    \(s \in S t r e a m, d \in \mathbb{N}^{\infty}, h \in \mathbb{N}:\)
        \(\vdash(r e \vdash F:(h, d)) \wedge \operatorname{dom}(e)=\operatorname{dom}(r e) \wedge\)
        \(\forall Y \in \operatorname{dom}(e): r e(Y) .1+p \leq e(Y) \leq r e(Y) .2+p \Rightarrow\)
            \((d \in \mathbb{N} \Rightarrow\)
                \(\exists b \in\) Bool, \(d^{\prime} \in \mathbb{N}:\)
                    \(\left.d^{\prime} \leq d+1 \wedge \vdash T(F) \rightarrow_{d^{\prime}, p, s, e}^{*} \operatorname{done}(b)\right) \wedge\)
            \(\left(\forall h^{\prime} \in \mathbb{N}: h^{\prime} \geq h \Rightarrow\right.\)
                \(\left.\left(T(F) \rightarrow_{n, p, s, e}^{*} F t \Leftrightarrow T(F) \rightarrow_{n, p, s, e, h^{\prime}}^{*} F t\right)\right)\).
```

The second lemma states equivalence of left- and right-recursive definitions of n-step reductions. This is a technical result which helps to simplify proofs of the Soundness Theorem, Invariant Statement, and Lemma 4 and Lemma 10 below.

Lemma 2 (Equivalence of Left- and Right-Recursive Definitions of n-Step Reductions).
(a) $\forall n, p \in \mathbb{N}, s \in$ Stream, $e \in$ Environment, $F t_{1}, F t_{2} \in$ TFormula :

$$
F t_{1} \rightarrow_{n, p, s, e}^{*} F t_{2} \Leftrightarrow F t_{1} \rightarrow_{n, p, s, e}^{l *} F t_{2}
$$

(b) $\forall n, p \in \mathbb{N}, s \in$ Stream, $e \in$ Environment, $F t_{1}, F t_{2} \in$ TFormula, $h \in \mathbb{N}$:

$$
F t_{1} \rightarrow_{n, p, s, e, h}^{*} F t_{2} \Leftrightarrow F t_{1} \rightarrow_{n, p, s, e, h}^{l *} F t_{2} .
$$

The next lemma establishes the limit on the number of past messages needed for a single monitoring step to be equivalent to such a step performed with the full history. Both the Soundness Theorem and the Soundness Lemma use it.

Lemma 3 (History Cut-Off Lemma).

```
\(\forall F \in\) Formula, \(F t \in\) TFormula, \(p \in \mathbb{N}, s \in \operatorname{Stream}, h \in \mathbb{N}, d \in \mathbb{N}^{\infty}\),
    \(e \in\) Environment, \(r e \in\) RangeEnv :
        \(\vdash(r e \vdash F:(h, d)) \wedge \operatorname{dom}(e)=\operatorname{dom}(r e) \wedge\)
        \(\forall Y \in \operatorname{dom}(e): r e(Y) .1+p \leq e(Y) \leq r e(Y) .2+p \Rightarrow\)
        let \(c:=(e,\{(X, s(e(X))) \mid X \in \operatorname{dom}(e)\})\) :
            \(\forall h^{\prime} \in \mathbb{N}: h^{\prime} \geq h \Rightarrow\)
            \(T(F) \rightarrow_{p, s \downarrow p, s(p), c} F t\)
            \(\Leftrightarrow\)
            \(T(F) \rightarrow_{p, s \uparrow\left(\max \left(0, p-h^{\prime}\right), \min \left(p, h^{\prime}\right)\right), s(p), c} F t\)
```

The Soundness Lemma for Formulas requires yet two auxiliary propositions. The first of them, Lemma 4 below, establishes the conditions of reduction of translated $T N$ (negation), TCS (sequential conjunction), and $T C P$ (parallel conjunction) formulas into done formulas:

Lemma 4 (n-Step Reductions to done Formulas for TN, TCS, TCP).

Statement 1. TN Formulas:

$\forall F \in$ Formula, $n, p \in \mathbb{N}, s \in$ Stream, $e \in$ Environment, $F t \in$ TFormula $:$

$$
\begin{aligned}
& T(F) \rightarrow_{n, p, s, e}^{*} \text { done }(\text { false }) \Rightarrow \operatorname{next}(T N(T(F))) \rightarrow_{n, p, s, e}^{*} \text { done }(\text { true }) \wedge \\
& T(F) \rightarrow_{n, p, s, e}^{*} \text { done }(\text { true }) \Rightarrow \operatorname{next}(T N(T(F))) \rightarrow_{n, p, s, e}^{*} \text { done }(\text { false })
\end{aligned}
$$

Statement 2. TCS Formulas:

```
\(\forall p \in \mathbb{N}, s \in\) Stream, \(e \in\) Environment \(:\)
    \(\forall F t_{1}, F t_{2} \in\) TFormula, \(n \in \mathbb{N}\) :
        \(n>0 \wedge F t_{1} \rightarrow_{n, p, s, e}^{*}\) done(false) \(\Rightarrow\)
            \(\boldsymbol{n e x t}\left(T C S\left(F t_{1}, F t_{2}\right)\right) \rightarrow_{n, p, s, e}^{*}\) done(false) \(\wedge\)
    \(\forall F t_{1}, F t_{2} \in\) TFormula, \(n_{1}, n_{2} \in \mathbb{N}, b \in\) Bool :
        \(n_{1}>0 \wedge n_{2}>0 \wedge F t_{1} \rightarrow_{n_{1}, p, s, e}^{*}\) done \((\) true \() \wedge F t_{2} \rightarrow_{n_{2}, p, s, e}^{*}\) done \((b) \Rightarrow\)
            \(\boldsymbol{n e x t}\left(T C S\left(F t_{1}, F t_{2}\right)\right) \rightarrow_{\max \left(n_{1}, n_{2}\right), p, s, e}^{*}\) done \((b)\)
```


Statement 3. TCP Formulas:

The other auxiliary statement needed in the proof of Lemma 1 is Lemma 5 below, which formulates a special case of the soundness statement for universally quantified formulas.

Lemma 5 (Soundness Lemma for Universal Formulas).

$$
\begin{aligned}
& \forall F \in \text { Formula, } X \in \text { Variable, } B_{1}, B_{2} \in \text { Bound }: \\
& \quad R(F) \Rightarrow R\left(\text { forall } X \text { in } B_{1} . . B_{2}: F\right)
\end{aligned}
$$

where

$$
R(F): \Leftrightarrow
$$

$$
\forall r e \in \text { RangeEnv, } e \in \text { Environment, } s \in \text { Stream, } d \in \mathbb{N}^{\infty}, h \in \mathbb{N} p \in \mathbb{N}:
$$

$$
\vdash(r e \vdash F:(h, d)) \wedge d \in \mathbb{N} \wedge \operatorname{dom}(e)=\operatorname{dom}(r e) \wedge
$$

$$
\forall Y \in \operatorname{dom}(e): r e(Y) .1+p \leq e(Y) \leq r e(Y) .2+p \Rightarrow
$$

$$
\left(\exists b \in \text { Bool }, d^{\prime} \in \mathbb{N}: d^{\prime} \leq d+1 \wedge \vdash T(F) \rightarrow_{d^{\prime}, p . s . e}^{*} \text { done }(b)\right)
$$

Proving of Lemma 4 requires a couple of other statements. Besides Lemma 2 above, there are two other lemmas: for monotonicity (Lemma 6) and for shifting (Lemma 7). The Monotonicity Lemma states that if a translated formula reduces to a done formula, then starting from that moment on it will always reduce to the same done formula:

$$
\begin{aligned}
& \forall p \in \mathbb{N}, s \in \text { Stream, } e \in \text { Environment, } F t_{1}, F t_{2} \in \text { TFormula, } n_{1}, n_{2} \in \mathbb{N} \text { : } \\
& n_{1}>0 \wedge F t_{1} \rightarrow_{n_{1}, p, s, e}^{*} \text { done(false) } \wedge F t_{2} \rightarrow_{n_{2}, p, s, e}^{*} \text { done(true) } \Rightarrow \\
& \boldsymbol{\operatorname { n e x t }}\left(T C P\left(F t_{1}, F t_{2}\right)\right) \rightarrow_{n_{1}, p, s, e}^{*} \text { done(false) } \\
& \wedge \\
& n_{1}>0 \wedge n_{2}>0 \wedge F t_{1} \rightarrow_{n_{1}, p, s, e}^{*} \text { done(false) } \wedge F t_{2} \rightarrow_{n_{2}, p, s, e}^{*} \text { done(false) } \Rightarrow \\
& \boldsymbol{n e x t}\left(T C P\left(F t_{1}, F t_{2}\right)\right) \rightarrow_{\min \left(n_{1}, n_{2}\right), p, s, e}^{*} \text { done(false) } \\
& \wedge \\
& n_{1}>0 \wedge n_{2}>0 \wedge F t_{1} \rightarrow_{n_{1}, p, s, e}^{*} \text { done }(\text { true }) \wedge F t_{2} \rightarrow_{n_{2}, p, s, e}^{*} \text { done(true) } \Rightarrow \\
& \boldsymbol{\operatorname { n e x t }}\left(T C P\left(F t_{1}, F t_{2}\right)\right) \rightarrow_{\max \left(n_{1}, n_{2}\right), p, s, e}^{*} \text { done(true) } \\
& \wedge \\
& n_{1}>0 \wedge n_{2}>0 \wedge F t_{1} \rightarrow_{n_{1}, p, s, e}^{*} \text { done(true) } \wedge F t_{2} \rightarrow_{n_{2}, p, s, e}^{*} \text { done(false) } \Rightarrow \\
& \boldsymbol{n e x t}\left(T C P\left(F t_{1}, F t_{2}\right)\right) \xrightarrow[n_{2}, p, s, e]{*} \text { done(false) }
\end{aligned}
$$

Lemma 6 (Monotonicity of Reduction to done).

$$
\begin{aligned}
& \forall F t \in \text { TFormula }, p, k \in \mathbb{N}, s \in \text { Stream, } c \in \text { Context }, b \in \text { Bool }: \\
& \quad k \geq p \Rightarrow F t \rightarrow_{p, s \downarrow p, s(p), c} \text { done }(b) \Rightarrow F t \rightarrow_{k, s \downarrow(k), s(k), c} \text { done }(b) .
\end{aligned}
$$

The Shifting Lemma expresses a simple fact: If a next formula reduced to a done formula in $n+1$ steps starting from the stream position p, then the same reduction will take n steps if it starts at position $p+1$:

Lemma 7 (Shifting Lemma).
$\forall f \in$ TFormulaCore, $n, p \in \mathbb{N}, s \in$ Stream, $e \in$ Environment, $b \in$ Bool :

$$
n>0 \Rightarrow \boldsymbol{n e x t}(f) \rightarrow_{n+1, p, s, e}^{*} \operatorname{done}(b) \Rightarrow \boldsymbol{\operatorname { n e x t }}(f) \rightarrow_{n, p+1, s, e}^{*} \operatorname{done}(b)
$$

Lemma 7 requires a so called Triangular Reduction Lemma, shown below. The latter, for itself, relies on Lemma 6.

Lemma 8 (Triangular Reduction Lemma).

$$
\begin{aligned}
& \forall f_{1}, f_{2} \in \text { TFormulaCore, } F t \in \text { TFormula, } p \in \mathbb{N}, s \in \text { Stream, } c \in \text { Context : } \\
& \boldsymbol{n e x t}\left(f_{1}\right) \rightarrow_{p, s \downarrow p, s(p), c} \boldsymbol{\operatorname { n e x t }}\left(f_{2}\right) \wedge \boldsymbol{\operatorname { n e x t }}\left(f_{2}\right) \rightarrow_{p+1, s \downarrow(p+1), s(p+1), c} F t \Rightarrow \\
& \operatorname{next}\left(f_{1}\right) \rightarrow_{p+1, s \downarrow(p+1), s(p+1), c} \text { Ft. }
\end{aligned}
$$

Proving Lemma 5 is more involved. It relies on three statements: the already mentioned Shifting Lemma (Lemma 7), Soundness Lemma for Bound Analysis (Lemma 9), and the Invariant Lemma for Universal Formulas (Lemma 10). The proof of Lemma 3 also use Lemma 9.

Lemma 9 (Soundness Lemma for Bound Analysis).

```
\(\forall r e \in\) RangeEnv, \(e \in\) Environment, \(p \in \mathbb{N}, s \in\) Stream, \(B \in\) Bound, \(l, u \in \mathbb{Z}^{\infty}\) :
    \(r e \vdash B:(l, u) \wedge \operatorname{dom}(e)=\operatorname{dom}(r e) \wedge\)
\(\forall Y \in \operatorname{dom}(e): r e(Y) .1+p \leq e(Y) \leq r e(Y) .2+p \Rightarrow\)
    let \(c:=(e,\{(X, s(e(X))) \mid X \in \operatorname{dom}(e)\}):\)
    \(l+p \leq T(B)(c) \leq u+p\).
```

Finally, the Invariant Lemma for Universal Formulas has the following form:
Lemma 10 (Invariant Lemma for Universal Formulas).
$\forall X \in$ Variable, $b_{1}, b_{2} \in$ BoundValue, $f \in$ TFormulaCore :

$$
\forall n \in \mathbb{N}: n \geq 1 \Rightarrow \operatorname{forall}\left(n, X, b_{1}, b_{2}, \boldsymbol{\operatorname { n e x t }}(f)\right)
$$

The predicate forall in this lemma is defined below:

$$
\begin{aligned}
& \text { forall } \subseteq \mathbb{N} \times \text { Variable } \times \text { BoundValue } \times \text { BoundValue } \times \text { TFormula }: \\
& \text { forall }\left(n, X, b_{1}, b_{2}, f\right): \Leftrightarrow \\
& \qquad \begin{aligned}
\forall p \in \mathbb{N}, & s \in \text { Stream, } e \in \text { Environment, } g \in \text { TFormula }: \\
& \vdash \\
& \text { next }\left(\text { TA }\left(X, b_{1}, b_{2}, f\right)\right) \rightarrow_{n, p, s, e}^{*} g \Rightarrow \\
& \text { let } c=(e,\{(Y, s(e(Y))) \mid Y \in \operatorname{dom}(e)\}), p_{0}=p+n, p_{1}=b_{1}(c), p_{2}=b_{2}(c): \\
& \left(n=1 \wedge\left(p_{1}=\infty \vee p_{1}>^{\infty} p_{2}\right) \wedge g=\operatorname{done}(\text { true })\right) \bigvee \\
& \left(n \geq 1 \wedge p_{1} \neq \infty \wedge p_{1} \leq^{\infty} p_{2} \wedge p_{0} \leq p_{1} \wedge g=\operatorname{next}\left(T A O\left(X, p_{1}, p_{2}, f\right)\right)\right) \bigvee \\
& \left(n \geq 1 \wedge p_{1} \neq \infty \wedge p_{1} \leq^{\infty} p_{2} \wedge p_{0}>p_{1} \wedge\right.
\end{aligned}
\end{aligned}
$$

```
\((\exists b \in\) Bool \(: g=\operatorname{done}(b)) \vee\)
    \(\left(\exists g s \in \mathbb{P}(\right.\) TInstance \():\left(g s \neq \emptyset \vee p+n \leq^{\infty} p_{2}\right) \wedge\)
    forallInstances \(\left.\left.\left(X, p, p_{0}, p_{1}, p_{2}, f, s, e, g s\right) \wedge g=\boldsymbol{\operatorname { n e x t }}\left(T A 1\left(X, p_{2}, f, g s\right)\right)\right)\right)\),
```

where the predicate forallInstances is defined as follows:

```
forallInstances \(\subseteq\)
    Variable \(\times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N}^{\infty} \times\) TFormula \(\times\) Stream \(\times\) Environment \(\times \mathbb{P}(\) TInstance \():\)
forallInstances \(\left(X, p, p_{0}, p_{1}, p_{2}, f, s, e, g s\right): \Leftrightarrow\)
    \(\forall t \in \mathbb{N}, g \in\) TFormula, \(c_{0} \in\) Context \(:\left(t, g, c_{0}\right) \in g s \Rightarrow\)
        \(\left(\forall t_{1} \in \mathbb{N}, g_{1} \in\right.\) TFormula, \(c_{1} \in\) Context \(:\left(t_{1}, g_{1}, c_{1}\right) \in g s \wedge t=t_{1} \Rightarrow\)
            \(\left.\left(t, g, c_{0}\right)=\left(t_{1}, g_{1}, c_{1}\right)\right) \wedge\)
        \((\exists g c \in\) TFormulaCore \(: g=\operatorname{next}(g c)) \wedge\)
            \(c_{0} .1=e[X \mapsto t] \wedge c_{0} .2=\left\{\left(Y, s\left(c_{0} .1(Y)\right)\right) \mid Y \in \operatorname{dom}(e) \vee Y=X\right\} \wedge\)
            \(p_{1} \leq t \leq{ }^{\infty} \min ^{\infty}\left(p_{0}-1, p_{2}\right) \wedge \vdash f \rightarrow_{p_{0}-\max (p, t), \max (p, t), s, c_{0} .1}^{*} g\)
```


5 Conclusion

The goal of resource analysis of the core LogicGuard language is two-fold: To determine the maximal size of the stream history required to decide a given instance of the monitor formula, and to determine the maximal delay in deciding a given instance. Ultimately, it determines whether a specification expressed in this language gives rise to a monitor that can operate with a finite amount of resources. This report presents propositions needed to prove soundness of resource analysis of the core LogicGuard language with respect to the operational semantics.

Acknowledgments

The authors thank the project partner companies: SecureGuard GmbH and RISC Software GmbH.

References

[1] Temur Kutsia and Wolfgang Schreiner. LogicGuard Abstract Language. RISC Report Series 12-08, Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz, Austria, 2012.
[2] Temur Kutsia and Wolfgang Schreiner. Translation Mechanism for the LogicGuard Abstract Language. RISC Report Series 12-11, Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz, Austria, 2012.
[3] Temur Kutsia and Wolfgang Schreiner. Verifying the Soundness of Resource Analysis for LogicGuard Monitors, Part 1. Technical report, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria, December 162013.
[4] Wolfgang Schreiner. Generating network monitors from logic specifications. Invited Talk at FIT 2012, 10th International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 2012.
[5] Wolfgang Schreiner. Applying predicate logic to monitoring network traffic. Invited talk at PAS 2013 - Second International Seminar on Program Verification, Automated Debugging and Symbolic Computation, Beijing, China, October 23-25, 2013.
[6] Wolfgang Schreiner and Temur Kutsia. A Resource Analysis for LogicGuard Monitors. Technical report, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria, December 17, 2013.

A Proofs

A. 1 Theorem 1: Soundness Theorem

```
X V Variable, F\inFormula, h}\in\mathbb{N}\infty,\textrm{d}\in\mathbb{N}\infty, n\in\mathbb{N},\textrm{s}\in\mathrm{ Stream, rs }\in\mathbb{P}(\mathbb{N})\mathrm{ ,
    Y\inVariable Ft\inTFormula, It }\in\mathbb{P}\mathrm{ (Instance):
    let M = monitor X : F, Mt = TM(Y,Ft,It) :
    FM: (h,d) =>
        (d\in\mathbb{N}=>(\vdashT(M) ->* (n,s,rs) Mt m |It| \leq d)) ^
        (h\in\mathbb{N}=>(\vdash\textrm{T}(\textrm{M})->*(\textrm{n},\textrm{s},\textrm{rs}) Mt}\Leftrightarrow\vdash\textrm{T}(\textrm{M})->*(\textrm{n},\textrm{s},\textrm{rs},\textrm{h})\textrm{Mt})
```

PROOF:
We split the soundness statement into two formulas:
(a) $\forall X \in$ Variable, $F \in$ Formula, $h \in \mathbb{N} \infty, d \in \mathbb{N} \infty, n \in \mathbb{N}$, $s \in \operatorname{Stream}, r s \in \mathbb{P}(\mathbb{N})$,
$Y \in V a r i a b l e ~ F t \in T F o r m u l a, ~ I t \in \mathbb{P}$ (Instance):
let $M=$ monitor $X: F, M t=T M(Y, F t, I t):$
$\vdash \mathrm{M}:(\mathrm{h}, \mathrm{d}) \Rightarrow$
$(\mathrm{d} \in \mathbb{N} \Rightarrow(\vdash \mathrm{T}(\mathrm{M}) \rightarrow *(\mathrm{n}, \mathrm{s}, \mathrm{rs}) \mathrm{Mt} \Rightarrow|\mathrm{It}| \leq \mathrm{d}))$
and
(b) $\forall \mathrm{X} \in$ Variable, $\mathrm{F} \in$ Formula, $\mathrm{h} \in \mathbb{N} \infty, \mathrm{d} \in \mathbb{N} \infty, \mathrm{n} \in \mathbb{N}, \mathrm{s} \in \operatorname{Stream}, \mathrm{rs} \in \mathbb{P}(\mathbb{N})$, $Y \in V a r i a b l e ~ F t \in T F o r m u l a, ~ I t \in \mathbb{P}$ (Instance): let $M=$ monitor $X: F, M t=T M(Y, F t, I t):$ $\vdash \mathrm{M}:(\mathrm{h}, \mathrm{d}) \Rightarrow$

$$
(\mathrm{h} \in \mathbb{N} \Rightarrow(\vdash \mathrm{~T}(\mathrm{M}) \rightarrow *(\mathrm{n}, \mathrm{~s}, \mathrm{rs}) \mathrm{Mt} \Leftrightarrow \vdash \mathrm{~T}(\mathrm{M}) \rightarrow *(\mathrm{n}, \mathrm{~s}, \mathrm{r} \mathrm{~s}, \mathrm{~h}) \mathrm{Mt}))
$$

Proof of (a)

We take Xf, Ff, Yf, Ftf, Itf, hf, df, nf, sf, rsf arbitrary buf fixed.
Assume
(1) \vdash (monitor Xf : Ff): (hf,df)
(2) $d f \in \mathbb{N}$
(3) T(monitor Xf : Ff) $\rightarrow *(n f, s f, r s f) T M(Y f, F t f, I t f)$

Prove
[4] \mid Itf $\mid \leq d f$
From (1,2,3), we know that
(5) invariant(Xf,Yf,Ff,Ftf,Itf,nf,sf,df)
holds. That means, we know
(6) $\mathrm{Xf}=\mathrm{Yf}$
(7) Ftf $=T($ Ff $)$
(8) alldiffs(Itf)
(9) allnext (Itf)
(10) $\forall t \in \mathbb{N}$, Ft \in TFormula, $c \in$ Context:

$$
(\mathrm{t}, \mathrm{Ft}, \mathrm{c}) \in \mathrm{Itf} \Rightarrow
$$

$$
c .1=\{(X f, t)\} \wedge c .2=\{(X f, s f(t))\} \wedge
$$

$\mathrm{T}(\mathrm{Ff}) \rightarrow *(\mathrm{n}-\mathrm{t}, \mathrm{t}, \mathrm{s}, \mathrm{c} .1) \mathrm{Ft1} \wedge$
$\mathrm{nf}-\mathrm{df} \leq \mathrm{t} \leq \mathrm{nf}-1 \wedge$
$\exists \mathrm{b} \in$ Bool $\exists \mathrm{d}^{\prime} \in \mathbb{N}$:

$$
\mathrm{d}^{\prime} \leq \mathrm{df} \wedge \vdash \mathrm{Ft} \rightarrow *\left(\max \left(0, \mathrm{t}+\mathrm{df} \mathrm{f}^{\prime}-\mathrm{nf}\right), \mathrm{nf}, \mathrm{sf}, \mathrm{c} .1\right) \text { done(b) }
$$

From (10), we know that the tags of the elements of Itf are between $n f-\mathrm{df}$ and nf-1 inclusive. From (8), we know that no two elements of Itf have the same tag. Hence, Itf can contain at most ($n f-1)-(n f-d f)+1=d f$ elements. Hence, (5) holds.

Proof of (b)

Parametrization:
Q(n) : \Leftrightarrow
$\forall \mathrm{X} \in$ Variable, $\mathrm{F} \in$ Formula, $\mathrm{h} \in \mathbb{N} \infty, \mathrm{d} \in \mathbb{N} \infty$, $\mathrm{s} \in$ Stream, $\mathrm{r} \boldsymbol{s} \in \mathbb{P}(\mathbb{N})$, $\mathrm{Y} \in$ Variable $\mathrm{Ft} \in \mathrm{TFormula} ,\mathrm{It} \in \mathbb{P}$ (Instance):
let $\mathrm{M}=$ monitor $\mathrm{X}: \mathrm{F}$, $\mathrm{Mt}=\mathrm{TM}(\mathrm{Y}, \mathrm{Ft}, \mathrm{It})$:
$\vdash \mathrm{M}$: (h,d) \Rightarrow
$(\mathrm{h} \in \mathbb{N} \Rightarrow(\vdash \mathrm{T}(\mathrm{M}) \rightarrow *(\mathrm{n}, \mathrm{s}, \mathrm{rs}) \mathrm{Mt} \Leftrightarrow \vdash \mathrm{T}(\mathrm{M}) \rightarrow *(\mathrm{n}, \mathrm{s}, \mathrm{rs}, \mathrm{h}) \mathrm{Mt}))$
We want to show
$\forall \mathrm{n} \in \mathbb{N}: \quad \mathrm{Q}(\mathrm{n})$.

For this is suffices to show

1. $Q(0)$
2. $\forall \mathrm{n} \in \mathbb{N}: \mathrm{Q}(\mathrm{n}) \Rightarrow \mathrm{Q}(\mathrm{n}+1)$

Proof of 1

Q(0)

```
X Variable, F\inFormula, h\in\mathbb{N}\infty, d\in\mathbb{N}\infty\mathrm{ , s s Stream, rs}\in\mathbb{P}(\mathbb{N}),
    Y\inVariable Ft\inTFormula, It }\in\mathbb{P}\mathrm{ (Instance):
    let M = monitor X : F, Mt = TM(Y,Ft,It) :
        \: (h,d) =>
                    (h\in\mathbb{N}=>(\vdashT(M) ->*(0,s,rs) Mt \Leftrightarrow\vdashT(M) ->*(0,s,rs,h)Mt))
```

We take Xf, Ff, Yf, Ftf, cf, Itf, df, hf, sf, rsf arbitrary buf fixed.
Assume
(1) \vdash (monitor $X f: F f):(h f, d f)$
(2) $\mathrm{hf} \in \mathbb{N}$

Prove
[3] $\vdash \mathrm{T}$ (monitor $\mathrm{Xf}: \mathrm{Ff}) \rightarrow *(0, \mathrm{sf}, \mathrm{rsf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}$, Itf) \Leftrightarrow $\vdash \mathrm{T}$ (monitor Xf : Ff) $\rightarrow *(0, \mathrm{sf}, \mathrm{rsf}, \mathrm{hf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{Itf})$

Direction (\Rightarrow). Assume
(4) $\vdash \mathrm{T}$ (monitor $\mathrm{Xf}: \mathrm{Ff}) \rightarrow *(0, \mathrm{sf}, \mathrm{rsf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{Itf})$

Prove
$[5] \vdash \mathrm{T}$ (monitor $\mathrm{Xf}: \mathrm{Ff}) \rightarrow *(0, \mathrm{sf}, \mathrm{rsf}, \mathrm{hf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{Itf})$

From (4), by the def. of $\rightarrow *(0, s f, r s f)$, we get
(6) T (monitor $\mathrm{Xf}: \mathrm{Ff})=\mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{Itf})$.
and
(7) $\mathrm{rsf}=\emptyset$.

From $(6,7)$ and the def. of $\rightarrow *(0, s f, r s f, h f)$ we obtain [5].
Direction (\Longleftarrow) can be proved analogously.
Hence, $Q(0)$ holds.
= = = = = = =

Proof of 2

Take arbitrary $n \in \mathbb{N}$.
Assume $Q(n)$, i.e.
(1) $\forall \mathrm{X} \in$ Variable, $F \in$ Formula, $\mathrm{h} \in \mathbb{N} \infty, \mathrm{d} \in \mathbb{N} \infty, \mathrm{s} \in \operatorname{Stream}, \mathrm{rs} \in \mathbb{P}(\mathbb{N})$, $Y \in$ Variable $F t \in$ TFormula, $I t \in \mathbb{P}$ (Instance):
let $M=$ monitor $\mathrm{X}: \mathrm{F}, \mathrm{Mt}=\mathrm{TM}(\mathrm{Y}, \mathrm{Ft}, \mathrm{It})$:
$\vdash \mathrm{M}$: (h,d) \Rightarrow
$(\mathrm{h} \in \mathbb{N} \Rightarrow(\vdash \mathrm{T}(\mathrm{M}) \rightarrow *(\mathrm{n}, \mathrm{s}, \mathrm{rs}) \mathrm{Mt} \Leftrightarrow \vdash \mathrm{T}(\mathrm{M}) \rightarrow *(\mathrm{n}, \mathrm{s}, \mathrm{rs}, \mathrm{h}) \mathrm{Mt}))$

Prove $Q(n+1)$, i.e.,
[2] $\forall X \in$ Variable, $F \in$ Formula, $h \in \mathbb{N} \infty, \mathrm{~d} \in \mathbb{N} \infty$, $s \in \operatorname{Stream}, \mathrm{rs} \in \mathbb{P}(\mathbb{N})$, $\mathrm{Y} \in$ Variable $\mathrm{Ft} \in \mathrm{TFormula}$, $\mathrm{It} \in \mathbb{P}$ (Instance): let $\mathrm{M}=$ monitor $\mathrm{X}: \mathrm{F}, \mathrm{Mt}=\mathrm{TM}(\mathrm{Y}, \mathrm{Ft}, \mathrm{It})$: $\vdash \mathrm{M}$: (h,d) \Rightarrow

$$
(\mathrm{h} \in \mathbb{N} \Rightarrow(\vdash \mathrm{~T}(\mathrm{M}) \rightarrow *(\mathrm{n}+1, \mathrm{~s}, \mathrm{rs}) \mathrm{Mt} \Leftrightarrow \vdash \mathrm{~T}(\mathrm{M}) \rightarrow *(\mathrm{n}+1, \mathrm{~s}, \mathrm{rs}, \mathrm{~h}) \mathrm{Mt}))
$$

We take Xf, Ff, hf, df, sf, rsf, Yf, Ftf, Itf arbitrary but fixed.
Assume
(3) \vdash (monitor Xf : Ff): (hf, df)
(4) $\mathrm{hf} \in \mathbb{N}$
and prove
[5] \vdash T(monitor Xf : Ff) $\rightarrow *(\mathrm{n}+1, \mathrm{sf}, \mathrm{rsf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}$, Itf) \Leftrightarrow
$\vdash \mathrm{T}(\mathrm{monitor} \mathrm{Xf}: \mathrm{Ff}) \rightarrow *(\mathrm{n}+1, \mathrm{sf}, \mathrm{rsf}, \mathrm{hf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{Itf})$
To prove (5), we need to prove
[5.1]
\vdash T(monitor Xf : Ff) $\rightarrow *(\mathrm{n}+1, \mathrm{sf}, \mathrm{rsf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{Itf}) \Rightarrow$
$\vdash \mathrm{T}($ monitor $\mathrm{Xf}: \mathrm{Ff}) \rightarrow *(\mathrm{n}+1, \mathrm{sf}, \mathrm{rsf}, \mathrm{hf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{Itf})$.
and
[5.2]
\vdash T(monitor Xf : Ff) $\rightarrow *(\mathrm{n}+1, \mathrm{sf}, \mathrm{rsf}, \mathrm{hf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{Itf}) \Rightarrow$
$\vdash \mathrm{T}(\mathrm{monitor} \mathrm{Xf}: \mathrm{Ff}) \rightarrow *(\mathrm{n}+1, \mathrm{sf}, \mathrm{rsf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{Itf})$.
Proof of [5.1]
Since T (monitor $X f: F f)=T M(X f, T(F f), \emptyset)$, we assume
(6) $\vdash \mathrm{TM}(\mathrm{Xf}, \mathrm{T}(\mathrm{Ff}), \emptyset) \rightarrow *(\mathrm{n}+1, \mathrm{sf}, \mathrm{rsf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}$, Itf $)$
and prove
[7] $\vdash \mathrm{TM}(\mathrm{Xf}, \mathrm{T}(\mathrm{Ff}), \emptyset) \rightarrow *(\mathrm{n}+1, \mathrm{sf}, \mathrm{rsf}, \mathrm{hf}) \mathrm{TM}(\mathrm{Y} f, \mathrm{Ftf}, \mathrm{Itf})$.
From (3) and (6), by the invariant statement, we know
(8) $Y f=X f, F t f=T(F f)$

From (6) by the definition of $\rightarrow *$ we know that there exist Y^{\prime}, Ft', It', rs1' and rs2' such that
(9) $\mathrm{rsf}=\mathrm{rs} 1^{\prime} \cup r s 2$,
(10) $\vdash \mathrm{TM}(\mathrm{Xf}, \mathrm{T}(\mathrm{Ff}), \emptyset) \rightarrow *\left(\mathrm{n}, \mathrm{sf}, \mathrm{rs} 1^{\prime}\right) \mathrm{TM}\left(\mathrm{Y}^{\prime}, \mathrm{Ft}, \mathrm{It}\right.$)
(11) $\vdash \mathrm{TM}\left(\mathrm{Y}^{\prime}, \mathrm{Ft}, \mathrm{It}{ }^{\prime}\right) \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow(\mathrm{n}), \mathrm{sf}(\mathrm{n}), \mathrm{rs} 2$ ') $\mathrm{TM}(\mathrm{Xf}, \mathrm{T}(\mathrm{Ff}), \mathrm{Itf})$

From (10), by the definition of \rightarrow, (and by the invariant) we have
(12) $Y^{\prime}=X f, F t '=T(F f)$.

From (10), by ($1,3,4$), and (12) we get
(13) $\vdash \mathrm{TM}(\mathrm{Xf}, \mathrm{T}(\mathrm{Ff}), \emptyset) \rightarrow *\left(\mathrm{n}, \mathrm{sf}, \mathrm{rs} 1^{\prime}, \mathrm{hf}\right) \mathrm{TM}(\mathrm{Xf}, \mathrm{T}(\mathrm{Ff}), \mathrm{Itf})$

From (11) by (12) we have

```
(14) \vdash TM(Xf,T(Ff),It') ->(n,sf\downarrow(n),sf(n),rs2') TM(Xf,T(Ff),Itf)
From (14), by definition of }->\mathrm{ for TMonitors we know
(15) rs2' = { t \in N | \existsg\inTFormula,c\inContext: (t,g,c) \inIt0 ^
    g ->(n,sf\downarrow(n),sf(n),c) done(false) }
(16) Itf ={ (t,g1,c) \in TInstance | \existsg\inTFormula: (t,g,c) \inIt0 ^
    \vdashg->(n,sf\downarrow(n),sf(n),c) next(g1)}
```

where
(17) $\operatorname{It} 0=I t, \cup\{(n, T(F f),(\{(X, n)\},\{X, s f(n)\}))\}$

To prove (7), by the definition of $\rightarrow *$ with h-cutoff for TMonitors, and (12), we need to prove that there exist $\mathrm{Y} *, \mathrm{Ft*}$, It*, $\mathrm{rs} 1 *$ and rs2* such that
(18) rs1*Urs2*=rsf
(19) $\vdash \mathrm{TM}(\mathrm{Xf}, \mathrm{T}(\mathrm{Ff}), \emptyset) \rightarrow *(\mathrm{n}, \mathrm{sf}, \mathrm{rs} 1 *, \mathrm{hf}) \mathrm{TM}(\mathrm{Y} *, \mathrm{Ft} *, \mathrm{It} *)$
(20) $\mathrm{TM}(\mathrm{Y} *, \mathrm{Ft} *, \mathrm{It} *) \rightarrow(\mathrm{n}, \mathrm{s} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{s}(\mathrm{n}), \mathrm{rs} 2 *) \mathrm{TM}(\mathrm{Xf}, \mathrm{T}(\mathrm{Ff}), \mathrm{Itf})$.

We can take rs1*=rs1', rs2*=rs2', Y*=Xf, Ft*=Ftf=T(Ff), It*=It'. Then (18) holds due to (9) and (19) holds due to (13). Hence, we need to prove only (20), which after instantiating the variables has the form
(21) $\operatorname{TM}(X f, T(F f), I t ') \rightarrow\left(n, s f \uparrow(\max (0, n-h f), \min (n, h f)), s f(n), r s 2^{\prime}\right)$ TM (Xf,T(Ff),Itf).

By definition of \rightarrow for TMonitors, to prove (21), we need to prove
[22] rs2' $=\{t \in \mathbb{N}$ |
$\exists \mathrm{g} \in$ TFormula, $\mathrm{c} \in$ Context: $(\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{It} 0 \wedge$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{sf}(\mathrm{n}), \mathrm{c})$ done(false)$\}$
and
[23] Itf $=\{(t, g 1, c) \in$ TInstance \mid
$\exists \mathrm{g} \in \mathrm{TFormula:} \mathrm{(t,g,c)} \mathrm{\in} \mathrm{\operatorname{It0}} \mathrm{\wedge}$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{sf}(\mathrm{n}), \mathrm{c}) \operatorname{next}(\mathrm{g} 1)\}$
where Itf0 is defined as in (17).

Hence, by (15) and [22], we need to prove
[24] $\{t \in \mathbb{N} \mid \exists g \in$ TFormula, $c \in$ Context: $(t, g, c) \in$ It $0 \wedge$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow(\mathrm{n}), \mathrm{sf}(\mathrm{n}), \mathrm{c})$ done(false) \}
=
$\{t \in \mathbb{N}$ |
$\exists \mathrm{g} \in$ TFormula, $\mathrm{c} \in$ Context: $(\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{It} 0 \wedge$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{sf}(\mathrm{n}), \mathrm{c})$ done(false)$\}$
By (16) and [23], we need to prove
[25] \{ (t,g1,c) \in TInstance $\mid \exists \mathrm{g} \in$ TFormula: $(\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{It} 0 \wedge$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow(\mathrm{n}), \mathrm{sf}(\mathrm{n}), \mathrm{c}) \operatorname{next}(\mathrm{g} 1)\}$

=

$\{(t, g 1, c) \in$ TInstance \mid
$\exists \mathrm{g} \in$ TFormula: $(\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{It} 0 \wedge$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{sf}(\mathrm{n}), \mathrm{c}) \operatorname{next}(\mathrm{g} 1)\}$
To prove [24], we need to show
[26] $\forall t \in \mathbb{N}:$
$\exists \mathrm{g} \in$ TFormula, $\mathrm{c} \in$ Context:
$(\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{It} 0 \wedge \vdash \mathrm{~g} \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow(\mathrm{n}), \mathrm{sf}(\mathrm{n}), \mathrm{c})$ done (false)
\Leftrightarrow
$\exists \mathrm{g} \in \mathrm{TF}$ ormula, $\mathrm{c} \in$ Context:
(t,g,c) $\in \operatorname{It} 0 \wedge \vdash \mathrm{~g} \rightarrow(\mathrm{n}, \mathrm{sf} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{sf}(\mathrm{n}), \mathrm{c})$ done(false).
To prove (25), we need to show
[27] $\forall t \in \mathbb{N}$, g1 \in TFormula, c \in Context
$\exists \mathrm{g} \in \mathrm{TF}$ ormula:
$(\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{It} 0 \wedge \vdash \mathrm{~g} \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow(\mathrm{n}), \mathrm{sf}(\mathrm{n}), \mathrm{c}) \operatorname{next}(\mathrm{g} 1)$
\Leftrightarrow
$\exists \mathrm{g} \in$ TFormula:
$(\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \operatorname{It} 0 \wedge \vdash \mathrm{~g} \rightarrow(\mathrm{n}, \mathrm{sf} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{sf}(\mathrm{n}), \mathrm{c}) \operatorname{next}(\mathrm{g} 1)$.

Proof of $[26, \Longrightarrow]$.

(26.1) ($\mathrm{t} 0, \mathrm{~g}, \mathrm{c}) \in \mathrm{It} 0$ and
(26.2) $\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow(\mathrm{n}), \mathrm{sf}(\mathrm{n}), \mathrm{c})$ done(false)
hold. We need to find $g * \in T F o r m u l a$ and $c * \in$ Context such that
[26.3] ($\mathrm{t} 0, \mathrm{~g} *, \mathrm{c} *) \in \mathrm{It0}$ and
[26.4] $\vdash \mathrm{g} * \rightarrow(\mathrm{n}, \mathrm{sf} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{sf}(\mathrm{n}), \mathrm{c} *)$ done(false)
hold. We take $g *=g$ and $c *=c$. Then (26.3) holds because of (26.1). Hence, we
only need to prove
[26.4] $\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{sf}(\mathrm{n}), \mathrm{c})$ done(false)
Since ($\mathrm{t} 0, \mathrm{~g}, \mathrm{c}) \in \mathrm{It} 0$, we have either
(26.5) ($\mathrm{t} 0, \mathrm{~g}, \mathrm{c}) \in \mathrm{It}$, or
(26.6) $\mathrm{t} 0=\mathrm{n}, \mathrm{g}=\mathrm{T}(\mathrm{Ff}), \mathrm{c}=(\{(\mathrm{Xf}, \mathrm{n})\},\{\mathrm{Xf}, \mathrm{sf}(\mathrm{n})\})$.

Let first consider the case (26.5).

We had
(3) \vdash (monitor $\mathrm{Xf}: \mathrm{Ff}):(\mathrm{hf}, \mathrm{df})$
(10) $\left.\vdash \mathrm{TM}(\mathrm{Xf}, \mathrm{T}(\mathrm{Ff}), \emptyset) \rightarrow *\left(\mathrm{n}, \mathrm{sf}, \mathrm{rs} 1^{\prime}\right) \mathrm{TM}\left(\mathrm{Y}^{\prime}, \mathrm{Ft}, \mathrm{It}\right)\right)$

From (3) and (10), by the invariant statement, we have
(26.7) invariant(Xf, $\left.\mathrm{Y}^{\prime}, \mathrm{Ff}, \mathrm{Ft}{ }^{\prime}, \mathrm{It}, \mathrm{n}, \mathrm{sf}, \mathrm{df}\right)$

The invariant (26.7) implies
(12) $Y^{\prime}=X f, F t '=T(F f)$
and by (26.5) the following:
(26.8) $\mathrm{T}(\mathrm{Ff}) \rightarrow *(\mathrm{n}-\mathrm{t} 0, \mathrm{t} 0, \mathrm{sf}, \mathrm{c} .1) \mathrm{g}$.

From (26.8), by Lemma 2 we get
(26.9) $\mathrm{T}(\mathrm{Ff}) \rightarrow \mathrm{l} *(\mathrm{n}-\mathrm{t} 0, \mathrm{t} 0, \mathrm{sf}, \mathrm{c} .1) \mathrm{g}$.

From (26.5) and (26.7) we get
(26.10) c. $1=\{(\mathrm{Xf}, \mathrm{t} 0)\}, \mathrm{c} .2=\{(\mathrm{X}, \mathrm{sf}(\mathrm{t} 0))\}=\{(\mathrm{X}, \mathrm{sf}(\mathrm{c} .1(\mathrm{Xf})))\}$

Since by the invariant $n-t 0+1>0$, from (26.9), (26.2), (26.10), by the definition of $\rightarrow l *$, we get
(26.11) $T(F f) \rightarrow l *(n-t 0+1, t 0, s f, c .1)$ done(false).

From (26.11), by Lemma 2, we get
(26.12) $T(F f) \rightarrow *(n-t 0+1, t 0, s f, c .1)$ done(false).

From (3) by the definition of \vdash, there exists re0 \in RangeEnv such
(26.13) re0 $\vdash \mathrm{Ff}:(\mathrm{hf}, \mathrm{df})$ and
(26.14) $\mathrm{reO}(\mathrm{Xf})=(0,0)$

From (26.10) and (26.14) the following is satisfied
(26.15) $\forall \mathrm{Y} \in \operatorname{dom}(\mathrm{c} .1): \mathrm{re} 0(\mathrm{Y}) .1+\mathrm{t} 0 \leq \mathrm{c} .1(\mathrm{Y}) \leq \mathrm{re} 0(\mathrm{Y}) .2+\mathrm{t} 0$.

Hence, from (26.13), (26.15), (26.12) and the Statement 2 of Lemma 1 (taking F=Ff, re=re0, e=c.1, Ft=g, n=n-t0, p=t0, s=sf, d=df, h=h'=hf) we get
(26.16) $\mathrm{T}(\mathrm{Ff}) \rightarrow *(\mathrm{n}-\mathrm{t} 0+1, \mathrm{t} 0, \mathrm{sf}, \mathrm{c} .1, \mathrm{hf})$ done(false).

From (26.16), by Lemma 2 we get
(26.17) $\mathrm{T}(\mathrm{Ff}) \rightarrow \mathrm{l} *(\mathrm{n}-\mathrm{t} 0+1, \mathrm{t} 0, \mathrm{sf}, \mathrm{c} .1, \mathrm{hf})$ done(false).

Since by the invariant $n-t 0+1>0$, from (26.17), by the definition of $\rightarrow 1 *$ with history, there exists $\mathrm{Ft} 0 \in \mathrm{TFormula}$ such that
(26.18) $\mathrm{T}(\mathrm{Ff}) \rightarrow \mathrm{l} *(\mathrm{n}-\mathrm{t} 0, \mathrm{t} 0, \mathrm{sf}, \mathrm{c} .1, \mathrm{hf}) \mathrm{Ft0}$,
(26.19) Ft0 $\rightarrow(\mathrm{n}, \mathrm{s} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{s}(\mathrm{n}), \mathrm{c})$ done(false).

From (26.18), by Lemma 2, we get
(26.20) T(Ff) $\rightarrow^{*}(\mathrm{n}-\mathrm{t} 0, \mathrm{t} 0, \mathrm{sf}, \mathrm{c} .1, \mathrm{hf}) \mathrm{Ft0}$.

From (26.20), by (26.13), (26.15), and Statement 2 of Lemma 1 we get
(26.21) $\mathrm{T}(\mathrm{Ff}) \rightarrow *(\mathrm{n}-\mathrm{t} 0, \mathrm{t} 0, \mathrm{sf}, \mathrm{c} .1) \mathrm{Ft0}$.

From (26.21) and (26.8), since the rules for \rightarrow are deterministic and $\rightarrow *$ is defined based on \rightarrow, we conclude
(26.22) $\mathrm{FtO}=\mathrm{g}$.

From (26.22) and (26.19), we get [26.4]
Now we consider the case (26.6):
(26.6) $\mathrm{t} 0=\mathrm{n}, \mathrm{g}=\mathrm{T}(\mathrm{Ff}), \mathrm{c}=(\{(\mathrm{Xf}, \mathrm{n})\},\{\mathrm{Xf}, \mathrm{sf}(\mathrm{n})\})$.

Under (26.6), the formula (26.2) now looks as
(26.23) $\vdash \mathrm{T}(\mathrm{Ff}) \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow(\mathrm{n}), \mathrm{sf}(\mathrm{n}), \mathrm{c})$ done(false)

We need to prove [26.4], which, by (26.6) has the form
$[26.24] \vdash T(F f) \rightarrow(n, s f \uparrow(\max (0, n-h f), \min (n, h f)), s f(n),(\{(X, n)\},\{X, s f(n)\}))$ done(false)
From (3) by the definition of \vdash, there exists re0 \in RangeEnv such
(26.25) re0 $\vdash \mathrm{Ff}:(\mathrm{hf}, \mathrm{df})$ and
(26.26) re0 $=\{X f,(0,0)\}$

From (26.25) and (26.26) the following is satisfied
(26.27) $\forall \mathrm{Y} \in \operatorname{dom}(\mathrm{c} .1): \mathrm{re} 0(\mathrm{Y}) .1+\mathrm{n} \leq \mathrm{c} .1(\mathrm{Y}) \leq \mathrm{re} 0(\mathrm{Y}) .2+\mathrm{n}$.

From (26.26) and (26.6) we have
(26.28) $\operatorname{dom}(c .1)=\operatorname{dom}(r e 0)$.

From (26.25), (26.27), (4), the definition of c in (26.6), (26.28), and Lemma 3 (instantiating F=Ff, Ft=done(false), p=n, s=sf, h=h'=hf, d=df, e=c.1, re=re0) we get [26.24].

Proof of $[26, \Longleftarrow]$.
The direction (\Longleftarrow) can proved analogously to the direction (\Longrightarrow). This is easy to see, because the proof of (\Longleftarrow) relies on Statement 2 of Lemma 1 and on Lemma 3. Both of these propositions assert equivalence between a formula expressed in the version of $\rightarrow *$ (resp. \rightarrow) without history and a formula expressed in the version of $\rightarrow *$ (resp. \rightarrow) with history. Hence, for proving $[26, \Longrightarrow$] we can use

Statement 2 of Lemma 1 and Lemma 3 in the direction opposite to the one used in the proof of $[26, \Longleftarrow]$.

Proof of [27]

Proof of [27] is analogous to the proof of [26]. This is easy to see, because [27] and [26] differ only with a TFormula in the right hand side of $\rightarrow *$, and the proof of [26] does not depend on what stands in that side. Hence, we can replace done(false) in the proof of [26] with next(g1) and we obtain the proof of [27].

Proof of [5.2].

We assume
(28) $\vdash \mathrm{TM}(\mathrm{Xf}, \mathrm{T}(\mathrm{Ff}), \emptyset) \rightarrow *(\mathrm{n}+1, \mathrm{sf}, \mathrm{rsf}, \mathrm{hf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{Itf})$
and want to prove
[29] $\vdash \operatorname{TM}(X f, T(F f), \emptyset) \rightarrow *(n+1, s f, r s f) T M(Y f, F t f, I t f)$.
From (28), by the definition of $\rightarrow *$ with cut-off for TMonitors, we know that there exist Yf', Ftf', Itf', rs1', rs2', such that
(30) rs1' $\cup r s 2$ '=rsf
(31) $\vdash \mathrm{TM}(\mathrm{Xf}, \mathrm{T}(\mathrm{Ff}), \emptyset) \rightarrow *\left(\mathrm{n}, \mathrm{sf}, \mathrm{rs} 1^{\prime}, \mathrm{hf}\right) \mathrm{TM}\left(\mathrm{Yf}{ }^{\prime}, \mathrm{Ftf} \mathrm{f}^{\prime}, \mathrm{Itf} \mathrm{f}^{\prime}\right)$ and
(32) TM (Yf, Ftf, Itf $)^{\prime} \rightarrow\left(n, s f \uparrow(\max (0, n-h f), \min (n, h f)), s f(n), r s 2^{\prime}\right)$ TM (Yf,Ftf,Itf)

From the definitions of $\rightarrow *$ and \rightarrow we can see that $\mathrm{Yf}{ }^{\prime}=\mathrm{Xf}, \mathrm{Ftf}{ }^{\prime}=\mathrm{T}(\mathrm{Ff})$.
To prove [29], by the definition of $\rightarrow *$ for TMonitors, we need to find such Yf*, Ftf*, Itf*, rs1*, and rs2* that
[33] $\mathrm{rs} 1 * \cup \mathrm{rs} 2 *=\mathrm{rsf}$
[34] $\vdash \mathrm{TM}(\mathrm{Xf}, \mathrm{T}(\mathrm{F}), \emptyset) \rightarrow *(\mathrm{n}, \mathrm{sf}, \mathrm{rs} 1 *) \mathrm{TM}(\mathrm{Yf} *, \mathrm{Ftf} *, I t f *)$ and
[35] TM (Yf*,Ftf*,Itf*) $\rightarrow(n, s f \downarrow n, s f(n), r s 2 *) T M(X f, T(F f), I t f)$
We take Yf*=Xf, Ftf*=T(F), Itf*= Itf', rs1*=rs1', rs2*=rs2'. Then:

- [33] follows from (30).
- [34] follows from (31) by $(3,4)$ and the induction hypothesis (1).

Hence, it is only left to prove the following instance of [35]:
[36)] TM (Xf,T(Ff),Itf') $\rightarrow\left(n, s f \downarrow n, s f(n), r s 2^{\prime}\right) T M(X f, T(F f), I t f)$
To show it, by the definition of \rightarrow for TMonitors, we need to prove
[37] r s2' $=\{t \in \mathbb{N}$ |
$\exists \mathrm{g} \in \mathrm{TFormula}, \mathrm{c} \in$ Context: ($\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{It} 0 \wedge$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow \mathrm{n}, \mathrm{sf}(\mathrm{n}), \mathrm{c})$ done(false) \}
and
[38] Itf $=\{(t, g 1, c) \in$ TInstance |
$\exists \mathrm{g} \in \mathrm{TFormula:} \mathrm{(t,g,c)} \mathrm{\in It0} \mathrm{\wedge}$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow \mathrm{n}, \mathrm{sf}(\mathrm{n}), \mathrm{c}) \operatorname{next}(\mathrm{g} 1)\}$
where $\operatorname{It0}=\operatorname{Itf}, \cup\{(n, T(F f),(\{(X, n)\},\{X, s f(n)\}))\}$
On the other hand, from (32) we know that
(39) rs2' $=\{t \in \mathbb{N}$ |
$\exists \mathrm{g} \in$ TFormula, $\mathrm{c} \in$ Context: ($\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{It} \mathrm{O}^{\prime} \wedge$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{sf}(\mathrm{n}), \mathrm{c})$ done(false) \}
and
(40) Itf $=\{(t, g 1, c) \in$ TInstance |
$\exists \mathrm{g} \in$ TFormula: ($\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{ItO}{ }^{\prime} \wedge$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{sf}(\mathrm{n}), \mathrm{c}) \operatorname{next}(\mathrm{g} 1)\}$
where ItO' is defined exactly as It0: ItO'=ItO.

Hence, by [37] and (39), we need to prove
[41]
$\{t \in \mathbb{N}$ |
$\exists \mathrm{g} \in$ TFormula, $\mathrm{c} \in$ Context: ($\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{It} 0 \wedge$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \uparrow \mathrm{n}, \mathrm{sf}(\mathrm{n}), \mathrm{c})$ done(false) \}
=
$\{t \in \mathbb{N}$ |
$\exists \mathrm{g} \in$ TFormula, $\mathrm{c} \in$ Context: ($\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{It} 0 \wedge$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{sf}(\mathrm{n}), \mathrm{c})$ done(false) \}

But this is exactly [24] which we have already proved. Hence, [41] holds.
By (40) and [38], we need to prove
[42]
$\{(t, g 1, c) \in$ TInstance
$\exists \mathrm{g} \in \mathrm{TFormula:} \mathrm{(t,g,c)} \mathrm{\in It0} \mathrm{\wedge} \wedge$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow \mathrm{n}, \mathrm{sf}(\mathrm{n}), \mathrm{c}) \operatorname{next}(\mathrm{g} 1)\}$
=
\{ (t,g1, c) \in TInstance |
$\exists \mathrm{g} \in$ TFormula: ($\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{It} 0^{\prime} \wedge$
$\vdash \mathrm{g} \rightarrow(\mathrm{n}, \mathrm{sf} \uparrow(\max (0, \mathrm{n}-\mathrm{hf}), \min (\mathrm{n}, \mathrm{hf})), \mathrm{sf}(\mathrm{n}), \mathrm{c}) \operatorname{next}(\mathrm{g} 1)\}$
But this is exactly [25] which we have already proved. Hence, [42] holds.
It means, we proved also [35]. It finished the proof of [5.2] and, hence, of the soundness theorem.

A. 2 Proposition 1: The Invariant Statement

```
XX\inVariable, F\inFormula, h\in\mathbb{N}\infty, d\in\mathbb{N}\infty, n\in\mathbb{N}, s\inStream, rs\in\mathbb{P}(\mathbb{N})\mathrm{ ,}
    Y\inVariable Ft\inTFormula, It\in\mathbb{P}(TInstance):
    \vdash ~ ( m o n i t o r ~ X ~ : ~ F ) : ~ ( h , d ) ~ \wedge ~
    \vdash \mp@code { T ( m o n i t o r ~ X ~ : ~ F ) ~ } \rightarrow * ( \mathrm { n } , \mathrm { s } , \mathrm { rs } ) \mathrm { TM } ( \mathrm { Y } , \mathrm { Ft,It } ) \Rightarrow
        invariant(X,Y,F,Ft,It,n,s,d)
PROOF
```


Parameterization

```
P(n):\Leftrightarrow
    X\inVariable, F\inFormula, h\in\mathbb{N}\infty, d\in\mathbb{N}\infty, s\inStream, rs\in\mathbb{P}(\mathbb{N}),
        Y}\in\mathrm{ Variable Ft }\in\mathrm{ TFormula, It }\in\mathbb{P}\mathrm{ (Instance):
    \vdash ~ ( m o n i t o r ~ X ~ : ~ F ) : ~ ( h , d ) ~ \wedge ~
    \vdash \mp@code { T ( m o n i t o r ~ X ~ : ~ F ) ~ } \rightarrow * ( \mathrm { n } , \mathrm { s } , \mathrm { rs } ) \mathrm { TM } ( \mathrm { Y } , \mathrm { Ft,It } ) \Rightarrow
        invariant(X,Y,F,Ft,It,n,s,d)
We want to show
\foralln\in\mathbb{N}: P(n)
For this it suffices to show
1. P(0)
2. }\forall\textrm{n}\in\mathbb{N}:P(n)=>P(n+1
Proof of 1
----------
P(0)
```

 \(\forall \mathrm{X} \in\) Variable, \(\mathrm{F} \in\) Formula, \(\mathrm{h} \in \mathbb{N} \infty, \mathrm{d} \in \mathbb{N} \infty\), \(\mathrm{s} \in\) Stream, \(\mathrm{rs} \in \mathbb{P}(\mathbb{N})\),
 \(\mathrm{Y} \in\) Variable \(\mathrm{Ft} \in\) TFormula, \(c \in\) Context, \(\mathrm{It} \in \mathbb{P}\) (Instance):
 \(\vdash\) (monitor \(\mathrm{X}: \mathrm{F}):(\mathrm{h}, \mathrm{d}) \wedge\)
 \(\vdash \mathrm{T}\) (monitor \(\mathrm{X}: \mathrm{F}) \rightarrow *(0, \mathrm{~s}, \mathrm{rs}) \mathrm{TM}(\mathrm{Y}, \mathrm{Ft}, \mathrm{It}) \Rightarrow\)
 invariant (X,Y,F,Ft, It , \(0, s, d)\)
 We take Xf, Ff, df,hf,sf,rsf,Yf,Ftf,Itf arbitrary but fixed.
Assume
(1) \vdash (monitor $\mathrm{Xf}: \mathrm{Ff}):(\mathrm{hf}, \mathrm{df})$
// (2) $d f \in \mathbb{N}$
(3) T (monitor $\mathrm{Xf}: \mathrm{Ff}$) $\rightarrow *(0, \mathrm{sf}, \mathrm{rsf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}$, Itf)
and show
[a] invariant(Xf,Yf,Ff,Ftf,Itf, 0,sf,df)

From (3) and def. \rightarrow, we know
(4) $\mathrm{rsf}=\emptyset$
(5) T (monitor $\mathrm{Xf}: \mathrm{Ff}$) $=\mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{Itf})$

From (5) and Def. of $T(M)$, we know
(6) $\mathrm{Yf}=\mathrm{Xf}$
(7) $\mathrm{Ftf}=\mathrm{T}(\mathrm{Ff})$
(8) Itf $=\emptyset$

From ($6,7,8$) and the definitions of alldiff, allnext, and the invariant, we get [a].

Proof of 2
$\forall \mathrm{n} \in \mathbb{N}: \mathrm{P}(\mathrm{n}) \Rightarrow \mathrm{P}(\mathrm{n}+1)$
Take arbitrary $n \in \mathbb{N}$.
Assume $P(n)$, i.e.,
(1) $\forall \mathrm{X} \in$ Variable, $\mathrm{F} \in$ Formula, $\mathrm{h} \in \mathbb{N} \infty, \mathrm{d} \in \mathbb{N} \infty$, $\mathrm{s} \in$ Stream, $\mathrm{r} s \in \mathbb{P}(\mathbb{N})$, $\mathrm{Y} \in$ Variable, $\mathrm{Ft} \in$ TFormula, $\mathrm{It} \in \mathbb{P}$ (Instance):
$\vdash($ monitor $\mathrm{X}: \mathrm{F}):(\mathrm{h}, \mathrm{d}) \wedge$
$\vdash \mathrm{T}$ (monitor $\mathrm{X}: \mathrm{F}) \rightarrow *(\mathrm{n}, \mathrm{s}, \mathrm{rs}) \mathrm{TM}(\mathrm{Y}, \mathrm{Ft}, \mathrm{It}) \Rightarrow$ invariant(X,Y,F,Ft,It, $\mathrm{n}, \mathrm{s}, \mathrm{d}$)

Show $P(n+1)$, i.e.,
(a) $\forall \mathrm{X} \in$ Variable, $\mathrm{F} \in$ Formula, $\mathrm{h} \in \mathbb{N} \infty, \mathrm{d} \in \mathbb{N} \infty$, $\mathrm{s} \in$ Stream, $\mathrm{rs} \in \mathbb{P}(\mathbb{N})$, $\mathrm{Y} \in$ Variable $\mathrm{Ft} \in$ TFormula, $\mathrm{It} \in \mathbb{P}$ (Instance) :
\vdash (monitor $\mathrm{X}: \mathrm{F}):(\mathrm{h}, \mathrm{d}) \wedge$
$\vdash \mathrm{T}$ (monitor $\mathrm{X}: \mathrm{F}) \rightarrow *(\mathrm{n}+1, \mathrm{~s}, \mathrm{rs}) \mathrm{TM}(\mathrm{Y}, \mathrm{Ft}, \mathrm{It}) \Rightarrow$ invariant($\mathrm{X}, \mathrm{Y}, \mathrm{F}, \mathrm{Ft}, \mathrm{It}, \mathrm{n}+1, \mathrm{~s}, \mathrm{~d}$)

We take Xf,Ff,df,hf,sf,rsf,Yf,Ftf,Itf arbitrary but fixed.
Assume
(2) \vdash (monitor Xf : Ff) : (hf,df)
// (3) $d f \in \mathbb{N}$
(4) T (monitor $\mathrm{Xf}: \mathrm{Ff}) \rightarrow *(\mathrm{n}+1, \mathrm{sf}, \mathrm{rsf}) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{Itf})$
and show
[b] invariant(Xf,Yf,Ff,Ftf,Itf,n+1,sf,df)
From (4) and def. \rightarrow * for TMonitors, we know for some rs1,rs2 and $M t=T M(X, F t$ ', It')
(5) $\vdash \mathrm{T}$ (monitor $\mathrm{Xf}: \mathrm{Ff}) \rightarrow *(\mathrm{n}, \mathrm{sf}, \mathrm{rs} 1) \mathrm{TM}\left(\mathrm{X}, \mathrm{Ft}^{\prime}, \mathrm{It}{ }^{\prime}\right)$
(6) $\vdash \mathrm{TM}\left(\mathrm{X}^{\prime}, \mathrm{Ft}\right.$, ,It') $\rightarrow(\mathrm{n}, \mathrm{sf} \downarrow \mathrm{n}, \mathrm{sf}(\mathrm{n}), \mathrm{rs} 2) \mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{Itf})$
(7) rsf = rs1Urs2

From (6) by the definition of \rightarrow for TMonitors, we know
(8) $X^{\prime}=Y f$,
(9) Ft ' $=\mathrm{Ftf}$, and
(10) Itf $=\{(t 0, \operatorname{next}(\mathrm{Fc} 1), \mathrm{c} 0) \in$ TInstance |
\exists Ft0 \in Tformula such that ($\mathrm{t} 0, \mathrm{Ft0}, \mathrm{c} 0) \in \mathrm{It0}$ and $\vdash \mathrm{FtO} \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow \mathrm{n}, \mathrm{sf}(\mathrm{n}), \mathrm{c} 0) \operatorname{next}(\mathrm{Fc} 1)\}$
where
(11) $\operatorname{It0}=\operatorname{It}, \cup\{(n, \operatorname{Ftf},(\{(Y f, n)\},\{(Y f, s f(n))\}))\}$

From (1), for X=Xf, F=Ff, h=hf, d=df, s=sf, rs=rs1, Y=Yf, Ft=Ftf, and $I t=I t$, we obtain
(12) \vdash (monitor $\mathrm{Xf}: \mathrm{Ff}):(\mathrm{hf}, \mathrm{df}) \wedge$
\vdash T(monitor Xf : Ff) \rightarrow ($\mathrm{n}, \mathrm{sf}, \mathrm{rs} 1$) $\mathrm{TM}(\mathrm{Yf}, \mathrm{Ftf}, \mathrm{It}$ ') \Rightarrow invariant (Xf,Yf,Ff,Ftf,It', $\mathrm{n}, \mathrm{sf}, \mathrm{df}$)

From (14, 2, $3,5,8,9$) we obtain
(13) invariant(Xf,Yf, Ff, Ftf, It', $\mathrm{n}, \mathrm{sf}, \mathrm{df}$)

It means, we know
(14) $X f=Y f$
(15) $\mathrm{Ftf}=\mathrm{T}(\mathrm{Ff})$
(16) alldiffs(It')
(17) allnext(It')
(18) $\forall t \in \mathbb{N}, F t \in$ TFormula, $c \in$ Context:
($\mathrm{t}, \mathrm{Ft}, \mathrm{c}$) $\in \mathrm{It}, \wedge \mathrm{d} \in \mathbb{N} \Rightarrow$
c. $1=\{(\mathrm{Xf}, \mathrm{t})\} \wedge \mathrm{c} .2=\{(\mathrm{Xf}, \mathrm{sf}(\mathrm{t}))\} \wedge$
$\mathrm{n}-\mathrm{df} \leq \mathrm{t} \leq \mathrm{n}-1 \wedge$
$\mathrm{T}(\mathrm{Ff}) \rightarrow *(\mathrm{n}-\mathrm{t}, \mathrm{t}, \mathrm{sf}, \mathrm{c} .1) \mathrm{Ft} \wedge$
$\exists \mathrm{b} \in$ Bool $\exists \mathrm{d}^{\prime} \in \mathbb{N}$:
$\mathrm{d}^{\prime} \leq \mathrm{df} \wedge \vdash \mathrm{Ft} \rightarrow *\left(\max \left(0, \mathrm{t}+\mathrm{d}^{\prime}-\mathrm{n}\right), \mathrm{n}, \mathrm{sf}, \mathrm{c} .1\right) \operatorname{done}(\mathrm{b})$
Showing [b] means that we want to show
[b1] $\mathrm{Xf}=\mathrm{Yf}$
[b2] Ftf = T(Ff)
[b3] alldiff(Itf)
[b4] allsnext(Itf)
[b5] $\forall t \in \mathbb{N}, F t \in$ TFormula, $c \in$ Context: $(\mathrm{t}, \mathrm{Ft}, \mathrm{c}) \in \operatorname{Itf} \wedge \mathrm{d} \in \mathbb{N} \Rightarrow$
c. $1=\{(\mathrm{Xf}, \mathrm{t})\} \wedge \mathrm{c} .2=\{(\mathrm{Xf}, \mathrm{sf}(\mathrm{t}))\} \wedge$
$\mathrm{n}+1-\mathrm{df} \leq \mathrm{t} \leq \mathrm{n} \wedge$
$\mathrm{T}(\mathrm{Ff}) \rightarrow *(\mathrm{n}+1-\mathrm{t}, \mathrm{t}, \mathrm{sf}, \mathrm{c} .1) \mathrm{Ft} \wedge$
$\exists \mathrm{b} \in$ Bool $\exists \mathrm{d}^{\prime} \in \mathbb{N}$:
$\mathrm{d}^{\prime} \leq \mathrm{df} \wedge \vdash \mathrm{Ft} \rightarrow *\left(\max \left(0, \mathrm{t}+\mathrm{d}^{\prime}-\mathrm{n}-1\right), \mathrm{n}+1, \mathrm{sf}, \mathrm{c} .1\right)$ done(b)

```
Proof of [b1]
```

[b1] is proved by (14).

Proof of (b2)
[b2] is proved by (15).

Proof of [b3]

From (10) one can see that the elements ($\mathrm{t}, \mathrm{Ft}, \mathrm{c}$) in Itf inherit their tag t from It0, which is It $\cup\{(\mathrm{n}, \mathrm{Ftf},(\mathrm{cp}, \mathrm{cm}))\}$. From (18) we know alldiff(It'). From (18) we have $\mathrm{t} \leq \mathrm{n}-1$ for all ($\mathrm{t}, \mathrm{Ft} 1, \mathrm{c}$) $\in \mathrm{It}$. Adding $\{(\mathrm{n}, \mathrm{Ftf}, \mathrm{cf})\}$ to It', will guarantee all instances in It0 have different tags. Since these tags are transfered to Itf, we conclude that [b3] holds.

Proof of [b4]
(b4) follows directly from (10), since every element in Itf has a form ($\mathrm{t}, \operatorname{next}(\mathrm{Fc}), \mathrm{c}$).

Proof of [b5]
Recall that we have to prove
$\forall \mathrm{t} \in \mathbb{N}$, Ft \in TFormula, c context:
($\mathrm{t}, \mathrm{Ft}, \mathrm{c}$) $\in \operatorname{Itf} \wedge \mathrm{d} \in \mathbb{N} \Rightarrow$ c. $1=\{(X f, t)\} \wedge c .2=\{(X f, s f(t))\} \wedge$ $\mathrm{n}+1-\mathrm{df} \leq \mathrm{t} \leq \mathrm{n} \wedge$ $\mathrm{T}(\mathrm{Ff}) \rightarrow *(\mathrm{n}+1-\mathrm{t}, \mathrm{t}, \mathrm{sf}, \mathrm{c} .1) \mathrm{Ft} \wedge$ $\exists \mathrm{b} \in$ Bool $\exists \mathrm{d}^{\prime} \in \mathbb{N}$: $d^{\prime} \leq \mathrm{df} \wedge \vdash \mathrm{Ft} \rightarrow *\left(\max \left(0, \mathrm{t}+\mathrm{d}^{\prime}-\mathrm{n}-1\right), \mathrm{n}+1, \mathrm{sf}, \mathrm{c} .1\right)$ done(b)

We take tb, Ftb, cb arbitrary but fixed, assume
(19) $(\mathrm{tb}, \mathrm{Ftb}, \mathrm{cb}) \in \operatorname{Itf} \wedge \mathrm{d} \in \mathbb{N}$
and prove
[b5.1] cb.1=\{(Xf,tb) $\} \wedge c b .2=\{(X f, s f(t b))\}$
[b5.2] $\mathrm{n}+1-\mathrm{df} \leq \mathrm{tb} \leq \mathrm{n}$
[b5.3] T(Ff) $\rightarrow *(n+1-\mathrm{tb}, \mathrm{tb}, \mathrm{sf}, \mathrm{cb} .1) \mathrm{Ftb} \wedge$
[b5.4] $\exists \mathrm{b} \in$ Bool $\exists \mathrm{d}^{\prime} \in \mathbb{N}$:
$\mathrm{d}^{\prime} \leq \mathrm{df} \wedge \vdash \mathrm{Ftb} \rightarrow *\left(\max \left(0, \mathrm{tb}+\mathrm{d}^{\prime}-\mathrm{n}-1\right), \mathrm{n}+1, \mathrm{sf}, \mathrm{cb} .1\right)$ done(b)
From (19) and (b4) we know that there exists Fcb \in TFormulaCore such that
(20) $\mathrm{Ftb}=$ next (Fcb)

From (19), (20) and (10) of we know there exists Ft0 F TFormula such that
(21) ($\mathrm{tb}, \mathrm{Ft0}, \mathrm{cb}) \in \mathrm{ItO}$ and
(22) $\vdash \mathrm{FtO} \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow \mathrm{n}, \mathrm{sf}(\mathrm{n}), \mathrm{cb}) \operatorname{next}(\mathrm{Fcb})$.

Proof of [b5.1]

We want to prove
[b5.1] cb.1=\{(Xf,tb) $\} \wedge c b .2=\{(X f, s f(t b))\}$
From (21) and (11), we have two cases:
(C1) $(\mathrm{tb}, \mathrm{Ft0}, \mathrm{cb})=\left(\mathrm{n}, \mathrm{Ftf},\left(\left\{\left(\mathrm{X}^{\prime}, \mathrm{n}\right)\right\},\left\{\left(\mathrm{X}^{\prime}, \mathrm{sf}(\mathrm{n})\right)\right\}\right)\right)$ and
(C2) (tb,Fto,cb) $\in I t$.
In case (C1) we have $\mathrm{tb}=\mathrm{n}$, $\mathrm{FtO}=\mathrm{Ftf}$, and $\mathrm{cb}=\left(\left\{\left(\mathrm{X}^{\prime}, \mathrm{n}\right)\right\},\left\{\left(\mathrm{X}^{\prime}, \mathrm{sf}(\mathrm{n})\right)\right\}\right.$).
From the latter, by (8) and (14), we have $c b=(\{(X f, n)\},\{(X f, s f(n))\})$ and, hence, since $\mathrm{tb}=\mathrm{n}$, we get $\mathrm{cb} .1=\{(\mathrm{Xf}, \mathrm{tb})\}$ and $\mathrm{cb} .2=\{(\mathrm{Xf}, \mathrm{sf}(\mathrm{tb}))\}$, which proves (b5.1) for the case (C1).

In case (C2), [b5.1] follows from (18).
Hence, [b5.1] is proved.

Proof of [b5.2]

We want to prove
[b5.2] $\mathrm{n}+1-\mathrm{df} \leq \mathrm{tb} \leq \mathrm{n}$.
Again, from (21) and (11), we have two cases:
(C1) (tb, Ft0, cb) $=\left(\mathrm{n}, \mathrm{Ftf},\left(\left\{\left(\mathrm{X}^{\prime}, \mathrm{n}\right)\right\},\left\{\left(\mathrm{X}^{\prime}, \mathrm{sf}(\mathrm{n})\right)\right\}\right)\right.$) and
(C2) (tb,Ft0,cb) $\in I t$.
The case (C1)

In case (C1) we have $\mathrm{tb}=\mathrm{n}, \mathrm{Ft0}=\mathrm{Ftf}$, and $\mathrm{cb}=\left(\left\{\left(\mathrm{X}^{\prime}, \mathrm{n}\right)\right\},\{(\mathrm{X}, \mathrm{sf}(\mathrm{n}))\}\right.$).
From the latter, by (8) and (14), we have $c b=(\{(X f, n)\},\{(X f, s f(n))\})$.
To show [b5.2], it just remains to prove
[23] $\mathrm{df}>0$.
Assume by contradiction that $\mathrm{df}=0$. Then from (2) we get that there exists re $0 \in$ RangeEnv such that $\mathrm{re} 0(\mathrm{Xf})=(0,0)$ and
(24) re $0 \vdash \mathrm{Ff}:(\mathrm{hf}, 0)$

Now we apply Statement 1 of Lemma 1 with $F=F f$, $r e=r e 0, e=\{(X f, n)\}, s=s f, d=d f=0$, $\mathrm{h}=\mathrm{hf}$, $\mathrm{s}=\mathrm{sf}, \mathrm{p}=\mathrm{n}$, and since $\mathrm{T}(\mathrm{Ff})=\mathrm{Ftf}$ by (17), we obtain
(25) $\exists \mathrm{b} \in$ Bool $\exists \mathrm{d}^{\prime} \in \mathbb{N}$: $\mathrm{d}^{\prime} \leq 1 \wedge \vdash$ Ftf $\rightarrow *\left(\mathrm{~d}^{\prime}, \mathrm{n}, \mathrm{sf},\{(\mathrm{Xf}, \mathrm{n})\}\right)$ done(b))

From (25), there exist bl \in Bool and $d l^{\prime} \in \mathbb{N}$ such that
(26) dl ' ≤ 1 and
(27) Ftf $\rightarrow *(d l$, $n, s f,\{(X f, n)\})$ done(bl).

Note that since Ftf $=\mathrm{T}(\mathrm{Ff})$, by the definition of the translation T , Ftf is a 'next' formula. Hence, dl' $\neq 0$, because otherwise by (27) and the definition of $\rightarrow *$ we would get Fft=done(bl), which would contradict the fact that Ftf is a 'next' formula. Therefore, from (26) we get
(28) dl '=1.

From (27) and (28) we get
(29) Ftf $\rightarrow *(1, \mathrm{n}, \mathrm{sf},\{(\mathrm{Xf}, \mathrm{n})\})$ done(bl).

From (29), by the definition of $\rightarrow *$ for TFormulas, we get that there exists Ft' such that
(30) Ftf $\rightarrow(\mathrm{n}, \mathrm{sf} \downarrow \mathrm{n}, \mathrm{sf}(\mathrm{n}),(\{(\mathrm{Xf}, \mathrm{n})\},\{(\mathrm{Xf}, \mathrm{sf}(\mathrm{n}))\})) \mathrm{Ft}$,
(31) $\mathrm{Ft}{ }^{\prime} \rightarrow *(0, \mathrm{n}+1, \mathrm{sf},\{(\mathrm{Xf}, \mathrm{n})\})$ done(bl).

On the other hand, from (22), by Ft0=Ftf and (b5.1) we get
(32) Ftf $\rightarrow(\mathrm{n}, \mathrm{sf} \downarrow \mathrm{n}, \mathrm{sf}(\mathrm{n}),(\{(\mathrm{Xf}, \mathrm{n})\},\{(\mathrm{Xf}, \mathrm{sf}(\mathrm{n}))\})) \operatorname{next}(\mathrm{Fcb})$

From (30) and (32) and by the fact that the reduction \rightarrow is deterministic (one can not perform two different reductions from Ftf with the same $\mathrm{n}, \mathrm{sf} \downarrow \mathrm{n}, \mathrm{sf}(\mathrm{n})$, and $(\{(\mathrm{Xf}, \mathrm{n})\},\{(\mathrm{Xf}, \mathrm{sf}(\mathrm{n}))\})$: This can be seen by inspecting the rules for \rightarrow), we obtain
(33) Ft ' $=\mathrm{next}(\mathrm{Fcb})$.

Then from (31) and (33) we get
(34) $\operatorname{next}(\mathrm{Fcb}) \rightarrow *(0, \mathrm{n}+1, \mathrm{sf},(\{(\mathrm{Xf}, \mathrm{n})\},\{(\mathrm{Xf}, \mathrm{sf}(\mathrm{n}))) \mathrm{done}(\mathrm{bl})$.

But this contradicts the definition of $\rightarrow *$: A 'next' formula can not be reduced to a 'done' formula in 0 steps. Hence, the obtained contradiction proves [23] and, therefore, [b5.2] for the case (C1).

Now we consider the case (C2).
From (tb,Ft0,cb) \in It', by (18), we get
(35) $\mathrm{n}-\mathrm{df} \leq \mathrm{tb} \leq \mathrm{n}-1$.

In order to prove [b5.2], we need to show
[36] $\mathrm{n}+1-\mathrm{df} \leq \mathrm{tb}$.

Assume by contradiction that $n+1-\mathrm{df}>\mathrm{tb}$. By (35) it means $\mathrm{n}-\mathrm{df}=\mathrm{tb}$. From (18) with $\mathrm{t}=\mathrm{tb}, \mathrm{Ft}=\mathrm{Ft0}$, $\mathrm{c}=\mathrm{cb}$ we get
(37) $\exists \mathrm{b} \in$ Bool $\exists \mathrm{d}^{\prime} \in \mathbb{N}$:

$$
\mathrm{d}^{\prime} \leq \mathrm{df} \wedge \vdash \mathrm{Ft0} \rightarrow *\left(\max \left(0, \mathrm{tb}+\mathrm{d}^{\prime}-\mathrm{n}\right), \mathrm{sf}, \mathrm{cb} .1\right) \text { done(b) }
$$

Since $\mathrm{tb}+\mathrm{d}$ ' $-\mathrm{n}=\mathrm{n}-\mathrm{df}+\mathrm{d}^{\prime}-\mathrm{n}=\mathrm{d}^{\prime}-\mathrm{df}$, from (37), we obtain that there exist b and d' such that
(38) $d^{\prime} \leq \mathrm{df} \wedge \vdash \mathrm{Ft0} \rightarrow *\left(\max \left(0, \mathrm{~d}^{\prime}-\mathrm{df}\right), \mathrm{sf}, \mathrm{cb} .1\right)$ done(b)
holds. But then $\max \left(0, d^{\prime}-d f\right)=0$ and we get
(39) $\mathrm{FtO} \rightarrow *(0, \mathrm{sf}, \mathrm{cb} .1)$ done(b)
which, by definition of $\rightarrow *$ for TFormulas, implies
(40) $\mathrm{FtO}=$ done(b).

However, this contradicts (22) and the definition of \rightarrow for TFormulas, because no 'done' formula can be reduced. Hence, (36) holds, which implies [b5.2] also in this case.

Proof of [b5.3]
We have to prove $\mathrm{T}(\mathrm{Ff}) \rightarrow^{*}(\mathrm{n}+1-\mathrm{tb}, \mathrm{tb}, \mathrm{sf}, \mathrm{cb} .1) \mathrm{Ftb}$, which, by Lemma 2, is equivalent to proving
(41) $\mathrm{T}(\mathrm{Ff}) \rightarrow \mathrm{l} *(\mathrm{n}+1-\mathrm{tb}, \mathrm{tb}, \mathrm{sf}, \mathrm{cb} .1) \mathrm{Ftb}$

Since $\mathrm{n}+1$-tb>0 (by b5.2), by the definition of $\rightarrow 1 *$, proving (41) reduces to proving that there exists such a Ft' that
[42] $\mathrm{T}(\mathrm{Ff}) \rightarrow \mathrm{l} *(\mathrm{n}-\mathrm{tb}, \mathrm{tb}, \mathrm{sf}, \mathrm{cb} .1) \mathrm{Ft}$ and
[43] $\mathrm{Ft}{ }^{\prime} \rightarrow\left(\mathrm{n}, \mathrm{sf} \downarrow(\mathrm{n}), \mathrm{s}(\mathrm{n}), \mathrm{c}^{\prime}\right) \mathrm{Ftb}$
where $c^{\prime}=(c b .1,\{(X, \operatorname{sf}(c b .1(X))) \mid X \in \operatorname{dom}(c b .1)\})$. But since $\operatorname{dom}(c b .1)=\{X f\}$, we actually get
(44) $c^{\prime}=c b$.

Let us take Ft'=Ft0. Then (43) follows from (22). To prove (41), we reason as follows:
From (21), we know that (tb,Ft0,cb) \in It0. By (11) and (14), we have
(45) $\operatorname{It} 0=I t, \cup\{(n, \operatorname{Ftf},(\{(X f, n)\},\{(X f, s f(n))\}))\}$

Let us first consider the case when ($\mathrm{tb}, \mathrm{Ft0}, \mathrm{cb}$) $\in \mathrm{It}$ '. From (18) we have
(46) $\mathrm{T}(\mathrm{Ff}) \rightarrow *(\mathrm{n}-\mathrm{tb}, \mathrm{tb}, \mathrm{sf}, \mathrm{cb} .1) \mathrm{Ft0}$

From (46), by Lemma 2, we get (42).

Now assume (tb, $\mathrm{FtO}, \mathrm{cb}) \in\{(\mathrm{n}, \mathrm{Ftf},(\{(\mathrm{Xf}, \mathrm{n})\},\{(\mathrm{Xf}, \mathrm{sf}(\mathrm{n}))\}))\}$. That means, taking
tb=n, Ft0=Ftf, and $c b=(\{(X f, n)\},\{(X f, s f(n))\})$. Then, from (42), we need to prove
[47] $\mathrm{T}(\mathrm{Ff}) \rightarrow \mathrm{l} *(0, \mathrm{n}, \mathrm{sf},\{(\mathrm{Xf}, \mathrm{n})\})$ Ftf.
This follows from the definition of \rightarrow l* and [b2].

Hence, [b5.3] is proved.

Proof of [b5.4]

Recall that we took tb, Ftb, cb arbitrary but fixed and assumed
(21) $(\mathrm{tb}, \mathrm{Ftb}, \mathrm{cb}) \in \mathrm{Itf}$.

We are looking for $\mathrm{b} * \in$ Bool and $\mathrm{d}^{\prime} * \in \mathbb{N}$ such that
[48] d'* df and
[49] $\vdash \mathrm{Ftb} \rightarrow *\left(\max \left(0, \mathrm{tb}+\mathrm{d}^{\prime} *-\mathrm{n}-1\right), \mathrm{n}+1, \mathrm{sf}, \mathrm{cb} .1\right)$ done(b*)
hold.
From (21) and (b4) we know that there exists Fcb \in TFormulaCore such that
(50) Ftb=next (Fcb)

From (21), by (11) there are two cases:
(C1) (tb, Ft0, cb) $=\left(\mathrm{n}, \mathrm{Ftf},\left(\left\{\left(\mathrm{X}^{\prime}, \mathrm{n}\right)\right\},\left\{\left(\mathrm{X}^{\prime}, \mathrm{sf}(\mathrm{n})\right)\right\}\right)\right)$
(C2) (tb,Ft0,cb) \in It'

Case (C1):
From (C1) we know
(51) $\mathrm{tb}=\mathrm{n}$
(52) $\mathrm{Ft0}=\mathrm{Ftf}$
(53) $\mathrm{cb}=(\{(\mathrm{Xf}, \mathrm{n})\},\{(\mathrm{Xf}, \mathrm{sf}(\mathrm{n}))\})$

From (51), to show [b5.3], it suffices to show
[b5.3.a] $\exists b \in B o o l, d^{\prime} \in \mathbb{N}$:

$$
\mathrm{d}^{\prime} \leq \mathrm{df} \wedge \vdash \mathrm{Ftb} \rightarrow *\left(\max \left(0, \mathrm{~d}^{\prime}-1\right), \mathrm{n}+1, \mathrm{sf}, \mathrm{cb} .1\right) \text { done (b) }
$$

From (53), we know
(54) $\mathrm{cb} .1=\{(\mathrm{Xf}, \mathrm{n})\}$
(55) $\mathrm{cb} .2=\{(\mathrm{Xf}, \mathrm{sf}(\mathrm{n}))\}$

From (2) and the definition of \vdash we have some re \in RangeEnv such that
(56) $\mathrm{re}(\mathrm{Xf})=(0,0)$
(57) re $\vdash \mathrm{Ff}:(\mathrm{hf}, \mathrm{df})$

From (Statement 1 of Lemma 1), (57), (19), (15), we have some b1 \in Bool and d1' $\in \mathbb{N}$ such that
(58) $\mathrm{d} 1^{\prime} \leq \mathrm{df}+1$
(59) \vdash Ftf $\rightarrow *(\mathrm{~d} 1$ ', $\mathrm{n}, \mathrm{sf},\{(\mathrm{Xf}, \mathrm{n})\})$ done(b1)

From $(20,59)$ and the definition of $\rightarrow *$, we know for some Ftb' \in TInstance
(60) d1' > 0
(61) $\vdash \operatorname{Ftf} \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow \mathrm{n}, \mathrm{sf}(\mathrm{n}),(\{(\mathrm{Xf}, \mathrm{n})\},\{(\mathrm{Xf}, \mathrm{sf}(\mathrm{n}))\})) \mathrm{Ftb}$,
(62) $\vdash \mathrm{Ftb}{ }^{\prime} \rightarrow *\left(\mathrm{~d} 1^{\prime}-1, \mathrm{n}+1, \mathrm{sf},\{(\mathrm{Xf}, \mathrm{n})\}\right)$ done(b1)

From $(22,52,53)$, we know
(63) $\vdash \operatorname{Ftf} \rightarrow(\mathrm{n}, \mathrm{sf} \downarrow \mathrm{n}, \mathrm{sf}(\mathrm{n}),(\{(\mathrm{Xf}, \mathrm{n})\},\{(\mathrm{Xf}, \mathrm{sf}(\mathrm{n}))\})) \mathrm{Ftb}$

From $(61,63)$ and the fact that the rules for \rightarrow are deterministic
(i.e., \forall Ftf, Ftb,Ftb': $(\vdash$ Ftf \rightarrow Ftb $) \wedge(\vdash$ Ftf \rightarrow Ftb') \Rightarrow Ftb $=$ Ftb', a lemma easy to prove), we know
(64) $\mathrm{Ftb}^{\prime}=\mathrm{Ftb}$

From $(62,64)$, we know
(65) \vdash Ftb $\rightarrow *\left(\mathrm{~d} 1^{\prime}-1, \mathrm{n}+1, \mathrm{sf},\{(\mathrm{Xf}, \mathrm{n})\}\right)$ done(b1)

From (60), we know
(66) $\mathrm{d} 1^{\prime}-1=\max \left(0, \mathrm{~d} 1^{\prime}-1\right)$

From $(58,65,66,54)$, we know $[b 5.3 . a]$ with $\mathrm{b}:=\mathrm{b} 1$ and $\mathrm{d}:=\mathrm{d} 1{ }^{\prime}-1$.
Case (C2).
Recall that in this case ($\mathrm{tb}, \mathrm{Ft0}, \mathrm{cb}$) $\in \operatorname{It}$.
By the induction hypothesis (18) there exist bi \in Bool and $d i^{\prime} \in \mathbb{N}$ such that
(67) di' $\leq \mathrm{df}$ and
(68) $\vdash \mathrm{Ft} 0 \rightarrow *\left(\max \left(0, \mathrm{tb}+\mathrm{di}{ }^{\prime}-\mathrm{n}\right), \mathrm{n}, \mathrm{sf}, \mathrm{cb} .1\right)$ done(bi)

This implies that
(69) $\mathrm{tb}+\mathrm{di}{ }^{\prime}-\mathrm{n}>0$,
otherwise we would have $\mathrm{FtO}=$ done(bi), which contradicts the assumption ($\mathrm{tb}, \mathrm{Ft0}, \mathrm{cb}$) $\in \mathrm{It}$ ' and (20). Hence, we have
(70) $\vdash \mathrm{FtO} \rightarrow *\left(\mathrm{tb}+\mathrm{di}{ }^{\prime}-\mathrm{n}, \mathrm{n}, \mathrm{sf}, \mathrm{cb} .1\right)$ done(bi)

Therefore, we can apply the definition $\rightarrow *$ for TFormulas to (70) and (22), concluding $\vdash \operatorname{next}(\mathrm{Fcb}) \rightarrow *\left(\mathrm{tb}+\mathrm{di}{ }^{\prime}-\mathrm{n}-1, \mathrm{n}+1, \mathrm{sf}, \mathrm{cb} .1\right)$ done(bi) and, hence
(71) $\vdash \mathrm{Ftb} \rightarrow *\left(\mathrm{tb}+\mathrm{di}{ }^{\prime}-\mathrm{n}-1, \mathrm{n}+1, \mathrm{sf}, \mathrm{cb} .1\right)$ done(bi)

Now we can take d'*=d' and b*=bi. From (59) we get
(72) $\mathrm{tb}+\mathrm{di} * \cdot-\mathrm{n}-1=\max \left(0, \mathrm{tb}+\mathrm{di}{ }^{\prime}-\mathrm{n}-1\right)$.

From (71) and (72) we get [49]. From (67) and the assumption d'*=d' we get [48]. Hence, [b5.3] is true also in case (b6.2 C2).

This finishes the invariant proof.

A. 3 Lemma 1: Soundness Lemma for Formulas

```
*,F'\inFormula, re\inRangeEnv, e\inEnvironment, Ft\inTFormula, n\in\mathbb{N},\textrm{p}\in\mathbb{N}\mathrm{ ,}
    s\inStream, d\in\mathbb{N}\infty,h\in\mathbb{N}\mathrm{ :}
    \vdash(re\vdashF: (h,d)) ^ dom(e) = dom(re) ^
        \forallY\indom(e): re(Y).1 +i p \leqi e(Y) \leqi re(Y). 2 +i p
        #
            ( d\in\mathbb{N }=>
                        \existsb\inBool, \existsd'\in\mathbb{N}:
                        d'\leqd+1 ^ \vdash T(F) ->*(d',p,s,e) done(b)) ^
            ( }\forall\textrm{h}'\in\mathbb{N}:\mp@subsup{\textrm{h}}{}{\prime}\geq\textrm{h}
                ( T(F) ->* (n,p,s,e) Ft }
                T(F) ->* (n,p,s,e,h') Ft ) )
We split the lemma in two parts:
Statement 1.
    FG\inFormula, re\inRangeEnv, e\inEnvironment, s\inStream, d\in\mathbb{N}\infty, h\in\mathbb{N},\textrm{p}\in\mathbb{N}\mathrm{ :}
        (\vdash (re \vdashF: (h,d)) ^ dom(e) = dom(re) ^
        YY\indom(e): re(Y).1 +i p \leqi e(Y) \leqi re(Y). 2 +i p ^
        d\in\mathbb{N ) }=>
            \existsb\inBool }\exists\mp@subsup{d}{}{\prime}\in\mathbb{N}\mathrm{ :
            d'\leqd+1 ^ト T(F) ->*(d',p,s,e) done(b))
Statement 2.
    \forallF\inFormula, re\inRangeEnv, e\inEnvironment, Ft\inTFormula, n\in\mathbb{N}, p\in\mathbb{N}\mathrm{ ,}
        s}\in\mathrm{ Stream, d }\in\mathbb{N}\infty,h\in\mathbb{N},\mp@subsup{h}{}{\prime}\in\mathbb{N}\mathrm{ :
        (\vdash)(re\vdashF: (h,d)) ^ dom(e) = dom(re) ^
        \forallY\indom(e): re(Y). 1 +i p \leqi e(Y) \leqi re(Y). 2 +i p ^
        h'\geqh ) =
            ( T(F) ->* (n,p,s,e) Ft }
                T(F) ->* (n,p,s,e,h') Ft )
```


Statement 1.

```
\(\forall F \in\) Formula, re \(\in\) RangeEnv, e \(\in\) Environment, \(s \in\) Stream, \(\mathrm{d} \in \mathbb{N} \infty, \mathrm{h} \in \mathbb{N}\) :
\((\vdash(r e \vdash F:(h, d)) \wedge \operatorname{dom}(e)=\operatorname{dom}(r e) \wedge\)
\(\forall Y \in \operatorname{dom}(e): \operatorname{re}(Y) .1+i \operatorname{p} \leq i e(Y) \leq i \operatorname{re}(Y) .2+i p \wedge\)
\(\mathrm{d} \in \mathbb{N}) \Rightarrow\)
\(\forall \mathrm{p} \in \mathbb{N} \exists \mathrm{b} \in\) Bool \(\exists \mathrm{d}^{\prime} \in \mathbb{N}\) :
\(\mathrm{d}^{\prime} \leq \mathrm{d}+1 \wedge \vdash \mathrm{~T}(\mathrm{~F}) \rightarrow *\left(\mathrm{~d}^{\prime}, \mathrm{p}, \mathrm{s}, \mathrm{e}\right)\) done \(\left.(\mathrm{b})\right)\)
```


Parametrization

```
\(R(F): \Leftrightarrow\)
\(\forall r e \in\) RangeEnv, e \(\in\) Environment, \(s \in\) Stream, \(d \in \mathbb{N} \infty, h \in \mathbb{N}\) :
```

```
(\vdash (re \vdash F: (h,d)) ^ dom(e) = dom(re) ^
\forallY\indom(e): re(Y).1 +i p \leqi e(Y) <i re(Y). 2 +i p ^
d}\in\mathbb{N})
    ( }\forall\textrm{p}\in\mathbb{N}\exists\textrm{b}\in\mathrm{ Bool }\exists\mp@subsup{\textrm{d}}{}{\prime}\in\mathbb{N}\mathrm{ :
        d'\leqd+1 ^\vdash T(F) }->*(\mp@subsup{d}{}{\prime},p,s,e) done(b)
```

We want to prove
$\forall F \in$ Formula: $\mathrm{R}(\mathrm{F})$
By structural induction over F:
C1: $\mathrm{F}=@ \mathrm{X}$. Then $\mathrm{T}(\mathrm{F})=\operatorname{next}(\mathrm{TV}(\mathrm{X}))$.

We take ref, ef, sf, df, hf, pf arbitrary but fixed. Assume
(1.1) $\vdash(r e f \vdash @ X:(h f, d f))$
(1.2) $\mathrm{df} \in \mathbb{N}$,
(1.3) $\operatorname{dom}(e f)=\operatorname{dom}(r e f) \wedge \forall Y \in \operatorname{dom}(e f): r e f(Y) .1+i \operatorname{pf} \leq i \quad e f(Y) \leq i \operatorname{ref}(Y) .2+i p f$
and look for $b * \in$ Bool and $d *^{\prime} \in \mathbb{N}$ such that
[1.4] $\mathrm{d} *$ ' $\leq \mathrm{df}+1$ and
[1.5] $\vdash \operatorname{next}(T V(X)) \rightarrow *(d *), p f, s f, e f)$ done(b*)
hold.
From (1.1) we get
(1.6) $\mathrm{hf}=0$ and
(1.7) $\mathrm{df}=0$.

We define

```
(1.8) c = (ef,{(X,sf(ef(X))) | X \in dom(ef)}),
```

and take
(1.9) $\mathrm{d} * \cdot=1$
and
(1.10) b* = if $\mathrm{X} \in \operatorname{dom}(\mathrm{c} .2)$) then c. 2 (X)
else
false

From (1.7,1.9), we see that $d *$ ' satisfies [1.4]. Hence, we only need to prove the following formula obtained from [1.5]:
[1.11] $\vdash \operatorname{next}(T V(X)) \rightarrow *(1, p f, s f, e f)$ done(b*).
where $b *$ is defined in (1.10). By the definition of $\rightarrow *$, to prove [1.11], we need to find Ft' \in TFormula such that
[1.12] next (TV (X)) $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}$, and
[1.13] $\mathrm{Ft}{ }^{\prime} \rightarrow *(0, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef})$ done(b*)
hold, where c is defined as in (1.8).
We take Ft'=done(b*). Then [1.12] holds by (1.10) and the definition of \rightarrow for next(TV(X)), and [1.13] holds by the definition of \rightarrow.

C2. $F={ }^{\sim} F$ 1. Then $T(F)=\operatorname{next}(T N(T(F 1)))$.

We take ref, ef, sf, df, hf, pf arbitrary but fixed. Assume
(2.1) $\vdash($ ref $\vdash \neg \mathrm{F} 1:(\mathrm{hf}, \mathrm{df}))$
(2.2) $\mathrm{df} \in \mathbb{N}$,
(2.3) $\operatorname{dom}(e f)=\operatorname{dom}(r e f) \wedge \forall Y \in \operatorname{dom}(e f): r e f(Y) .1+i \operatorname{pf} \leq i \quad e f(Y) \leq i \operatorname{ref}(Y) .2+i p f$
and look for such $b * \in$ Bool and $d *^{\prime} \in \mathbb{N}$ such that
[2.4] $\mathrm{d}^{\prime} \leq \mathrm{df}+1$ and
$[2.5] \vdash \operatorname{next}(T N(T(F 1))) \rightarrow *\left(d *^{\prime}, p f, s f, e f\right)$ done(b*)
hold.
From (2.1) by the definition of the \vdash relation we get
(2.6) $\vdash(\mathrm{re} \vdash \mathrm{F} 1):(\mathrm{hf}, \mathrm{df})$.

From (2.6), (2.3) and the induction hypothesis there exist bi \in Bool and di' $\in \mathbb{N}$ such that
(2.7) $\mathrm{di}{ }^{\prime} \leq \mathrm{df}+1$ and
(2.8) $\vdash \mathrm{T}(\mathrm{F} 1) \rightarrow *(\mathrm{di}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef})$ done(bi).

We take
(2.9) $\mathrm{d} *=\mathrm{di}{ }^{\prime}$
and define
(2.10) b* := if bi = true then false else
true
By $(2.7,2.9)$, the inequality $[2.4]$ holds. From (2.8), (2.9), (2.10), by the Statement 1 of the Lemma 4 we get [2.5].

```
C3. F = F1&F2. Then T(F) = next(TCS(T(F1),T(F2))).
```

We take ref, ef, sf, df, hf, pf arbitrary but fixed. Assume
(3.1) $\vdash($ ref \vdash F1\&F2: $(h f, d f))$,
(3.2) $\mathrm{df} \in \mathbb{N}$,
(3.3) $\operatorname{dom}(e f)=\operatorname{dom}(r e f) \wedge \forall Y \in \operatorname{dom}(e f): r e f(Y) .1+i \operatorname{pf} \leq i \operatorname{ef}(Y) \leq i \operatorname{ref}(Y) .2+i p f$ and look for such $b * \in$ Bool and $d *^{\prime} \in \mathbb{N}$ such that
[3.4] $\mathrm{d} *{ }^{\prime} \leq \mathrm{df}+1$ and
[3.5] $\vdash \operatorname{next}(\mathrm{TCS}(\mathrm{T}(\mathrm{F} 1), \mathrm{T}(\mathrm{F} 2))) \rightarrow *\left(\mathrm{~d} *^{\prime}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}\right)$ done(b*)
From (3.1), by the definition of the \vdash relation we get
(3.6) \vdash (ref $\vdash \mathrm{F} 1:(\mathrm{h} 1, \mathrm{~d} 1)$
(3.7) $\vdash(r e f \vdash F 2:(h 2, d 2)$
such that $\mathrm{h} 1, \mathrm{~d} 1, \mathrm{~h} 2, \mathrm{~d} 2 \in \mathbb{N}$ and
(3.8) $\mathrm{df}=\max \infty(\mathrm{d} 1, \mathrm{~d} 2)=\max (\mathrm{d} 1, \mathrm{~d} 2)$

From (3.6), (3.3), and the induction hypothesis there exist b1i \in Bool and $d i^{\prime} \in \mathbb{N}$ such that
(3.9) $\mathrm{d} 1 \mathrm{i}{ }^{\prime} \leq \mathrm{d} 1+1$ and
(3.10) $\vdash \mathrm{T}(\mathrm{F} 1) \rightarrow *(\mathrm{~d} 1 \mathrm{i}$, , pf,sf,ef) done(b1i).

From (3.7) and the induction hypothesis there exist $b 2 i \in$ Bool and $d 2 i^{\prime} \in \mathbb{N}$ such
(3.11) $\mathrm{d} 2 \mathrm{i}^{\prime} \leq \mathrm{d} 2+1$ and
(3.12) $\vdash \mathrm{T}(\mathrm{F} 2) \rightarrow *(\mathrm{~d} 2 \mathrm{i}$, , pf, sf,ef) done(b2i).

From (3.10) and (3.12) we have
(3.13) d1i'>0 and
(3.14) d2i'>0
(Otherwise we would have a 'next' formula reducing to a 'done' formula in 0 steps, which is impossible.)

We proceed by case distinction over b1i.
b1i = false

We take
(3.15) $\mathrm{b} *=\mathrm{b} 1 \mathrm{i}=\mathrm{false}$ and
(3.16) d*'=d1i'.

From (3.8,3.9,3.16) we get [3.4]. From (3.10, 3.13, 3.15, 3.16) and Statement 2
of Lemma 4 we get [3.5].
b1i = true.
We take
(3.17) b*=b2i' and
(3.18) $\mathrm{d}^{\prime}=\max \left(\mathrm{d} 1 \mathrm{i}^{\prime}, \mathrm{d} 2 \mathrm{i}^{\prime}\right)$.

From (3.18, 3.9, 3.11) we get
(3.19) $d *^{\prime}=\max \left(d 1 i^{\prime}, d 2 i^{\prime}\right) \leq \max (d 1+1, d 2+1)=\max (d 1, d 2)+1=d f+1$

Hence, (3.19) gives [3.4].
From (3.10, $3.12,3.13,3.14,3.18$) and Statement 2 of Lemma 4 we get [3.5].

C4. $F=F 1 / \backslash F 2$. Then $T(F)=\operatorname{next}(T C P(T(F 1), T(F 2)))$.
We take ref, ef, sf, df, hf, pf arbitrary but fixed. Assume
(4.1) $\vdash(\mathrm{re} \vdash \mathrm{F} 1 \wedge \mathrm{~F} 2:(\mathrm{hf}, \mathrm{df}))$,
(4.2) $\mathrm{df} \in \mathbb{N}$,
(4.3) $\operatorname{dom}(e f)=\operatorname{dom}(r e f) \wedge \forall Y \in \operatorname{dom}(e f): r e f(Y) .1+i \operatorname{pf} \leq i \operatorname{ef}(Y) \leq i \operatorname{ref}(Y) .2+i p f$
and look for such $b * \in$ Bool and $d *^{\prime} \in \mathbb{N}$ such that
[4.4] $\mathrm{d} *$ ' $\leq \mathrm{df}+1$ and
[4.5] $\vdash \operatorname{next}(\mathrm{TCP}(\mathrm{T}(\mathrm{F} 1), \mathrm{T}(\mathrm{F} 2))) \rightarrow *\left(\mathrm{~d} *^{\prime}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}\right)$ done(b*)
From (4.1), by the definition of the \vdash relation we get
(4.6) $\vdash(\mathrm{re} \vdash \mathrm{F} 1:(\mathrm{h} 1, \mathrm{~d} 1)$
$(4.7) \vdash(\mathrm{re} \vdash \mathrm{F} 2:(\mathrm{h} 2, \mathrm{~d} 2)$
such that $\mathrm{h} 1, \mathrm{~d} 1, \mathrm{~h} 2, \mathrm{~d} 2 \in \mathbb{N}$ and
(4.8) $\mathrm{df}=\max \infty(\mathrm{d} 1, \mathrm{~d} 2)=\max (\mathrm{d} 1, \mathrm{~d} 2)$

From (4.6), (4.3), and the induction hypothesis there exist b1i \in Bool and $d i^{\prime} \in \mathbb{N}$ such that
(4.9) $\mathrm{d} 1 \mathrm{i}^{\prime} \leq \mathrm{d} 1+1$ and
(4.10) $\vdash \mathrm{T}(\mathrm{F} 1) \rightarrow *(\mathrm{~d} 1 \mathrm{i}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef})$ done(b1i).

From (4.7), (4.3) and the induction hypothesis there exist b2i \in Bool and d2i' $\in \mathbb{N}$ such that
(4.11) $\mathrm{d} 2 \mathrm{i}^{\prime} \leq \mathrm{d} 2+1$ and
(4.12) $\vdash \mathrm{T}(\mathrm{F} 2) \rightarrow *\left(\mathrm{~d} 2 \mathrm{i}^{\prime}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}\right)$ done(b2i).

From (4.10) and (4.12) we have

```
(4.13) d1i'>0 and
(4.14) d2i'>0
(Otherwise we would have a 'next' formula reducing to a 'done' formula in
O steps, which is impossible.)
We proceed by case distinction over b1i and b2i.
b1i = false, b2i = true
We take
(4.15) b* = false,
(4.16) d*'= d1i'.
From (4.8, 4.9, 4.16) we get d*'=d1i' }\leq\textrm{d}1+1\leq\operatorname{max}(\textrm{d}1,\textrm{d}2)+1 =df+1 and, hence [4.4]
From (4.10, 4.12, 4.13, 4.14, 4.15, 4.16) and the case [TCP1] of the
Statement 3 of Lemma 4 we get [4.5].
b1i = false, b2i = false
We take
(4.17) b* = false,
(4.18) d*'= min(d1i',d2i').
From (4.9,4.11,4.18) we get
(4.19) d*'=min(d1i',d2i') \leq min(d1+1,d2+1) = min(d1,d2)+1 \leq max(d1,d2)+1 = df+1.
Hence, (4.19) proves [4.4].
From (4.10, 4.12, 4.13, 4.14, 4.17, 4.18) and the case [TCP2] of the
Statement 3 of Lemma 4 we get [4.5].
b1i = true, b2i = true
We take
(4.20) b*=b2i' and
(4.21) d*'=max(d1i',d2i').
From (4.20, 4.9, 4.11) we get
(4.22) d*'=max(d1i',d2i') \leq max(d1+1, d2+1)=max(d1,d2)+1=df+1
Hence, (4.22) gives [4.4].
From (4.10, 4.12, 4.13, 4.14, 4.20, 4.22) and the case [TCP3] of the
Statement 3 of Lemma 4 we get [4.5].
b1i = true, b2i = false
```


We take

(4.23) $\mathrm{b} *=\mathrm{b} 2 \mathrm{i}$ ' and
(4.24) d*'=d2i'.

From (4.18, 4.9, 4.11) we get
(4.25) $\mathrm{d}^{\prime}=\mathrm{d} 2 \mathrm{i}^{\prime} \leq \mathrm{d} 2+1 \leq \max (\mathrm{d} 1+1, \mathrm{~d} 2+1)=\max (\mathrm{d} 1, \mathrm{~d} 2)+1=\mathrm{df}+1$

Hence, (4.25) gives [4.4].
From (4.10, $4.12,4.13,4.14,4.23,4.24$) and the case [TCP4] of the Statement 3 of Lemma 4 we get [4.5].

C5. $F=$ forall X in $B 1 . . B 2: F 1$. Then $T(F)=\operatorname{next}(T A(X, T(B 1), T(B 2), T(F 1)))$
This case follows from the induction hypothesis for F1 and Lemma 5.
It finishes the proof of Statement 1 of Lemma 1.

```
Statement 2.
    \forallf\inFormula, re\inRangeEnv, e\inEnvironment, Ft\inTFormula, n\in\mathbb{N},\textrm{p}\in\mathbb{N}\mathrm{ ,}
        s\inStream, d\in\mathbb{N}\infty,h\in\mathbb{N},\mp@subsup{h}{}{\prime}\in\mathbb{N}\mathrm{ :}
    \vdash(re \vdashF: (h,d)) ^ \forallY\indom(e): re(Y).1 +i p \leqi e(Y) \leqi re(Y). 2 +i p ^ h'\geqh #
            ( T(F) >* (n,p,s,e) Ft }
                        T(F) ->* (n,p,s,e,h') Ft )
```

Proof

Parametrization:

```
S(n) : \(\Leftrightarrow\)
    \(\forall F \in\) Formula, re \(\in\) RangeEnv, e \(\in\) Environment, Ft \(\in\) TFormula, \(p \in \mathbb{N}\),
        \(\mathrm{s} \in\) Stream, \(\mathrm{d} \in \mathbb{N} \infty, \mathrm{h} \in \mathbb{N}, \mathrm{h}^{\prime} \in \mathbb{N}\) :
        \(\vdash(r e \vdash F:(h, d)) \wedge \forall Y \in \operatorname{dom}(e): r e(Y) .1+i p \leq i e(Y) \leq i r e(Y) .2+i p \wedge h \prime \geq h \Rightarrow\)
            ( T(F) \(\rightarrow^{*}(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}) \quad \mathrm{Ft} \Leftrightarrow\)
                \(\mathrm{T}(\mathrm{F}) \rightarrow^{*}\left(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}, \mathrm{h}^{\prime}\right) \mathrm{Ft}\) )
```

We need to prove
(a) $\mathrm{S}(0)$
(b) $\forall \mathrm{n} \in \mathbb{N}: \mathrm{S}(\mathrm{n}) \Rightarrow \mathrm{S}(\mathrm{n}+1)$

Proof of (a)

We take Ff \in Formula, ref \in RangeEnv, ef \in Environment, $F t f \in$ TFormulas, $p f \in \mathbb{N}$,
sf \in Stream, $\mathrm{df} \in \mathbb{N} \infty$, $\mathrm{hf} \in \mathbb{N}$, hf' $\in \mathbb{N}$ arbitrary but fixed, assume
(a.1) $\vdash(r e f \vdash F f:(h f, d f))$
(a.2) $\forall \mathrm{Y} \in \operatorname{dom}(\mathrm{ef}): \operatorname{ref}(\mathrm{Y}) .1+\mathrm{i} \mathrm{pf} \leq \mathrm{i} \mathrm{ef}(\mathrm{Y}) \leq \mathrm{i} \operatorname{ref}(\mathrm{Y}) .2+\mathrm{i} \mathrm{pf}$ (a.3) hf' $\geq \mathrm{hf}$
and prove

```
(a.4) T(Ff) ->* (0,pf,sf,ef) Ftf }
    T(Ff) ->* (0,pf,sf,ef,hf') Ftf
```

(\Longrightarrow)
Assume
(a.5) $T(F f) \rightarrow *(0, p f, s f, e f)$ Ftf
and prove
(a.6) $\mathrm{T}(\mathrm{Ff}) \rightarrow *\left(0, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}, \mathrm{hf} \mathrm{f}^{\prime}\right) \mathrm{Ftf}$.

From (a.5), by the definition of \rightarrow * without history, we have $\mathrm{Ftf}=\mathrm{T}(\mathrm{Ff})$. Then (a.6) follows from the definition of $\rightarrow *$ with history.
(\Longleftarrow). Analogous.
Proof of (b)

We assume
(b.1)
$\forall F \in$ Formula, re \in RangeEnv, e \in Environment, Ft \in TFormula, $p \in \mathbb{N}$, s \in Stream, $\mathrm{d} \in \mathbb{N}, \mathrm{h} \in \mathbb{N}, \mathrm{h}^{\prime} \in \mathbb{N}$:
$\vdash(\mathrm{re} \vdash \mathrm{F}:(\mathrm{h}, \mathrm{d})) \wedge \forall \mathrm{Y} \in \operatorname{dom}(\mathrm{e}): \mathrm{re}(\mathrm{Y}) .1+\mathrm{i} \mathrm{p} \leq \mathrm{i} \mathrm{e}(\mathrm{Y}) \leq \mathrm{i} \mathrm{re}(\mathrm{Y}) .2+\mathrm{i} \mathrm{p} \wedge \mathrm{h} \geq \mathrm{h} \Rightarrow$ $(\mathrm{T}(\mathrm{F}) \rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}) \quad \mathrm{Ft} \Leftrightarrow$ $\mathrm{T}(\mathrm{F}) \rightarrow *\left(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}, \mathrm{h}^{\prime}\right) \mathrm{Ft}$)
and prove
[b.2]
$\forall F \in$ Formula, re \in RangeEnv, e \in Environment, Ft \in TFormula, $p \in \mathbb{N}$, s \in Stream, $\mathrm{d} \in \mathbb{N}, \mathrm{h} \in \mathbb{N}, \mathrm{h}^{\prime} \in \mathbb{N}$:
$\vdash(\mathrm{re} \vdash \mathrm{F}:(\mathrm{h}, \mathrm{d})) \wedge \forall \mathrm{Y} \in \operatorname{dom}(\mathrm{e}): \mathrm{re}(\mathrm{Y}) .1+\mathrm{i} \mathrm{p} \leq \mathrm{i} \mathrm{e}(\mathrm{Y}) \leq \mathrm{i} \mathrm{re}(\mathrm{Y}) .2+\mathrm{i} \mathrm{p} \wedge \mathrm{h} \geq \mathrm{h} \Rightarrow$ ($\mathrm{T}(\mathrm{F}) \rightarrow *(\mathrm{n}+1, \mathrm{p}, \mathrm{s}, \mathrm{e}) \quad \mathrm{Ft} \Leftrightarrow$ $\left.\mathrm{T}(\mathrm{F}) \rightarrow *\left(\mathrm{n}+1, \mathrm{p}, \mathrm{s}, \mathrm{e}, \mathrm{h}^{\prime}\right) \mathrm{Ft}\right)$

We take Ff, ref, ef, Ftf, pf, sf, df, hf, hf' arbitrary but fixed. Assume
(b.3) $\vdash(\mathrm{ref} \vdash \mathrm{Ff}:(\mathrm{hf}, \mathrm{df}))$
(b.4) $\forall \mathrm{Y} \in \operatorname{dom}(\mathrm{ef}): \operatorname{ref}(\mathrm{Y}) .1+\mathrm{i} \mathrm{pf} \leq \mathrm{i} \operatorname{ef}(\mathrm{Y}) \leq \mathrm{i} \operatorname{ref}(\mathrm{Y}) .2+\mathrm{i} \mathrm{pf}$
(b.5) hf ${ }^{\prime} \geq \mathrm{hf}$
and prove

```
(b.6) T(Ff) ->* (n+1,pf,sf,ef) Ftf \Leftrightarrow
    T(Ff) ->* (n+1,pf,sf,ef,hf') Ftf
```

(\Longrightarrow) Assume
(b.7) T(Ff) $\rightarrow *(n+1, p f, s f, e f)$ Ftf
and prove
[b.8] $\left.T(F f) \rightarrow *(n+1, p f, s f, e f, h f)^{\prime}\right)$ Ftf
From (b.7), by the definition of $\rightarrow *$ without history, we know for some Ft ${ }^{\prime} \in$ TFormula
(b.9) T(Ff) $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}{ }^{\prime}$
(b.10) Ft' $\rightarrow *$ ($\mathrm{n}, \mathrm{pf}+1$, sf , ef) Ftf,
(b.11) c:= (ef, $\{(X, \operatorname{sf}(e f(X))) \mid X i n d o m(e f)\})$.

Then from (b.3), (b.4), (b.11), (b.5), (b.9) and Lemma 3 we get

Assume Ft' is a 'next' formula, i.e., there exists F' \in Formula such that (b.13) Ft'=T(F').

From (b.3), (b.4), (b.5), (b.10), by the induction hypothesis (b.1) we get
(b.14) Ft' \rightarrow * ($\mathrm{n}, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}, \mathrm{hf}$ ') Ftf.

If Ft ' is a 'done' formula, then from (b.10) by the definition of $\rightarrow *$ without history we get $\mathrm{n}=0$. Then, (b.14) again holds by the definition of $\rightarrow *$ with history.

From (b.11), (b.12) and (b.14), by the definition of \rightarrow * with history we get [b.8].
(\Longleftarrow) Assume
(b.15) T(Ff) $\rightarrow^{*}(\mathrm{n}+1, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}, \mathrm{hf}$ ') Ftf
and prove
[b.16] T(Ff) $\rightarrow *(n+1, p f, s f, e f)$ Ftf
From (b.15), by the definition of $\rightarrow *$ without history, we know for some Ft' \in TFormula

```
(b.17) T(Ff) -> (pf,sf\uparrow(max(0,pf-hf'),min(pf,hf')), sf(pf),c) Ft'
(b.18) Ft' }->*\mathrm{ (n, pf+1, sf, ef, hf') Ftf,
```

where
(b.19) $c:=(e f,\{(X, \operatorname{sf}(e f(X))) \mid X$ in $\operatorname{dom}(e f)\})$.

Then from (b.3), (b.19), (b.4), (b.5), (b.17) and Lemma 3 we get
(b.20) T(Ff) \rightarrow (pf, $s f \downarrow$ pf, $s f(p f), ~ c) ~ F t '$.

Assume Ft' is a 'next' formula, i.e., there exists F' \in Formula such that (b.21) $\mathrm{Ft}{ }^{\prime}=\mathrm{T}\left(\mathrm{F}^{\prime}\right)$.

From (b.3), (b.4), (b.5), (b.18) by the induction hypothesis (b.1) we get
(b.22) Ft' $\rightarrow *(n, p f+1, ~ s f, ~ e f) ~ F t f . ~$

If Ft ' is a 'done' formula, then from (b.18) by the definition of \rightarrow without history we get $\mathrm{n}=0$. Then, (b.22) again holds by the definition of $\rightarrow *$ with history.

From (b.19), (b.20) and (b.22), by the definition of $\rightarrow *$ with history we get [b.16].

It finishes the proof of Statement 2 of Lemma 1.

A. 4 Lemma 2: Equivalence of Left- and Right-Recursive Definitions of n-Step Reductions

Lemma 2 (Equivalence of Left- and Right-Recursive Definitions of n-Step Reductions):
(a) $\forall \mathrm{n}, \mathrm{p} \in \mathbb{N}$, $\mathrm{s} \in$ Stream, $\mathrm{e} \in$ Environment, Ft1,Ft2 \in TFormula

$$
\begin{aligned}
& \text { Ft1 } \rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{~s}, \mathrm{e}) \text { Ft2 } \Leftrightarrow \\
& \text { Ft1 } \rightarrow 1 *(\mathrm{n}, \mathrm{p}, \mathrm{~s}, \mathrm{e}) \text { Ft2 }
\end{aligned}
$$

(b) $\forall \mathrm{n}, \mathrm{p} \in \mathbb{N}$, s \in Stream, e e Environment, Ft1,Ft2 \in TFormula, $\mathrm{h} \in \mathbb{N}$

$$
\begin{aligned}
& \text { Ft1 } \rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{~s}, \mathrm{e}, \mathrm{~h}) \text { Ft2 } \Leftrightarrow \\
& \text { Ft1 } \rightarrow 1 *(\mathrm{n}, \mathrm{p}, \mathrm{~s}, \mathrm{e}, \mathrm{~h}) \text { Ft2 }
\end{aligned}
$$

Proof of (a)

Parametrization:

$\mathrm{S}(\mathrm{n}, \mathrm{Ft} 1, \mathrm{Ft} 2, \mathrm{p}, \mathrm{s}, \mathrm{e}): \Leftrightarrow$
Ft1 $\rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}) \mathrm{Ft} 2 \Leftrightarrow \mathrm{Ft} 1 \rightarrow 1 *(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}) \mathrm{Ft} 2$
We want to prove
[G] \forall Ft1, Ft2 \in TFormula, $p \in \mathbb{N}$, s \in Stream, e environment, $\forall \mathrm{n} \in \mathbb{N}$: $\mathrm{S}(\mathrm{n}, \mathrm{Ft} 1, \mathrm{Ft} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$.

We take Ftf1,Ftf2,pf,sf, and ef arbitrary but fixed.
We have to prove
[G1] $\forall k, n \in \mathbb{N}: S(k, F t f 1, F t f 2, p f, s f, e f) \wedge n>k \Rightarrow S(n, F t f 1, F t f 2, p f, s f, e f)$.
Proof of [G1]

We take n arbitrary but fixed, assume
(1) $\forall \mathrm{k}<\mathrm{n}:$ Ftf1 $\rightarrow *(\mathrm{k}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}) \mathrm{Ftf} 2 \Leftrightarrow$ Ftf1 $\rightarrow 1 *(\mathrm{k}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef})$ Ftf2
and prove
[2] Ftf1 $\rightarrow *(\mathrm{n}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}) \mathrm{Ftf} 2 \Leftrightarrow$ Ftf1 $\rightarrow 1 *(\mathrm{n}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef})$ Ftf2.
$(\Longrightarrow):$

We assume
(3) Ftf1 $\rightarrow *(n, p f, s f, e f)$ Ftf2
and prove
[4] Ftf1 $\rightarrow 1 *(n, p f, s f, e f)$ Ftf2.

From (3) we know that there exists Ft ' \in TFormula such that
(5) Ftf1 \rightarrow (pf, $\mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}$, and
(6) Ft' $\rightarrow *(\mathrm{n}-1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}) \mathrm{Ftf} 2$
hold, where $c=(e f,\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (6), by the induction hypothesis we get
(7) Ft' $\rightarrow 1 *(\mathrm{n}-1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}) \mathrm{Ftf} 2$.

From (7), by the definition of $\rightarrow l *$, there are two alternatives:
(i) $\mathrm{n}-1=0$
(ii) $\mathrm{n}-1>0$.

In case (i), we get
(8) $\mathrm{Ft}{ }^{\prime}=\mathrm{Ftf} 2$.

From (8) and (5) we get
(9) Ftf1 \rightarrow (pf, sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ Ftf2.

On the other hand, by the definition of $\rightarrow 1 *$ we have
(10) Ftf1 \rightarrow l* (0,pf,sf,ef) Ftf1.

From (10) and (9), by the definition of $\rightarrow 1 *$, we get
(11) Ftf1 \rightarrow l*(1,pf,sf,ef) Ftf2.

Since $n-1=0$, we get that [4] holds:
[4] Ftf1 \rightarrow l* ($\mathrm{n}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}$) Ftf2.

Case (ii)
From (7), by the definition of $\rightarrow l *$, there exists $F t ', \in$ TFormula such that
(12) $\mathrm{Ft}{ }^{\prime} \rightarrow \mathrm{l} *(\mathrm{n}-2, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}) \mathrm{Ft}{ }^{\prime}$,
(13) Ft', $\rightarrow(\mathrm{pf}+\mathrm{n}-1, \mathrm{sf} \downarrow(\mathrm{pf}+\mathrm{n}-1), \mathrm{sf}(\mathrm{pf}+\mathrm{n}-1), \mathrm{c}) \mathrm{Ftf} 2$,
where $c=(e f,\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (12), by the induction hypothesis, we get
(14) $\mathrm{Ft}{ }^{\prime} \rightarrow *(\mathrm{n}-2, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}) \mathrm{Ft}{ }^{\prime}$.

From (5) and (14), by the definition of $\rightarrow *$ we get
(15) Ftf1 $\rightarrow *(\mathrm{n}-1, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}) \mathrm{Ft}{ }^{\prime}$.

From (15), by the induction hypothesis, we get
(16) Ftf1 \rightarrow l*(n-1,pf,sf,ef) Ft',

From (16) and (13), by the definition of $\rightarrow l *$, we get
[4] Ftf1 $\rightarrow 1 *(n, p f, s f, e f)$ Ftf2.
(\Longleftarrow)

We assume
(17) Ftf1 \rightarrow l* ($\mathrm{n}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}$) Ftf2
and prove
[18] Ftf1 $\rightarrow *(n, p f, s f, e f)$ Ftf2.
From (17), by the definition of $\rightarrow l^{*}$, we know that there exists Ft' \in TFormula such that
(19) Ftf1 $\rightarrow 1 *(\mathrm{n}-1, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}) \mathrm{Ft}$, and
(20) Ft' $\rightarrow(\mathrm{pf}+\mathrm{n}-1, \mathrm{sf} \downarrow(\mathrm{pf}+\mathrm{n}-1), \mathrm{sf}(\mathrm{pf}+\mathrm{n}-1), \mathrm{c}) \mathrm{Ftf} 2$,
hold, where $c=(e f,\{(X, \operatorname{sf}(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (19), by the induction hypothesis we get
(21) Ftf1 $\rightarrow *(\mathrm{n}-1, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}) \mathrm{Ft}$,
from (20), by the definition of $\rightarrow 1 *$, there are two alternatives:
(i) $\mathrm{n}-1=0$
(ii) $\mathrm{n}-1>0$.

Case (i)
In this case, from (21) we get Ft'=Ftf1, which together with (20) and the fact $\mathrm{n}-1=0$ implies
(22) Ftf1 \rightarrow (pf,sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ Ftf2.

On the other hand, by the definition of \rightarrow * we have
(23) Ftf2 $\rightarrow *(0, p f+1$, sf,ef) Ftf2.

From (22) and (23), by the definition of $\rightarrow *$, w get
(24) Ftf2 $\rightarrow *(1, p f, s f, e f)$ Ftf2.

Since $\mathrm{n}-1=0$, from (24) we get [18].
Case (ii)

From (21), by the definition of \rightarrow^{*}, there exists $\mathrm{Ft}{ }^{\prime}$ ' \in TFormula such that
(25) Ftfi $\rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}{ }^{\prime}$,
(26) $\mathrm{Ft}{ }^{\prime} \rightarrow$ ($\left.\mathrm{n}-2, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}\right) \mathrm{Ft}{ }^{\prime}$,
where $c=(e f,\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (26), by the induction hypothesis, we get
(27) $\mathrm{Ft}{ }^{\prime}{ }^{\prime} \rightarrow \mathrm{l} *(\mathrm{n}-2, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}) \mathrm{Ft}$.

From (27) and (20), by the definition of \rightarrow l* we get
(28) Ft' $\rightarrow 1 *(\mathrm{n}-1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}) \mathrm{Ftf} 2$.

From (28), by the induction hypothesis we get
(29) Ft', $\rightarrow *(\mathrm{n}-1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}) \mathrm{Ftf} 2$.

From (25) and (29), by the definition of $\rightarrow *$, we get
[18] Ftf1 $\rightarrow *(\mathrm{n}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef})$ Ftf2.

Proof of (b)

Parametrization:
$\mathrm{Q}(\mathrm{n}, \mathrm{Ft} 1, \mathrm{Ft} 2, \mathrm{p}, \mathrm{s}, \mathrm{e}, \mathrm{h}): \Leftrightarrow$
Ft1 $\rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}, \mathrm{h}) \mathrm{Ft} 2 \Leftrightarrow \mathrm{Ft} 1 \rightarrow \mathrm{l} *(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}, \mathrm{h}) \mathrm{Ft} 2$

We want to prove
(G) \forall Ft1, Ft2 \in TFormula, $p \in \mathbb{N}$, $s \in$ Stream, $e \in$ Environment, $h \in \mathbb{N}, \forall n \in \mathbb{N}$: $\mathrm{S}(\mathrm{n}, \mathrm{Ft} 1, \mathrm{Ft} 2, \mathrm{p}, \mathrm{s}, \mathrm{e}, \mathrm{h})$.

We take Ftf1,Ftf2,pf,sf,ef, and hf arbitrary but fixed.
We have to prove
(G1) $\forall k, n \in \mathbb{N}: S(k, F t f 1, F t f 2, p f, s f, e f, h f) \wedge n>k \Rightarrow S(n, F t f 1, F t f 2, p f, s f, e f, h f)$.
Proof of (G1)

We take n arbitrary but fixed, assume $\mathrm{n}>\mathrm{k}$ and
(1) $\forall k<n:$ Ftf1 $\rightarrow *(k, p f, s f, e f, h f)$ Ftf2 \Leftrightarrow Ftf1 $\rightarrow l *(k, p f, s f, e f, h f)$ Ftf2
and prove
(2) Ftf1 $\rightarrow *(n, p f, s f, e f, h f)$ Ftf2 \Leftrightarrow Ftf1 $\rightarrow 1 *(n, p f, s f, e f, h f)$ Ftf2.
$(\Longrightarrow):$
We assume
(3) Ftf1 $\rightarrow *(\mathrm{n}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}, \mathrm{hf})$ Ftf2
and prove
(4) Ftf1 \rightarrow l*($\mathrm{n}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}, \mathrm{hf})$ Ftf2.

From (3) we know that there exists Ft' \in TFormula such that
(5) Ftfi $\rightarrow(\mathrm{pf}, \mathrm{s} \uparrow(\max (0, \mathrm{pf}-\mathrm{hf}), \min (\mathrm{pf}, \mathrm{hf})), \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}$, and
(6) $\mathrm{Ft}{ }^{\prime} \rightarrow *(\mathrm{n}-1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}, \mathrm{hf}) \mathrm{Ftf} 2$
hold, where $c=(e f,\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (6), by the induction hypothesis we get
(7) Ft' $\rightarrow 1 *(\mathrm{n}-1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}, \mathrm{hf}) \mathrm{Ftf} 2$.

From (7), by the definition of $\rightarrow 1 *$, there are two alternatives:
(i) $\mathrm{n}-1=0$
(ii) $\mathrm{n}-1>0$.

In case (i), we get
(8) $\mathrm{Ft}{ }^{\prime}=\mathrm{Ftf} 2$.

From (8) and (5) we get
(9) Ftf1 $\rightarrow(\mathrm{pf}, \mathrm{s} \uparrow(\max (0, \mathrm{pf}-\mathrm{hf}), \min (\mathrm{pf}, \mathrm{hf})), \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ Ftf2.

On the other hand, by the definition of \rightarrow l* we have
(10) Ftf1 $\rightarrow 1 *(0, p f, s f, e f, h f)$ Ftf1.

From (10) and (9), by the definition of $\rightarrow l *$, we get
(11) Ftf1 $\rightarrow 1 *(1, p f, s f, e f, h f)$ Ftf2.

Since $\mathrm{n}-1=0$, we get that [4] holds:
[4] Ftf1 \rightarrow l* ($n, p f$, sf,ef,hf) Ftf2.
Case (ii)

From (7), by the definition of \rightarrow l* with history, there exists Ft' ' \in TFormula such that
(12) Ft' $\rightarrow l *(n-2, p f+1, s f, e f, h f) ~ F t ’$,
(13) Ft', $\rightarrow(p f+n-2, s f \uparrow(\max (0, p f+n-2-h f), \min (p f+n-2, h f)), s f(p f+n-2), c) F t f 2$, where $c=(e f,\{(X, \operatorname{sf}(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.

From (12), by the induction hypothesis, we get
(14) $\mathrm{Ft}{ }^{\prime} \rightarrow *(\mathrm{n}-2, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}, \mathrm{hf}) \mathrm{Ft}{ }^{\prime}$ '.

From (5) and (14), by the definition of $\rightarrow *$ with history we get
(15) Ftf1 $\rightarrow *(n-1, p f, s f, e f, h f) F t '$,

From (15), by the induction hypothesis, we get
(16) Ftf1 $\rightarrow 1 *(n-1, p f, s f, e f, h f) F t '$ '.

From (16) and (13), by the definition of \rightarrow^{*} with history, we get
[4] Ftf1 $\rightarrow 1 *(n, p f, s f, e f, h f x)$ Ftf2.
(\Longleftarrow)
--_-
We assume
(17) Ftf1 \rightarrow l* (n,pf,sf,ef,hf) Ftf2
and prove
[18] Ftf1 $\rightarrow *(n, p f, s f, e f, h f)$ Ftf2.

From (17), by the definition of $\rightarrow 1 *$ with history, we know that there exists Ft' \in TFormula such that
(19) Ftf1 $\rightarrow 1 *(\mathrm{n}-1, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}) \mathrm{Ft}$, and
(20) Ft' $\rightarrow(\mathrm{pf}+\mathrm{n}-1, \mathrm{~s} \uparrow(\max (0, \mathrm{pf}+\mathrm{n}-1-\mathrm{hf}), \min (\mathrm{pf}+\mathrm{n}-1, \mathrm{hf})), \mathrm{sf}(\mathrm{pf}+\mathrm{n}-1), \mathrm{c}) \mathrm{Ftf} 2$,
hold, where $c=(e f,\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.

From (19), by the induction hypothesis we get
(21) Ftf1 $\rightarrow *(n-1, p f, s f, e f, h f) F t$,
from (20), by the definition of $\rightarrow 1 *$ with history, there are two alternatives:
(i) $n-1=0$
(ii) $n-1>0$.

Case (i)

In this case, from (21) we get Ft'=Ftf1, which together with (20) and the fact n-1=0 implies
(22) Ftf1 $\rightarrow(\mathrm{pf}, \mathrm{s} \uparrow(\max (0, \mathrm{pf}-\mathrm{hf}), \min (\mathrm{pf}, \mathrm{hf})), \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ftf} 2$.

On the other hand, by the definition of $\rightarrow *$ with history we have
(23) Ftf2 $\rightarrow *(0, p f+1$, sf,ef,hf) Ftf2.

From (22) and (23), by the definition of $\rightarrow *$ with history, w get
(24) Ftf2 $\rightarrow *(1, p f, s f, e f, h f)$ Ftf2.

Since $n-1=0$, from (24) we get [18].
Case (ii)
From (21), by the definition of $\rightarrow *$ with history, there exists Ft' ' \in TFormula such that
(25) Ftf1 $\rightarrow(p f, s \uparrow(\max (0, p f-h f), m i n(p f, h f)), s f(p f), c) F t '$,
(26) Ft', $\rightarrow *(n-2, p f+1, s f, e f, h f)$ Ft',
where $c=(e f,\{(X, \operatorname{sf}(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (26), by the induction hypothesis, we get
(27) Ft', $\rightarrow l *(n-2, p f+1, s f, e f, h f) \mathrm{Ft}$.

From (27) and (20), by the definition of $\rightarrow 1 *$ with history we get
(28) $\mathrm{Ft}{ }^{\prime}{ }^{\prime} \rightarrow \mathrm{l} *(\mathrm{n}-1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}, \mathrm{hf}) \mathrm{Ftf} 2$.

From (28), by the induction hypothesis we get
(29) $\left.\mathrm{Ft}{ }^{\prime}\right) \rightarrow *(\mathrm{n}-1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}, \mathrm{hf}) \mathrm{Ftf} 2$.

From (25) and (29), by the definition of $\rightarrow *$, we get
[18] Ftf1 $\rightarrow *(\mathrm{n}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}, \mathrm{hf})$ Ftf2.

A. 5 Lemma 3: History Cut-Off Lemma

```
\forallF\inFormula, Ft\inTFormula, p\in\mathbb{N},s\inStream, h\in\mathbb{N},\textrm{d}\in\mathbb{N}\infty, e\inEnvironment, re\inRangeEnv:
    \vdash(re\vdashF : (h,d)) ^ dom(e) = dom(re) ^
        YG\indom(e): re(Y).1 +i p \leqi e(Y) \leqi re(Y). 2 +i p #
            let c:=(e, {(X, s(e(X))) | X \in dom(e)})
        |'}\in\mathbb{N}:\mp@subsup{h}{}{\prime}\geqh = \,
            T(F) }->(\textrm{p},\textrm{s}\downarrow\textrm{p},\textrm{s}(\textrm{p}), c) F
                \Leftrightarrow
                T(F) ->(p, s\uparrow(max (0,p-h'),min(p,h')), s(p), c) Ft
```

Proof
Parametrization:
S(F) : \Leftrightarrow
$\forall F t \in$ Tformula, $\mathrm{p} \in \mathbb{N}$, $\mathrm{s} \in$ Stream, $\mathrm{h} \in \mathbb{N}, \mathrm{d} \in \mathbb{N} \infty$, $e \in$ Environment, re \in RangeEnv:
$\vdash(r e \vdash F:(h, d)) \wedge \operatorname{dom}(e)=\operatorname{dom}(r e) \wedge$
$\forall \mathrm{Y} \in \operatorname{dom}(\mathrm{e}): \mathrm{re}(\mathrm{Y}) .1+\mathrm{i} \mathrm{p} \leq \mathrm{i} \mathrm{e}(\mathrm{Y}) \leq \mathrm{i} \mathrm{re}(\mathrm{Y}) .2+\mathrm{i} \mathrm{p} \Rightarrow$
let $c:=(e,\{(X, s(e(X))) \mid X \in \operatorname{dom}(e)\})$
$\forall h^{\prime} \in \mathbb{N}: h^{\prime} \geq h \Rightarrow$
$\mathrm{T}(\mathrm{F}) \rightarrow(\mathrm{p}, \mathrm{s} \downarrow \mathrm{p}, \mathrm{s}(\mathrm{p}), \mathrm{c}) \mathrm{Ft}$
\Leftrightarrow
$T(F) \rightarrow\left(p, s \uparrow\left(\max \left(0, p-h^{\prime}\right), \min \left(p, h^{\prime}\right)\right), s(p), c\right) F t$

We prove $\forall F \in$ Formula $S(F)$ by structural induction over F.
CASE 1. $F=@ X . \quad T(F)=\operatorname{next}(T V(X))$.
We take Ftf,pf,sf,hf,df,ef,ref arbitrary but fixed and assume Ftf \in Tformula, $p f \in \mathbb{N}$, $s f \in$ Stream, $h f \in \mathbb{N}$, $d f \in \mathbb{N} \infty$, ef \in Environment, ref \in RangeEnv.

Assume
(1.1) $\vdash($ ref $\vdash \mathrm{F}:(h f, \mathrm{df}))$
(1.2') dom(ef) = dom(ref)
(1.2) $\forall Y \in \operatorname{dom}(e f): r e f(Y) .1+i \operatorname{pf} \leq i \operatorname{ef}(Y) \leq i \operatorname{ref}(Y) .2+i p f$

Define
(1.3) $c:=(e f,\{(X, \operatorname{sf}(e f(X))) \mid X \in \operatorname{dom}(e f)\})$

Take hf' arbitrary but fixed. Assume
(1.4) hf $\geq \mathrm{hf}$

And prove
[1.5] $T(F) \rightarrow(p f, s f \downarrow p f, s f(p f), c)$ Ftf \Leftrightarrow

$$
\mathrm{T}(\mathrm{~F}) \rightarrow\left(\mathrm{pf}, \mathrm{sf} \uparrow\left(\max \left(0, \mathrm{pf}-\mathrm{hf} \mathrm{f}^{\prime}\right), \min \left(\mathrm{pf}, \mathrm{hf} \mathrm{f}^{\prime}\right)\right), \mathrm{sf}(\mathrm{pf}), \mathrm{c}\right) \text { Ftf. }
$$

$T(F)=n e x t(T V(X))$. By the definition of \rightarrow for next(TV(X)), Ftf in [1.5] depends only whether $X \in \operatorname{dom}(c .1)$, which is the same in both sides if the equivalence. Hence, [1.5] holds.

CASE 2. $\mathrm{F}={ }^{\sim} \mathrm{F} 1 . \mathrm{T}(\mathrm{F})=\operatorname{next}(\mathrm{TN}(\mathrm{T}(\mathrm{F} 1)))$.
We take Ftf,pf,sf,hf,df,ef,ref arbitrary but fixed and assume Ftf \in Tformula, $\mathrm{pf} \in \mathbb{N}$, $s f \in$ Stream, $\mathrm{hf} \in \mathbb{N}$, $\mathrm{df} \in \mathbb{N} \infty$, ef \in Environment, ref \in RangeEnv.

Assume
(2.1) $\vdash($ ref $\vdash \mathrm{F}:(h f, \mathrm{df}))$
(2.2') dom(ef) = dom(ref)
(2.2) $\forall Y \in \operatorname{dom}(e f): r e f(Y) .1$ +i pf $\leq i \operatorname{ef}(Y) \leq i \operatorname{ref}(Y) .2+i p f$

Define
(2.3) $c:=(e f,\{(X, \operatorname{sf}(e f(X))) \mid X \in \operatorname{dom}(e f)\})$

Take hf' arbitrary but fixed. Assume
(2.4) hf $\quad \geq \mathrm{hf}$

And prove
[2.5] $T(F) \rightarrow(p f, s f \downarrow p f, s f(p f), c)$ Ftf
\Leftrightarrow $\mathrm{T}(\mathrm{F}) \rightarrow\left(\mathrm{pf}, \mathrm{sf} \uparrow\left(\max \left(0, \mathrm{pf}-\mathrm{hf} \mathrm{f}^{\prime}\right), \min \left(\mathrm{pf}, \mathrm{hf}{ }^{\prime}\right)\right), \mathrm{sf}(\mathrm{pf}), \mathrm{c}\right) \mathrm{Ftf}$.

From (2.1), by the definition of \rightarrow for $\operatorname{next(TN(T(F1))),~we~get~}$
(2.6) $\vdash\left(\right.$ ref $\left.\vdash{ }^{\sim} \mathrm{F} 1:(\mathrm{hf}, \mathrm{df})\right)$.

We prove [2.5] in both directions.
(\Longrightarrow) We assume
(2.7) $\mathrm{T}\left({ }^{\sim} \mathrm{F} 1\right) \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ftf}$
and prove
[2.8] $T(F) \rightarrow(p f, s f \uparrow(\max (0, p f-h f \prime), \min (p f, h f \prime)), s f(p f), c)$ Ftf.
From (2.7), we prove [2.8] by case distinction over Ftf:
C1. Ftf=next(TN(next(f'))) for some $f^{\prime} \in$ TFormulaCore, such that
(2.8) $T(F 1) \rightarrow(p f, s f \downarrow p f, s f(p f), c) \operatorname{next}\left(f^{\prime}\right)$.

We instantiate the induction hypothesis with

From (2.8), by (2.6), (2.2), (2.3), (2.4), and the induction hypothesis, we get
(2.9) $T(F 1) \rightarrow(p f, s f \uparrow(\max (0, p f-h f \prime), \min (p f, h f \prime)), s f(p f), c) \operatorname{next}(f \prime)$.

From (2.9), by the definition of \rightarrow for $T(\neg F)$, we get [2.8].
C2. Ftf=done(false). This happens when
(2.10) $\mathrm{T}(\mathrm{F} 1) \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done (true).

From (2.10), by (2.6), (2.2), (2.3), (2.4), and the induction hypothesis, we get
(2.11) $\left.T(F 1) \rightarrow\left(p f, s f \uparrow\left(\max (0, p f-h f)^{\prime}\right), \min \left(p f, h f{ }^{\prime}\right)\right), s f(p f), c\right)$ done(true).

From (2.11), by the definition of \rightarrow for $T(\sim \mathcal{F})$, we get [2.8].
C3. Ftf=done(false). Similar to the cacse C2.
(\Longleftarrow) We assume
(2.12) $\left.T\left({ }^{\sim} F\right) \rightarrow\left(p f, s f \uparrow\left(\max (0, p f-h f)^{\prime}\right), \min (p f, h f \prime)\right), s f(p f), c\right) F t f$
and prove
[2.13] $T\left({ }^{\sim} F 1\right) \rightarrow(p f, s f \downarrow p f, s f(p f), c)$ Ftf.
[2.13] can be proved by the same reasoning as the case (\Longrightarrow) above. It finishes the proof of CASE2.

CASE 3. $F=F 1 \& \& F 2 . T(F)=\operatorname{next}(T C S(T(F 1), T(F 2)))$.

We take Ftf,pf,sf,hf,df,ef,ref arbitrary but fixed and assume Ftf \in Tformula, $p f \in \mathbb{N}$, $s f \in$ Stream, $h f \in \mathbb{N}, d f \in \mathbb{N} \infty$, ef \in Environment, ref \in RangeEnv.

Assume
(3.1) $\vdash(\mathrm{ref} \vdash \mathrm{F}:(\mathrm{hf}, \mathrm{df}))$
(3.2') dom(ef) = dom(ref)
(3.2) $\forall Y \in \operatorname{dom}(e f): r e f(Y) .1+i \operatorname{pf} \leq i \operatorname{ef}(Y) \leq i \operatorname{ref}(Y) .2+i p f$

Define
(3.3) $\mathrm{cf}:=(\mathrm{ef},\{(X, \operatorname{sf}(\mathrm{ef}(\mathrm{X}))) \mid X \in \operatorname{dom}(\mathrm{ef})\})$

Take $h f^{\prime} \in \mathbb{N}$ arbitrary but fixed. Assume
(3.4) hf ${ }^{\prime} \geq \mathrm{hf}$

And prove
[3.5] $T(F) \rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ Ftf \Leftrightarrow $\left.T(F) \rightarrow\left(p f, s f \uparrow\left(\max (0, p f-h f)^{\prime}\right), \min (p f, h f \prime)\right), s f(p f), c f\right)$ Ftf.

From (3.1) and the assumption that $h f \in \mathbb{N}, d f \in \mathbb{N} \infty$, by the definition of \vdash for $F 1 \& \& F 2$, there exist $\mathrm{h} 1, \mathrm{~d} 1, \mathrm{~h} 2 \in \mathbb{N}, \mathrm{~d} 2 \in \mathbb{N} \infty$ such that
(3.6) $\vdash($ ref $\vdash \mathrm{F} 1:(\mathrm{h} 1, \mathrm{~d} 1))$
(3.7) $\vdash($ ref $\vdash \mathrm{F} 2:(h 2, \mathrm{~d} 2))$
(3.8) $\mathrm{hf}=\max (\mathrm{h} 1, \mathrm{~h} 2+\mathrm{d} 1)$.

We prove [3.5] in both directions.
(\Longrightarrow) We assume
(3.9) $T(F 1 \& \& F 2) \rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ Ftf
and prove
[3.10] $T(F 1 \& \& F 2) \rightarrow\left(p f, s f \uparrow\left(\max \left(0, p f-h f{ }^{\prime}\right), \min (p f, h f \prime)\right), s f(p f), c f\right)$ Ftf.
From (3.9), we prove [3.10] by case distinction over Ftf:
C1. Ftf=next(TCS (next(f1),T(F2))) for some $f 1 \in$ TFormulaCore such that
(3.11) $T(F 1) \rightarrow(p f, s f \downarrow p f, s f(p f), c f) \operatorname{next}(f 1)$.

We instantiate the induction hypothesis as $F:=F 1, F t:=n e x t(f 1)$, $\mathrm{p}:=\mathrm{pf}, \mathrm{s}:=\mathrm{sf}, \mathrm{h}:=\mathrm{h} 1, \mathrm{~d}:=\mathrm{d} 1$ (since $\mathrm{d} 1 \in \mathbb{N}$, we have $\mathrm{d} 1 \in \mathbb{N} \infty$), e:=ef, re:=ref, $\mathrm{c}:=\mathrm{cf}, \mathrm{h}:=\mathrm{hf}$. Then from the IH by (3.2'), (3.2), (3.3), (3.4), (3.6), (3.8), (3.11) we get
(3.12) $\left.T(F 1) \rightarrow\left(p f, s f \uparrow\left(\max (0, p f-h f)^{\prime}\right), \min \left(p f, h f f^{\prime}\right)\right), s f(p f), c f\right) \operatorname{next}\left(f{ }^{\prime}\right)$.

From (3.12), by the definition of \rightarrow for $T(F 1 \& \& F 2)$, we get [3.10].
C2. Ftf=done(false). This happens when
(3.13) $T(F 1) \rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ done(false).

We instantiate the induction hypothesis as $\mathrm{F}:=\mathrm{F} 1$, $\mathrm{Ft}:=$ done(false), $\mathrm{p}:=\mathrm{pf}, \mathrm{s}:=\mathrm{sf}, \mathrm{h}:=\mathrm{h} 1$, $\mathrm{d}:=\mathrm{d} 1$ (since $\mathrm{d} 1 \in \mathbb{N}$, we have $\mathrm{d} 1 \in \mathbb{N} \infty$), e:=ef, re:=ref, $\mathrm{c}:=\mathrm{cf}, \mathrm{h}:=\mathrm{hf}$. Then from the IH by (3.2'), (3.2), (3.3), (3.4), (3.6), (3.8), (3.13), we get
(3.14) $T(F 1) \rightarrow\left(p f, s f \uparrow\left(\max \left(0, p f-h f f^{\prime}\right), \min (p f, h f \prime)\right), s f(p f), c\right)$ done(false).

From (3.14), by the definition of \rightarrow for $T(F 1 \& \& F 2)$, we get [3.10].
C3. Ftf=Ft2 for some Ft2 \in TFormula. This happens when we have

```
(3.15) T(F1) ->(pf, sf \downarrowpf, sf(pf), cf) done(true) and
(3.16) T(F2) -> (pf, sf \downarrowpf, sf(pf), cf) Ft2.
```

From (3.4,3.8), we have

```
(3.17) hf' }\geq\textrm{hf}\geq\textrm{h}
(3.18) hf ' }\geq\textrm{hf}\geq\textrm{h}
```

We instantiate the induction hypothesis as $\mathrm{F}:=\mathrm{F} 1$, $\mathrm{Ft}:=$ done(true), $\mathrm{p}:=\mathrm{pf}, \mathrm{s}:=\mathrm{sf}, \mathrm{h}:=\mathrm{h} 1, \mathrm{~d}:=\mathrm{d} 1$ (since $\mathrm{d} 1 \in \mathbb{N}$, we have $\mathrm{d} 1 \in \mathbb{N} \infty$), e:=ef, re:=ref, $\mathrm{c}:=\mathrm{cf}, \mathrm{h}:=\mathrm{hf}$. . Then from the IH by (3.2'),(3.2),(3.3),(3.6),(3.17), (3.15) we get

```
(3.19) T(F1) ->(pf, sf\uparrow(max(0,pf-hf'),min(pf,hf')), sf(pf), cf) done(true).
```

Next, we instantiate the induction hypothesis as $\mathrm{F}:=\mathrm{F} 2$, $\mathrm{Ft}:=\mathrm{Ft} 2$, $\mathrm{p}:=\mathrm{pf}, \mathrm{s}:=\mathrm{sf}, \mathrm{h}:=\mathrm{h} 1, \mathrm{~d}:=\mathrm{d} 2, \mathrm{e}:=\mathrm{ef}, \mathrm{re}:=\mathrm{ref}, \mathrm{c}:=\mathrm{cf}, \mathrm{h}$ ':=hf. Then from the IH by (3.2'),(3.2),(3.3),(3.7),(3.16),(3.18) we get
(3.20) $\left.T(F 2) \rightarrow\left(p f, s f \uparrow\left(\max (0, p f-h f)^{\prime}\right), \min (p f, h f \prime)\right), s f(p f), c f\right) F t 2$.

From (3.19) and (3.20), by the definition of \rightarrow for T(F1\&\&F2), we get [3.10].
(\Longleftarrow) We assume

```
(3.21) T(F1&&F2) -> (pf, sf\uparrow(max(0,pf-hf'),min(pf,hf')), sf(pf), cf) Ftf.
```

and prove
[3.22] $T(F 1 \& \& F 2) \rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ Ftf
[3.22] can be proved by the same reasoning as the case (\Longrightarrow) above. It finishes the proof of CASE3.

CASE 4. $\mathrm{F}=\mathrm{F} 1 / \mathrm{F} 2 . \mathrm{T}(\mathrm{F})=\operatorname{next}(\mathrm{TCP}(\mathrm{T}(\mathrm{F} 1), \mathrm{T}(\mathrm{F} 2)) \mathrm{)}$.

We take Ftf,pf,sf,hf,df,ef,ref arbitrary but fixed and assume Ftf \in Tformula, $p f \in \mathbb{N}$, $s f \in$ Stream, $h f \in \mathbb{N}$, $d f \in \mathbb{N} \infty$, ef \in Environment, ref \in RangeEnv.

Assume
(4.1) $\vdash($ ref $\vdash \mathrm{F}:(\mathrm{hf}, \mathrm{df}))$
(4.2') dom(ef) = dom(ref)
(4.2) $\forall Y \in \operatorname{dom}(e f): r e f(Y) .1+i \operatorname{pf} \leq i \operatorname{ef}(Y) \leq i \operatorname{ref}(Y) .2+i p f$

Define
(4.3) $c f:=(e f,\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$

Take hf' arbitrary but fixed. Assume

(4.4) hf ${ }^{\prime} \geq \mathrm{hf}$

And prove
[4.5] $T(F) \rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ Ftf

$$
\Leftrightarrow
$$

$$
\mathrm{T}(\mathrm{~F}) \rightarrow\left(\mathrm{pf}, \mathrm{sf} \uparrow\left(\max \left(0, \mathrm{pf}-\mathrm{hf} f^{\prime}\right), \min \left(\mathrm{pf}, \mathrm{hf}{ }^{\prime}\right)\right), \mathrm{sf}(\mathrm{pf}), \mathrm{cf}\right) \mathrm{Ftf}
$$

From (4.1) and the assumption that $h f \in \mathbb{N}, d f \in \mathbb{N} \infty$, by the definition of \vdash for $F 1 \wedge F 2$, there exist $\mathrm{h} 1, \mathrm{~h} 2 \in \mathbb{N}, \mathrm{~d} 1, \mathrm{~d} 2 \in \mathbb{N} \infty$ such that
(4.6) $\vdash($ ref $\vdash \mathrm{F} 1:(\mathrm{h} 1, \mathrm{~d} 1))$
$(4.7) \vdash($ ref $\vdash \mathrm{F} 2:(\mathrm{h} 2, \mathrm{~d} 2))$
(4.8) $\mathrm{hf}=\max (\mathrm{h} 1, \mathrm{~h} 2)$.

From (4.4,4.8), we have
(4.9) hf ${ }^{\prime} \geq \mathrm{hf} \geq \mathrm{h} 1$
(4.10) $\mathrm{hf}{ }^{\prime} \geq \mathrm{hf} \geq \mathrm{h} 2$

We prove [4.5] in both directions.
(\Longrightarrow) We assume
(4.11) $\mathrm{T}(\mathrm{F} 1 / \backslash \mathrm{F} 2) \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf}) \mathrm{Ftf}$
and prove
[4.12] $T(F 1 / \backslash F 2) \rightarrow\left(p f, s f \uparrow\left(\max \left(0, p f-h f{ }^{\prime}\right), \min (p f, h f \prime)\right), s f(p f), c f\right)$ Ftf.
From (4.11), we prove [4.10] by case distinction over Ftf:
C1. Ftf=next(TCS(next(f1), next(f2))) for some f1,f2 \in TFormulaCore such that
(4.13) $\mathrm{T}(\mathrm{F} 1) \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf}) \operatorname{next}(\mathrm{f} 1)$.
(4.14) T(F2) \rightarrow (pf, $s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf})$ next (f2).

We instantiate the induction hypothesis as $F:=F 1$, $F t:=$ next (f1), $\mathrm{p}:=\mathrm{pf}, \mathrm{s}:=\mathrm{sf}, \mathrm{h}:=\mathrm{h} 1, \mathrm{~d}:=\mathrm{d} 1, \mathrm{e}:=\mathrm{ef}, \mathrm{re}:=\mathrm{ref}, \mathrm{c}:=\mathrm{cf}, \mathrm{h}$ ':=hf'. Then from the IH, by (4.6), (4.2'), (4.2), (4.3), (4.9), (4.13) we get
(4.15) $\left.T(F 1) \rightarrow\left(p f, s f \uparrow\left(\max (0, p f-h f)^{\prime}\right), \min (p f, h f ')\right), s f(p f), c f\right) \operatorname{next}(f 1)$.

Next, we instantiate the induction hypothesis as $F:=F 1$, $F t:=n e x t(f 2)$, $\mathrm{p}:=\mathrm{pf}, \mathrm{s}:=\mathrm{sf}, \mathrm{h}:=\mathrm{h} 2$, $\mathrm{d}:=\mathrm{d} 2$, $\mathrm{e}:=\mathrm{ef}, \mathrm{re}:=\mathrm{ref}, \mathrm{c}:=\mathrm{cf}, \mathrm{h}:=\mathrm{hf}$.
Then from the IH, by (4.7), (4.2'), (4.2), (4.3), (4.10), (4.14)
we get
(4.16) $\left.T(F 2) \rightarrow\left(p f, s f \uparrow\left(\max (0, p f-h f)^{\prime}\right), \min (p f, h f \prime)\right), s f(p f), c\right) \operatorname{next}(f 2)$.

From (4.15,4.16), by the definition of \rightarrow for $T(F 1 \wedge F 2)$, we get [4.12].
C2. Ftf=next(f1) for some $f 1 \in$ TFormulaCore such that
(4.17) T(F1) $\rightarrow(p f, s f \downarrow p f, s f(p f), c) n e x t(f 1)$.
(4.18) $\mathrm{T}(\mathrm{F} 2) \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(true).

By the same reasoning as in C1 above we get that [4.12] holds.
C3. Ftf=done(false). This happens in one of the following possible cases:
C3. 1
(4.19) $\mathrm{T}(\mathrm{F} 1) \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \operatorname{next}(\mathrm{f} 1)$.
(4.20) T(F2) \rightarrow (pf, $\mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(false).

By the same reasoning as in C1 above we get that [4.12] holds. C3. 2
(4.21) T(F1) $\rightarrow(p f, s f \downarrow p f, s f(p f), c) d o n e(f a l s e)$.

We instantiate the induction hypothesis as $\mathrm{F}:=\mathrm{F} 1, \mathrm{Ft}:=$ done(false), $\mathrm{p}:=\mathrm{pf}, \mathrm{s}:=\mathrm{sf}, \mathrm{h}:=\mathrm{h} 1, \mathrm{~d}:=\mathrm{d} 1, \mathrm{e}:=\mathrm{ef}, \mathrm{re}:=\mathrm{ref}, \mathrm{c}:=\mathrm{cf}, \mathrm{h}$ ':=hf'.
Then from the $I H$, by (4.6), (4.2'), (4.2), (4.3), (4.9), (4.21)
we get
(4.22) $T(F 1) \rightarrow\left(p f, s f \uparrow\left(\max \left(0, p f-h f f^{\prime}\right), \min (p f, h f \prime)\right), s f(p f), c\right)$ done(false).

From (4.22), by the definition of \rightarrow for $T(F 1 \wedge F 2)$, we get [4.12].
C4. Ftf=Ft2 for some Ft2 \in TFormula. This happens when
(4.23) T(F1) \rightarrow (pf, sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(true).
(4.24) T(F2) \rightarrow (pf, $\mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft2}$.

By the same reasoning as in C1 above we get that [4.12] holds.
(\Longleftarrow) We assume
(4.25) $\mathrm{T}(\mathrm{F} 1 / \mathrm{F} 2) \rightarrow\left(\mathrm{pf}, \mathrm{sf} \uparrow\left(\max \left(0, \mathrm{pf}-\mathrm{hf}{ }^{\prime}\right), \min \left(\mathrm{pf}, \mathrm{hf} \mathrm{f}^{\prime}\right)\right), \mathrm{sf}(\mathrm{pf}), \mathrm{c}\right) \mathrm{Ftf}$.
and prove
[4.26] $T(F 1 / \backslash F 2) \rightarrow(p f, s f \downarrow p f, s f(p f), c) F t f$
[4.26] can be proved by the same reasoning as the case (\Longrightarrow) above.
It finishes the proof of CASE 4.

CASE 5. $\mathrm{F}=$ forall X in $\mathrm{B} 1 . . \mathrm{B} 2: \mathrm{F} 1 \mathrm{~T}(\mathrm{~F})=\operatorname{next}(\mathrm{TA}(\mathrm{X}, \mathrm{T}(\mathrm{B} 1), \mathrm{T}(\mathrm{B} 2), \mathrm{T}(\mathrm{F} 1))$).
We take Ftf,pf,sf,hf,df,ef,ref arbitrary but fixed and assume Ftf \in Tformula, $p f \in \mathbb{N}$, sf \in Stream, $\mathrm{hf} \in \mathbb{N}$, $\mathrm{df} \in \mathbb{N} \infty$, ef \in Environment, ref \in RangeEnv.

Assume

```
(5.1) }\vdash(ref \vdash F : (hf,df)
(5.2') dom(ef) = dom(ref)
(5.2) }\forall\textrm{Y}\in\operatorname{dom(ef): ref(Y).1 +i pf \leqi ef(Y) \leqi ref(Y).2 +i pf
Define
```

(5.3) $\mathrm{cf}:=(\mathrm{ef},\{(X, \operatorname{sf}(\mathrm{ef}(X))) \mid X \in \operatorname{dom}(e f)\})$

Take hf' arbitrary but fixed. Assume
(5.4) hf ${ }^{\prime} \geq \mathrm{hf}$

And prove
[5.5] $T(F) \rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ Ftf \Leftrightarrow $\left.T(F) \rightarrow\left(p f, s f \uparrow\left(\max (0, p f-h f)^{\prime}\right), \min (p f, h f \prime)\right), s f(p f), c f\right)$ Ftf

Let $\mathrm{b} 1, \mathrm{~b} 2 \in$ BoundValue and $\mathrm{Ft} 1 \in \mathrm{TFormula}$ be such that
(5.6) b1=T(B1)
(5.7) b2=T(B2)
(5.7') Ft1=T(F1)

From (5.1), taking into account the assumptions $h f \in \mathbb{N}$ and $\mathrm{df} \in \mathbb{N} \infty$, we know by the definition of \vdash for "forall" for some $11 \in \mathbb{Z}$, $\mathrm{u} 1,12, \mathrm{u} 2 \in \mathbb{Z} \infty, \mathrm{~h} 1 \in \mathbb{N}, \mathrm{~d} 1 \in \mathbb{N} \infty$:
(5.I.1) $\vdash($ ref \vdash B1 : ($11, \mathrm{u} 1))$
(5.I.2) $\vdash($ ref \vdash B2 : (12, u2))
(5.I.3) $\vdash(\operatorname{ref}[\mathrm{X} \mapsto(\mathrm{l} 1, \mathrm{u} 2)] \vdash \mathrm{F} 1:(\mathrm{h} 1, \mathrm{~d} 1))$
(5.I.4) $\mathrm{hf}=\max \infty(\mathrm{h} 1, \mathbb{N} \infty(-\mathrm{i}(\mathrm{l} 1)))=($ by $h 1 \in \mathbb{N}, \quad l 1 \in \mathbb{Z}) \max (\mathrm{h} 1,|l 1|)$.
(5.I.5) $\mathrm{df}=\max \infty(\mathrm{d} 1, \mathbb{N} \infty(\mathrm{u} 2))$

We define
(5.I.6) $\mathrm{p} 1=\mathrm{b} 1(\mathrm{cf})$
(5.I.7) p2 = b2(cf)

From (5.I.1) (5.I.2), (5.2'), (5.2), (5.3), (5.6), (5.7), (5.I.6), (5.I.7), we know by Lemma 9 (soundness of bound analysis)
(5.I.B.1) 11 +i pf $\leq i \operatorname{p} 1 \leq i \operatorname{u1}+i \operatorname{pf}$
(5.I.B.2) 12 +i pf $\leq i \operatorname{p} 2 \leq i \operatorname{u2}+i \operatorname{pf}$
(In fact, instead of $11+i \operatorname{pf}$ we can write $11+\mathrm{pf}$ in (5.I.B.1), because neither 11 nor pf can be ∞.)

Instantiating the induction hypothesis $\mathrm{S}(\mathrm{F} 1)$ with $\mathrm{s}:=\mathrm{sf}, \mathrm{h}:=\mathrm{h} 1, \mathrm{~d}:=\mathrm{d} 1$, re:=ref [X $\mapsto(11, \mathrm{u} 2)]$, we know with (5.I.3), (5.2'), (5.3), (5.7')
(5.I.F)
$\forall F t \in T F o r m u l a, ~ p \in \mathbb{N}$, $e \in$ Environment:

```
dom(e) = dom(ef)\cup{X} ^
(\forallY\indom(ef)\{X}): ref(Y).1 +i p \leqi e(Y) \leqi ref(Y).2 +i p) ^
(l1 +i p \leqi e(X) \leqi u2 +i p) =>
    let c:=(e, {(Y, sf(e(Y))) | Y \in dom(ef)\cup{X}})
            |'}\in\mathbb{N}:\mp@subsup{h}{}{\prime}\geqh1 = ,
                Ft1 }->\mathrm{ (p, sf }\downarrow\textrm{p},\textrm{sf}(\textrm{p}), c) F
                    \Leftrightarrow
            Ft1 ->(p, sf\uparrow(max (0,p-h'),min(p,h')), sf(p), c) Ft
```

We prove [5.5] in both directions.
(\Longrightarrow) We assume
(5.8) $\operatorname{next}(T A(X, b 1, b 2, F t 1)) \rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ Ftf
and prove
[5.9] next(TA(X,b1,b2,Ft1))
$\rightarrow\left(p f, \operatorname{sf} \uparrow\left(\max \left(0, p f-h f f^{\prime}\right), \min \left(p f, h f{ }^{\prime}\right)\right), s f(p f), c f\right)$ Ftf.
From (5.8), we have two cases:
CASE 1 (Rule 1 for TA)
We know from the rule, (5.I.6) and (5.I.7) that
(5.10.1) $\mathrm{p} 1=\infty \vee \mathrm{p} 1>\infty \mathrm{b} 2(\mathrm{cf})$
(5.10.2) Ftf = done(true)
From (5.I.6), (5.I.7), (5.10.1), (5.10.2), we can derive
with "Rule 1 for TA" [5.9].
CASE 2: (Rule 2 for TA)
We know from the rule, (5.I.6) and (5.I.7) that
(5.16) $\mathrm{p} 1 \neq \infty$
(5.16') $\mathrm{p} 1 \leq \infty \mathrm{p} 2$
(5.17) $\operatorname{next(TAO}(X, p 1, p 2, F t 1)) \rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ Ftf
To prove [5.9], it suffices, by "Rule 2 for TA", together with
(5.I.6), (5.I.7), (5.16), (5.16') to prove
[5.21] next(TAO (X, p1, p2,Ft1))
$\rightarrow(p f, \operatorname{sf} \uparrow(\max (0, p f-h f \prime), m i n(p f, h f \prime)), s f(p f), c f)$ Ftf
Subcase 1.
(5.23) pf < p1.

In this case from (5.17) and "Rule 1 for TAO" we have Ftf=next (TAO (X, p1, p2,Ft1)). Then [5.21] follows from (5.17), (5.23) and "Rule 1 for TAO".

Subcase 2.
(5.24) $\mathrm{pf} \geq \mathrm{p} 1$.

We define
(5.25) $\mathrm{ms}:=\mathrm{sf} \uparrow\left(\max \left(0, \mathrm{pf}-\mathrm{hf}{ }^{\prime}\right), \min \left(\mathrm{pf}, \mathrm{hf} \mathrm{f}^{\prime}\right)\right)$

Before proving [5.21], we establish the following auxiliary fact:
[aux] $\forall \mathrm{p} 0: \mathrm{p} 1 \leq \mathrm{p} 0<\infty \min \infty(\mathrm{pf}, \mathrm{p} 2+\infty 1) \Rightarrow 0 \leq \mathrm{p} 0-\mathrm{pf}+|\mathrm{ms}|<|\mathrm{ms}|$

Proof of [aux]: Take arbitrary p0 and assume
(aux1) $\mathrm{p} 1 \leq \mathrm{p} 0$
(aux2) $\mathrm{p} 0<\infty \min \infty(\mathrm{pf}, \mathrm{p} 2+\infty 1)$
We have to show
[aux3] $0 \leq \mathrm{p} 0-\mathrm{pf}+|\mathrm{ms}|$
[aux4] p0-pf+|ms| < |ms|
From (aux2) we have p0<pf and thus [aux4] holds.
To show [aux3], we show
[aux3.1] $\mathrm{pf} \leq \mathrm{p} 0+|\mathrm{ms}|$
From (5.25), we know
(aux3) $|\mathrm{ms}|=\min \left(\mathrm{pf}, \mathrm{hf}{ }^{\prime}\right)$
From (aux3), to show [aux3.1], it suffices to show
[aux3.2] $\mathrm{pf} \leq \mathrm{p} 0+\mathrm{min}\left(\mathrm{pf}, \mathrm{hf}{ }^{\prime}\right)$
We proceed by case distinction:
(aux4) Case pf <= hf,

From (aux4), to show [aux3.2], it suffices to show
[aux3.2.1] $\mathrm{pf} \leq \mathrm{p} 0+\mathrm{pf}$
From p0 in Nat, we have
(aux5) p0 >= 0
and thus [aux3.2.1]
(aux6) Case pf > hf'
From (aux6), to show [aux3.2], it suffices to show

```
[aux3.2.2] pf \leq p0+hf,
From (5.4) we know hf'\geqhf. It thus suffices to show
[aux3.2.3] pf \leq p0+hf
From (aux5.1.4), it suffices to show
[aux3.2.4] pf \leq p0+max(h1,|l1|).
We know
(aux7) p0+max(h1,|l1|) \geq (by (aux1))
    p1+max(h1,|l1|) \geq(by l1\in\mathbb{Z})
    p1-l1 \geq (by 5.I.B.1) pf
and thus have [aux3.2.4].
It proves [aux].
=============
From [aux] we can conclude
(5.25') \forallp0: p1 \leq p0<\infty min\infty(pf,p2+\infty1) => (sf \downarrowpf) (p0)=ms(p0-pf+|ms|).
Now, to prove [5.21], it suffices by "Rule 2 for TAO" to prove
[5.26] next(TA1(X,p2,Ft1,fs)) -> (pf, ms, sf(pf), cf) Ftf
where
(5.27) fs = {(p0,Ft1,(cf.1[X\mapstop0],cf.2[X\mapstoms(p0-pf+|ms|)])) |
    p1 \leq p0<\infty min}\infty(pf,p2+\infty1)}
We prove [5.26] by case distinction over Ftf.
(c1) Ftf=done(false)
We prove
[c1.1] next(TA1(X,p2,Ft1,fs)) }->\mathrm{ (pf, ms, sf(pf), cf) done(false).
To prove [c1.1], by Def. \(\rightarrow\) we need to prove
[c1.2] \(\exists \mathrm{t} \in \mathbb{N}, \mathrm{g} \in\) TFormula, \(\mathrm{c} \in\) Context:
        (t,g,c)\infs0 ^ \vdashg G (pf,ms,sf(pf),c) done(false),
where
(c1.3) \(\mathrm{fs} 0=\)
        if pf >\infty p2 then fs else fs U {(pf,Ft1,(cf.1[X\mapstopf],cf.2[X\mapstosf(pf)]))}
From (5.17), by (c1) we know
```

```
(c1.4) next(TA1(X,p2,Ft1,fs')) ->(pf,sf }\downarrow\textrm{pf},\textrm{sf}(\textrm{pf}),\textrm{cf}) done(false
where (since p0-pf+|sf }\downarrow\textrm{pf}|=\textrm{p}0\mathrm{ ) 
(c1.5) fs' = {(p0,Ft1,(cf.1[X\mapstop0],cf.2[X\mapsto(sf \pf)(p0)])) |
    p1 \leq p0 < < min}\infty(pf,p2+\infty1)}
From (c1.4) we know by the definition of }
(c1.6) \existst\in\mathbb{N,g\inTFormula,c\inContext:}
    (t,g,c)\infs1 ^ 
where
(c1.7) fs1 =
    if pf >\infty p2 then fs' else fs' U {(pf,Ft1,(cf.1[X\mapstopf],cf.2[X\mapstosf(pf)]))}
From (c1.6), we have (t1,g1,c1) such that
(c1.8) (t1,g1,c1) ffs1 and
(c1.9) }\vdash\textrm{g}1->(\textrm{pf},\textrm{sf}\downarrow\textrm{pf},\textrm{sf}(\textrm{pf}),\textrm{c}1) done(false)
From (c1.8), (c1.7), (c1.5) we see that
(c1.10) g1=Ft1
and, hence, T(F1)=g1.
From (c1.8), (c1.7), (c1.5), we have
Case 1: c1 = (cf.1[X\mapstot1],cf.2[X\mapsto(sf \downarrowpf)(t1)] ^ p1 \leq t1 < < minm(pf,p2+\infty1)
Case 2: c1 = (cf.1[X\mapstot1],cf.2[X\mapstosf(t1)]) ^ pf \leqm p2 ^ t1 = pf
and with (5.24) consequently (in both cases)
(c1.12.1) p1 \leq t1 \leq m min}\infty(pf, p2)
(c1.12.2) c1 = (cf.1[X\mapstot1],cf.2[X\mapsto(sf\downarrow(pf+1))(t1)])
We have from (c1.12.2)
(c1.13.1) c1.1(X) = t1
We have from (5.2), (5.3) and (c1.12.2),
(c1.13.2) \forallY\in\operatorname{dom(cf.1)\{X}: ref(Y).1 +i pf \leqi c1.1(Y) \leqi ref(Y).2 +i pf}
From (c1.12.1), (5.I.B.1) and (5.I.B.2), we know
(c1.13.3) l1 +i pf \leqi t1 \leqi u2 +i pf
We instantiate (5.I.F) with Ft:=done(false), p:=pf, e:=c1.1.
With (5.2'), (5.3), (c1.12.2), (c1.13.2), (c1.13.3), we then have
```

(c1.14) $\forall \mathrm{h} 1^{\prime} \in \mathbb{N}: \mathrm{h} 1^{\prime} \geq \mathrm{h} 1 \Rightarrow$
Ft1 \rightarrow (pf, $\mathrm{sf} \downarrow(\mathrm{pf}), \mathrm{sf}(\mathrm{pf}), \mathrm{c} 1)$ done(false)
\Leftrightarrow
Ft1 \rightarrow (pf, $\left.s f \uparrow\left(\max \left(0, p f-h 1^{\prime}\right), \min \left(p f, h 1^{\prime}\right)\right), s f(p f), c 1\right)$ done(false)
Since (c1.14) is true for all h1' $\geq \mathrm{h} 1$, it is true, in particular, for hf ', because by (5.4) we have $h f$ ' $\geq \mathrm{hf}$, and in itself, $\mathrm{hf} \geq \mathrm{h} 1$ by (5.I.4). Hence, from (c1.14) we get
(c1.15)
Ft1 \rightarrow (pf, sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c} 1)$ done(false)
\Leftrightarrow
Ft1 $\rightarrow\left(\mathrm{pf}, \mathrm{sf} \uparrow\left(\max \left(0, \mathrm{pf}-\mathrm{hf} \mathrm{f}^{\prime}\right), \min \left(\mathrm{pf}, \mathrm{hf} \mathrm{f}^{\prime}\right)\right), \mathrm{sf}(\mathrm{pf}), \mathrm{c} 1\right)$ done(false)
From (c1.15) and (c1.9) we get
(c1.16) Ft1 $\rightarrow\left(p f, \operatorname{sf} \uparrow\left(\max \left(0, p f-h f{ }^{\prime}\right), \min (p f, h f \prime)\right), s f(p f), c 1\right)$ done(false)
(c1.16), by (5.25), proves the second conjunct of [c1.2].
Hence, it remains to prove the first conjunct of [c1.2]:
[c1.3] ($\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs} 0$.
By (c1.8), ($\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs} 1 . \mathrm{By}(\mathrm{c} 1.7)$ it means either
(c1.17) ($\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1)=(\mathrm{pf}, \mathrm{Ft} 1,(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf})]))$
or
(c1.18) ($\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs} \mathrm{s}^{\prime}$.
From (c1.17) we get [c1.3] due to the definition of fs0 in (c1.3).
From (c1.18) we have
$(\mathrm{c} 1.19)(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1)=(\mathrm{p} 0, \mathrm{Ft} 1,(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{p} 0], \mathrm{c} .2[\mathrm{X} \mapsto(\mathrm{sf} \downarrow \mathrm{pf})(\mathrm{p} 0)]))$
for some $\mathrm{p} 1 \leq \mathrm{p} 0<\infty \min \infty(\mathrm{pf}, \mathrm{p} 2+\infty 1)$.
From (5.25'), (c1.19) and the definition of $f s$ in(5.27) we get
$(\mathrm{c} 1.21)(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs}$.
From (c1.2) we have fs \subseteq fs0 and, hence, [c1.3] holds also in this case.
It proves (c1).
(c2) Ftf=done(true)
We prove
[c2.1] next(TA1(X,p2,Ft1,fs)) $\rightarrow(p f, m s, s f(p f), c f)$ done(true).
To prove [c2.1], by Def. of \rightarrow ("Rule 2 for TA1") we need to prove
[c2.2] $\neg \exists \mathrm{t} \in \mathbb{N}, \mathrm{g} \in$ TFormula, $\mathrm{c} \in$ Context:
$(\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{fs} 0 \wedge \vdash \mathrm{~g} \rightarrow(\mathrm{pf}, \mathrm{ms}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done (false) and
[c2.3] fs1 $=\emptyset \wedge \mathrm{pf} \geq \infty \mathrm{p} 2$
where
(c2.4) fs0 $=$
if $\mathrm{pf}>\infty \mathrm{p} 2$ then fs else $\mathrm{fs} \cup\{(\mathrm{pf}, \mathrm{Ft} 1,(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf})]))\}$
(c2.5) fs1 $=\{(t, \operatorname{next}(f c), c) \in$ TInstance \mid
$\exists \mathrm{g} \in \mathrm{TFormula:} \mathrm{(t,g,c)} \mathrm{\in fs0} \mathrm{\wedge} \mathrm{\vdash g} \mathrm{\rightarrow(pf,ms,sf(pf),c)} \mathrm{\operatorname{next}(f c)} \mathrm{\}}$
From (5.17), by (c2) we know
$\left(c 2.5^{\prime}\right) \operatorname{next}(T A O(X, p 1, p 2, F t 1)) \rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ done(true).
From (c2.5') and (5.24), by the definiton of \rightarrow ("Rule 2 for TAO") we know
(c2.6) $\operatorname{next(TA1(X,p2,Ft1,fs^{\prime }))~} \rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ done(true),
where

```
(c2.6') fs' = {(p0,Ft1,(cf.1[X\mapstop0],cf.2[X\mapsto(sf \downarrowpf)(p0-pf+|sf \downarrowpf|)])) |
```

 \(\mathrm{p} 1 \leq \mathrm{p} 0<\infty \min \infty(\mathrm{pf}, \mathrm{p} 2+\infty 1)\}\)
 Since $\mathrm{p} 0-\mathrm{pf}+|\mathrm{sf} \downarrow \mathrm{pf}|=\mathrm{p} 0$, from (c2.6') we get

```
(c2.7) fs' = {(p0,Ft1,(cf.1[X\mapstop0],cf.2[X\mapsto(sf \pf)(p0)])) |
    p1 \leq p0<\infty min}\infty(pf,p2+\infty1)
```

From (c2.6), by Def. of \rightarrow ("Rule 2 for TA1") we know
(c2.8) $\neg \exists \mathrm{t} \in \mathbb{N}, \mathrm{g} \in$ TFormula, $c \in$ Context:
(t,g,c) $\in \mathrm{fs} 0^{\prime} \wedge \vdash \mathrm{g} \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(false) and
(c2.9) fs1' $=\emptyset \wedge \mathrm{pf} \geq \infty \mathrm{p} 2$
where
(c2.10) fs0' = if $\mathrm{pf}>\infty \mathrm{p} 2$ then fs ' else $\mathrm{fs}{ }^{\prime} \cup\{(\mathrm{pf}, \mathrm{Ft} 1,(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf})]))\}$
(c2.11) $\mathrm{fs} 1^{\prime}=\{(t, \operatorname{next}(\mathrm{fc}), \mathrm{c}) \in$ TInstance |

From (5.25'), (5.27) and (c2.7) we get
(c2.13) fs = fs',
which, by (c2.4) and (c2.10), implies
(c2.14) fs $0=f s 0^{\prime}$.

To prove [c2.2], we take
$(\mathrm{c} 2.15)(\mathrm{t} 0, \mathrm{~g} 0, \mathrm{c} 0) \in \mathrm{fs} 0$
and prove that
[c2.16] g0 $\rightarrow(\mathrm{pf}, \mathrm{ms}, \mathrm{sf}(\mathrm{pf}), \mathrm{c} 0)$ done(false) does not hold.
From (c2.15) and (c2.14) we have
(c2.17) ($\mathrm{t} 0, \mathrm{~g} 0, \mathrm{c} 0) \in \mathrm{fs} \mathrm{S}^{\prime}$.
From (c2.17) and (c2.8) we know
(c2.18) g0 $\rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c} 0)$ done(false) does not hold.
From (c2.4), (5.27) and (c2.15) we get
(c2.19) g0=Ft1 and two cases:
Case 1: $\mathrm{t} 0=\mathrm{p} 0 \wedge \mathrm{c} 0=\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{p} 0], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{ms}(\mathrm{p} 0-\mathrm{pf}+|\mathrm{ms}|)] \wedge$ $\mathrm{p} 1 \leq \mathrm{p} 0<\infty \min \infty(\mathrm{pf}, \mathrm{p} 2+\infty 1) \wedge \mathrm{pf}>\infty \mathrm{p} 2$
Case 2: t0=pf $\wedge \mathrm{c} 0=\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf})] \wedge \mathrm{pf} \leq \infty \mathrm{p} 2$
These cases can be rewritten and simplified (taking into account (5.25') and (5.24)) into

Case 1: c $0=c f .1[\mathrm{X} \mapsto \mathrm{t} 0], \mathrm{cf} .2[\mathrm{X} \mapsto(\mathrm{sf} \downarrow \mathrm{pf})(\mathrm{t} 0)] \wedge \mathrm{p} 1 \leq \mathrm{t} 0<\infty \min \infty(\mathrm{pf}, \mathrm{p} 2)$
Case 2: c0=cf.1[X $\rightarrow \mathrm{t} 0], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{tO})] \wedge \mathrm{p} 1 \leq \mathrm{pf} \leq \infty \mathrm{p} 2 \wedge \mathrm{pf}=\mathrm{t} 0$.
Consequently, in both cases we get
(c2.20) $\mathrm{p} 1 \leq \mathrm{t} 0<\infty \min \infty(\mathrm{pf}, \mathrm{p} 2)$ and
(c2.21) $\mathrm{c} 0=\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{t} 0], \mathrm{cf} .2[\mathrm{X} \mapsto(\mathrm{sf} \downarrow(\mathrm{pf}+1))(\mathrm{t} 0)]$
From (c2.21) we have
(c2.22) c0.1 (X) $=\mathrm{t} 0$.
From (5.2), (5.3), and (c2.21) we get
(c2.23) $\forall \mathrm{Y} \in \operatorname{dom}(\mathrm{cf} .1) \backslash\{\mathrm{X}\}: \operatorname{ref}(\mathrm{Y}) .1+\mathrm{i} \mathrm{pf} \leq \mathrm{i} \mathrm{c} 0.1(\mathrm{Y}) \leq \mathrm{i} \operatorname{ref}(\mathrm{Y}) .2+\mathrm{i} \mathrm{pf}$.
From (c2.20), (5.I.B.1) and (5.I.B.2), we know
(c2.24) 11 +i pf $\leq i \operatorname{t0} \leq i \operatorname{u2}+\mathrm{i} p f$.
We instantiate (5.I.F) with $\mathrm{Ft}:=$ done(false), $\mathrm{p}:=\mathrm{pf}$, $\mathrm{e}:=\mathrm{c} 0.1$.
With (5.2'), (5.3), (c2.21), (c2.22), (c2.23), (c2.24), we then have
(c2.25) $\forall \mathrm{h} 1^{\prime} \in \mathbb{N}: \mathrm{h} 1^{\prime} \geq \mathrm{h} 1 \Rightarrow$
Ft1 \rightarrow (pf, sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c} 0)$ done(false)

```
            \Leftrightarrow
        Ft1 ->(p, sf f(max(0,pf-h1'),min(pf,h1')), sf(pf), c0) done(false)
```

Since (c2.25) is true for all h1' \geq h1, it is true, in particular, for hf', because by (5.4) we have $h f^{\prime} \geq h f$, and in itself, $h f \geq h 1$ (5.I.4). Hence, from (c2.25) we get
(c2.26) Ft1 \rightarrow (pf, sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c} 0)$ done (false)

$$
\stackrel{\Leftrightarrow}{\mathrm{Ft} 1} \rightarrow\left(\mathrm{p}, \mathrm{sf} \uparrow\left(\max \left(0, \mathrm{pf}-\mathrm{hf} \mathrm{f}^{\prime}\right), \min \left(\mathrm{pf}, \mathrm{hf}{ }^{\prime}\right)\right), \mathrm{sf}(\mathrm{pf}), \mathrm{c} 0\right) \text { done(false) }
$$

From (c2.26), (c2.18), and (c2.19) we get
(c2.27) Ft1 $\rightarrow(p, s f \uparrow(\max (0, p f-h f \prime), \min (p f, h f \prime)), s f(p f), c 0)$ done(false) does not hold.

From (c2.27), by (5.25), we get [c2.16].
To prove [c2.3], note that from (c2.14), (c2.5) and (c2.11) we get
$(c 2.28) f s 1=f s 1^{\prime}$.
Now [c2.3] follows from (c2.28) and (c2.9). It proves (c2).
(c3) Ftf=next(TA1 (X, p2,Ft1,fs'))
We prove
[c3.1] $\operatorname{next(TA1(X,p2,Ft1,fs))\rightarrow (pf,ms,sf(pf),~cf)~next(TA1(X,p2,Ft1,fs')).~}$
To prove [c3.1], by Def. of \rightarrow (("Rule 3 for TA1") we need to prove
[c3.2] $\neg \exists \mathrm{t} \in \mathbb{N}, \mathrm{g} \in$ TFormula, $\mathrm{c} \in$ Context:
(t,g,c) $\in \mathrm{fs} 0 \wedge \vdash \mathrm{~g} \rightarrow(\mathrm{pf}, \mathrm{ms}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done (false) and
[c3.3] $\neg(\mathrm{fs} 1=\emptyset \wedge \mathrm{pf} \geq \infty \mathrm{p} 2)$
where
(c3.4) fs0 $=$
if $\mathrm{pf}>\infty \mathrm{p} 2$ then fs else $\mathrm{fs} \cup\{(\mathrm{pf}, \mathrm{f},(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{p}], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf})]))\}$
(c3.5) fs1 $=\{(t, \operatorname{next}(f c), c) \in$ TInstance |

From (5.17) by (c3) we know
$\left(c 3.5^{\prime}\right) \operatorname{next}(T A 0(X, p 1, p 2, F t 1)) \rightarrow(p f, s f \downarrow p f, s f(p f), c f) \operatorname{next}\left(T A 1\left(X, p 2, F t 1, f s^{\prime}\right)\right)$.
From (c3.5') and by the definiton of \rightarrow ("Rule 2 for TAO") we know
(c3.6) next(TA1(X,p2,Ft1,fs')) $\rightarrow(p f, s f \downarrow p f, s f(p f), c f) \operatorname{next}\left(T A 1\left(X, p 2, F t 1, f s^{\prime}\right)\right)$
where
$\left(\mathrm{c} 3.6^{\prime}\right) \mathrm{fs}^{\prime}=\{(\mathrm{p} 0, \mathrm{Ft} 1,(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{p} 0], \mathrm{cf} .2[\mathrm{X} \mapsto(\mathrm{sf} \downarrow \mathrm{pf})(\mathrm{p} 0-\mathrm{pf}+|\mathrm{sf} \downarrow \mathrm{pf}|)])) \mid$

$$
\mathrm{p} 1 \leq \mathrm{p} 0<\infty \min \infty(\mathrm{pf}, \mathrm{p} 2+\infty 1)\}
$$

Since $\mathrm{p} 0-\mathrm{pf}+|\mathrm{sf} \downarrow \mathrm{pf}|=\mathrm{p} 0$, from (c3.6') we get

$$
(\mathrm{c} 3.7) \mathrm{fs}{ }^{\prime}=\{(\mathrm{p} 0, \mathrm{Ft} 1,(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{p} 0], \mathrm{cf} .2[\mathrm{X} \mapsto(\mathrm{sf} \downarrow \mathrm{pf})(\mathrm{p} 0)])) \mid
$$

$$
\mathrm{p} 1 \leq \mathrm{p} 0<\infty \min \infty(\mathrm{pf}, \mathrm{p} 2+\infty 1)\}
$$

From (c3.6), by Def. of \rightarrow ("Rule 3 for TA1") we know
(c3.8) $\neg \exists \mathrm{t} \in \mathbb{N}, \mathrm{g} \in$ TFormula, $\mathrm{c} \in$ Context:
(t,g,c) $\in \mathrm{fs} 0^{\prime} \wedge \vdash \mathrm{g} \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done (false) and
(c3.9) $\neg\left(f s 1^{\prime}=\emptyset \wedge \mathrm{pf} \geq \infty \mathrm{p} 2\right)$
where
(c3.10) fs0' =
if $\mathrm{pf}>\infty \mathrm{p} 2$ then fs ' else fs' $\cup\{(\mathrm{pf}, \mathrm{Ft} 1,(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf})]))\}$
(c3.11) fs1' = \{ (t, next (fc), c) \in TInstance |

From (5.25'), (5.27) and (c3.7) we get
(c3.13) fs = fs',
which, by (c3.4) and (c3.10), implies
(c3.14) fs0=fs0'.
Now [c3.2] can be proved in the same as [c2.2] was proved above.
To prove [c3.3], note that from (c3.14), (c3.5) and (c3.11) we get
(c3.28) fs1 = fs1'.
Now [c3.3] follows from (c3.28) and (c3.9). It proves (c3).
Hence, the direction (\Longrightarrow) is proved.
(\Longleftarrow) This direction can be proved with the same reasoning as (\Longrightarrow).
It finishes the proof of CASE 5.
It finishes the proof of Lemma 3.

A. 6 Lemma 4: n-Step Reductions to done Formulas for TN, TCS, TCP

Statement 1. TN Formulas.

```
\forallF\inFormula, n\in\mathbb{N},\textrm{p}\in\mathbb{N},\textrm{s}\in\mathrm{ Stream, e eEnvironment, Ft TFormula :}
    T(F) }->*(n,p,s,e) done(false) => next(TN(T(F))) ->*(n,p,s,e) done(true) ^
    T(F) }->*(\textrm{n},\textrm{p},\textrm{s},\textrm{e}) done(true) => next(TN(T(F))) ->*(n,p,s,e) done(false
```


Proof

```
We take Ff, sf, ef arbitrary but fixed and prove the formula
    \(\forall \mathrm{n} \in \mathbb{N}, \mathrm{p} \in \mathbb{N}\) :
        \(\mathrm{T}(\mathrm{Ff}) \rightarrow *(\mathrm{n}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef})\) done(false) \(\Rightarrow\)
                        next (TN(T(Ff))) \(\rightarrow\) (n, pf,sf,ef) done(true)
        \(\wedge\)
        \(T(F f) \rightarrow *(n, p f, s f, e f)\) done(true) \(\Rightarrow\)
                        \(\operatorname{next}(T N(T(F f))) \rightarrow *(n, p, s, e)\) done(false)
```

by induction over n. Since $T(F f)$ is a next formula, for $n=0$ the antecedents of both conjuncts are false and the statement is trivially true.

Assume
(TN.1) $\quad \forall \mathrm{p} \in \mathbb{N}$:

$$
T(F f) \rightarrow *(n, p, s f, e f) \text { done(false) } \Rightarrow
$$

$$
\operatorname{next}(T N(T(F f))) \rightarrow *(n, p, s f, e f) \text { done(true) }
$$

(TN.2) $\quad \forall \mathrm{p} \in \mathbb{N}$: $T(F f) \rightarrow *(n, p f, s f, e f)$ done(true) \Rightarrow $\operatorname{next}(T N(T(F f))) \rightarrow *(n, p, s, e)$ done(false)
Prove
[TN.3] $\quad \forall \mathrm{p} \in \mathbb{N}$:
$T(F f) \rightarrow *(n+1, p, s f, e f)$ done(false) \Rightarrow $\operatorname{next}(T N(T(F f))) \rightarrow *(n+1, p, s f, e f)$ done(true)
and
[TN.4] $\quad \forall \mathrm{p} \in \mathbb{N}$:
$T(F f) \rightarrow *(n+1, p, s f, e f)$ done(true) \Rightarrow xsnext(TN(T(Ff))) $\rightarrow *(n+1, p, s, e)$ done (false)

To prove [TN.3], we take pf arbitrary but fixed, assume
(TN.5) T(Ff) $\rightarrow *(\mathrm{n}+1, \mathrm{pf}, \mathrm{sf}, \mathrm{ef})$ done(false)
and prove
[TN.6] $\operatorname{next}(T N(T(F f))) \rightarrow *(n+1, p f, s f, e f)$ done(true)
From (TN.5) by definition $\rightarrow *$ without history we know that there exists Ft \in TFormula such that
(TN.7) T(Ff) $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}$
(TN.8) Ft \rightarrow ($\mathrm{n}, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}$) done(false)
where $c=(e f,\{(X, \operatorname{sf}(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
We proceed by case distinction over Ft.

Case 'next': If Ft is a next formula, then there exists F1 \in Formula such that (TN.9) $\mathrm{Ft}=\mathrm{T}(\mathrm{F} 1)$

From (TN.9) and (TN.8) by (TN.1) we get
(TN.10) $\operatorname{next(TN(T(F1)))~} \rightarrow *(n, p f+1, s f, e f)$ done(true)
From (TN.7) by the definition of \rightarrow we get
(TN.11) $\operatorname{next(TN(T(Ff)))\rightarrow (pf,sf\downarrow pf,sf(pf),c)\operatorname {next}(TN(T(F1)))~}$
From (TN.11) and (TN.10) by the definition of $\rightarrow *$ without history we get [TN.6].
Case 'done': If Ft is a 'done' formula, then by (TN. 8), we have
(TN.12) $\mathrm{n}=0$ and
(TN.13) $\mathrm{Ft}=\mathrm{done}(\mathrm{false})$.
From (TN.7) and (TN.13), by the definition of \rightarrow, we get

On the other hand, from the definition of \rightarrow * we know
(TN.15) done(true) $\rightarrow *(0, p f+1, s f, e f)$ done(true).
From (TN.14), (TN.15), (TN.12), by the definition of \rightarrow we get [TN.6].
Hence, we proved [TN.6] for both cases of Ft. This proves [TN.3].
[TN.4] can be proved analogously.

Statement 2. TCS Formulas.

```
p}\in\mathbb{N}\mathrm{ , s}\in\mathrm{ Stream, e }\in\mathrm{ Environment :
    Ft1,Ft2\inTFormula, n\in\mathbb{N}\mathrm{ ,}
        n>0 ^ Ft1 }->*(n,p,s,e) done(false) 
        next(TCS(Ft1,Ft2)) ->*(n,p,s,e) done(false) ^
    Ft1,Ft2\inTFormula, n1,n2\in\mathbb{N, b}\in\mathrm{ Bool:}
        n1>0 ^ n2>0 ^Ft1 }->*(\textrm{n}1,\textrm{p},\textrm{s},\textrm{e}) done(true) ^ Ft2 ->*(n2,p,s,e) done(b) 
        next(TCS(Ft1,Ft2)) ->*(max(n1,n2),p,s,e) done(b)
```

Proof
We split the statement in two:
[TCS1] $\forall \mathrm{p} \in \mathbb{N}$, $\mathrm{s} \in$ Stream, e \in Environment, Ft1,Ft2 \in TFormula, $n \in \mathbb{N}$:
$\mathrm{n}>0 \wedge \mathrm{Ft} 1 \rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false) \Rightarrow next (TCS (Ft1,Ft2)) $\rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false)
[TCS2] $\forall \mathrm{p} \in \mathbb{N}$, s \in Stream, e \in Environment, Ft1,Ft2 \in TFormula, $\mathrm{n} 1, \mathrm{n} 2 \in \mathbb{N}$, b \in Bool : $\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge \mathrm{Ft} 1 \rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(true) $\wedge \mathrm{Ft} 2 \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done $(\mathrm{b}) \Rightarrow$ next (TCS (Ft1,Ft2)) $\rightarrow *(\max (\mathrm{n} 1, \mathrm{n} 2), \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(b).

Proof of [TCS1]

We take sf,ef arbitrary but fixed and define
$\Phi(\mathrm{n}): \Leftrightarrow$
$\forall p \in \mathbb{N}$, Ft1,Ft2 \in TFormula:
$\mathrm{n}>0 \wedge$ Ft1 $\rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(false) \Rightarrow next (TCS (Ft1,Ft2)) $\rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(false))

We prove $\forall \mathrm{n} \in \mathbb{N}$: $\Phi(\mathrm{n})$ by induction over n . For $\mathrm{n}=0$ the formula is trivially true.
We start the induction from 1. Prove:
[TCS1.a] $\Phi(1)$ and
[TCS1.b] $\forall \mathrm{n} \in \mathbb{N}: \Phi(\mathrm{n}) \Rightarrow \Phi(\mathrm{n}+1)$
Proof of [TCS1.a]
We take pf,Ft1f,Ft2f arbitrary but fixed and assume
(TCS1.1) $1>0$
(TCS1.2) Ft1f $\rightarrow *(1, p f, s f, e f)$ done(false).

We want to prove
[TCS1.3] next(TCS(Ft1f,Ft2f)) $\rightarrow *(1, p f, s f, e f)$ done(false).
From (TCS1.2), by the definition of $\rightarrow *$ without history, there exists Ft \in TFormula such that
(TCS1.4) Ft1f $\rightarrow(\mathrm{p}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}$ and
(TCS1.5) Ft $\rightarrow *(0, p f+1, s f, e f)$ done(false)
where
(TCS1.6) $c=(e f,\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (TCS1.5), by the definition of $\rightarrow *$ without history, we get
(TCS1.7) Ft=done(false).
From (TCS1.7) and (TCS1.4), by the definition of \rightarrow for TCS, we get
(TCS1.8) $\operatorname{next(TCS(Ft1f,Ft2f))~} \rightarrow(p, s f \downarrow p f, s f(p f), c)$ done(false).

From (TCS1.8, TCS1.5, TCS1.7, TCS1.6), by the definition of $\rightarrow *$ without history, we get [TCS1.2].

This finishes the proof of [TCS1.a]

Proof of [TCS1.b]

We take n arbitrary but fixed, assume
(TCS1.8) $\forall \mathrm{p} \in \mathbb{N}$, Ft1,Ft2 \in TFormula:
$\mathrm{n}>0 \wedge \mathrm{Ft} 1 \rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(false) \Rightarrow next (TCS (Ft1,Ft2)) $\rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(false))
and prove
[TCS1.9] $\forall \mathrm{p} \in \mathbb{N}$, Ft1,Ft2 \in TFormula:
$\mathrm{n}+1>0 \wedge$ Ft1 $\rightarrow *(\mathrm{n}+1, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(false) \Rightarrow $\operatorname{next}(T C S(F t 1, F t 2)) \rightarrow *(n+1, p, s f, e f)$ done(false)).

To prove [TCS1.9], we take pf,Ft1f,Ft2f arbitrary but fixed, assume
(TCS1.10) $\mathrm{n}+1>0$
(TCS1.11) Ft1f $\rightarrow *(n+1, p f, s f, e f)$ done(false)
and prove
[TCS1.12] $\operatorname{next(TCS(Ft1f,Ft2f))~} \rightarrow *(n+1, p, s f, e f)$ done(false)).
From (TCS1.11), by the definition of $\rightarrow *$ without history, there exists Ft \in TFormula such that
(TCS1.13) Ft1f $\rightarrow(p f, s f \downarrow p f, s f(p f), c) ~ F t$
(TCS1.14) Ft \rightarrow ($\mathrm{n}, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}$) done(false)
where
(TCS1.15) $c=(e f,\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
We proceed by case distinction over Ft.
Case 1. Ft=next(f) for some $f \in$ TFormulaCore
---1
From (TCS1.13), by the definition of \rightarrow for TCS, we get
(TCS1.16) next (TCS (Ft1f,Ft2f)) $\rightarrow(p f, s f \downarrow p f, s f(p f), c) \operatorname{next}(T C S(F t, F t 2 f))$
Since Ft is a 'next' formula, we have
(TCS1.17) $\mathrm{n}>0$.
From (TCS1.17) and (TCS1.14), by the induction hypothesis (TCS1.8) we get
(TCS1.18) $\operatorname{next}(T C S(F t, F t 2 f)) \rightarrow *(n, p f+1, s f, e f)$ done(false)
From (TCS1.10), (TCS1.15), (TCS1.16), and (TCS1.18), by the definition of $\rightarrow *$ without history, we get [TCS1.12]

Case 2. Ft=done(b) for some $b \in$ Bool

In this case we have
(TCS1.19) $\mathrm{n}=0$ (a 'done' formula can be reduced only in 0 steps)
(TCS1.20) b=false.

Then from (TCS1.13) and (TCS1.20), by the definition of \rightarrow for TCS we get
(TCS1.21) next (TCS (Ft1f,Ft2f)) $\rightarrow(p f, s f \downarrow p f, \operatorname{sf}(p f), c)$ done (false).

From (TCS1.14), (TCS1.19), and (TCS1.20), we have
(TCS1.22) done(false) $\rightarrow *(0, p f+1, s f, e f)$ done(false).

From (TCS1.19), (TSC1.15), (TSC1.21), (TCS1.22), by the definition of $\rightarrow *$ without history, we get [TCS1.12].

This finishes the proof of [TCS1].

Proof of [TCS2]

Recall
[TCS2] $\forall s \in$ Stream, e \in Environment, $p \in \mathbb{N}$, Ft1,Ft2 \in TFormula, $n 1, n 2 \in \mathbb{N}$, b \in Bool: $\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge \mathrm{Ft} 1 \rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done (true) $\wedge \mathrm{Ft} 2 \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done $(\mathrm{b}) \Rightarrow$ next (TCS (Ft1,Ft2)) $\rightarrow *(\max (\mathrm{n} 1, \mathrm{n} 2), \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(b).

We take sf,ef,bf arbitrary but fixed and define
$\Phi(\mathrm{n} 1): \Leftrightarrow$
$\forall \mathrm{p} \in \mathrm{dsN}$, Ft1,Ft2 \in TFormula, $\mathrm{n} 2 \in \mathbb{N}$:
$\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge \mathrm{Ft} 1 \rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(true) $\wedge \mathrm{Ft2} \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(bf) \Rightarrow next (TCS (Ft1,Ft2)) $\rightarrow *(\max (\mathrm{n} 1, \mathrm{n} 2), \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(bf).

We need to prove $\forall \mathrm{n} 1 \in \mathbb{N}$: $\Phi(\mathrm{n} 1)$. We use induction. Prove:
[TCS2.a] : $\Phi(1)$
[TCS2.b] $\forall \mathrm{n} 1 \in \mathbb{N}: \Phi(\mathrm{n} 1) \Rightarrow \Phi(\mathrm{n} 1+1)$.

Proof of [TCS2.a]
We need to prove
$\forall \mathrm{n} 2, \mathrm{p} \in \mathrm{dsN}, \mathrm{Ft} 1, \mathrm{Ft} 2 \in \mathrm{TFormula}:$

```
    1>0 ^n2>0 ^ Ft1 }->*(1,p,sf,ef) done(true) ^ Ft2 ->*(n2,p,sf,ef) done(bf) =>
    next(TCS(Ft1,Ft2)) ->*(max(1,n2),p,sf,ef) done(bf).
We take n2,pf,Ft1f,Ft2f arbitrary but fixed. Assume
(TCS1.a.1) n2>0
(TCS1.a.2) Ft1f }->*(1,pf,sf,ef) done(true
(TCS1.a.3) Ft2f ->*(n2,pf,sf,ef) done(bf)
and prove
[TCS1.a.4] next(TCS(Ft1f,Ft2f)) ->*(max(1,n2),pf,sf,ef) done(bf).
From (TCS1.a.2), by the definition of }->*\mathrm{ , we have for some Ft'
(TCS1.a.5) Ft1f }->\mathrm{ (pf,sf \pf,sf(pf),c) Ft'
(TCS1.a.6) Ft' }->*(0,pf+1,sf,ef) done(true
where
(TCS1.a.7) c=(ef, {(X,sf(ef(X)))| X\indom(ef)}).
From (TCS1.a.6), by the definition pf }->*\mathrm{ , we know
(TCS1.a.8) Ft'=done(true).
From (TCS1.a.5) and (TCS1.a.8) we have
(TCS1.a.9) Ft1f ->(pf,sf \downarrowpf,sf(pf),c) done(true).
From (TCS1.a.3), by the definition of }->*\mathrm{ , we have for some Ft',
(TCS1.a.10) Ft2f ->(pf,sf \downarrowpf,sf(pf),c) Ft',
(TCS1.a.11) Ft''->* (n2-1,pf+1,sf,ef) done(bf),
where c is defined as in (TCS1.a.7).
From (TCS1.a.9) and (TCS1.a.10), by the definition of }->\mathrm{ for TCS, we have
(TCS1.a.13) next(TCS(Ft1f,Ft2f)) -> (pf,sf\downarrowpf,sf(pf),c) Ft''.
From (TCS1.a.13), (TCS1.a.7), and (TCS1.a.11), by the definition of }->*\mathrm{ , we have
(TCS1.a.14) next(TCS(Ft1f,Ft2f)) > (n2,pf,sf,ef) done(bf).
From (TCS1.a.1), we have n2=max(1,n2). Therefore, (TCS1.a.14) proves [TCS1.a.4]
This finishes the proof of [TCS2.a].
```

Proof of [TCS2.b]

We take n1 arbitrary but fixed. Assume $\Phi(n 1)$, i.e.,

```
(TCS2.b.1) \foralln2,p\indsN, Ft1,Ft2\inTFormula :
    n1>0 ^ n2>0 ^ Ft1 ->*(n1,p,sf,ef) done(true) ^
        Ft2 }->*(n2,p,sf,ef) done(bf
    =>
        next(TCS(Ft1,Ft2)) ->*(max(n1,n2),p,sf,ef) done(bf)
```

and prove
[TCS2.b.2] $\forall \mathrm{n} 2, \mathrm{p} \in \mathrm{dsN}$, Ft1,Ft2 \in TFormula :
$\mathrm{n} 1+1>0 \wedge \mathrm{n} 2>0 \wedge \mathrm{Ft} 1 \rightarrow *(\mathrm{n} 1+1, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(true) \wedge
Ft2 $\rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(bf)
\Rightarrow
next(TCS (Ft1,Ft2)) $\rightarrow *(\max (\mathrm{n} 1+1, \mathrm{n} 2), \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(bf).

To prove [TCS2.b.2], we take n2, pf, Ft1f, Ft2f arbitrary but fixed. Assume
(TCS2.b.3) n1+1>0
(TCS2.b.4) n2>0
(TCS2.b.5) Ft1f $\rightarrow *(n 1+1, p f, s f, e f)$ done(true)
(TCS2.b.6) Ft2f $\rightarrow *(n 2, p f, s f, e f)$ done(bf)
and prove
[TCS2.b.7] $\operatorname{next(TCS(Ft1f,Ft2f))~} \rightarrow *(\max (n 1+1, n 2), p f, s f, e f)$ done(bf).
From (TCS2.b.5), by the definition of $\rightarrow *$, we have for some Ft'
(TCS2.b.8) Ft1f $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}$,
(TCS2.b.9) Ft' \rightarrow ($\mathrm{n} 1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}$) done(true)
where
(TCS2.b.10) c=(ef, \{(X,sf(ef(X)))| X $\operatorname{dom(ef)\}).~}$
From (TCS2.b.6), by the definition of $\rightarrow *$, we have for some Ft',
(TCS2.b.11) Ft2f $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}{ }^{\prime}$,
(TCS2.b.12) Ft'' $\rightarrow *(n 2-1, p f+1, s f, e f)$ done(bf),
where c is defined as in (TCS2.b.10).
Case n1=0
In this case we have Ft'=done(true) and from (TCS2.b.8) we get
(TCS2.b.13) Ft1f \rightarrow (pf, sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(true).
From (TCS2.b.13) and (TCS2.b.11), by the definition of \rightarrow for TCS, we have
(TCS2.b.14) next(TCS (Ft1f,Ft2f)) $\rightarrow(p f, s f \downarrow p f, s f(p f), c) F t '$.
From (TCS2.b.4), (TCS2.b.10), (TCS2.b.14), (TCS2.b.12) by the definition of \rightarrow, we get
(TCS2.b.15) next(TCS(Ft1f,Ft2f)) $\rightarrow *(n 2, p f, s f, e f)$ done(bf).
By (TCS2.b.4) and $\mathrm{n} 1=0$, we have $\mathrm{n} 2=\max (1, \mathrm{n} 2)=\max (\mathrm{n} 1+1, \mathrm{n} 2)$.
Hence, (TCS2.b.16) proves [TCS2.b.7].

Case $\mathrm{n} 1>0, \mathrm{n} 2-1>0$

In this case Ft'=next(f') for some f' \in TFormulaCore.
Therefore, from (TCS3.b.8), by the definition of \rightarrow for TCS we have
(TCS2.b.16) next(TCS (Ftf1,Ftf2)) $\rightarrow(p f, s f \downarrow p f, s f(p f), c) \operatorname{next}(T C S(F t), F t 2 f))$.
Since n2-1>0 and, hence, n2>0, from (TCS2.b.6) by the Shifting Lemma 7 we get
(TCS2.b.17) Ft2f $\rightarrow *(n 2-1, p f+1, s f, e f)$ done(bf)
From n1>0, n2-1>0, (TCS2.b.9), (TCS2.b.17), by the induction hypothesis (TCS2.b.1) we get
(TCS2.b.18) $\operatorname{next(TCS(Ft',Ft2f))~} \rightarrow *(\max (n 1, n 2-1), p f+1, s f, e f)$ done(bf)
From $\max (\mathrm{n} 1, \mathrm{n} 2-1)+1>0,(T C S 2 . \mathrm{b} .10),(T C S 2 . \mathrm{b} .16),(T C S 2 . \mathrm{b} .18)$ we get
(TCS2.b.18) next(TCS (Ft1f,Ft2f)) $\rightarrow *(\max (n 1, n 2-1)+1, p f, s f, e f)$ done(bf)
Since $\max (\mathrm{n} 1, \mathrm{n} 2-1)+1=\max (\mathrm{n} 1+1, \mathrm{n} 2),(T C S 2 . b .18)$ proves [TCS2.b.7]

Case 2. n1>0, n2-1=0

In this case from (TCS2.b.12) we have Ft''=done(bf), which from (TCS2.b.12) gives
(TCS2.b.19) Ft2f \rightarrow (pf,sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(bf).

From (TCS2.b.5), by Lemma 2, we have
(TCS2.b.23) Ft1f $\rightarrow l *(n 1+1, p f, s f, e f)$ done(true).
From (TCS2.b.23), by the definition of \rightarrow l*, we obtain for some Ft0
(TCS2.b.24) Ft1f \rightarrow l*(n1,pf,sf,ef) Ft0
(TCS2.b.25) Ft0 $\rightarrow(\mathrm{pf}+\mathrm{n} 1, \mathrm{~s} \downarrow(\mathrm{pf}+\mathrm{n} 1), \mathrm{s}(\mathrm{pf}+\mathrm{n} 1), \mathrm{c})$ done (true),
where c is defined as in (TCS2.b.10).
From (TCS2.b.19), by the Lemma 6, we have
(TCS2.b.26) Ft2f $\rightarrow(p f+n 1, s f \downarrow(p f+n 1), s f(p f+n 1), c)$ done (bf).
From (TCS2.b.25) and (TCS2.b.26), by the definition of \rightarrow for TCS, we get
$(T C S 2 . b .27) \operatorname{next}(T C S(F t 0, F t 2 f)) \rightarrow(p f+n 1, s f \downarrow(p f+n 1), s f(p f+n 1), c)$ done(bf).
From (TCS2.b.24), by Lemma 2 we have
(TCS2.b.28) Ft1f $\rightarrow *(n 1, p f, s f, e f)$ Ft0.
Moreover, (TCS2.b.23) implies that Ft1f is not a 'done' formula. Also, from (TCS2.b.25) since $\mathrm{pf}+\mathrm{n} 1>0$ due to $\mathrm{n} 1>0$, we have that $\mathrm{Ft0}$ is a 'next' formula.
Hence, there exists $f 0 \in$ TFormulaCore such that
(TCS2.b.29) Ft0=next(f0)
and from (TCS2.b.28) we have
(TCS2.b.30) Ft1f $\rightarrow *(n 1, p f, s f, e f)$ next(f0).
Now we would like to use the following proposition, which will be proved below:
(Prop) \forall Ft1,Ft2 \in TFormula, $\mathrm{n} \in \mathbb{N}$, $\mathrm{f} \in$ TFormulaCore, $\mathrm{p} \in \mathbb{N}$, $\mathrm{s} \in$ Stream, e \in Environment: $\mathrm{n}>0 \Rightarrow$

Ft1 \rightarrow ($\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}$) $\operatorname{next}(\mathrm{f}) \Rightarrow$
$\operatorname{next}(T C S(F t 1, F t 2)) \rightarrow *(n, p, s, e) \operatorname{next}(T C S(n e x t(f), F t 2))$
Using (Prop) under the assumptions n1>0 and (TCS2.b.30), we obtain
(TCS2.b.31) next(TCS (Ft1f,Ft2f)) $\rightarrow *(n 1, p f, s f, e f) \operatorname{next}(T C S(n e x t(f 0), F t 2 f))$
which, by (TCS2.b.29) and Lemma 2 is
(TCS2.b.32) next(TCS(Ft1f,Ft2f)) $\rightarrow l *(n 1, p f, s f, e f) \operatorname{next}(T C S(F t 0, F t 2 f))$
From n1+1>0, (TCS2.b.10), (TCS2.b.32), (TCS2.b.27), by the definition of $\rightarrow l *$ we get
(TCS2.b.33) next(TCS (Ft1f,Ft2f)) $\rightarrow l *(n 1+1, p f, s f, e f)$ done(bf)
Since $n 2=1$, we have $n 1+1=\max (n 1+1,1)=\max (n 1+1, n 2)$. Therefore, from (TCS2.b.33) by Lemma 2 we obtain [TCS2.b.7]

This finishes the proof of [TCS2.b].
This finishes the proof of [TCS2].
This finishes the proof of the Statement 2 of Lemma 4.

Proof of (Prop)
Parametrization:
$\Theta(\mathrm{n}): \Leftrightarrow$
\forall Ft1,Ft2 \in TFormula, $f \in$ TFormulaCore, $p \in \mathbb{N}$, $s \in$ Stream, e \in Environment:
$\mathrm{n}>0 \Rightarrow$
Ft1 $\rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}) \operatorname{next}(\mathrm{f}) \Rightarrow$ $\operatorname{next}(\mathrm{TCS}(\mathrm{Ft} 1, \mathrm{Ft} 2)) \rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}) \operatorname{next}(\mathrm{TCS}(\operatorname{next}(\mathrm{f}), \mathrm{Ft} 2))$

We need to prove $\forall \mathrm{n} \in \mathbb{N}$: $\Theta(\mathrm{n})$. Induction:
[Prop.a] $\Theta(1)$
[Prop.b] $\forall \mathrm{n} \in \mathbb{N}: ~ \Theta(\mathrm{n}) \Rightarrow \Theta(\mathrm{n}+1)$
Proof of [Prop.a]
We take Ft1f, Ft2f, f0, pf, sf, ef arbitrary but fixed. Assume
(p1) Ft1f $\rightarrow *(1, p f, s f, e f)$ next(f0)
and prove
[p2] $\operatorname{next}(T C S(F t 1 f, F t 2 f)) \rightarrow *(1, p f, s f, e f) \operatorname{next}(T C S(n e x t(f 0), F t 2 f))$.
From (p1), by the definition of $\rightarrow *$ there exists $F t^{\prime} \in$ TFormula such that
(p3) Ft1f \rightarrow (pf, sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}$,
(p4) $\mathrm{Ft}{ }^{\prime} \rightarrow *(0, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}) \mathrm{next}(\mathrm{f} 0)$
where
(p5) c=(ef, $\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (p4), we have Ft'=next(f0) and, hence, from (p3) we get
(p6) Ft1f $\rightarrow(p f, s f \downarrow p f, s f(p f), c) \operatorname{next}(f 0)$.
From (p6), by the definition of \rightarrow for TCS, we have
(p7) $\operatorname{next(TCS(Ft1f,Ft2f))} \rightarrow(p f, s f \downarrow p f, s f(p f), c) \operatorname{next}(T C S(n e x t(f 0), F t 2 f))$.
On the other hand, we have by the dfinition of \rightarrow :
(p8) next(TCS(next(f0),Ft2f)) $\rightarrow *(0, p f+1, s f, e f) \operatorname{next}(T C S(n e x t(f 0), F t 2 f))$.
From (p7), (p5), (p8), by the definition of \rightarrow * we get [p2].
Proof of [Prop.b]
We take n arbitraty but fixed, assume
(p9) \forall Ft1,Ft2 \in TFormula, $f \in$ TFormulaCore, $p \in \mathbb{N}$, $s \in$ Stream, e \in Environment: $\mathrm{n}>0 \Rightarrow$

Ft1 \rightarrow * ($\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}$) $\operatorname{next(f)} \Rightarrow$
$\operatorname{next}(\mathrm{TCS}(\mathrm{Ft} 1, \mathrm{Ft} 2)) \rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}) \operatorname{next}(\mathrm{TCS}(\operatorname{next}(\mathrm{f}), \mathrm{Ft} 2))$
and prove
[p10] \forall Ft1,Ft2 \in TFormula, $f \in$ TFormulaCore, $p \in \mathbb{N}$, $s \in$ Stream, e \in Environment: $\mathrm{n}+1>0 \Rightarrow$

Ft1 $\rightarrow *(\mathrm{n}+1, \mathrm{p}, \mathrm{s}, \mathrm{e}) \operatorname{next}(\mathrm{f}) \Rightarrow$
$\operatorname{next}(\mathrm{TCS}(\mathrm{Ft} 1, \mathrm{Ft} 2)) \rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{s}, \mathrm{e}) \operatorname{next}(\mathrm{TCS}(\mathrm{next}(\mathrm{f}), \mathrm{Ft} 2))$.

```
To prove (p10), we take Ft1f,Ft2f,f0,pf,sf,ef arbitrary but fixed, assume
(p11) Ft1f }->*(n+1,pf,sf,ef) next(f0
and prove
[p12] next(TCS(Ft1f,Ft2f)) ->*(n+1,pf,sf,ef) next(TCS(next(f0),Ft2f)).
Case n>0
-------
From (p11), by the definition of }->*\mathrm{ , we obtain for some Ft' GTFormula
(p13) Ft1f }->\mathrm{ (pf,sf }\downarrow\textrm{pf},\textrm{sf}(\textrm{pf}),c) Ft
(p14) Ft' }->*(n,pf+1,sf,ef) next(f0
where
(p15) c=(ef, {(X,sf(ef(X)))| X\indom(ef)}).
Since n>0, from (p14) and the induction hypothesis (p9) we obtain
(p16) next(TCS(Ft',Ft2f)) ->*(n,pf+1,sf,ef) next(TCS(next(f0),Ft2f)).
Morover, Ft' is a 'next' formula. Therefore, from (p13), by the definition of
for TCS we have
(p17) next(TCS(Ftf1,Ft2f)) ->(pf,sf\downarrowpf,sf(pf),c) next(TCS(Ft',Ft2f)).
From (p16), (p15), (p17), since n+1>9, by the definition of }->\mathrm{ * we get [p12].
Case n=0
-------
In this [p12] can be proved as it has been done in the base case [Prop.a]
This finishes the proof of [Prop.b] and, hence of (Prop).
```


Statement 3. TCP Formulas.

```
\forallp\in\mathbb{N}, s\inStream, e\inEnvironment, Ft1,Ft2\inTFormula, n1,n2\in\mathbb{N}:
    n1>0 ^ Ft1 ->*(n1,p,s,e) done(false) ^ Ft2 ->*(n2,p,s,e) done(true) =>
    next(TCP(Ft1,Ft2)) ->*(n1,p,s,e) done(false)
    \wedge
    n1>0 ^ n2>0 ^ Ft1 ->*(n1,p,s,e) done(false) ^ Ft2 ->*(n2,p,s,e) done(false) =>
    next(TCP(Ft1,Ft2)) }->*(min(n1,n2),p,s,e) done(false
    ^
    n1>0 ^ n2>0 ^ Ft1 }->*(\textrm{n}1,\textrm{p},\textrm{s},\textrm{e}) done(true) ^ Ft2 ->*(n2,p,s,e) done(true) 
    next(TCP(Ft1,Ft2)) }->*(\operatorname{max}(\textrm{n}1,\textrm{n}2),\textrm{p},\textrm{s},\textrm{e}) done(true
    \wedge
    n1>0 ^ n2>0 ^ Ft1 ->*(n1,p,s,e) done(true) ^ Ft2 ->*(n2,p,s,e) done(false) =
    next(TCP(Ft1,Ft2)) ->*(n2,p,s,e) done(false)
```


Proof

We split the statement in four:
[TCP1] $\forall \mathrm{p} \in \mathbb{N}$, $\mathbf{s} \in$ Stream, $\mathrm{e} \in$ Environment, Ft1,Ft2 \in TFormula, $\mathrm{n} 1, \mathrm{n} 2 \in \mathbb{N}$:
$\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge \mathrm{Ft} 1 \rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false) $\wedge \mathrm{Ft2} \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(true) \Rightarrow next (TCP (Ft1,Ft2)) $\rightarrow *(n 1, p, s, e)$ done(false)
[TCP2] $\forall \mathrm{p} \in \mathbb{N}$, s \in Stream, e \in Environment, Ft1,Ft2 \in TFormula, $\mathrm{n} 1, \mathrm{n} 2 \in \mathbb{N}$:
$\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge$ Ft1 $\rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false) \wedge
Ft2 $\rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false)
\Rightarrow
$\operatorname{next}(\mathrm{TCP}(\mathrm{Ft} 1, \mathrm{Ft} 2)) \rightarrow *(\min (\mathrm{n} 1, \mathrm{n} 2), \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false)
[TCP3] $\forall \mathrm{p} \in \mathbb{N}$, s \in Stream, e \in Environment, Ft1,Ft2 \in TFormula, $\mathrm{n} 1, \mathrm{n} 2 \in \mathbb{N}$:
$\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge \mathrm{Ft} 1 \rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done (true) $\wedge \mathrm{Ft} 2 \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(true) \Rightarrow next (TCP (Ft1,Ft2)) $\rightarrow *(\max (\mathrm{n} 1, \mathrm{n} 2), \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(true).
[TCP4] $\forall \mathrm{p} \in \mathbb{N}$, s \in Stream, e \in Environment, Ft1,Ft2 \in TFormula, $\mathrm{n} 1, \mathrm{n} 2 \in \mathbb{N}$:
$\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge \mathrm{Ft} 1 \rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(true) $\wedge \mathrm{Ft2} \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false) \Rightarrow next (TCP (Ft1,Ft2)) $\rightarrow *(n 2, p, s, e)$ done(false).

Proof of [TCP1]

We take sf,ef arbitrary but fixed and define

```
\Phi(n) : }
    p}\in\mathbb{N}\mathrm{ , s }\in\mathrm{ Stream, e }\in\mathrm{ Environment, Ft1,Ft2 }\in\mathrm{ TFormula, n1,n2 }\in\mathbb{N}\mathrm{ :
        n1>0 ^ n2>0 ^ Ft1 }->*(\textrm{n}1,\textrm{p},\textrm{s},\textrm{e}) done(false) \wedge Ft2 ->*(n2,p,s,e) done(true) =>
        next(TCP(Ft1,Ft2)) ->*(n1,p,s,e) done(false)
```

We prove $\forall \mathrm{n} 1 \in \mathbb{N}$: $\Phi(\mathrm{n} 1)$ by induction over n 1 . For $\mathrm{n} 1=0$ the formula is trivially true.

We start the induction from 1. Prove:
[TCP1.a] $\Phi(1)$ and
[TCP1.b] $\forall \mathrm{n} 1 \in \mathbb{N}: \Phi(\mathrm{n} 1) \Rightarrow \Phi(\mathrm{n} 1+1)$

Proof of [TCP1.a]
We take pf,Ft1f,Ft2f,n2 arbitrary but fixed. $1>0$ is satisfied. Assume
(TCP1.1) n2>0
(TCP1.2) Ft1f $\rightarrow *(1, p f, s f, e f)$ done(false).
(TCP1.3) Ft2f $\rightarrow *(n 2, p, s, e)$ done(true).
We want to prove
[TCP1.4] next(TCP(Ft1f,Ft2f)) $\rightarrow *(1, p f, s f, e f)$ done(false).
From (TCP1.2), by the definition of $\rightarrow *$ without history, there exists Ft \in TFormula such that

```
(TCP1.5) Ft1f }->(\textrm{p},\textrm{sf}\downarrow\textrm{pf},\textrm{sf}(\textrm{pf}),c) Ft an
(TCP1.6) Ft }->*(0,pf+1,sf,ef) done(false
```

where
(TCP1.7) $c=(e f,\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (TCP1.6), by the definition of $\rightarrow *$ without history, we get
(TCP1.8') Ft=done(false).
which from (TCP1.5) gives
(TCP1.9') Ft1f $\rightarrow(p, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(false) and
From (TCP1.9') and (TCP1.3), by the definition of \rightarrow for TCP, we get
(TCP1.10') next(TCP(Ft1f,Ft2f)) $\rightarrow(p, s f \downarrow p f, s f(p f), c)$ done(false).
From (TCP1.10', TCP1.6, TCP1.8', TCP1.7), by the definition of $\rightarrow *$ without history, we get [TCP1.4].

Proof of [TCP1.b]
We take n1 arbitrary but fixed, assume
(TCP1.8) $\forall \mathrm{p} \in \mathbb{N}$, Ft1,Ft2 \in TFormula, $\mathrm{n} 2 \in \mathbb{N}$:
$\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge$
Ft1 $\rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done (false) $\wedge \mathrm{Ft} 2 \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(true) \Rightarrow next (TCP (Ft1,Ft2)) $\rightarrow *(n 1, p, s, e)$ done (false)
and prove
[TCP1.9] $\forall \mathrm{p} \in \mathbb{N}$, Ft1,Ft2 \in TFormula, $\mathrm{n} 2 \in \mathbb{N}$:
$\mathrm{n} 1+1>0 \wedge \mathrm{n} 2>0 \wedge$
Ft1 $\rightarrow *(n 1+1, p, s, e)$ done (false) $\wedge \mathrm{Ft} 2 \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(true) \Rightarrow $\operatorname{next}(\mathrm{TCP}(\mathrm{Ft} 1, \mathrm{Ft} 2)) \rightarrow *(\mathrm{n} 1+1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false)

To prove [TCP1.9], we take pf,Ft1f,Ft2f,n2 arbitrary but fixed, assume
(TCP1.10) $\mathrm{n}+1>0$
(TCP1.11) n2>0
(TCP1.12) Ft1f $\rightarrow *(n 1+1, p f, s f, e f)$ done(false)
(TCP1.13) Ft2f \rightarrow (n2,pf,sf,ef) done(true)
and prove
[TCP1.14] next(TCP (Ft1f,Ft2f)) $\rightarrow *(n 1+1, p f, s f, e f)$ done(false).

From (TCP1.12), by (TCP1.10) and the definition of $\rightarrow *$ without history, there exists Ft ' \in TFormula such that
(TCP1.15) Ft1f $\rightarrow(p f, s f \downarrow p f, s f(p f), c) ~ F t$,
(TCP1.16) $\mathrm{Ft}{ }^{\prime} \rightarrow *(\mathrm{n} 1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef})$ done(false)
where
(TCP1.17) $c=(e f,\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.

From (TCP1.13), by (TCP1.11) and the definition of $\rightarrow *$ without history, there exists Ft'' \in TFormula such that
(TCP1.18) Ft2f $\rightarrow(p f, s f \downarrow p f, s f(p f), c) F t$,
(TCP1.19) $\mathrm{Ft}{ }^{\prime} \rightarrow *(\mathrm{n} 2-1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef})$ done(true)
where c is defined as in (TCP1.17).

Case n1>0, n2-1>0

In this case Ft'=next(f'), Ft''=next(f'') for some f',f'' \in TFormulaCore. Therefore, from (TCP1.15,TCP1.18), by the definition of \rightarrow for TCP we have (TCP1.20) $\operatorname{next}(T C P(F t f 1, F t f 2)) \rightarrow(p f, s f \downarrow p f, s f(p f), c) \operatorname{next}(T C P(F t ', F t, '))$.

From n1>0, n2-1>0, (TCP1.16,TCP1.19), by the induction hypothesis (TCP1.8) we have
(TCP1.21) $\operatorname{next(TCP(Ft',Ft')))~} \rightarrow *(n 1, p f+1, s f, e f)$ done(false).
From n1+1>0, (TCP1.17), (TCP1.20), (TCP1.21), by the definition of $\rightarrow *$ we have
(TCP1.22) next(TCP(Ftf1,Ftf2)) $\rightarrow *(n 1+1, p f, s f, e f)$ done(false)
which is [TCP1.14]

Case n1>0, n2-1=0
In this case Ft'=next(f') for some f' \in TFormulaCore and, from (TCP1.18)
(TCP1.23) Ft2f \rightarrow (pf,sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(true).

Therefore, from (TCP1.15,TCP1.23), by the definition of \rightarrow for TCP we have
(TCP1.24) $\operatorname{next(TCP(Ftf1,Ftf2))~} \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}{ }^{\prime}$
From $n 1+1>0$, (TCP1.17), (TCP1.24), (TCP1.16), by the definition of $\rightarrow *$ we get [TCP1.14].

Case n1=0

In this case Ft''=next(f'') for some f'' \in TFormulaCore and, from (TCP1.15)
(TCP1.25) Ft1f $\rightarrow(p f, s f \downarrow p f, s f(p f), c)$ done(false).
From (TCP1.25) by the definition of \rightarrow for TCP we have
(TCP1.26) next (TCP (Ftf1,Ftf2)) $\rightarrow(p f, s f \downarrow p f, s f(p f), c)$ done(false).
From $n 1+1>0$, (TCP1.17), (TCP1.26), (TCP1.16), by the definition of $\rightarrow *$ we get [TCP1.14].

This finishes the proof of (b) and, therefore, the proof of [TCP1].

Proof of [TCP2]
Recall
[TCP2] $\forall \mathrm{p} \in \mathbb{N}$, s \in Stream, $\mathrm{e} \in$ Environment, Ft1,Ft2 \in TFormula, $\mathrm{n} 1, \mathrm{n} 2 \in \mathbb{N}$:
$\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge \mathrm{Ft} 1 \rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false) \wedge Ft2 $\rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false)
\Rightarrow
$\operatorname{next}(\mathrm{TCP}(\mathrm{Ft} 1, \mathrm{Ft} 2)) \rightarrow *(\min (\mathrm{n} 1, \mathrm{n} 2), \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false)

Proof

We take sf,ef arbitrary but fixed and define
$\Phi(\mathrm{n}): ~ \Leftrightarrow$
$\forall \mathrm{p} \in \mathbb{N}$, s \in Stream, e \in Environment, Ft1,Ft2 \in TFormula, $\mathrm{n} 1, \mathrm{n} 2 \in \mathbb{N}$: $\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge$ Ft1 $\rightarrow *(n 1, p, s, e)$ done (false) $\wedge \mathrm{Ft2} \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done (false) \Rightarrow next (TCP (Ft1,Ft2)) $\rightarrow *(\min (n 1, n 2), p, s, e)$ done(false)

We prove $\forall \mathrm{n} 1 \in \mathbb{N}$: $\Phi(\mathrm{n} 1)$ by induction over n 1 . For $\mathrm{n} 1=0$ the formula is trivially true.

We start the induction from 1. Prove:
[TCP2.a] $\Phi(1)$ and
[TCP2.b] $\forall \mathrm{n} 1 \in \mathbb{N}: \Phi(\mathrm{n} 1) \Rightarrow \Phi(\mathrm{n} 1+1)$
Proof of [TCP2.a]
We take pf,Ft1f,Ft2f,n2 arbitrary but fixed. $1>0$ is satisfied. Assume
(TCP2.1) n2>0
(TCP2.2) Ft1f \rightarrow (1,pf,sf,ef) done(false).
(TCP2.3) Ft2f $\rightarrow *(n 2, p, s, e)$ done(false).
We want to prove
[TCP2.4] $\operatorname{next}(T C P(F t 1 f, F t 2 f)) \rightarrow *(\min (1, n 2), p f, s f, e f)$ done(false).
From (TCP2.2), by the definition of $\rightarrow *$ without history, there exists Ft \in TFormula such that

```
(TCP2.5) Ft1f ->(p,sf \downarrowpf,sf(pf), c) Ft and
(TCP2.6) Ft }->*(0,pf+1,sf,ef) done(false
```

where
(TCP2.7) $c=(e f,\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (TCP2.6), by the definition of $\rightarrow *$ without history, we get
(TCP2.8) Ft=done(false).
which from (TCP2.5) gives
(TCP2.9) Ft1f $\rightarrow(p, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done (false).
From (TCP2.9) and (TCP2.3), by the definition of \rightarrow for TCP, we get

From (TCP2.10, TCP2.6, TCP2.8, TCP2.7), by the definition of $\rightarrow *$ without history, we get next (TCP (Ft1f,Ft2f)) $\rightarrow *(1, p f, s f, e f)$ done (false), but since by (TCP2.1) we have $1=\min (1, \mathrm{n} 2)$, we actually proved [TCP2.4].

Proof of [TCP2.b]
We take n1 arbitrary but fixed, assume
(TCP2.8) $\forall \mathrm{p} \in \mathbb{N}, F t 1, F t 2 \in$ TFormula, $\mathrm{n} 2 \in \mathbb{N}$:
$\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge$
$\mathrm{Ft} 1 \rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done (false) $\wedge \mathrm{Ft} 2 \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done (false) \Rightarrow $\operatorname{next}(\mathrm{TCP}(\mathrm{Ft} 1, \mathrm{Ft} 2)) \rightarrow *(\min (\mathrm{n} 1, \mathrm{n} 2), \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false)
and prove
[TCP2.9] $\forall \mathrm{p} \in \mathbb{N}$, Ft1,Ft2 $2 \in$ TFormula, $\mathrm{n} 2 \in \mathbb{N}$:
$\mathrm{n} 1+1>0 \wedge \mathrm{n} 2>0 \wedge$
Ft1 $\rightarrow *(\mathrm{n} 1+1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false) $\wedge \mathrm{Ft} 2 \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false) \Rightarrow $\operatorname{next}(\mathrm{TCP}(\mathrm{Ft} 1, \mathrm{Ft} 2)) \rightarrow *(\min (\mathrm{n} 1+1, \mathrm{n} 2), \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false).

To prove [TCP2.9], we take pf,Ft1f,Ft2f,n2 arbitrary but fixed, assume
(TCP2.10) $\mathrm{n}+1>0$
(TCP2.11) n2>0
(TCP2.12) Ft1f $\rightarrow *(n 1+1, p f, s f, e f)$ done (false)
(TCP2.13) Ft2f $\rightarrow *(n 2, p f, s f, e f)$ done(false)
and prove
[TCP2.14] $\operatorname{next}(T C P(F t 1 f, F t 2 f)) \rightarrow *(\min (n 1+1, n 2), p f, s f, e f)$ done(false).

From (TCP2.12), by (TCP2.10) and the definition of $\rightarrow *$ without history, there exists Ft' \in TFormula such that
(TCP2.15) Ft1f $\rightarrow(p f, s f \downarrow p f, s f(p f), c) ~ F t$,
(TCP2.16) $\mathrm{Ft} \rightarrow$ ($\mathrm{n} 1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}$) done(false)
where
(TCP2.17) $c=(e f,\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.

From (TCP2.13), by (TCP2.11) and the definition of $\rightarrow *$ without history, there exists Ft'' \in TFormula such that
(TCP2.18) Ft2f \rightarrow (pf, sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}{ }^{\prime}$,
(TCP2.19) Ft', $\rightarrow *(n 2-1, p f+1, s f, e f)$ done(false)
where c is defined as in (TCP2.17).
Case $\mathrm{n} 1>0$, $\mathrm{n} 2-1>0$

In this case Ft'=next(f'), Ft''=next(f'') for some f',f'' \in TFormulaCore. Therefore, from (TCP2.15,TCP2.18), by the definition of \rightarrow for TCP we have (TCP2.20) $\operatorname{next}(T C P(F t f 1, F t f 2)) \rightarrow(p f, s f \downarrow p f, s f(p f), c) \operatorname{next}(T C P(F t \prime, F t) \prime))$.

From n1>0, n2-1>0, (TCP2.16,TCP2.19), by the induction hypothesis (TCP2.8) we have
(TCP2.21) $\operatorname{next(TCP(Ft',Ft',))~} \rightarrow *(\min (n 1, n 2-1), p f+1, s f, e f)$ done(false).
From $n 1+1>0$, (TCP2.17), (TCP2.20), (TCP2.21), by the definition of $\rightarrow *$ we have
(TCP2.22) $\operatorname{next(TCP(Ftf1,Ftf2))~} \rightarrow *(\min (n 1, n 2-1)+1, p f, s f, e f)$ done(false)
which is [TCP2.14]
Case n1>0, n2-1 $=0$
In this case Ft'=next(f') for some f' \in TFormulaCore and, from (TCP2.18) we have
(TCP2.23) Ft2f \rightarrow (pf,sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(false).
Therefore, from (TCP2.15,TCP2.23), by the definition of \rightarrow for TCP we have
(TCP2.24) next(TCP (Ftf1,Ftf2)) $\rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(false)
From $1>0$, (TCP2.17), (TCP2.24), (TCP2.19), by the definition of $\rightarrow *$ we get
(TCP2.25) next(TCP(Ftf1,Ftf2)) $\rightarrow *(1, \mathrm{pf}, \mathrm{sf}, \mathrm{ef})$ done(false)
But by $\mathrm{n} 1>0$ and $\mathrm{n} 2=1$ we have $1=\min (\mathrm{n} 1+1, \mathrm{n} 2)$. Hence, (TCP2.25) proves [TCP2.14].
Case n1=0

In this case Ft''=next(f'') for some f'' \in TFormulaCore and, from (TCP2.15) we have
(TCP2.26) Ft1f $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(false).
From (TCP2.26) by the definition of \rightarrow for TCP we have
(TCP2.27) next(TCP (Ftf1,Ftf2)) $\rightarrow(p f, s f \downarrow p f, s f(p f), c)$ done(false).
From 1>0, (TCP2.17), (TCP2.27), (TCP2.16), by the definition of $\rightarrow *$ we get
(TCP2.28) next(TCP(Ftf1,Ftf2)) $\rightarrow *(1, p f, s f, e f)$ done(false).
But by $\mathrm{n} 1=0$ and $\mathrm{n} 2>0$ we have $1=\min (\mathrm{n} 1+1, \mathrm{n} 2)$. Hence, (TCP2.28) proves [TCP2.14].

This finishes the proof of (b) and, therefore, the proof of [TCP2].

Proof of [TCP3]
[TCP3] $\forall \mathrm{p} \in \mathbb{N}$, s \in Stream, e \in Environment, Ft1,Ft2 \in TFormula, $\mathrm{n} 1, \mathrm{n} 2 \in \mathbb{N}$, b \in Bool : $\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge$ Ft1 $\rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done (true) $\wedge \mathrm{Ft} 2 \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done (true) \Rightarrow $\operatorname{next}(T C P(F t 1, F t 2)) \rightarrow *(\max (n 1, n 2), p, s, e)$ done (true).

Proof

We take sf,ef arbitrary but fixed and define

```
\Phi(n1) : }
    \forallp\indsN, Ft1,Ft2\inTFormula, n2\in\mathbb{N :}
        n1>0 ^ n2>0 ^
        Ft1 }->*(n1,p,sf,ef) done(true) ^ Ft2 ->*(n2,p,sf,ef) done(true) =>
            next(TCP(Ft1,Ft2)) }->*(\operatorname{max}(n1,n2),p,sf,ef) done(true)
We need to prove }\forall\textrm{n}1\in\mathbb{N}\mathrm{ : }\Phi(\textrm{n}1).\mathrm{ . We use induction. Prove:
[TCP3.a] }\forall\textrm{n}2\in\mathbb{N}:\Phi(1
[TCP3.b] }\forall\textrm{n}1\in\mathbb{N}:\Phi(\textrm{n}1)=>\Phi(\textrm{n}1+1)
Proof of [TCP3.a]
We need to prove
\foralln2,p\indsN, Ft1,Ft2\inTFormula :
    1>0 ^ n2>0 ^
    Ft1 ->*(1,p,sf,ef) done(true) ^ Ft2 }->*(n2,p,sf,ef) done(true) = ,
        next(TCP(Ft1,Ft2)) ->*(max(1,n2),p,sf,ef) done(true).
We take n2,pf,Ft1f,Ft2f arbitrary but fixed. Assume
```

(TCP3.a.1) n2>0
(TCP3.a.2) Ft1f $\rightarrow *(1, p f, s f, e f)$ done(true)
(TCP3.a.3) Ft2f $\rightarrow *(n 2, p f, s f, e f)$ done(true)
and prove
[TCP3.a.4] $\operatorname{next}(T C P(F t 1 f, F t 2 f)) \rightarrow *(\max (1, n 2), p f, s f, e f)$ done(true).
From (TCP3.a.2), by the definition of $\rightarrow *$, we have for some Ft'
(TCP3.a.5) Ft1f $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}$,
(TСР3.a.6) $\mathrm{Ft}{ }^{\prime} \rightarrow *(0, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef})$ done(true)
where
(TCP3.a.7) c=(ef, $\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (TCP3.a.6), by the definition pf \rightarrow, we know
(TCP3.a.8) Ft'=done(true).
From (TCP3.a.5) and (TCP3.a.8) we have
(TCP3.a.9) Ft1f $\rightarrow(p f, s f \downarrow p f, s f(p f), c)$ done(true).
From (TCP3.a.3), by the definition of $\rightarrow *$, we have for some Ft',
(TCP3.a.10) Ft2f $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}{ }^{\prime}$,
(TCP3.a.11) $\mathrm{Ft}{ }^{\prime} \rightarrow$ ($\mathrm{n} 2-1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef}$) done(true),
where c is defined as in (TCP3.a.7).
From (TCP3.a.9) and (TCP3.a.10), by the definition of \rightarrow for TCP, we have
(TCP3.a.13) $\operatorname{next(TCP(Ft1f,Ft2f))~} \rightarrow(p f, s f \downarrow p f, s f(p f), c) F t '$.
From (TCP3.a.13), (TCP3.a.7), and (TCP3.a.11), by the definition of $\rightarrow *$, we have
(TCP3.a.14) next(TCP(Ft1f,Ft2f)) $\rightarrow *(n 2, p f, s f, e f)$ done(true).
From (TCP3.a.1), we have $n 2=\max (1, \mathrm{n} 2)$. Therefore, (TCP3.a.14) proves [TCP3.a.4]

This finishes the proof of [TCP3.a].

Proof of [TCP3.b]

We take n1 arbitrary but fixed. Assume $\Phi(n 1)$, i.e.,
(TCP3.b.1) $\forall \mathrm{n} 2, \mathrm{p} \in \mathrm{dsN}, \mathrm{Ft} 1, \mathrm{Ft} 2 \in \mathrm{TFormula}$:

$$
\begin{aligned}
& \mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge \mathrm{Ft} 1 \rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{sf}, \mathrm{ef}) \text { done(true) } \wedge \\
& \quad \mathrm{Ft} 2 \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{sf}, \mathrm{ef}) \text { done(true) }
\end{aligned}
$$

```
#
    next(TCP(Ft1,Ft2)) ->*(max(n1,n2),p,sf,ef) done(true).
```

and prove
[TCP3.b.2] $\forall \mathrm{n} 2, \mathrm{p} \in \mathrm{dsN}$, Ft1,Ft2 \in TFormula :
$\mathrm{n} 1+1>0 \wedge \mathrm{n} 2>0 \wedge \mathrm{Ft} 1 \rightarrow *(\mathrm{n} 1+1, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done (true) \wedge
Ft2 $\rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(true)
\Rightarrow $\operatorname{next}(T C P(F t 1, F t 2)) \rightarrow *(\max (n 1+1, n 2), p, s f, e f)$ done(true).

To prove [TCP3.b.2], we take n2, pf, Ft1f, Ft2f arbitrary but fixed. Assume

```
(TCP3.b.3) n1+1>0
```

(TCP3.b.4) n2>0
(TCP3.b.5) Ft1f $\rightarrow *(n 1+1, p f, s f, e f)$ done(true)
(TCP3.b.6) Ft2f $\rightarrow *(n 2, p f, s f, e f)$ done(true)
and prove
[TCP3.b.7] $\operatorname{next}(T C P(F t 1 f, F t 2 f)) \rightarrow *(\max (n 1+1, n 2), p f, s f, e f)$ done(true).
From (TCP3.b.5), by the definition of $\rightarrow *$, we have for some Ft'
(TCP3.b.8) Ft1f $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}$,
(TCP3.b.9) $\mathrm{Ft}{ }^{\prime} \rightarrow *(\mathrm{n} 1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef})$ done(true)
where
(TCP3.b.10) $c=(e f,\{(X, \operatorname{sf}(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (TCP3.b.6), by the definition of \rightarrow, we have for some Ft',
(TCP3.b.11) Ft2f $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}{ }^{\prime}$,
(TCP3.b.12) $\mathrm{Ft}{ }^{\prime} \rightarrow$ (n2-1,pf+1,sf,ef) done(true)
where c is defined as in (TCP3.b.10).

Case 1. n1=0

In this case we have Ft '= done(true) and from (TCP3.b.8) we get
(TCP3.b.13) Ft1f \rightarrow (pf, sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(true).
From (TCP3.b.13) and (TCP3.b.11), by the definition of \rightarrow for TCP, we have
(TCP3.b.14) next(TCP (Ft1f,Ft2f)) $\rightarrow(p f, s f \downarrow p f, s f(p f), c) F t '$.
From (TCP3.b.4), (TCP3.b.10), (TCP3.b.14), (TCP3.b.12) by the definition of $\rightarrow *$ we get
(TCP3.b.15) next(TCP(Ft1f,Ft2f)) $\rightarrow *(n 2, p f, s f, e f)$ done(true).

By (TCP3.b.4) and $n 1=0$, we have $n 2=\max (1, n 2)=\max (n 1+1, n 2)$. Hence, (TCP3.b.15) proves [TCP3.b.7].

Case n1>0, n2-1>0
In this case Ft'=next(f'), Ft''=next(f'') for some f', f ' ' \in TFormulaCore. Therefore, from (TCP3.b.8,TCP3.b.11), by the definition of \rightarrow for TCP we have (TCP3.b.16) next(TCP(Ftf1,Ftf2)) $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \operatorname{next}(\mathrm{TCP}(\mathrm{Ft}, \mathrm{Ft}, '))$. From $\mathrm{n} 1>0$, $\mathrm{n} 2-1>0$, $(\mathrm{b} 9, \mathrm{~b} 12)$, by the induction hypothesis (TCP3.b.1) we have (TCP3.b.17) $\operatorname{next}\left(\mathrm{TCP}\left(\mathrm{Ft}, \mathrm{Ft}{ }^{\prime \prime}\right)\right) \rightarrow *(\max (\mathrm{n} 1, \mathrm{n} 2-1), \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef})$ done(true).

From n1+1>0, (TCP3.b.10), (TCP3.b.16), (TCP3.b.17), by the definition of $\rightarrow *$ we have
(TCP3.b.18) next(TCP(Ftf1,Ftf2)) $\rightarrow *(\max (n 1, n 2-1)+1, p f, s f, e f)$ done(true)
which is [TCP3.b.7]

Case n1>0, n2-1=0
In this case Ft'=next(f') for some $f^{\prime} \in$ TFormulaCore. From (TCP3.b.11) we have (TCP3.b.19) Ft2f $\rightarrow(p f, s f \downarrow p f, s f(p f), c)$ done(true).

From (TCP3.b.8,TCP3.b.19), by the definition of \rightarrow for TCP we have
(TCP3.b.20) $\operatorname{next(TCP(Ftf1,Ftf2))~} \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}{ }^{\prime}$
From n1+1>0, (TCP3.b.10), (TCP3.b.20), (TCP3.b.9), by the definition of $\rightarrow *$ we get
(TCP3.b.21) $\operatorname{next(TCP(Ftf1,Ftf2))~} \rightarrow *(n 1+1, p f, s f, e f)$ done(true)
But by $\mathrm{n} 1>0$ and $\mathrm{n} 2=1$ we have $\mathrm{n} 1+1=\max (\mathrm{n} 1+1, \mathrm{n} 2)$. Hence, from (TCP3.b.21) we get [TCP3.b.7].

This finishes the proof of [TCP3.b].
This finishes the proof of [TCP3].

Proof of [TCP4]
[TCP4] $\forall \mathrm{p} \in \mathbb{N}$, s \in Stream, $e \in$ Environment, Ft1,Ft2 \in TFormula, $\mathrm{n} 1, \mathrm{n} 2 \in \mathbb{N}$: $\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge$ Ft1 $\rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(true) $\wedge \mathrm{Ft2} \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(false) \Rightarrow

```
next(TCP(Ft1,Ft2)) ->*(n2,p,s,e) done(false).
```

Proof

We take sf,ef,bf arbitrary but fixed and define
$\Phi(\mathrm{n} 1): \Leftrightarrow$ $\forall \mathrm{p} \in \mathrm{dsN}, \mathrm{Ft} 1, \mathrm{Ft} 2 \in$ TFormula, $\mathrm{n} 2 \in \mathbb{N}:$ $\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge$ Ft1 $\rightarrow *(n 1, p, s f, e f)$ done(true) \wedge Ft2 $\rightarrow *(n 2, p, s f, e f)$ done(false) \Rightarrow next (TCP (Ft1,Ft2)) $\rightarrow *(n 2, p, s f, e f)$ done(false).

We need to prove $\forall \mathrm{n} 1 \in \mathbb{N}$: $\Phi(\mathrm{n} 1)$. We use induction. Prove:
[TCP4.a] $\forall \mathrm{n} 2 \in \mathbb{N}: \Phi(1)$
[TCP4.b] $\forall \mathrm{n} 1 \in \mathbb{N}: \Phi(\mathrm{n} 1) \Rightarrow \Phi(\mathrm{n} 1+1)$.

Proof of [TCP4.a]
We need to prove
$\forall \mathrm{n} 2, \mathrm{p} \in \mathrm{dsN}$, Ft1,Ft2 \in TFormula :
$1>0 \wedge \mathrm{n} 2>0 \wedge$
Ft1 $\rightarrow *(1, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(true) $\wedge \mathrm{Ft2} \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(false) \Rightarrow next (TCP (Ft1,Ft2)) $\rightarrow *(n 2, p, s f, e f)$ done(false).

We take n2,pf,Ft1f,Ft2f arbitrary but fixed. Assume
(TCP4.a.1) n2>0
(TCP4.a.2) Ft1f \rightarrow (1,pf,sf,ef) done(true)
(TCP4.a.3) Ft2f \rightarrow (n2,pf,sf,ef) done(false)
and prove
[TCP4.a.4] $\operatorname{next(TCP(Ft1f,Ft2f))~} \rightarrow *(n 2, p f, s f, e f)$ done(false).
From (TCP4.a.2), by the definition of $\rightarrow *$, we have for some Ft'
(TCP4.a.5) Ft1f $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}$,
(TCP4.a.6) $\mathrm{Ft}{ }^{\prime} \rightarrow *(0, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef})$ done(true)
where
(TCP4.a.7) $c=(e f,\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (TCP4.a.6), by the definition pf $\rightarrow *$, we know
(TCP4.a.8) Ft'=done(true).
From (TCP4.a.5) and (TCP4.a.8) we have
(TCP4.a.9) Ft1f $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(true).

```
From (TCP4.a.3), by the definition of }->*\mathrm{ , we have for some Ft',
(TCP4.a.10) Ft2f ->(pf,sf \pf,sf(pf),c) Ft',
(TCP4.a.11) Ft'' }->*\mathrm{ (n2-1,pf+1,sf,ef) done(false),
where c is defined as in (TCP4.a.7).
From (TCP4.a.9) and (TCP4.a.10), by the definition of }->\mathrm{ for TCP, we have
(TCP4.a.13) next(TCP(Ft1f,Ft2f)) ->(pf,sf \downarrowpf,sf(pf),c) Ft''.
From (TCP4.a.13), (TCP4.a.7), and (TCP4.a.11), by the definition of }->*\mathrm{ , we have
(TCP4.a.14) next(TCP(Ft1f,Ft2f)) ->* (n2,pf,sf,ef) done(false).
(TCP4.a.14) is [TCP4.a.4].
This finishes the proof of [TCP4.a].
```

Proof of [TCP4.b]
We take n1 arbitrary but fixed. Assume $\Phi(\mathrm{n} 1)$, i.e.,
(TCP4.b.1) $\forall \mathrm{n} 2, \mathrm{p} \in \mathrm{dsN}, \mathrm{Ft} 1, \mathrm{Ft} 2 \in \mathrm{TFormula}:$
$\mathrm{n} 1>0 \wedge \mathrm{n} 2>0 \wedge \mathrm{Ft} 1 \rightarrow *(\mathrm{n} 1, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(true) \wedge
Ft2 $\rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(false)
\Rightarrow
$\operatorname{next}(\mathrm{TCP}(\mathrm{Ft} 1, \mathrm{Ft} 2)) \rightarrow *(\mathrm{n} 2, \mathrm{p}, \mathrm{sf}, \mathrm{ef})$ done(false).
and prove
[TCP4.b.2] $\forall \mathrm{n} 2, \mathrm{p} \in \mathrm{dsN}, \mathrm{Ft} 1, \mathrm{Ft} 2 \in \mathrm{TFormula}$:

```
    n1+1>0 ^ n2>0 ^ Ft1 ->*(n1+1,p,sf,ef) done(true) ^
        Ft2 ->*(n2,p,sf,ef) done(bf)
    #
        next(TCP(Ft1,Ft2)) ->*(false,p,sf,ef) done(false).
```

To prove [TCP4.b.2], we take n2, pf, Ft1f, Ft2f arbitrary but fixed. Assume
(TCP4.b.3) n1+1>0
(TCP4.b.4) n2>0
(TCP4.b.5) Ft1f $\rightarrow *(n 1+1, p f, s f, e f)$ done(true)
(TCP4.b.6) Ft2f $\rightarrow *(n 2, p f, s f, e f)$ done (false)
and prove
[TCP4.b.7] $\operatorname{next(TCP(Ft1f,Ft2f))~} \rightarrow *(n 2, p f, s f, e f)$ done(false).
From (TCP4.b.5), by the definition of $\rightarrow *$, we have for some Ft'
(TCP4.b.8) Ft1f $\rightarrow(p f, s f \downarrow p f, s f(p f), c) F t '$
(TCP4.b.9) $\mathrm{Ft}{ }^{\prime} \rightarrow *(\mathrm{n} 1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef})$ done(true)
where
(TCP4.b.10) c=(ef, $\{(X, s f(e f(X))) \mid X \in \operatorname{dom}(e f)\})$.
From (TCP4.b.6), by the definition of $\rightarrow *$, we have for some Ft',
(TCP4.b.11) Ft2f $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c}) \mathrm{Ft}{ }^{\prime}$ '
(TCP4.b.12) Ft', $\rightarrow *(n 2-1, p f+1, s f, e f)$ done(false)
where c is defined as in (TCP4.b.10).

Case 1. n1 $=0$

In this case we have Ft '=done(true) and from (TCP4.b.8) we get
(TCP4.b.13) Ft1f \rightarrow (pf, sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(true).
From (TCP4.b.13) and (TCP4.b.11), by the definition of \rightarrow for TCP, we have
(TCP4.b.14) next(TCP(Ft1f,Ft2f)) $\rightarrow(p f, s f \downarrow p f, s f(p f), c) F t \prime$.
From (TCP4.b.4), (TCP4.b.10), (TCP4.b.14), (TCP4.b.12) by the definition of \rightarrow, we get (TCP4.b.15) $\operatorname{next(TCP(Ft1f,Ft2f))~} \rightarrow *(n 2, p f, s f, e f)$ done(false).

Hence, (TCP4.b.15) proves [TCP4.b.7].

```
Case \(n 1>0, \mathrm{n} 2-1>0\)
```

In this case Ft'=next(f'), Ft''=next(f'') for some f', f ' ' \in TFormulaCore.
Therefore, from (TCP4.b.8,TCP4.b.11), by the definition of \rightarrow for TCP we have
(TCP4.b.16) $\operatorname{next}(T C P(F t f 1, F t f 2)) \rightarrow(p f, s f \downarrow p f, s f(p f), c) \operatorname{next}(T C P(F t ', F t ' \prime))$.
From n1>0, n2-1>0, (b9,b12), by the induction hypothesis (TCP4.b.1) we have
(TCP4.b.17) next(TCP(Ft',Ft'')) $\rightarrow *(n 2-1, \mathrm{pf}+1, \mathrm{sf}, \mathrm{ef})$ done(false).
From (TCP4.b.4), (TCP4.b.10), (TCP4.b.16), (TCP4.b.17), by the definition of $\rightarrow *$ we have (TCP4.b.18) next(TCP(Ftf1,Ftf2)) $\rightarrow *(n 2, p f, s f, e f)$ done(false)
which is [TCP4.b.7]

Case n1>0, n2-1=0
In this case Ft'=next(f') for some $f^{\prime} \in$ TFormulaCore. From (TCP4.b.11) we have
(TCP4.b.19) Ft2f \rightarrow (pf,sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c})$ done(false).

From (TCP4.b.8,TCP4.b.19), by the definition of \rightarrow for TCP we have
(TCP4.b.23) next(TCP (Ftf1,Ftf2)) $\rightarrow(p f, s f \downarrow p f, s f(p f), c)$ done(false).

From (TCP4.b.12), by $n 2-1=0$ and $b f=f a l s e$ we have
(TCP4.b.24) done(false) $\rightarrow *(n 2-1, p f+1, s f, e f)$ done(false)
From (TCP4.b.4), (TCP4.b.10), (TCP4.b.23), (TCP4.b.24) by the definition of $\rightarrow *$ we get
(TCP4.b.20) next(TCP(Ftf1,Ftf2)) $\rightarrow *(n 2, p f, s f, e f)$ done(false)
which is [TCP4.b.7]
This finishes the proof of [TCP4.b].
This finishes the proof of [TCP4].
This finishes the proof of the Statement 3 of Lemma 4.

A. 7 Lemma 5: Soundness Lemma for Universal Formulas

```
\forallF\inFormula, X XVariable, B1,B2\inBound:
R(F) = R(forall X in B1..B2: F)
where
R(F) : }
    \forallre\inRangeEnv, e\inEnvironment, s\inStream, d\in\mathbb{N}\infty, h\in\mathbb{N},\textrm{p}\in\mathbb{N}\mathrm{ :}
        \vdash(re \vdashF: (h,d)) ^ d\in\mathbb{N }\wedge dom(e) = dom(re) ^
            (\forallY\indom(e): re(Y).1 +i p \leqi e(Y) \leqi re(Y). 2 +i p) m
            (\existsb\inBool \existsd'\in\mathbb{N}\mathrm{ :}
                d'\leqd+1 ^ 
```

PROOF:

We take $\mathrm{F}, \mathrm{X}, \mathrm{B} 1, \mathrm{~B} 2$ arbitrary but fixed, assume
(1) $R(F)$
and prove
[2] $R(f$ orall X in $B 1 . . B 2: F)$.
We denote $\mathrm{b} 1=\mathrm{T}(\mathrm{B} 1)$, $\mathrm{b} 2=\mathrm{T}(\mathrm{B} 2), \mathrm{f}=\mathrm{T}(\mathrm{F})$.

From the definition of T and f, we know
(2) $\exists \mathrm{fc} \in$ TFormulaCore: $\mathrm{f}=$ next (fc)

We take ref \in RangeEnv, ef \in Environment, sf \in Stream, $\mathrm{df} \in \mathbb{N} \infty, \mathrm{hf} \in \mathbb{N}, \mathrm{pf} \in \mathbb{N}$ arbitrary but fixed. Assume
(3) \vdash (ref \vdash (forall X in B1..B2: F): (hf,df))
(4) $\mathrm{df} \in \mathbb{N}$
(4') $\operatorname{dom}(e f)=\operatorname{dom}(r e f)$
(5) $\forall \mathrm{Y} \in \operatorname{dom}(\mathrm{ef}): \operatorname{ref}(\mathrm{Y}) .1+\mathrm{i} \mathrm{pf} \leq \mathrm{i} \mathrm{ef}(\mathrm{Y}) \leq \mathrm{i} \operatorname{ref}(\mathrm{Y}) .2+\mathrm{i} \mathrm{pf}$
and prove
[6] $\exists \mathrm{b} \in$ Bool $\exists \mathrm{d}^{\prime} \in \mathbb{N}$: $\mathrm{d}^{\prime} \leq \mathrm{df}+1 \wedge \vdash \operatorname{next}(\mathrm{TA}(\mathrm{X}, \mathrm{b} 1, \mathrm{~b} 2, \mathrm{f})) \rightarrow *\left(\mathrm{~d}^{\prime}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}\right)$ done(b).

We prove [6] by contradiction. Assume
(7) $\forall \mathrm{b} \in$ Bool $\forall \mathrm{d}^{\prime} \in \mathbb{N}: \mathrm{d}^{\prime} \leq \mathrm{df}+1 \Rightarrow \neg\left(\vdash \operatorname{next}(\mathrm{TA}(\mathrm{X}, \mathrm{b} 1, \mathrm{~b} 2, \mathrm{f})) \rightarrow *\left(\mathrm{~d}^{\prime}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}\right) \mathrm{done}(\mathrm{b})\right)$.

Note that by the operational semantics,
$\neg(\vdash \operatorname{next}(\mathrm{TA}(\mathrm{X}, \mathrm{b} 1, \mathrm{~b} 2, \mathrm{f})) \rightarrow *(\mathrm{~d}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef})$ done(b))
is equivalent to
$\exists \mathrm{fc} \in \mathrm{TFormulaCore}: \vdash \operatorname{next}(\mathrm{TA}(\mathrm{X}, \mathrm{b} 1, \mathrm{~b} 2, \mathrm{f})) \rightarrow *\left(\mathrm{~d}^{\prime}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}\right) \operatorname{next}(\mathrm{fc})$.
Hence, (7) can be rewritten to
(8) $\forall d^{\prime} \in \mathbb{N}$: $\left(d^{\prime} \leq d f+1 \Rightarrow\right.$

$$
\left.\exists \mathrm{fc} \in \mathrm{TFormulaCore}: \vdash \operatorname{next}(\mathrm{TA}(\mathrm{X}, \mathrm{~b} 1, \mathrm{~b} 2, \mathrm{f})) \rightarrow *\left(\mathrm{~d}^{\prime}, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}\right) \operatorname{next}(\mathrm{fc})\right) .
$$

We thus know for some fceTFormulaCore
(9) $\vdash \operatorname{next}(\mathrm{TA}(\mathrm{X}, \mathrm{b} 1, \mathrm{~b} 2, \mathrm{f})) \rightarrow *(\mathrm{df}+1, \mathrm{pf}, \mathrm{sf}, \mathrm{ef}) \operatorname{next}(\mathrm{fc})$

From the invariant, (2) and (9), there exist $c \in C o n t e x t, p 0, p 1, p 2 \in \mathbb{N}$ such that
(10) $c=(e f,\{(X, \operatorname{sf}(e f(X))) \mid X \in \operatorname{dom}(e f)\})$
(11) $\mathrm{p} 0=\mathrm{pf}+\mathrm{df}+1$
(12) $\mathrm{p} 1=\mathrm{b} 1(\mathrm{c})$
(13) $\mathrm{p} 2=\mathrm{b} 2(\mathrm{c})$
and we have 2 cases:

CASE 1:
(20) $\mathrm{df}+1 \geq 1$
(21) $\mathrm{p} 1 \neq \infty$
(22) $\mathrm{p} 0 \leq \mathrm{p} 1$
(23) $\mathrm{p} 1 \leq \infty \mathrm{p} 2$
(23) $\mathrm{fc}=\mathrm{TAO}(\mathrm{X}, \mathrm{p} 1, \mathrm{p} 2, \mathrm{f})$

From (3), by the analysis, we know for some $11, \mathrm{u} 1,12, \mathrm{u} 2 \in \mathbb{Z} \infty$ and $h^{\prime}, d^{\prime} \in \mathbb{N} \infty$:
(24) ref \vdash B1 : (l1, u1)
(25) ref \vdash B2 : (12, u2)
(26) ref $[\mathrm{X} \mapsto(\mathrm{l} 1, \mathrm{u} 2)] \vdash \mathrm{F}:(\mathrm{h} 1, \mathrm{~d} 1)$
(27) $\mathrm{hf}=\max \infty(\mathrm{h} 1, \mathbb{N} \infty(-i(11)))$
(28) $d f=\max \infty(d 1, \mathbb{N} \infty(u 2))$

From (4), (28), and the definition of $\max \infty$, we know
(29) $d 1 \in \mathbb{N}$
(30) $(u 2 \in \mathbb{Z} \wedge \mathrm{u} 2<0 \wedge \mathrm{df}=\mathrm{d} 1) \vee$
$(u 2 \in \mathbb{N} \wedge d f=\max (d 1, u 2))$
From (29) and (30), we can conclude
(31) $u 2 \in \mathbb{Z}$
(32) $\mathrm{df}=\max (\mathrm{d} 1, \mathrm{u} 2)$

Hence, from (32) we have
(33) $\mathrm{df} \geq \mathrm{u} 2$.

From (33) we have
(34) $\mathrm{pf}+\mathrm{df}+1 \geq \mathrm{pf}+\mathrm{u} 2+1>\mathrm{pf}+\mathrm{u} 2$.

On the other hand, from (25), (4'), (5), and (10), by Lemma 9 we get
(35) 12 +i pf $\leq i \operatorname{b2}(\mathrm{c}) \leq i \operatorname{u2}+\mathrm{i} p f$.

From (11), (12), (22), and (35) we have
(36) $\mathrm{pf}+\mathrm{df}+1=\mathrm{p} 0 \leq \mathrm{p} 1=\mathrm{b} 1(\mathrm{c}) \leq \mathrm{b} 2(\mathrm{c}) \leq \mathrm{i} \mathrm{u} 2+\mathrm{i} \mathrm{pf}$.

From (31), (34) and (36) we get a contradiction:
$\mathrm{pf}+\mathrm{df}+1>\mathrm{pf}+\mathrm{u} 2$ and $\mathrm{pf}+\mathrm{df}+1 \leq \mathrm{pf}+\mathrm{u} 2$.
This proves CASE 1.
CASE 2:
There exist some $\mathrm{fs}, \mathrm{gs} \in \mathbb{P}$ (TInstance) such that
(100) $\mathrm{df}+1 \geq 1$
(101) p1 $\neq \infty$
(102) $\mathrm{p} 1 \leq \infty$ p2
(103) $\mathrm{p} 0>\mathrm{p} 1$
(104) gs $\neq \emptyset \vee \mathrm{pf}+\mathrm{df}+1 \leq \infty \mathrm{p} 2$
(105) forallInstances(X,p,p0,p1,p2,f,sf,ef,gs)
(106) $\mathrm{fc}=\mathrm{TA}(\mathrm{X}, \mathrm{p} 2, \mathrm{f}, \mathrm{gs})$

From (3) and the definition of the analysis, we know for some
l1, $u 1,12, u 2 \in \mathbb{Z} \infty$ and $h^{\prime}, d^{\prime} \in \mathbb{N} \infty$:
(111) ref $\vdash \mathrm{B} 1:(11, \mathrm{u} 1)$
(112) ref $\vdash \mathrm{B} 2:(12, \mathrm{u} 2)$
(113) $\operatorname{ref}[\mathrm{X} \mapsto(\mathrm{l} 1, \mathrm{u} 2)] \vdash \mathrm{F}:\left(\mathrm{h}^{\prime}, \mathrm{d}^{\prime}\right)$
(114) $\mathrm{hf}=\max \infty(\mathrm{h}, \mathbb{N} \infty(-i(11)))$
(115) $\mathrm{df}=\max \infty\left(\mathrm{d}^{\prime}, \mathbb{N} \infty(\mathrm{u} 2)\right)$

From (4), (115), and the definition of $\max \infty$, we know
(116) $d^{\prime} \in \mathbb{N}$
(117) (u2 $\left.\in \mathbb{Z} \wedge u 2<0 \wedge d f=d^{\prime}\right) \vee$
$\left(u 2 \in \mathbb{N} \wedge d f=\max \left(d^{\prime}, u 2\right)\right)$
From (116) and (117), we can conclude
(118) $u 2 \in \mathbb{Z}$
(119) $\mathrm{df}=\max \left(\mathrm{d}^{\prime}, \mathrm{u} 2\right)$

From (104), we have two subcases:
Subcase 2.1
(200) pf $+\mathrm{df}+1 \leq \infty \mathrm{p} 2$

From (119), we know
(201) df $\geq \mathrm{u} 2$

From Lemma 9 with (4'), (5), (10), (13), (112), (118) and the definition of b2, we know
(202) $\mathrm{p} 2 \leq \mathrm{pf}+\mathrm{u} 2$

From (200) and (202), we have
(203) $\mathrm{pf}+\mathrm{df}+1 \leq \mathrm{pf}+\mathrm{u} 2$
and thus
(204) $\mathrm{df}+1 \leq \mathrm{u} 2$
which contradicts (201).
Subcase 2.2
(300) $\mathrm{pf}+\mathrm{df}+1>\infty \mathrm{p} 2$
(301) gs $\neq \emptyset$

From (301), (105) and the definition of "forallInstances", we know for some $t \in \mathbb{N}, g \in$ TFormula, $c 0 \in$ Context, gc \in TFormulaCore:
(302) $(t, g, c 0) \in g s$
(303) ($\forall \mathrm{t} 1 \in \mathbb{N}, \mathrm{~g} 1 \in$ TFormula, $\mathrm{c} 1 \in$ Context:

$$
(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{gs} \wedge \mathrm{t}=\mathrm{t} 1 \Rightarrow(\mathrm{t}, \mathrm{~g}, \mathrm{c} 0)=(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1)
$$

(304) $g=n e x t(g c)$
(305) c0.1=ef[X $\mapsto t]$
(306) c0.2=\{(Y,s(ef(Y))) | Y $\in \operatorname{dom}(e f) \vee Y=X\}$
(307) $\mathrm{p} 1 \leq \mathrm{t}$
(308) $\mathrm{t} \leq \min \infty(\mathrm{p} 0-1, \mathrm{p} 2)$
(309) $\vdash \mathrm{f} \rightarrow *(\mathrm{p} 0-\max (\mathrm{pf}, \mathrm{t}), \max (\mathrm{pf}, \mathrm{t}), \mathrm{sf}, \mathrm{c} 0.1) \mathrm{g}$

We define
(310) ref' $:=\operatorname{ref}[\mathrm{X} \mapsto(11, \mathrm{u} 2)]$
(311) ef ${ }^{\prime}:=\mathrm{ef}[\mathrm{X} \mapsto \mathrm{t}]$

From (311), we know
(312) $\operatorname{dom}\left(e f{ }^{\prime}\right)=\operatorname{dom}(e f) \cup\{X\}$
and claim
(313) $\forall Y \in \operatorname{dom}\left(e f{ }^{\prime}\right): ~ r e f '(Y) .1+p f \leq i \operatorname{ef}(Y) \leq i \quad r e f{ }^{\prime}(Y) .2+p f$

Proof: take arbitrary $Y \in$ dom(ef'). From (312), we have two cases:

* case $Y \neq X$: we have $Y \in \operatorname{dom}(e f)$ and by (4') ref' $(Y)=r e f(Y)$ and ef $(Y)=e f(Y)$; it thus suffices to show ref(Y). 1 +i pf $\leq i \operatorname{ef}(Y) \leq i \operatorname{ref}(Y) .2+i \operatorname{pf}$ which follows from (5).
* case $Y=X$: we have ref $(Y)=(11, u 2)$ and ef $(Y)=t$; it thus suffices to show $11+i \operatorname{pf} \leq i t \leq i \operatorname{u2+pf}$. From (307) and (308) it suffices to show
[1] 11 +i pf $\leq i \operatorname{p1}$
[2] $\min \infty(\mathrm{p} 0-1, \mathrm{p} 2) \leq i \mathrm{u} 2+i \mathrm{pf}$.
From Lemma 9, (4'), (5), (10), (12), (111), and the definition of b1, we have 11 +i pf $\leq i \operatorname{p1}$ and thus [1].
From Lemma 9, (4'), (5), (10), (13), (112), and the definition of b2, we have p2 $\leq i \operatorname{u} 2+i \mathrm{pf}$ and thus [2].

From (1), (113), (116), (305), (310), (311), (313) and the definitions of R and f, we know that there exists some $b \in B o o l$ and $d O \in \mathbb{N}$ such that
(314) d0 $\leq d^{\prime}+1$
(315) $\vdash \mathrm{f} \rightarrow$ (d0, pf,sf,c0.1) done(b)

We proceed by case distinction.
Subcase 2.2.1
(400) t < pf

From (304), (309) and (400), we know
(401) $\vdash \mathrm{f} \rightarrow *(\mathrm{p} 0-\mathrm{pf}, \mathrm{pf}, \mathrm{sf}, \mathrm{c} 0.1) \operatorname{next}(\mathrm{gc})$

Because the rule system is deterministic and there is no transition starting with done(b), to derive a contradiction, it suffices
with (315) and (401) to show
[402] dO $\leq \mathrm{pO}-\mathrm{pf}$
which holds because

$$
\mathrm{d} 0 \leq(314) \mathrm{d}^{\prime}+1 \leq(119) \mathrm{df}+1=(\mathrm{pf}+\mathrm{df}+1)-\mathrm{pf}=(11) \mathrm{p} 0-\mathrm{pf}
$$

Subcase 2.2.2

(500) $\mathrm{t} \geq \mathrm{pf}$

From (304), (309) and (500), we know
(501) $\vdash \mathrm{f} \rightarrow *(\mathrm{p} 0-\mathrm{t}, \mathrm{t}, \mathrm{sf}, \mathrm{c} 0.1) \operatorname{next}(\mathrm{gc})$

By a generalization of Lemma 7, we know from (2), (315) and (500)
(502) $\vdash \mathrm{f} \rightarrow *(\max (1, \mathrm{dO}-(\mathrm{t}-\mathrm{pf})), \mathrm{t}, \mathrm{sf}, \mathrm{c} 0.1)$ done(b)

Because the rule system is deterministic and there is no transition starting with done(b), to derive a contradiction, it suffices
with (501) and (502) to show
[503] $\max (1, \mathrm{dO}-(\mathrm{t}-\mathrm{pf})) \leq \mathrm{p} 0-\mathrm{t}$
From (308), we know
(504) $\mathrm{t} \leq \mathrm{p} 0-1$
and thus
(505) $1 \leq \mathrm{p} 0-\mathrm{t}$

From (505), to show [503] it suffices to show
[506] $\mathrm{dO}-(\mathrm{t}-\mathrm{pf}) \leq \mathrm{p} 0-\mathrm{t}$
for which it suffices to show
[507] $\mathrm{d} 0+\mathrm{pf} \leq \mathrm{p} 0$
which holds because

$$
\mathrm{d} 0+\mathrm{pf} \leq(314) \mathrm{d}+1+\mathrm{pf} \leq(119) \mathrm{df}+1+\mathrm{pf}=(11) \mathrm{p} 0
$$

QED.

A. 8 Lemma 6: Monotonicity of Reduction to done

```
Ft\inTFormula, p\in\mathbb{N},\textrm{s}\in\mathrm{ Stream, c}\in\mathrm{ Context, b}\in\mathrm{ Bool :}
    k \geq p:
        Ft }->(\textrm{p},\textrm{s}\downarrow\textrm{p},\textrm{s}(\textrm{p}),\textrm{c})\mathrm{ done(b) = Ft }->(\textrm{k},\textrm{s}\downarrow\textrm{k},\textrm{s}(\textrm{k}),\textrm{c})\mathrm{ done(b)
```

PROOF
We take pf,sf,bf,kf arbitrary but fixed, assume
(1) $\mathrm{kf} \geq \mathrm{pf}$
and prove
(2) \forall Ft \in TFormula $\forall c \in$ Context:
$\mathrm{Ft} \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{s}(\mathrm{pf}), \mathrm{c})$ done (bf) \Rightarrow
Ft $\rightarrow(k f, s f \downarrow k f, s f(k f), c)$ done (bf)

We prove (2) by structural induction over Ft:
C1. $\mathrm{Ft}=\mathrm{next}(\mathrm{TV}(\mathrm{X})$)
We take cf arbitrary but fixed, assume
(1.1) $\operatorname{next}(T V(X)) \rightarrow(p f, s f \downarrow p f, s(p f), c f)$ done(bf)
and prove
(1.2) $\operatorname{next}(T V(X)) \rightarrow(k f, s f \downarrow k f, s f(k f), c f)$ done(bf)

By definition of \rightarrow, the value of bf depends only on cf , which is the same in (1.1) and (1.2). Hence, (1.1) implies (1.2)

It proves C1.
C2. Ft=next(TN(f)) for some $f \in T$ Formula
We take cf arbitrary but fixed, assume
(2.1) $\operatorname{next}(T N(f)) \rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{s}(\mathrm{pf}), \mathrm{cf})$ done(bf)
and prove
(2.2) $\operatorname{next}(T N(f)) \rightarrow(k f, s f \downarrow k f, s f(k f), c f)$ done(bf)

From (2.1), by the definition of \rightarrow, we have
(2.3) $f \rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{s}(\mathrm{pf}), \mathrm{cf})$ done (b1)
where
(2.4) b1 = if bf = false true else false.

By the induction hypothesis, from (2.3) we get
(2.5) $f \rightarrow(k f, s f \downarrow k f, s(k f), c f)$ done(b1).

From (2.5), by the definition of \rightarrow and (2.4) we get (2.2).
It proves C2.
C3. Ft=next (TCS (f1,f2)) for some f1,f2 \in TFormula

We take cf arbitrary but fixed, assume
(3.1) $\operatorname{next}(T C S(f 1, f 2)) \rightarrow(p f, s f \downarrow p f, s(p f), c f)$ done(bf)
and prove
(3.2) $\operatorname{next}(T C S(f 1, f 2)) \rightarrow(k f, s f \downarrow k f, s f(k f), c f)$ done(bf)

From (3.1) we have two alternatives:
(a) We have
(3.3) bf=false and
(3.4) $\mathrm{f} 1 \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{s}(\mathrm{pf}), \mathrm{cf})$ done(false).

By the induction hypothesis, from (3.4) we get
(3.5) $f 1 \rightarrow(k f, s f \downarrow k f, s(k f), c f)$ done(false).

From (3.5), by the definition of \rightarrow we get (3.2).
(b) We have
(3.6) $\mathrm{f} 1 \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{s}(\mathrm{pf}), \mathrm{cf})$ done(true)
(3.7) $\mathrm{f} 2 \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{s}(\mathrm{pf}), \mathrm{cf})$ done(bf).

By the induction hypothesis, we get from (3.6) and (3.7) respectively
(3.8) $\mathrm{f} 1 \rightarrow(\mathrm{kf}, \mathrm{sf} \downarrow \mathrm{kf}, \mathrm{s}(\mathrm{kf}), \mathrm{cf})$ done(true)
(3.9) $\mathrm{f} 2 \rightarrow(\mathrm{kf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{s}(\mathrm{kf}), \mathrm{cf})$ done(bf).

From (3.8) and (3.9), by the definition of \rightarrow we get (3.2).
It proves C3.
C4. Ft=next (TCP (f1,f2)) for some f1,f2 \in TFormula

We take cf arbitrary but fixed, assume
(4.1) $\operatorname{next}(\operatorname{TCP}(f 1, f 2)) \rightarrow(p f, s f \downarrow p f, s(p f), c f)$ done(bf)
and prove
(4.2) $\operatorname{next}(\mathrm{TCP}(f 1, f 2)) \rightarrow(k f, s f \downarrow k f, s f(k f), c f)$ done(bf)

From (4.1) we have three alternatives:
(a) We have

(4.3) bf=false
(4.4) $\mathrm{f} 1 \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{s}(\mathrm{pf}), \mathrm{cf})$ next (f1') for some $\mathrm{f}^{\prime} \in \mathrm{TFormulaCore}$
(4.5) $\mathrm{f} 2 \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{s}(\mathrm{pf}), \mathrm{cf})$ done (false).

From (4.4) and (4.5) we obtain by the induction hypothesis, respectively,
(4.6) $\mathrm{f} 1 \rightarrow(\mathrm{kf}, \mathrm{sf} \downarrow \mathrm{kf}, \mathrm{s}(\mathrm{kf}), \mathrm{cf}) \operatorname{next}\left(\mathrm{f} 1^{\prime}\right)$
(4.7) $\mathrm{f} 2 \rightarrow(\mathrm{kf}, \mathrm{sf} \downarrow \mathrm{kf}, \mathrm{s}(\mathrm{kf}), \mathrm{cf})$ done(false).

From (4.6) and (4.7), by the definition of \rightarrow and (4.3) we get (4.2).
(b) We have
(4.8) $\mathrm{bf}=\mathrm{false}$ and
(4.9) $\mathrm{f} 1 \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{s}(\mathrm{pf}), \mathrm{cf})$ done(false).

By the induction hypothesis, from (4.4) we get
(4.5) $f 1 \rightarrow(k f, s f \downarrow k f, s(k f), c f)$ done(false).

From (3.5), by the definition of \rightarrow we get (4.2).
(c) We have
(4.6) $\mathrm{f} 1 \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{s}(\mathrm{pf}), \mathrm{cf})$ done(true)
(4.8) $\mathrm{f} 2 \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{s}(\mathrm{pf}), \mathrm{cf})$ done (bf).

By the induction hypothesis, we get from (3.6) and (3.7) respectively
(4.9) $\mathrm{f} 1 \rightarrow(\mathrm{kf}, \mathrm{sf} \downarrow \mathrm{kf}, \mathrm{s}(\mathrm{kf}), \mathrm{cf})$ done(true)
(4.10) $\mathrm{f} 2 \rightarrow(\mathrm{kf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{s}(\mathrm{kf}), \mathrm{cf})$ done(bf).

From (4.9) and (4.10), by the definition of \rightarrow we get (4.2).
It proves C4.
C5. Ft=next(TA (X, b1, b2 ,f))

We take cf arbitrary but fixed, assume
(5.1) $\operatorname{next}(T A(X, b 1, b 2, f)) \rightarrow(p f, s f \downarrow p f, s(p f), c f)$ done (bf)
and prove
[5.2] $\operatorname{next}(T A(X, b 1, b 2, f)) \rightarrow(k f, s f \downarrow k f, s f(k f), c f)$ done(bf)
(a) bf=true.

From (5.1) we have
$\mathrm{p} 1=\mathrm{b} 1(\mathrm{cf})$
p1 $=\infty$
which immediately imply [5.2].
(b) bf=false

To prove [5.2], we need to find $\mathrm{p} 1 *$, $\mathrm{p} 2 *$ such that
[5.3] $\mathrm{p} 1 *=\mathrm{b} 1(\mathrm{cf})$
[5.4] p2* $=\mathrm{b} 2(\mathrm{cf})$
[5.5] $\mathrm{p} 1 * \neq \infty$
[5.6] next (TAO (X,p1*,p2*,f)) $\rightarrow(k f, s f \downarrow k f, s f(k f), c f)$ done(false)
From (5.1) we know
(5.7) $\mathrm{p} 1=\mathrm{b} 1(\mathrm{cf})$
(5.8) $\mathrm{p} 2=\mathrm{b} 2(\mathrm{cf})$
(5.9) p1 $\neq \infty$
(5.10) $\operatorname{next}(T A O(X, p 1, p 2, f)) \rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ done(false)

We take $\mathrm{p} 1 *=\mathrm{p} 1, \mathrm{p} 2 *=\mathrm{p} 2$. Then [5.3-5.5] follow from (5.7-5.9) and we need to prove

By Def. \rightarrow, to prove [5.11], we need to prove
[5.12] $\mathrm{kf} \geq \mathrm{p} 1$
[5.13] $\operatorname{next}(T A 1(X, p 2, f, f s k)) \rightarrow(k f, s f \downarrow k f, s f(k f), c f)$ done(false)
where
(5.14) $\mathrm{fsk}=\{(\mathrm{p} 0, \mathrm{f},(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{p} 0], \mathrm{cf} .2[\mathrm{X} \mapsto(\mathrm{sf} \downarrow \mathrm{kf})(\mathrm{p} 0)])) \mid \mathrm{p} 1 \leq \mathrm{p} 0<\infty \min \infty(\mathrm{kf}, \mathrm{p} 2+\infty 1)\}$

From (5.10), by the definition of \rightarrow, we know
(5.15) $\mathrm{pf} \geq \mathrm{p} 1$
(5.16) next(TA1 (X,p2,f,fsp)) $\rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ done(false)
where
(5.17) $\mathrm{fsp}=\{(\mathrm{p} 0, \mathrm{f},(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{p} 0], \mathrm{cf} .2[\mathrm{X} \mapsto(\mathrm{sf} \downarrow \mathrm{pf})(\mathrm{p} 0)])) \mid \mathrm{p} 1 \leq \mathrm{p} 0<\infty \min \infty(\mathrm{pf}, \mathrm{p} 2+\infty 1)\}$ Then [5.12] follows from (1) and (5.15).

To prove [5.13], by Def. \rightarrow we need to prove
[5.18] $\exists t \in \mathbb{N}, g \in$ TFormula, $c \in$ Context: ($t, g, c) \in f s 0 k \wedge \vdash g \rightarrow(k f, s f \downarrow k f, s f(k f), c)$ done (false)
where
(5.19) fs0k $=$ if $k f>\infty$ p2 then fsk else fsk $\cup\{(k f, f,(c f .1[X \mapsto k f], c f .2[X \mapsto s f(k f)]))\}$

From (5.16) we know that there exist $t p \in \mathbb{N}, g p \in T F o r m u l a, c p \in C o n t e x t ~ s u c h ~ t h a t ~$
(5.20) (tp,gp,cp) $\in f=\mathrm{s} 0 \mathrm{p}$
(5.21) gp \rightarrow (pf,sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cp})$ done(false)
where
(5.22) $\mathrm{fs} 0 \mathrm{p}=$ if $\mathrm{pf}>\infty \mathrm{p} 2$ then $\mathrm{f} p \mathrm{else} \mathrm{fsp} \cup\{(\mathrm{pf}, \mathrm{f},(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf})]))\}$

Since by (1) $k f \geq p f$, from (5.14) and (5.17) we have
(5.23) fsp \subseteq fsk.

Also, we have either
(5.25) (pf,f, (cf.1[X $\rightarrow \mathrm{pf}], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf})]) \in \mathrm{fsk}(\mathrm{when} \mathrm{kf}>\mathrm{pf}$, since $(\mathrm{sf} \downarrow \mathrm{pf})(\mathrm{kf})=\mathrm{sf}(\mathrm{pf}))$
or
(5.26) (pf,f, (cf. $1[\mathrm{X} \mapsto \mathrm{pf}], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf})]) \in \mathrm{fs} 0 \mathrm{k}, \quad(\mathrm{kf}=\mathrm{pf})$.

From (5.25) and (5.26) we get
(5.27) (pf,f, (cf.1[X $\mapsto \mathrm{pf}], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf})]) \in \mathrm{fs} 0 \mathrm{k}$, when $\mathrm{kf} \geq \mathrm{pf}$.

From (1), (5.23), (5.27), (5.19), (5.22) we get
(5.28) fs $0 \mathrm{p} \subseteq \mathrm{fs} 0 \mathrm{k}$.

Then from (5.20) we get
(5.29) (tp,gp,cp) $\in f=\mathrm{s} 0 \mathrm{k}$.

From (5.21) and (2) we get
(5.30) gp \rightarrow (kf, sf $\downarrow \mathrm{kf}, \mathrm{sf}(\mathrm{kf}), \mathrm{cp})$ done(false)

From (5.29) and (5.30) we obtain [5.18].
It proves C5.
It finishes the proof of Lemma 6.

A. 9 Lemma 7: Shifting Lemma

Lemma 7 (Shifting Lemma).
$\forall f \in T F o r m u l a C o r e, ~ n, p \in \mathbb{N}: s \in$ Stream, $e \in$ Environment, $b \in B o o l$: $\mathrm{n}>0 \Rightarrow \operatorname{next}(\mathrm{f}) \rightarrow *(\mathrm{n}+1, \mathrm{p}, \mathrm{s}, \mathrm{e}) \operatorname{done}(\mathrm{b}) \Rightarrow \operatorname{next}(\mathrm{f}) \rightarrow *(\mathrm{n}, \mathrm{p}+1, \mathrm{~s}, \mathrm{e})$ done(b)

Proof

We take f, n, p, s, e, b arbitrary but fixed, assume
(1) $n>0$
(2) $\operatorname{next}(\mathrm{f}) \rightarrow *(\mathrm{n}+1, \mathrm{p}, \mathrm{s}, \mathrm{e})$ done(b)
and show
[3] $\operatorname{next}(f) \rightarrow *(n, p+1, s, e)$ done(b).

From (2), by the definition of $\rightarrow *$, there exists $\mathrm{Ft}^{\prime} \in$ TFormula such that
(4) $\operatorname{next}(\mathrm{f}) \rightarrow(\mathrm{p}, \mathrm{s} \downarrow \mathrm{p}, \mathrm{s}(\mathrm{p}), \mathrm{c}) \mathrm{Ft}$,
(5) Ft' $\rightarrow *(n, p+1, s, e)$ done (b)
where
(6) $c=(e,\{(X, s(e(X))) \mid X \in \operatorname{dom}(e)\})$.

Since $n>0$ by (1), we have that Ft' is a 'next' formula, say next (f'). Then from (5), by the definition of $\rightarrow *$, we know that there exists Ft' ' \in TFormula such that
(7) $\operatorname{next}\left(\mathrm{f}^{\prime}\right) \rightarrow(\mathrm{p}+1, \mathrm{~s} \downarrow(\mathrm{p}+1), \mathrm{s}(\mathrm{p}+1), \mathrm{c}) \mathrm{Ft}{ }^{\prime}$,
(8) Ft', $\rightarrow *(\mathrm{n}-1, \mathrm{p}+2, \mathrm{~s}, \mathrm{e})$ done (b).

In order to prove [3], by the definition of $\rightarrow *$, we need to find such a Ft0 \in TFormula that
[9] $\operatorname{next}(f) \rightarrow(p+1, s \downarrow(p+1), s(p+1), c) F t 0$
[10] Ft0 $\rightarrow *(\mathrm{n}-1, \mathrm{p}+2, \mathrm{~s}, \mathrm{e})$ done (b).
We take Ft0=Ft', . Then [10] follows from (8). We only need to prove [9]:

Given
(4) $\operatorname{next}(f) \rightarrow(p, s \downarrow p, s(p), c) \operatorname{next}\left(f^{\prime}\right)$
(7) $\operatorname{next}\left(f^{\prime}\right) \rightarrow(p+1, s \downarrow(p+1), s(p+1), c) F t^{\prime}$,

Prove:
[9] $\operatorname{next}(f) \rightarrow(p+1, s \downarrow(p+1), s(p+1), c) F t \prime \prime$.

It follows from Lemma 8.

A. 10 Lemma 8: Triangular Reduction Lemma

```
Lemma 8 (Triangular Reduction G).
    \forall1,G2\inTFormulaCore, Ft\inTFormula, p\in\mathbb{N}, s\inStream, c\inContext :
    next(G1) }->(\textrm{p},\textrm{s}\downarrow\textrm{p},\textrm{s}(\textrm{p}),\textrm{c})\operatorname{next(G2)}\wedge\operatorname{next}(G2) ->(p+1,s\downarrow(p+1),s(p+1),c)F
    #
    next(G1) }->(\textrm{p}+1,\textrm{s}\downarrow(\textrm{p}+1),\textrm{s}(\textrm{p}+1),c)Ft
Proof
_--_-
\Phi\subseteq TFormulaCore
\Phi(G1) : }
    G2\inTFormulaCore, Ft\inTFormula, p\in\mathbb{N}, s\inStream, c\inContext :
```



```
    next(G1) ->(p+1,s\downarrow(p+1),s(p+1),c) Ft.
    We prove
(G) }\forall\mp@subsup{G}{}{\prime}\in\mathrm{ TFormulaCore : }\Phi(\mp@subsup{G}{}{\prime})
Case (C1) G' = TN(Ft) for some Ft \in TFormula
```

We show
$\Phi\left(G^{\prime}\right)$
Take F2f,Ftf,pf,sf,cf arbitrary but fixed.
Assume
(C1.1) $\operatorname{next}(\mathrm{TN}(\mathrm{Ft})) \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf}) \operatorname{next}(\mathrm{G} 2 \mathrm{f})$
(C1.2) next (G2f) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf}) \mathrm{Ftf}$
Show
[C1.a] next (TN (Ft)) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf}) \mathrm{Ftf}$.
From (C1.1) and Def. \rightarrow, we know for some G2' \in TFormula
(C1.3) G2f $=$ TN(next (G2'))
(C1.4) $\operatorname{next}(T N(F t)) \rightarrow(p f, s f \downarrow p f, s f(p f), c f) \operatorname{next}(T N(n e x t(G 2 \prime)))$
(C1.5) Ft $\rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ next (G2')
From (C1.2,C1.3), we thus have
(C1.6) $\operatorname{next}\left(T N\left(\operatorname{next}\left(G 2^{\prime}\right)\right)\right) \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) F t f$
From (C1.5) and Def. \rightarrow, we know for some $G \in$ TFormulaCore

```
(C1.7) Ft = next(G)
(C1.8) next(G) ->(pf,sf \pf,sf(pf),cf) next(G2')
From (C1.7) and [C1.a], it suffices to show
[C1.b] next(TN(next(G))) ->(pf+1,sf\downarrow(pf+1),sf(pf+1),cf) Ftf.
From (C1,C1.8) and the induction assumption, we know }\Phi(G)\mathrm{ and thus
(C1.9)
    \forallG2\inTFormulaCore, Ft\inTFormula, p\in\mathbb{N}, s\inStream, c\inContext :
    next(G) }->(\textrm{p},\textrm{s}\downarrow\textrm{p},\textrm{s}(\textrm{p}),\textrm{c})\operatorname{next(G2) ^ next(G2) }->(\textrm{p}+1,\textrm{s}\downarrow(\textrm{p}+1),\textrm{s}(\textrm{p}+1),c) F
    #
    next(G) }->(\textrm{p}+1,\textrm{s}\downarrow(\textrm{p}+1),\textrm{s}(\textrm{p}+1),c) Ft
From (C1.6) and Def. }->\mathrm{ , we have 3 cases.
Case C1.c1. there exists some Fc'\inTFormulaCore such that
(C1.c1.1) next(G2') }->(\textrm{pf+1,sf}\downarrow(\textrm{pf}+1),\textrm{sf}(\textrm{pf}+1),cf) next(Fc'
(C1.c1.2) Ftf=next(TN(next(Fc')))
From (C1.c1.2) and [C1.b], ut suffices thus to show
[C1.c1.b] next(TN(next(G))) ->(pf+1,sf\downarrow(pf+1),sf(pf+1),cf) next(TN(next(Fc')))
From (C1.9), (C1.8), (C1.c1.1), we have
(C1.c1.3) next(G) }->(\textrm{pf+1,sf}\downarrow(\textrm{pf+1}),sf(pf+1),cf) next(Fc')
From (C1.c1.3) and Def. }->\mathrm{ , we know [C1.c1.b].
This proves the case C1.c1.
Case C1.c2. we have
(C1.c2.1) next(G2') ->(pf+1,sf\downarrow(pf+1),sf(pf+1),cf) done(true)
(C1.c2.2) Ftf=done(false)
From (C1.c2.2) and [C1.b], it suffices thus to show
[C1.c2.b] next(TN(next(G))) ->(pf+1,sf\downarrow(pf+1),sf(pf+1),cf) done(false)
From (C1.9), (C1.8), (C1.c2.1), we have
(C1.c22.3) next(G) }->(\textrm{pf+1,sf}\downarrow(\textrm{pf}+1),sf(pf+1),cf) done(true)
From (C1.c2.3) and Def. ->, we know [C1.c2.b].
This proves the case C1.c2.
```

Case C1.c3. we have
(C1.c3.1) next (G2') $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf})$ done(false)
(C1.c3.2) Ftf=done(true)

It suffices thus to show
[C1.c3.b] $\operatorname{next}(T N(\operatorname{next}(G))) \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$ done(true)
From (C1.9), (C1.8) (C1.c3.1), we have
(C1.c3.3) next(G) $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$ done(false).
From (C1.c3.3) and Def. \rightarrow, we know [C1.c3.b].
This proves the case C1.c3.
This finishes the proof of case C1.

Case (C2) G' = TCS (Ft1,Ft2) for some Ft1,Ft2 \in TFormula.
We show
$\Phi\left(G^{\prime}\right)$

Take F2f,Ftf,pf,sf,cf arbitrary but fixed.
Assume
(C2.1) $\operatorname{next(TCS(Ft1,Ft2))~} \rightarrow(p f, s f \downarrow p f, s f(p f), c f) \operatorname{next}(G 2 f)$
(C2.2) next (G2f) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf}) \mathrm{Ftf}$
Show
[C2.a] next(TCS (Ft1,Ft2)) $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$ Ftf.

From (C2.1), by Def. \rightarrow, we have two cases:
Case C2.c1. There exists Fc1 $\mathrm{TF}_{\text {FormulaCore }}$ such that
(C2.c1.1) G2f = TCS (next(Fc1),Ft2)
(C2.c1.2) next(TCS (Ft1,Ft2)) $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf}) \operatorname{next}(\mathrm{TCS}($ next(Fc1),Ft2))
(C2.c1.3) Ft1 $\rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf}) \operatorname{next}(\mathrm{Fc} 1)$
From (C2.2) and (C2.c1.1) we have
(C2.c1.4) next (TCS (next (Fc1), Ft2)) $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) F t f$.
From (C2.c1.3) and Def. \rightarrow, we know for some Fc0 \in TFormulaCore
(C2.c1.5) Ft1 $=\operatorname{next}(\mathrm{Fc} 0)$
(C2.c1.6) next (Fc0) $\rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf}) \operatorname{next}(\mathrm{Fc} 1)$

From (C2.c1.5) and [C2.a], we need to show
[C2.c1.b] $\operatorname{next}(T C S(n e x t(F c 0), F t 2)) \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$ Ftf.
From (C2), (C2.c1.5) and the induction hypothesis, we know $\Phi(\mathrm{Fc} 0)$ and thus (C2.c1.7)

```
\forallG2\inTFormulaCore, Ft\inTFormula, p\in\mathbb{N}, s\inStream, c\inContext :
next(Fc0) }->(\textrm{p},\textrm{s}\downarrow\textrm{p},\textrm{s}(\textrm{p}),\textrm{c})\operatorname{next(G2) ^ next(G2) }->(\textrm{p}+1,\textrm{s}\downarrow(\textrm{p}+1),\textrm{s}(\textrm{p}+1),c) F
#
next(Fc0) ->(p+1,s\downarrow(p+1),s(p+1),c) Ft.
```

From (C2.c1.4), we have the following cases.

Case C2.c1.c1. There exists $\mathrm{Fc}^{\prime} \in$ TFormulaCore such that
(C2.c1.c1.1) $\mathrm{Ftf}=\operatorname{next}\left(\mathrm{TCS}\left(\mathrm{next}^{(\mathrm{Fc}}{ }^{\prime}\right), \mathrm{Ft} 2\right)$)
(C2.c1.c1.2) next(TCS (next(Fc1), Ft2)) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf})$
next(TCS (next (Fc'), Ft2)).
(C2.c1.c1.3) next(Fc1) $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) \operatorname{next}(F c \prime)$.
From (C2.c1.c1.1) and [C2.c1.b], we need to show
[C2.c1.c1.b] next(TCS (next(Fc0),Ft2)) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf})$
next(TCS (next (Fc'), Ft2)).
In this case from (C2.c1.6), (C2.c1.c1.3), and (C2.c1.7) we have
$(C 2 . c 1 . c 1.4) \operatorname{next}(F c 0) \rightarrow(p+1, s \downarrow(p+1), s(p+1), c) \operatorname{next}(F c \prime)$.
From (C2.c1.c1.4), by the definition of \rightarrow, we get [C2.c1.c1.b].
This proves the case C2.c1.c1.
Case C2.c1.c2.
(C2.c1.c2.1) Ftf = done(false)
(C2.c1.c2.2) next(TCS (next(Fc1),Ft2)) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf})$ done(false).
(C2.c1.c2.3) next (Fc1) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf})$ done(false).

From (C2.c1.c2.1) and [C2.c1.b], we need to show
[C2.c1.c2.b] next(TCS (next(Fc0),Ft2)) $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$ done(false).
From (C2.c1.6), (C2.c1.c2.3) and (C2.c1.7) we have
(C2.c1.c2.4) $\operatorname{next}(\mathrm{Fc} 0) \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf})$ done(false).
From (C2.c1.c2.4), by the definition of \rightarrow, we get [C2.c1.c2.b].
This proves the case C2.c1.c2.

Case C2.c1.c3. There exists Ft2' \in TFormula such that

```
(C2.c1.c3.1) Ftf = Ft2,
(C2.c1.c3.2) next(TCS(next(Fc1),Ft2)) ->(pf+1,sf\downarrow(pf+1),sf(pf+1),cf) Ft2'.
(C2.c1.c3.3) next(Fc1) }->\mathrm{ (pf+1,sf }\downarrow(pf+1),sf(pf+1),cf) done(true)
(C2.c1.c3.4) Ft2 }->(\textrm{pf+1},\textrm{sf}\downarrow(\textrm{pf+1}),sf(pf+1),cf) Ft2'
```

From (C2.c1.c3.1) and [C2.c1.b], we need to show
[C2.c1.c3.b] next (TCS (next (Fc0), Ft2)) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf}) \mathrm{Ft} 2$..

From (C2.c1.6), (C2.c1.c3.3), and (C2.c1.7) we have

```
(C2.c1.c3.5) next(Fc0) ->(pf+1,sf\downarrow(pf+1),sf(pf+1),cf) done(true).
```

From (C2.c1.c3.5) and (C2.c1.c3.4), by Def. \rightarrow, we get [C2.c1.c3.b].
This proves the case C2.c1.c2.
This proves the case C2.c1.
Case C2.c2.
Recall that we consider alternatives of G2f in
(C2.1) $\operatorname{next(TCS(Ft1,Ft2))~} \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf}) \operatorname{next}(\mathrm{G} 2 \mathrm{f})$
Case C2.c1 considered the case when G2f = TCS(next(Fc1),Ft2).
According to Def. \rightarrow, the other alternative for G2f is the following:
There exists G2' \in TFormulaCore such that
(C2.c2.1) G2f = G2'
(C2.c2.2) next(TCS(Ft1,Ft2)) \rightarrow (pf, sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf})$ next(G2')
(C2.c2.3) Ft1 \rightarrow (pf,sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf})$ done (true)
(C2.c2.4) Ft2 $\rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf})$ next (G2')
From (C2.2) and (C2.c2.1) we have
(C2.c2.5) next(G2') $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$ Ftf.
From (C2.c2.3) and Def. \rightarrow, we know for some Fc1 \in TFormulaCore
(C2.c2.6) Ft1 = next(Fc1)
(C2.c2.7) next (Fc1) $\rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf})$ done (true)
From (C2.c2.4) and Def. \rightarrow, we know for some Fc2 \in TFormulaCore
(C2.c2.8) Ft2 = next(Fc2)
(C2.c2.9) next(Fc2) $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf}) \operatorname{next}(\mathrm{G} 2$ ')
From (C2.c2.6), (C2.c2.8) and [C2.a], we need to show
[C2.c2.b] next (TCS (next (Fc1) , next (Fc2))) $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) F t f$.

From (C2.c2.7), by Lemma 6, we know
(C2.c2.10) next(Fc1) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf})$ done(true).
From (C2), (C2.c2.8) and the induction hypothesis, we know $\Phi(F c 2)$ and thus (C2.c2.11)

```
    G2\inTFormulaCore, Ft\inTFormula, p\in\mathbb{N}, s\inStream, c\inContext :
    next(Fc2) }->(\textrm{p},\textrm{s}\downarrow\textrm{p},\textrm{s}(\textrm{p}),\textrm{c})\operatorname{next(G2) ^ next(G2) }->(\textrm{p}+1,\textrm{s}\downarrow(\textrm{p}+1),\textrm{s}(\textrm{p}+1),\textrm{c})\textrm{Ft
    #
    next(Fc2) }->(\textrm{p}+1,\textrm{s}\downarrow(\textrm{p}+1),\textrm{s}(\textrm{p}+1),\textrm{c})\textrm{Ft.
```

From (C2.c2.9), (C2.c2.5), and (C2.c2.11), we get
(C2.c2.11) $\operatorname{next(Fc2)~} \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf}) \mathrm{Ftf}$.
From (C2.c2.10) and (C2.c2.11), by Def. \rightarrow, we get [C2.c2.b].
This proves the case C2.c2.
This finsihes the proof of case C2.
Case (C3) G' $=$ TCP (Ft1,Ft2) for some Ft1,Ft2 \in TFormula.
We show
$\Phi\left(G^{\prime}\right)$
Take F2f,Ftf,pf,sf,cf arbitrary but fixed.
Assume
(C3.1) $\operatorname{next}(T C P(F t 1, F t 2)) \rightarrow(p f, s f \downarrow p f, s f(p f), c f) \operatorname{next}(G 2 f)$
(C3.2) next (G2f) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf}) \mathrm{Ftf}$

Show
[C3.a] $\operatorname{next}(T C P(F t 1, F t 2)) \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$ Ftf.
From (C3.1), by Def. \rightarrow, we have three cases.
Case C3.c1
There exists Fc1,Fc2 \in TFormulaCore such that
(C3.c1.1) G2f = TCP (next(Fc1), next(Fc2))
(C3.c1.2) Ft1 \rightarrow (pf,sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf})$ next (Fc1)
(C3.c1.3) Ft2 \rightarrow (pf,sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf}) \mathrm{next}(\mathrm{Fc} 2)$
(C3.c1.4) next (TCP (Ft1,Ft2)) $\rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf}) \operatorname{next}(\mathrm{TCP}(\operatorname{next}(\mathrm{Fc} 1)$, $\operatorname{next}(\mathrm{Fc} 2)))$

From (C3.2) and (C3.c1.1) we have
(C3.c1.5) $\operatorname{next(TCP(next(Fc1),next(Fc2)))~} \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$ Ftf
From (C3.c1.2) and Def. \rightarrow, we know for some Fc1' \in TFormulCore
(C3.c1.6) Ft1 = next (Fc1')
(C3.c1.7) next(Fc1') $\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf})$ next(Fc1)
From (C3.c1.3) and Def. \rightarrow, we know for some Fc2' \in TFormulCore
(C3.c1.8) Ft2 $=\operatorname{next}\left(F c 2{ }^{\prime}\right)$
(C3.c1.9) next (Fc2') $\rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf})$ next (Fc2)
From (C3.c1.6), (C3.c1.8) and [C3.a], we need to show
[C3.c1.b] $\operatorname{next}\left(T C P\left(n e x t\left(F c 1^{\prime}\right), \operatorname{next}(F c 2 \prime)\right)\right) \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) F t f$.
From (C3), (C3.c1.6) and the induction hypothesis, we know $\Phi(F c 1$ ') and thus
(C3.c1.10)

```
G2\inTFormulaCore, Ft\inTFormula, p\in\mathbb{N}, s\inStream, c\inContext :
next(Fc1') }->(\textrm{p},\textrm{s}\downarrow\textrm{p},\textrm{s}(\textrm{p}),c)\operatorname{next(G2) ^ next(G2) }->(\textrm{p}+1,\textrm{s}\downarrow(\textrm{p}+1),\textrm{s}(\textrm{p}+1),c) F
#
next(Fc1') }->(\textrm{p}+1,\textrm{s}\downarrow(\textrm{p}+1),\textrm{s}(\textrm{p}+1),c) Ft
```

From (C3), (C3.c1.8) and the induction hypothesis, we know $\Phi(F c 2$ ') and thus (C3.c1.11)
$\forall G 2 \in$ TFormulaCore, $F t \in$ TFormula, $p \in \mathbb{N}$, $s \in$ Stream, $c \in$ Context :
$\operatorname{next}(\mathrm{Fc} 2$ ') $\rightarrow(\mathrm{p}, \mathrm{s} \downarrow \mathrm{p}, \mathrm{s}(\mathrm{p}), \mathrm{c}) \operatorname{next}(\mathrm{G} 2) \wedge \operatorname{next}(\mathrm{G} 2) \rightarrow(\mathrm{p}+1, \mathrm{~s} \downarrow(\mathrm{p}+1), \mathrm{s}(\mathrm{p}+1), \mathrm{c}) \mathrm{Ft}$
\Rightarrow
next (Fc2') $\rightarrow(\mathrm{p}+1, \mathrm{~s} \downarrow(\mathrm{p}+1), \mathrm{s}(\mathrm{p}+1), \mathrm{c}) \mathrm{Ft}$.
From (C3.c1.5), by Def. \rightarrow, we have the following five cases.
Case C3.c1.c1
There exist Fc1'', Fc2'' \in TFormulaCore such that
(C3.c1.c1.1) $\mathrm{Ftf}=\operatorname{next}\left(\operatorname{TCP}\left(\operatorname{next}\left(\mathrm{Fc} 1^{\prime}{ }^{\prime}\right)\right.\right.$, $\left.\left.\operatorname{next}\left(\mathrm{Fc} 2^{\prime \prime}\right)\right)\right)$
(C3.c1.c1.2) next(Fc1) $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) \operatorname{next}\left(F c 1{ }^{\prime}{ }^{\prime}\right)$
(C3.c1.c1.3) next(Fc2) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf}) \operatorname{next}(\mathrm{Fc} 2, ')$
(C3.c1.c1.4) $\operatorname{next(TCP(next(Fc1),next(Fc2)))~} \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$
next(TCP (next(Fc1'') , next(Fc2'')))

From (C3.c1.c1.1) and [C3.c1.b] we need to prove

```
[C3.c1.c1.b] next(TCP(next(Fc1'),next(Fc2'))) ->(pf+1,sf\downarrow(pf+1),sf(pf+1),cf)
```

 next (TCP (next (Fc1'') , next (Fc2''))).
 From (C3.c1.7), (C3.c1.c1.2), and (C3.c1.10) we have

```
(C3.c1.c1.5) next(Fc1') ->(pf+1,sf\downarrow(pf+1),sf(pf+1),cf) next(Fc1'').
```

From (C3.c1.9), (C3.c1.c1.3), and (C3.c1.11) we have
(C3.c1.c1.6) $\operatorname{next}(F c 2 \prime) \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) \operatorname{next}(F c 2 \prime \prime)$
From (C3.c1.c1.5) and (C3.c1.c1.6), by Def. \rightarrow we get [C3.c1.c1.b].
This proves case the C3.c1.c1.
Case C3.c1.c2
There exist Fc1'' \in TFormulaCore such that
(C3.c1.c2.1) Ftf $=\operatorname{next}\left(\mathrm{Fc} 1^{\prime}{ }^{\prime}\right)$
(C3.c1.c2.2) next(Fc1) $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) \operatorname{next}\left(F c 1{ }^{\prime}{ }^{\prime}\right)$
(C3.c1.c2.3) next(Fc2) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf})$ done (true)
(C3.c1.c2.4) next(TCP (next(Fc1), next(Fc2))) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf})$
next(Fc1'')
From (C3.c1.c2.1) and [C3.c1.b] we need to prove
[C3.c1.c2.b] next(TCP (next(Fc1'), next(Fc2'))) $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$
next (Fc1'').
From (C3.c1.7), (C3.c1.c2.2), and (C3.c1.10) we have
(C3.c1.c2.5) $\operatorname{next}\left(F c 1{ }^{\prime}\right) \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) \operatorname{next}\left(F c 1{ }^{\prime}\right)$.
From (C3.c1.9), (C3.c1.c2.3), and (C3.c1.11) we have
(C3.c1.c2.6) next(Fc2') $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$ done(true).
From (C3.c1.c2.5) and (C3.c1.c2.6), by Def. \rightarrow we get [C3.c1.c2.b].
This proves the case C3.c1.c2.
Case C3.c1.c3
There exist Fc1'' \in TFormulaCore such that
(C3.c1.c3.1) Ftf = done(false)
(C3.c1.c3.2) next(Fc1) $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) \operatorname{next}\left(F c 1{ }^{\prime}{ }^{\prime}\right)$
(C3.c1.c3.3) next(Fc2) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf})$ done (false)
(C3.c1.c3.4) next(TCP (next(Fc1), next (Fc2))) $\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf})$
done(false)
From (C3.c1.c3.1) and [C3.c1.b] we need to prove
[C3.c1.c2.b] $\operatorname{next}\left(T C P\left(\operatorname{next}\left(F c 1^{\prime}\right), \operatorname{next}\left(F c 2^{\prime}\right)\right)\right) \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$
done(false).
From (C3.c1.7), (C3.c1.c3.2), and (C3.c1.10) we have

```
(C3.c1.c3.5) next(Fc1') >(pf+1,sf\downarrow(pf+1),sf(pf+1),cf) next(Fc1'').
From (C3.c1.9), (C3.c1.c3.3), and (C3.c1.11) we have
(C3.c1.c3.6) next(Fc2') >(pf+1,sf\downarrow(pf+1),sf(pf+1),cf) done(false).
From (C3.c1.c3.5) and (C3.c1.c3.6), by Def. }->\mathrm{ we get [C3.c1.c3.b].
This proves the case C3.c1.c3.
Case C3.c1.c4
(C3.c1.c4.1) Ftf = done(false)
(C3.c1.c4.2) next(Fc1) >(pf+1,sf \downarrow(pf+1),sf(pf+1),cf) done(false)
(C3.c1.c4.3) next(TCP(next(Fc1),next(Fc2))) >(pf+1,sf\downarrow(pf+1),sf(pf+1),cf)
    done(false)
From (C3.c1.c4.1) and [C3.c1.b] we need to prove
[C3.c1.c4.b] next(TCP(next(Fc1'),next(Fc2'))) >(pf+1,sf\downarrow(pf+1),sf(pf+1),cf)
    done(false).
From (C3.c1.7), (C3.c1.c4.2), and (C3.c1.10) we have
(C3.c1.c4.5) next(Fc1') >(pf+1,sf\downarrow(pf+1),sf(pf+1),cf) done(false).
From (C3.c1.c4.5) by Def. }->\mathrm{ we get [C3.c1.c4.b].
This proves the case C3.c1.c4.
Case C3.c1.c5
There exist Fc2'' '\inTFormulaCore such that
(C3.c1.c5.1) Ftf = next(Fc2'')
(C3.c1.c5.2) next(Fc1) > (pf+1,sf\downarrow(pf+1),sf(pf+1),cf) done(true)
(C3.c1.c5.3) next(Fc2) }->(\textrm{pf}+1,\textrm{sf}\downarrow(\textrm{pf}+1),\textrm{sf}(\textrm{pf}+1),\textrm{cf})\operatorname{next(Fc2,')
(C3.c1.c5.4) next(TCP(next(Fc1),next (Fc2))) >(pf+1, sf\downarrow (pf+1),sf(pf+1),cf)
    next(Fc2'')
From (C3.c1.c5.1) and [C3.c1.b] we need to prove
[C3.c1.c5.b] next(TCP(next (Fc1'), next(Fc2'))) ->(pf+1,sf\downarrow(pf+1),sf(pf+1),cf)
    next(Fc2'').
From (C3.c1.7), (C3.c1.c5.2), and (C3.c1.10) we have
(C3.c1.c5.5) next(Fc1') ->(pf+1,sf\downarrow(pf+1),sf(pf+1),cf) done(true).
```

From (C3.c1.9), (C3.c1.c5.3), and (C3.c1.11) we have
(C3.c1.c5.6) $\operatorname{next}\left(\mathrm{Fc} 2^{\prime}\right) \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf}) \operatorname{next}\left(\mathrm{Fc} 2^{\prime},\right)^{\prime}$.

From (C3.c1.c5.5) and (C3.c1.c5.6), by Def. \rightarrow we get [C3.c1.c5.b].

This proves the case C3.c1.c3.

This proves the case C3.c1.

Case C3.c2
(C3.c2.1) Ft1 \rightarrow (pf,sf $\downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf})$ next (G2f)
(C3.c2.2) Ft2 $\rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf})$ done(true)
From (C3.c2.1) and Def. \rightarrow, we know for some Fc1' \in TFormulCore
(C3.c2.3) Ft1 $=\operatorname{next}\left(\mathrm{Fc} 1^{\prime}\right)$
(C3.c2.4) next (Fc1') $\rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf})$ next (G2f)
From (C3.c2.2) and Def. \rightarrow, we know for some Fc2' \in TFormulCore
(C3.c2.5) $\mathrm{Ft} 2=\operatorname{next}\left(\mathrm{Fc} 2^{\prime}\right)$
(C3.c2.6) next(Fc2') $\rightarrow(p f, s f \downarrow p f, s f(p f), c f)$ done (true)
From (C3.c2.3), (C3.c2.5) and [C3.a], we need to show
[C3.c2.b] $\operatorname{next}\left(T C P\left(n e x t\left(F c 1^{\prime}\right), \operatorname{next}\left(F c 2^{\prime}\right)\right)\right) \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$ Ftf.

From (C3), (C3.c2.2) and the induction hypothesis, we know $\Phi(F c 1$ ') and thus
(C3.c2.7)
$\forall G 2 \in$ TFormulaCore, Ft \in TFormula, $\mathrm{p} \in \mathbb{N}$, s \in Stream, $\mathrm{c} \in$ Context :
$\operatorname{next}\left(\mathrm{Fc} 1{ }^{\prime}\right) \rightarrow(\mathrm{p}, \mathrm{s} \downarrow \mathrm{p}, \mathrm{s}(\mathrm{p}), \mathrm{c}) \operatorname{next}(\mathrm{G} 2) \wedge \operatorname{next}(\mathrm{G} 2) \rightarrow(\mathrm{p}+1, \mathrm{~s} \downarrow(\mathrm{p}+1), \mathrm{s}(\mathrm{p}+1), \mathrm{c}) \mathrm{Ft}$ \Rightarrow
$\operatorname{next}\left(\mathrm{Fc} 1^{\prime}\right) \rightarrow(\mathrm{p}+1, \mathrm{~s} \downarrow(\mathrm{p}+1), \mathrm{s}(\mathrm{p}+1), \mathrm{c}) \mathrm{Ft}$.
From (C3.c2.4), (C3.2), and (C3.c2.7) we get
(C3.c2.8) next(Fc1') $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$ Ftf.
From (C3.c2.6), by Lemma 6, we get
(C3.c3.9) $\operatorname{next}\left(\mathrm{Fc} 2{ }^{\prime}\right) \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf})$ done(true).
From (C3.c2.8) and (C3.c2.9), by Def. \rightarrow, we get [C3.c2.b].
This proves the vase C3.c2

Case C3.c3

```
(C3.c3.1) Ft1 }->\mathrm{ (pf,sf \pf,sf(pf),cf) done(true)
(C3.c3.2) Ft2 }->\mathrm{ (pf,sf }\downarrow\textrm{pf},\textrm{sf}(\textrm{pf}),cf) next(G2f
This case can be proved similarly to case C3.c2.
This finishes the proof of C3.
```

Case (C4) G' = TA(X,b1,b2,Ft) for some $X \in$ Variable, $b 1, b 2 \in$ BoundValue,
$\mathrm{Ft} \in \mathrm{TFormula}$.
We show
$\Phi\left(\mathrm{G}^{\prime}\right)$

Take F2f,Ftf,pf,sf,cf arbitrary but fixed.
Assume
(C4.1) next(TA(X,b1,b2,Ft)) $\rightarrow(p f, s f \downarrow p f, s f(p f), c f) \operatorname{next}(G 2 f)$
(C4.2) $\operatorname{next}(\mathrm{G} 2 \mathrm{f}) \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf}) \mathrm{Ftf}$
Show
[C4.a] $\operatorname{next}(T A(X, b 1, b 2, F t)) \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) F t f$.
From (C4.1), by Def. \rightarrow, we have that there exist $\mathrm{p} 1, \mathrm{p} 2 \in \mathbb{N}$ such that
(C4.3) p1=b1 (cf)
(C4.4) p2=b2 (cf)
(C4.5) $\mathrm{p} 1 \neq \infty$
(C4.6) $\operatorname{next}(\mathrm{TAO}(\mathrm{X}, \mathrm{p} 1, \mathrm{p} 2, \mathrm{Ft})) \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{cf}) \operatorname{next}(\mathrm{G} 2 \mathrm{f})$
To prove [C4.a], by the definition of \rightarrow, we would have two alternatives: Ftf=done(true) or Ftf \neq done(true). But the case $\mathrm{Ftf}=$ done (true) is impossible because of (C4.5). Hence, we assume Ftf \neq done (true) and prove
[C4.a.1] p1=b1(cf)
[C4.a.2] p2=b2(cf)
[C4.a.3] $\mathrm{p} 1 \neq \infty$
[C4.a.4] next(TAO (X,p1,p2,Ft)) $\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)$ Ftf.
[C4.a.1-3] are immediately proved due to (C4.3-5).
To prove [C4.a.4], from (C4.6), by Def. \rightarrow, we consider two cases.

Case C4.c1.
In this case from (C4.6) we have
(C4.c1.1) $\mathrm{pf}<\mathrm{p} 1$

```
(C4.c1.2) next(TA0(X,p1,p2,Ft)) >(pf,sf \downarrowpf,sf(pf),cf) next(TA0(X,p1,p2,Ft))
(C4.c1.3) next(G2f) = next(TA0(X,p1,p2,Ft))
From (C4.2) and (C4.c1.3) we get [C4.a.4]
This finishes the proof of C4.c1.
Case C4.c2.
In this case from (C4.6) we have
(C4.c2.1) pf \geqp1
(C4.c2.2) fs = {(p0,Ft,(cf.1[X\mapstop0],cf.2[X\mapstosf(p0)]))| p1 \leq p0<\infty min\infty(pf,p2+\infty < | ) }
(C4.c2.3) next(TA1(X,p2,Ft,fs)) ->(pf,sf \downarrowpf,sf(pf),cf) next(G2f)
From (C4.c2.3), by the definition of }->\mathrm{ , we know
(C4.c2.4) G2f = TA1(X,p2,Ft,fs1), where
(C4.c2.5) fs0 =
    if pf >\infty p2 then
        fs
        else
            fs U {(pf,Ft,(cf.1[X\mapstopf],cf.2[X\mapstosf(pf)]))}
(C4.c2.6) \neg\existst\in\mathbb{N},g\inTFormula,c\inContext:
    (t,g,c)\infs0 ^ \vdashg g (pf,sf \downarrowpf,sf(pf),c) done(false)
(C4.c2.7) fs1 = { (t,next(fc),c) \in TInstance |
                                    \existsg\inTFormula: (t,g,c)\infs0 ^
                                    f g (pf,sf \downarrowpf,sf(pf),c) next(fc) }
(C4.c2.8)}\neg(fs1=\emptyset\wedge pf \geq\infty p2
From (C4.2) and (C4.c2.4) we have
(C4.c2.9) next(TA1(X,p2,Ft,fs1)) >(pf+1,sf\downarrow(pf+1),sf(pf+1),cf) Ftf.
Recall that we need to prove
[C4.a.4] next (TA0 (X,p1,p2,Ft)) \(\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) F t f\).
By definition of \(\rightarrow\) and (C4.c2.1), in order to prove [C4.a.4], we need to prove
[C4.a.5] \(\operatorname{next}\left(T A 1\left(X, p 2, F t, f s^{\prime}\right)\right) \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) F t f\),
where
```

```
(C4.c2.10) fs' = {(p0,Ft,(cf.1[X\mapstop0],cf.2[X\mapstosf(p0)])) |
```

(C4.c2.10) fs' = {(p0,Ft,(cf.1[X\mapstop0],cf.2[X\mapstosf(p0)])) |
p1 \leq p0<\infty min\infty}(\textrm{pf}+1,\textrm{p}2+\infty1)}
p1 \leq p0<\infty min\infty}(\textrm{pf}+1,\textrm{p}2+\infty1)}
Note that if pf >\infty p2 then min}\infty(pf+1,p2+\infty1)=min\infty(pf,p2+\infty1
else min}\infty(pf+1,p2+\infty1)=pf+1. therefore, from (C4.c2.2), (C4.c2.5), and
(C4.c2.10) we have
(C4.c2.11) fs'=fs0.

```

\section*{Hence, we need to prove}
[C4.a.6] \(\operatorname{next}(T A 1(X, p 2, F t, f s 0)) \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f) F t f\),

We prove [C4.a.6] by case distinction over Ftf.
```

Ftf = done(false)

```

In this case, from (C4.c2.9) we get
```

(C4.c2.12) next(TA1(X,p2,Ft,fs1)) ->(pf+1,sf\downarrow(pf+1),sf(pf+1),cf) done(false)

```
From (C4.c2.12), by the definition of \(\rightarrow\) for forall we have
(C4.c2.13) \(\exists \mathrm{t} \in \mathbb{N}, \mathrm{g} \in\) TFormula, \(\mathrm{c} \in\) Context:
\[
(t, g, c) \in f s 1^{\prime} \wedge \vdash g \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c) \text { done (false) }
\]
where
(C4.c2.14) fs1' = if \(\mathrm{pf}+1>\infty\) p2 then fs1 else fs1 \(\cup\{(\mathrm{pf}+1, \mathrm{Ft},(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}+1], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf}+1)]))\}\).

Take (t1,g1,c1) which is a witness for (C4.c2.13). That means, we have
(C4.c2.13') ( \(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs} 1^{\prime}\) and
(C4.c2.13'') g1 \(\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c} 1)\) done(false).

Assume first
(C4.c2.15) pf \(+1>\infty \mathrm{p} 2\), which from (C4.c2.14) gives
\((\mathrm{C} 4 . \mathrm{c} 2.16)(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs} 1\).
To show [C4.a.6], we need to prove
[C4.a.7] \(\exists \mathrm{t} \in \mathbb{N}, \mathrm{g} \in\) TFormula, \(\mathrm{c} \in\) Context:
\((t, g, c) \in f s 0^{\prime} \wedge \vdash \mathrm{g} \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c})\) done(false)
where
(C4.c2.17) fs0' =
if \(\mathrm{pf}+1>\infty \mathrm{p} 2\) then
fs0
else fs0 \(\cup\{(p f+1, F t,(c f .1[X \mapsto p f+1], c f .2[X \mapsto s f(p f+1)]))\}\).

From (C4.c2.15) and (C4.c2.17), we have
(C4.c2.18) fs0'=fs0.
from (C4.c2.16), by (C4.c2.7), there exists g0 0 TFormula and fc1 \(\in\) TFormulaCore such that
(C4.c2.19) g1=next(fc1)
(C4.c2.20) (t1,g0,c1) \(\in \mathrm{fs} 0\)
(C4.c2.21) \(\vdash \mathrm{g} 0 \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c} 1) \operatorname{next}(\mathrm{fc} 1)\)
From (C4.c2.21), by the definition of \(\rightarrow\), there exists fc0 0 TFormulaCore such that
(C4.c2.22) g0=next(fc0).
From (C4.c2.13'), (C4.c2.19), and (C4.c2.13')) we know
\((C 4 . c 2.23) \vdash \operatorname{next}(f c 1) \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c 1)\) done(false).
From (C4.c2.21), (C4.c2.22), (C4.c2.23), by the induction hypothesis, we get
(C4.c2.24) \(\vdash \mathrm{g} 0 \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c} 1)\) done(false).
From (C4.c2.18) and (C4.c2.20), we get
(C4.c2.25) ( \(\mathrm{t} 1, \mathrm{~g} 0, \mathrm{c} 1) \in \mathrm{fs} 0^{\prime}\).
From (C4.c2.25) and (C4.c2.24), we get [C4.a.7].
Now assume
(C4.c2.26) \(\mathrm{pf}+1 \leq \infty \mathrm{p} 2\), which from (C4.c2.14) gives
(C4.c2.27) \((\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs} 1 \cup\{(\mathrm{pf}+1, \mathrm{Ft},(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}+1], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf}+1)]))\}\).
Recall:
To show [C4.a.6], we need to prove
[C4.a.7] \(\exists \mathrm{t} \in \mathbb{N}, \mathrm{g} \in\) TFormula, \(\mathrm{c} \in\) Context: \((t, g, c) \in f s 0^{\prime} \wedge \vdash \mathrm{g} \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c})\) done(false)
where
```

(C4.c2.17) fs0' =
if pf+1 >\infty p2 then
fs0
else
fs0 U{(pf+1,Ft,(cf.1[X\mapstopf+1],cf.2[X\mapstosf(pf+1)]))}.

```
From (C4.c2.26) and (C4.c2.17), we have
(C4.c2.28) \(\mathrm{fc} 0^{\prime}=\mathrm{fs} 0 \cup\{(\mathrm{pf}+1, \mathrm{Ft},(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}+1], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf}+1)]))\}\).
If \((\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs} 1\), the proof proceeds as for the case \(\mathrm{pf}+1>\infty \mathrm{p} 2\) above.

Consider
(C4.c2.29) \((\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1)=(\mathrm{pf}+1, \mathrm{Ft},(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}+1], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf}+1)]))\).

From (C4.c2.28) and (C4.c2.29) we have
(C4.c2.30) (t1,g1,c1) \(\in \mathrm{fc} 0^{\prime}\)
From (C4.c2.30) and (C4.c2.13'') we get [C4.a.7].
This finishes the proof of the case Ftf=done(false).

Ftf \(=\) done(true). The case \(\mathrm{p} 1=\infty\) is excluded due to (C4.5), and Def. of \(\rightarrow\).
Hence, we need to prove

which by Def. \(\rightarrow\) means, we need to prove
[C4.a.true.2] \(\neg \exists \mathrm{t} \in \mathbb{N}, \mathrm{g} \in\) TFormula, \(\mathrm{c} \in\) Context:
(t,g,c) \(\in \mathrm{fs} 00 \wedge \vdash \mathrm{~g} \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c})\) done (false)
[C4.a.true.3] fs01= \(\emptyset \wedge \mathrm{pf}+1 \geq \infty \mathrm{p} 2\),
where
(C4.c2.true.1) fs00 =
if \(\mathrm{pf}+1>\infty \mathrm{p} 2\) then fs0
else fs0 \(\cup\{(\mathrm{pf}+1, \mathrm{Ft},(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}+1], \mathrm{c} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf}+1)]))\}\)
(C4.c2.true.2) fs01 =
\(\{(t\), next \((f c), c) \in\) TInstance |
\(\exists \mathrm{g} \in \mathrm{TF}\) ormula: \((\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{fs} 00 \wedge\)
\(\vdash \mathrm{g} \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c}) \operatorname{next}(\mathrm{fc})\}\)
On the other hand, from (C4.c2.9) we know
(C4.c2.true.3) next(TA1 (X, p2,Ft,fs1)) \(\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c f)\) done(true).
From (C4.c2.true.3), by Def. \(\rightarrow\), we know
(C4.c2.true.4) \(\neg \exists \mathrm{t} \in \mathbb{N}, \mathrm{g} \in\) TFormula, \(\mathrm{c} \in\) Context:
(t,g,c) \(\in \mathrm{fs} 10 \wedge \vdash \mathrm{~g} \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c})\) done(false)
(C4.c2.true.5) fs11 = \(\emptyset \wedge \mathrm{pf}+1 \geq \infty \mathrm{p} 2\)
where
(C4.c2.true.6) fs10 =
if \(\mathrm{pf}+1>\infty \mathrm{p} 2\) then fs1
else fs1 \(\cup\{(\mathrm{pf}+1, \mathrm{Ft},(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}+1], \mathrm{c} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf}+1)]))\}\)
(C4.c2.true.7) fs11 =
\(\{(t, \operatorname{next}(f c), c) \in\) TInstance |
\(\exists \mathrm{g} \in\) TFormula: \((\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{fs} 10 \wedge\)
\[
\vdash \mathrm{g} \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c}) \operatorname{next}(\mathrm{fc})\}
\]

Recall the relationshsip between fs0 and fs1:
(C4.c2.7) fs1 =
\{ (t, next (fc), c) \(\in\) TInstance |
\(\exists \mathrm{g} \in \mathrm{TFormula:} \mathrm{(t,g,c)} \mathrm{\in fs0} \mathrm{\wedge} \mathrm{\vdash g} \mathrm{\rightarrow(pf,sf} \mathrm{\downarrow pf,sf(pf),c)} \mathrm{\operatorname{next}(f c)} \mathrm{\}}\)
From (C4.c2.true.6), (C4.c2.true.7), and (C4.c2.true.5) we know that
(C4.c2.true.8) \(\neg \exists \mathrm{fc} \in\) TFormulaCore:
\[
\mathrm{Ft} \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}+1]) \operatorname{next}(\mathrm{fc}) .
\]

Now assume by contradiction that for some ( \(\mathrm{t} 0, \mathrm{~g} 0, \mathrm{c} 0\) ) \(\in \mathrm{fs} 0\) we have
(C4.c2.true.9) \(\exists \mathrm{fc} \in \mathrm{TFormulaCore:} \mathrm{~g} 0 \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c} 0) \operatorname{next}(\mathrm{fc})\)
From (C4.c2.true.9), by Lemma 6, there exist fc0 0 TFormulaCore such that
(C4.c2.true.10) g0 \(\rightarrow\) (pf,sf \(\downarrow(\mathrm{pf}), \mathrm{sf}(\mathrm{pf}), \mathrm{c} 0)\) next (fc0)
From (C4.c2.true.9) by (C4.c2.7) we have that there exists fc0 0 TFormulaCore such that
(C4.c2.true.11) (t0, next (fc0), c0) \(\in f=1\).
From (C4.c2.true.11) by (C4.c2.true.6) we get
(C4.c2.true.12) (t0, next (fc0), c0) \(\in f=10\).
From (C4.c2.true.12) by (C4.c2.true.7), (C4.c2.true.5), (C4.c2.true.4), we get
(C4.c2.true.13) next (fc0) \(\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c} 0)\) done(true)
From (C4.c2.true.10) and (C4.c2.true.13), by the induction hypothesis, we get (C4.c2.true.14) g0 \(\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c} 0)\) done(true)

But (C4.c2.true.14) contradicts (C4.c2.true.9). Hence, we know that for all ( \(\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{fs} 0\)
(C4.c2.true.15) \(\neg \exists \mathrm{fc} \in \mathrm{TFormulaCore:} \mathrm{~g} \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c}) \operatorname{next}(\mathrm{fc})\)
From (C4.c2.true.8) and (C4.c2.true.15) we know that for all
( \(\mathrm{t}, \mathrm{g}, \mathrm{c}\) ) \(\in \mathrm{fs} 00\)
(C4.c2.true.16) \(\neg \exists f c \in T F o r m u l a C o r e: ~ g \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c) n e x t(f c)\).
From (C4.c2.true.16) we get
(C4.c2.true.17) fs01= \(\emptyset\)
From (C4.c2.true.17) and the second conjunct of (C4.c2.true.5) we get [C4.a.true.3].
To prove [C4.a.true.2] note that from (C4.c2.true.4) and (C4.c2.true.6) we have
```

(C4.c2.true.18) Ft }->(\textrm{pf+1,sf}\downarrow(\textrm{pf+1),sf(pf+1),cf.1[X\mapstopf+1]) done(false) does not hold.
Recall that in (C4.c2.6) we have
(C4.c2.6) \neg\existst\in\mathbb{N,g\inTFormula,c\inContext:}
(t,g,c)\infs0 ^\vdashg g (pf,sf \downarrowpf,sf(pf),c) done(false)
Hence, for no (t,g,c)\infs00 we have g }->\mathrm{ (pf,sf \pf,sf(pf),c) done(false).
It proves [C4.a.true.2].
Ftf is a 'next' formula.
Let Ftf = next(TA1(X,p2,Ft,fs2)) for some fs2. Then from [C4.a.6] and (C4.c2.11),
we need to prove
[C4.a.next.1] next(TA1(X,p2,Ft,fs0)) ->(pf+1,sf\downarrow(pf+1),sf(pf+1),cf)
next(TA1(X,p2,Ft,fs2))
To prove [C4.a.next.8], we define
(C4.c2.next.1) fs00 :=
if pf+1 >\infty p2 then
fs0
else fs0 \cup {(pf+1,Ft,(cf.1[X\mapstopf+1],cf.2[X\mapstosf(pf+1)]))}
(C4.c2.next.2) fs01 :=
{ (t,next(fc),c) \in TInstance |
\existsg\inTFormula: (t,g,c) ffs00 ^
\vdash g (pf+1,sf\downarrow(pf+1),sf(pf+1),c) next(fc)}

```
and prove
[C4.a.next.2] \(\neg \exists \mathrm{t} \in \mathbb{N}, \mathrm{g} \in\) FormulaStep, \(\mathrm{c} \in\) Context:
        (t,g,c) \(\in \mathrm{fs} 00 \wedge \vdash \mathrm{~g} \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c})\) done(false)
[C4.a.next.3] \(\neg(f s 01=\emptyset \wedge \mathrm{pf}+1 \geq \infty \mathrm{p} 2)\)
On the other hand, from (C4.c2.9) we know
(C4.c2.next.3) next(TA1 (X,p2,Ft,fs1)) \(\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{cf})\)
    next(TA1 (X, p2,Ft,fs2)).
From (C4.c2.next.3), by Def. \(\rightarrow\), we know
(C4.c2.next.4) \(\neg \exists \mathrm{t} \in \mathbb{N}, \mathrm{g} \in\) FormulaStep, \(\mathrm{c} \in\) Context:
    \((\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{fs} 10 \wedge \vdash \mathrm{~g} \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c})\) done(false)
(C4.c2.next.5) \(\neg(f s 11=\emptyset \wedge p f+1 \geq \infty \mathrm{p} 2)\)
where
(C4.c2.next.6) fs10 =
```

 if pf+1 >\infty p2 then
 fs1
 else fs1 U {(pf+1,Ft,(cf.1[X\mapstopf+1],cf.2[X\mapstosf(pf+1)]))}
 (C4.c2.next.7) fs11 =
{ (t,next(fc),c) \in TInstance |
\existsg\inTFormula: (t,g,c) \infs10 ^
\& g ((pf+1,sf\downarrow(pf+1),sf(pf+1),c) next(fc) }

```

Recall the relation between fs 0 and fs 1 :
```

(C4.c2.7) fs1 = { (t,next(fc),c) \in TInstance | \existsg\inTFormula: (t,g,c)\infs0 ^
g ->(pf,sf \pf,sf(pf),c) next(fc) }

```

By (C4.c2.6) and (C4.c2.next.1), to prove [C4.a.next.2], it suffices to prove that
[C4.a.next.4] \(\vdash \mathrm{Ft} \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1),(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}+1], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf}+1)]))\)
    done(false) does not hold.

But this directly follows from (C4.c2.next.6) and (C4.c2.next.4). Hence, [C4.a.next.4] is proved.

To prove [C4.a.next.3], we assume
(C4.c2.next.8) \(\mathrm{pf}+1 \geq \infty \mathrm{p} 2\)
and prove
[C4.a.next.5] fs01 \(\neq \emptyset\).
From (C4.c2.next.8) and (C4.c2.next.5) we know
(C4.c2.next.9) fs11 \(\neq \emptyset\).
From (C4.c2.next.9), there exist ( \(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs} 10\) and \(\mathrm{fc} 1 \in\) TFormulaCore such that
(C4.c2.next.9) \(\vdash \mathrm{g} 1 \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c} 1) \operatorname{next}(\mathrm{fc} 1)\).
According to (C4.c2.next.6), ( \(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs} 10\) means either ( \(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs} 1\) or \((\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1)=(\mathrm{pf}+1, \mathrm{Ft},(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}+1], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf}+1)])\)

First assume ( \(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1\) ) \(\in \mathrm{fs} 1\).
By (C4.c2.7), it means that there exist ( \(\mathrm{t} 0, \mathrm{~g} 0, \mathrm{c} 0) \in \mathrm{fs} 0\) and \(\mathrm{fc} 0 \in \mathrm{TFormulaCore}\) such that
(C4.c2.next.10) \(\vdash \mathrm{g} 0 \rightarrow(\mathrm{pf}, \mathrm{sf} \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c} 0) \operatorname{next}(\mathrm{fc} 0)\)
(C4.c2.next.11) g1=next(fc0)
Moreover, g0 is a 'next' formula.
(C4.c2.next.12) g0 \(=\) next(fc) for some fceTFormulaCore.
Besides, from (C4.c2.7) one can see that
(C4.c2.next.13) c0=c1.
Hence, from (C4.c2.next.9--13) we have
(C4.c2.next.14) next (fc) \(\rightarrow(p f, s f \downarrow \mathrm{pf}, \mathrm{sf}(\mathrm{pf}), \mathrm{c} 0)\) next (fc0)
(C4.c2.next.15) next (fc0) \(\rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c} 0)\) next (fc1)
From (C4.c2.next.14) and (C4.c2.next.15), by the induction hypothesis, we obtain that
(C4.c2.next.16) next (fc) \(\rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c 0) \operatorname{next}(f c 1)\)
Hence, we got that for ( \(\mathrm{t} 0, \mathrm{~g} 0, \mathrm{c} 0) \in \mathrm{fs} 0\) and \(\mathrm{fc} 1 \in \mathrm{TFormulaCore}\)
(C4.c2.next.17) \(\mathrm{g} 0 \rightarrow(\mathrm{pf}+1, \mathrm{sf} \downarrow(\mathrm{pf}+1), \mathrm{sf}(\mathrm{pf}+1), \mathrm{c} 0)\) next (fc1).
By definition (C4.c2.next.1) of fs00, we have ( \(\mathrm{t} 0, \mathrm{~g} 0, \mathrm{c} 0) \in \mathrm{fs} 00\).

Now assume ( \(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1)=(\mathrm{pf}+1, \mathrm{Ft},(\mathrm{cf} .1[\mathrm{X} \mapsto \mathrm{pf}+1], \mathrm{cf} .2[\mathrm{X} \mapsto \mathrm{sf}(\mathrm{pf}+1)])\)
Trivially, by definition (C4.c2.next.1) of fs00, we have (t1,g1,c1) \(\in f=00\).
Hence, in both cases we found a triple
(C4.c2.next.18) ( \(t, g, c) \in f s 00\)
such that
(C4.c2.next.19) \(g \rightarrow(p f+1, s f \downarrow(p f+1), s f(p f+1), c) n e x t(f c 1)\)
holds. (C4.c2.next.18), (C4.c2.next.19), and (C4.c2.next.2) imply [C4.a.next.5].
This finishes the proof of the case Ftf is a 'next' formula.
This finishes the proof of C4.c2.
This finishes the proof of C4.
This finishes the proof of Lemma 8.

\section*{A. 11 Lemma 9: Soundness of Bound Analysis}
```

re\inRangeEnv, e\inEnvironment, p\in\mathbb{N}, s\inStream, B\inBound, l,u\in\mathbb{Z}\infty:
re }\vdash\textrm{B}:(l,u) ^ dom(e) = dom(re) ^
(\forallY\indom(e): re(Y).1 +i p \leqi e(Y) \leqi re(Y).2 +i p) }
let c := (e,{X, s(e(X)) | X Xdom(e)}):
l +i p \leqi T(B)(c) \leqi u +i p

```
Proof

\section*{Denote}
```

\Phi(B) : }
re\inRangeEnv, e\inEnvironment, p\in\mathbb{N},\textrm{s}\in\mathrm{ Stream, l,u}\in\mathbb{Z}\infty
re \vdash B : (l,u) ^ dom(e) = dom(re) ^
(}\forall\textrm{Y}\in\operatorname{dom(e): re(Y).1 +i p \leqi e(Y) \leqi re(Y). 2 +i p) }
let c := (e,{X, s(e(X)) | X\indom(e)}):
l +i p \leqi T(B)(c) <i u +i p

```

Then we need to prove
[1] \(\forall B \in\) Bound: \(\Phi(B)\).
We prove [1] by structural induction over B.
(a). \(\mathrm{B}=0\).

We take ref, ef, pf, sf, Bf, lf, uf arbitrary but fixed, assume
(a1) ref \(\vdash \mathrm{B}:(l f, u f)\)
(a2) \(\operatorname{dom}(e f)=\operatorname{dom}(r e f)\)
(a3) \(\forall \mathrm{Y} \in \operatorname{dom}(\mathrm{e}): \operatorname{ref}(\mathrm{Y}) .1+\mathrm{i} \mathrm{pf} \leq \mathrm{i} \mathrm{ef}(\mathrm{Y}) \leq \mathrm{i} \operatorname{ref}(\mathrm{Y}) .2+\mathrm{i} \mathrm{pf}\), (a4) \(c=(e f,\{X, \operatorname{sf}(e f(X)) \mid X \in d o m(e f)\})\)
and prove
[a5] lf +i pf \(\leq i \operatorname{T}(B)(c) \leq i \quad u f+i p f\)
By the translation, we have
(a6) \(T(B)(c)=0\), when \(B=0\).

Therefore, we need to prove
[a7] lf +i pf \(\leq i \quad 0 \leq i\) uf \(+i \operatorname{pf}\)
By the analysis rules, we have
(a8) ref \(\vdash \mathrm{B}:(-\infty, 0)\), when \(\mathrm{B}=0\).
That means, from (a8) and (a1) we need to consider the case, when
(a9) lf \(=-\infty\)
(a10) uf \(=0\).

From the definition of +i , we have \(-\infty+\mathrm{n}=-\infty\). Hence, from (a9, a10) we need to prove
[a11] \(-\infty \leq\) i \(0 \leq i \quad 0\)
which obviously holds. Hence, the case (a) is proved.
(b). \(B=\infty\).

We take ref, ef, pf, sf, Bf, lf, uf arbitrary but fixed, assume
(b1) ref \(\vdash \mathrm{B}:(l f, u f)\)
(b2) \(\operatorname{dom}(e f)=\operatorname{dom}(r e f)\)
(b3) \(\forall \mathrm{Y} \in \operatorname{dom}(\mathrm{e}): \operatorname{ref}(\mathrm{Y}) .1+\mathrm{i} \mathrm{pf} \leq \mathrm{i} \mathrm{ef}(\mathrm{Y}) \leq i \operatorname{ref}(\mathrm{Y}) .2+\mathrm{i} \mathrm{pf}\), (b4) \(c=(e f,\{X, \operatorname{sf}(e f(X)) \mid X \in \operatorname{dom}(e f)\})\)
and prove
[b5] lf +i pf \(\leq i \operatorname{T}(B)(c) \leq i \quad u f+i p f\)
By the translation, we have
(b6) \(T(B)(c)=\infty\), when \(B=\infty\).
Therefore, we need to prove
[b7] lf +i pf \(\leq i \infty \leq i\) uf \(+i \operatorname{pf}\)
By the analysis rules, we have
(b8) ref \(\vdash \mathrm{B}:(\infty, \infty)\), when \(\mathrm{B}=\infty\).
That means, from (b7) and (b1) we need to consider the case, when
(b9) lf \(=\infty\)
(b10) uf \(=\infty\).
Hence, from (b9,b10) we need to prove
[b11] \(\infty \leq \mathrm{i} \infty \leq \mathrm{i} \infty\)
which obviously holds. Hence, the case (b) is proved.
(c). \(\mathrm{B}=\mathrm{X}\).

We take ref, ef, pf, sf, Bf, lf, uf arbitrary but fixed, assume
(c1) ref \(\vdash \mathrm{B}:(l f, u f)\)
(c2) \(\operatorname{dom}(e f)=\operatorname{dom}(r e f)\)
(c3) \(\forall \mathrm{Y} \in \operatorname{dom}(\mathrm{e}): \operatorname{ref}(\mathrm{Y}) .1+\mathrm{i} \mathrm{pf} \leq \mathrm{i} \operatorname{ef}(\mathrm{Y}) \leq i \operatorname{ref}(\mathrm{Y}) .2+i \operatorname{pf}\), (c4) \(c=(e f,\{X, \operatorname{sf}(e f(X)) \mid X \in \operatorname{dom}(e f)\})\)
and prove
[c5] lf +i pf \(\leq i \operatorname{T}(B)(c) \leq i\) uf \(+i \operatorname{pf}\)
By the analysis rules, we have two subcases:
(c.case1) \(\mathrm{X} \notin \mathrm{dom}(r e f)\)
---------
In this case, by (c2) and (c3) we have \(\mathrm{X} \notin \mathrm{dom}(\mathrm{ef})=\operatorname{dom}(\mathrm{c} .1)\).
By the translation, we have
(c.case1.1) \(T(X)(c)=0\), when \(B=X\) and \(X \notin \operatorname{dom}(c .1)\).

Therefore, we need to prove [c.case1.2] lf \(+\mathrm{i} \mathrm{pf} \leq \mathrm{i} 0 \leq i \operatorname{uf}+\mathrm{i} \mathrm{pf}\).

By the analysis rules, in this subcase we have (c.case1.3) ref \(\vdash \mathrm{X}:(-\infty, 0)\), when \(B=X\) and \(X \notin \operatorname{dom}(r e f)\).

From (c.case1.3) and (c1) we get
(c.case1.4) lf \(=-\infty\)
(c.case1.5) uf \(=0\).

Therefore, to prove [c.case1.2], we need to prove
[c.case1.3] \(-\infty+\mathrm{i}\) pf \(\leq \mathrm{i} 0 \leq i 0+i \operatorname{pf}\),
which holds, because \(-\infty+\mathrm{i} \mathrm{pf}=-\infty\). It proves the subcase (c.case1).
(c.case2) \(\mathrm{X} \in \mathrm{dom}(r e f)\)
---------
In this case, by (c2) and (c3) we have \(X \in \operatorname{dom}(e f)=\operatorname{dom}(c .1)\).
By the translation, we have
(c.case2.1) \(T(X)(c)=c .1(X)=e f(X)\), when \(B=X\) and \(X \in \operatorname{dom}(c .1)\).

Therefore, we need to prove
[c.case2.2] lf +i pf \(\leq i \operatorname{ef}(X) \leq i u f+i p f\)
By the analysis rules, in this subcase we have
(c.case2.3) ref \(\vdash \mathrm{X}: \operatorname{ref}(\mathrm{X})\), when \(B=X\) and \(X \in \operatorname{dom}(r e f)\).
```

From (c.case2.3) and (c1) we get
(c.case2.4) lf = ref(X).1
(c.case2.5) uf = ref(X).2

```

Therefore, to prove [c.case2.2], we need to prove
[c.case2.3] ref(X). \(1+\mathrm{i} \mathrm{pf} \leq \mathrm{i} \mathrm{ef}(\mathrm{X}) \leq \mathrm{i} \operatorname{ref}(\mathrm{X}) .2+\mathrm{i} \mathrm{pf}\), which follows from (c3). The case (c.case2) is proved.
d. \(\mathrm{B}=\mathrm{B} 0+\mathrm{N}\), for \(\mathrm{B} 0 \in\) Bound and \(\mathrm{N} \in \mathbb{N}\)

We take ref, ef, pf, sf, Bf, lf, uf arbitrary but fixed, assume
(d1) ref \(\vdash\) B : (lf,uf)
(d2) \(\operatorname{dom}(e f)=\operatorname{dom}(r e f)\)
(d3) \(\forall \mathrm{Y} \in \operatorname{dom}(\mathrm{e}): \operatorname{ref}(\mathrm{Y}) .1+\mathrm{i} \mathrm{pf} \leq \mathrm{i} \mathrm{ef}(\mathrm{Y}) \leq \mathrm{i} \operatorname{ref}(\mathrm{Y}) .2+\mathrm{i} \mathrm{pf}\), (d4) \(c=(e f,\{X, \operatorname{sf}(e f(X)) \mid X \in d o m(e f)\})\)
and prove
[d5] lf +i pf \(\leq i \operatorname{T}(B)(c) \leq i u f+i p f\).
By the translation, we have
(d6) \(T(B)(c)=T(B 0)(c)+\llbracket N \rrbracket\), when \(B=B 0+N\).

\section*{Assume that}
(d7) ref \(\vdash \mathrm{BO}:(10, \mathrm{u} 0)\).
Then, by the analysis rules, since ref \(\vdash \mathrm{B}+\mathrm{N}:(10+i \llbracket \mathrm{~N} \rrbracket\), \(u 0+\mathrm{i} \llbracket \mathrm{N} \rrbracket)\), we have from (d7) and (d1):
(d8) lf = \(10+\mathrm{i} \llbracket \mathrm{N} \rrbracket\)
(d9) uf = u0 +i \(\llbracket \mathrm{N} \rrbracket\)
and we need to prove
\([d 10] 10+i \llbracket N \rrbracket+i \operatorname{pf} \leq i T(B O)(c)+\llbracket N \rrbracket \leq i \quad u 0+i \llbracket N \rrbracket+i p f\).
By the induction hypothesis for BO we have
(d11) \(10+i \operatorname{pf} \leq i T(B 0)(c) \leq i u 0+i p f\), which implies [d10]. It proves the case (d).
(e) \(B=B 0-N\), for \(B O \in B o u n d\) and \(N \in \mathbb{N}\).

Similar to the case (d).

\section*{A. 12 Lemma 10: Invariant Lemma for Universal Formulas}
```

XXVVariable,b1\inBoundValue,b2\inBoundValue,f\inTFormulaCore:
|n\in\mathbb{N}: n\geq1 f forall(n,X,b1,b2,next(f))

```

\section*{Predicates}
```

forall \subseteq\mathbb{N}\times\mathrm{ Variable }\times\mathrm{ BoundValue }\times\mathrm{ BoundValue }\times\mathrm{ TFormula:}
forall(n,X,b1,b2,f):\Leftrightarrow
\forallp\in\mathbb{N},s\inStream,e\inEnvironment,g\inTFormula:
(\vdash\operatorname{next(TA(X,b1,b2,f))->*(n,p,s,e) g) }=>
let c = (e,{(Y,s(e(Y))) | Y \in dom(e)}) :
let p0 = p+n, p1 = b1(c), p2 = b2(c) :
(
n = 1 ^(p1 = \infty \vee p1 >\infty p2) ^ g=done(true)
)
v
(
n}\geq1\wedge\textrm{p}1\not=\infty\wedge\textrm{p}1\leq\infty\textrm{p}2\wedge\textrm{p}0\leq\textrm{p}1\wedge\textrm{g}=\textrm{next}(\textrm{TAO}(\textrm{X},\textrm{p}1,\textrm{p}2,\textrm{f})
)
V
(
n}\geq1\wedge\textrm{p}1\not=\infty\wedge\textrm{p}1\leq\infty\textrm{p}2\wedge\textrm{p}0>\textrm{p}1
(
(\existsb\inBool: g=done(b)) V
(\existsgs\in\mathbb{P}(TInstance): (gs \not=\emptyset \vee p+n \leq\infty p2) ^
forallInstances(X,p,p0,p1,p2,f,s,e,gs) ^
g = next(TA1(X,p2,f,gs)))
)
)

```
forallInstances \(\subseteq\)
    Variable \(\times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \infty \times\) TFormula \(\times\)
    Stream \(\times\) Environment \(\times \mathbb{P}(\) TInstance \():\)
forallInstances(X,p,p0,p1,p2,f,s,e,gs): \(\Leftrightarrow\)
    \(\forall \mathrm{t} \in \mathbb{N}, \mathrm{g} \in\) TFormula, \(\mathrm{c} 0 \in\) Context: \((\mathrm{t}, \mathrm{g}, \mathrm{c} 0) \in \mathrm{gs} \Rightarrow\)
        ( \(\forall \mathrm{t} 1 \in \mathbb{N}\), g1 \(\in\) TFormula, \(\mathrm{c} 1 \in\) Context:
            \((\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{gs} \wedge \mathrm{t}=\mathrm{t} 1 \Rightarrow(\mathrm{t}, \mathrm{g}, \mathrm{c} 0)=(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1)) \wedge\)
        ( \(\exists \mathrm{gc} \in\) TFormulaCore: \(\mathrm{g}=\) next \((\mathrm{gc})) \wedge\)
        \(\mathrm{c} 0.1=\mathrm{e}[\mathrm{X} \mapsto \mathrm{t}] \wedge \mathrm{c} 0.2=\{(\mathrm{Y}, \mathrm{s}(\mathrm{c} 0.1(\mathrm{Y}))) \mid \mathrm{Y} \in \operatorname{dom}(\mathrm{e}) \vee \mathrm{Y}=\mathrm{X}\} \wedge\)
        \(\mathrm{p} 1 \leq \mathrm{t} \leq \infty \min \infty(\mathrm{p} 0-1, \mathrm{p} 2) \wedge\)
        \(\vdash \mathrm{f} \rightarrow *(\mathrm{p} 0-\max (\mathrm{p}, \mathrm{t}), \max (\mathrm{p}, \mathrm{t}), \mathrm{s}, \mathrm{c} 0.1) \mathrm{g}\)
Proof

Let \(X \in\) Variable,b1 \(\in\) BoundValue, \(b 2 \in\) BoundValue, \(f \in T F o r m u l a C o r e ~ b e ~ a r b i t r a r y ~ f i x e d . ~\) We prove
\[
\forall \mathrm{n} \in \mathbb{N}: \mathrm{n} \geq 1 \Rightarrow \operatorname{forall}(\mathrm{n}, \mathrm{X}, \mathrm{~b} 1, \mathrm{~b} 2, \operatorname{next}(\mathrm{f}))
\]
by induction on \(n \geq 1\).

Let \(\mathrm{n} \in \mathbb{N}\) be arbitrary but fixed and assume
(0) \(n \geq 1\).

Induction Base

We show
[1] forall(1, X, b1,b2,next(f))
i.e. by the definition of "forall" for arbitrary but fixed \(p \in \mathbb{N}, s \in\) Stream, \(e \in\) Environment, \(g \in\) TFormula under the assumptions
(1) \(\vdash \operatorname{next}(\mathrm{TA}(\mathrm{X}, \mathrm{b} 1, \mathrm{~b} 2, \mathrm{f})) \rightarrow *(1, \mathrm{p}, \mathrm{s}, \mathrm{e}) \mathrm{g}\)
(2) \(c:=(e,\{(Y, s(e(Y))) \mid Y \in \operatorname{dom}(e)\})\)
(3) \(\mathrm{p} 0:=\mathrm{p}+1\)
(4) \(\mathrm{p} 1:=\mathrm{b} 1(\mathrm{c})\)
(5) p2 \(:=\mathrm{b} 2(\mathrm{c})\)
the goal
[2] (
\((\mathrm{p} 1=\infty \vee \mathrm{p} 1>\infty \mathrm{p} 2) \wedge \mathrm{g}=\) done (true)
)
v
(
\(\mathrm{p} 1 \neq \infty \wedge \mathrm{p} 1 \leq \infty \mathrm{p} 2 \wedge \mathrm{p} 0 \leq \mathrm{p} 1 \wedge \mathrm{~g}=\operatorname{next}(\mathrm{TAO}(\mathrm{X}, \mathrm{p} 1, \mathrm{p} 2, \operatorname{next}(\mathrm{f})))\)
)
v
(
\(\mathrm{p} 1 \neq \infty \wedge \mathrm{p} 1 \leq \infty \mathrm{p} 2 \wedge \mathrm{p} 0>\mathrm{p} 1 \wedge\)
(
( \(\exists \mathrm{b} \in\) Bool: \(\mathrm{g}=\) done (b) ) \(\vee\)
( \(\exists \mathrm{gs} \in \mathbb{P}(\) TInstance \():(\mathrm{gs} \neq \emptyset \vee \mathrm{p}+\mathrm{n} \leq \infty \mathrm{p} 2) \wedge\)
forallInstances(X,p,p0,p1,p2,next(f),s,e,gs) \(\wedge\)
g = next(TA1 (X, p2, next (f),gs)))
)
)
From (1), (2) and the rules for \(\rightarrow *\), we know for some \(\mathrm{Ft}^{\prime} \in\) TFormula
(6) \(\vdash \operatorname{next}(\mathrm{TA}(\mathrm{X}, \mathrm{b} 1, \mathrm{~b} 2, \operatorname{next}(\mathrm{f}))) \rightarrow(\mathrm{p}, \mathrm{s} \downarrow \mathrm{p}, \mathrm{s}(\mathrm{p}), \mathrm{c}) \mathrm{Ft}\),
(7) \(\vdash \mathrm{Ft} \rightarrow \rightarrow(0, \mathrm{p}+1, \mathrm{~s}, \mathrm{e}) \mathrm{g}\)

From (6), (7) and the rules for \(\rightarrow *\), we know
(8) \(\vdash \operatorname{next}(T A(X, b 1, b 2, \operatorname{next}(f))) \rightarrow(p, s \downarrow p, s(p), c) g\)

From (4),(5),(8) and the rules for \(\rightarrow\), we have two cases.

Case 1
(20) \(\mathrm{p} 1=\infty \vee \mathrm{p} 1>\infty \mathrm{p} 2\)
(21) \(\mathrm{g}=\) done (true)

From (20) and (21), we have [2].

Case 2
(30) \(\mathrm{p} 1 \neq \infty \wedge \mathrm{p} 1 \leq \infty \mathrm{p} 2\)
(31) \(\vdash \operatorname{next}(T A 0(X, p 1, p 2, \operatorname{next}(f))) \rightarrow(p, s \downarrow p, s(p), c) g\)

We proceed by case distinction.
Case 2.1
(40) \(\mathrm{p} 0 \leq \infty \mathrm{p} 1\)

From (30) and (40), to show [2] it suffices to show
[2.a] \(g=\operatorname{next}(T A O(X, p 1, p 2, \operatorname{next}(f)))\)
From (31) and the fact that the rule system for \(\rightarrow\) is deterministic,
to show [2.a], it suffices to show
[2.b] \(\vdash \operatorname{next}(T A 0(X, p 1, p 2, \operatorname{next}(f))) \rightarrow(p, s \downarrow p, s(p), c) \operatorname{next}(T A 0(X, p 1, p 2, \operatorname{next}(f)))\)
which holds from (3), (40) and the rules for \(\rightarrow\).
Case 2.2
(70) \(\mathrm{p} 0>\infty \mathrm{p} 1\)

From (30) and (70), to show [2] it suffices to show
[2.a] ( \(\exists \mathrm{b} \in \mathrm{Bool}: \mathrm{g}=\) done(b)) \(V\)
( \(\exists \mathrm{gs} \in \mathbb{P}\) (TInstance) : \((\mathrm{gs} \neq \emptyset \vee \mathrm{p}+1 \leq \infty \mathrm{p} 2) \wedge\) forallInstances(X,p,p0,p1,p2, next(f),s,e,gs) \(\wedge\) \(\mathrm{g}=\operatorname{next}(\mathrm{TA} 1(\mathrm{X}, \mathrm{p} 2, \operatorname{next}(\mathrm{f}), \mathrm{gs}))\) )

We define
(72) \(\mathrm{fs}:=\{(\mathrm{px}, \operatorname{next}(\mathrm{f}),(\mathrm{c} .1[\mathrm{X} \mapsto \mathrm{px}], \mathrm{c} .2[\mathrm{X} \mapsto \mathrm{s} \downarrow \mathrm{p}(\mathrm{px}+\mathrm{p}-|\mathrm{s} \downarrow \mathrm{p}|)])) \mid\)
\[
\mathrm{p} 1 \leq \mathrm{px}<\infty \min \infty(\mathrm{p}, \mathrm{p} 2+\infty 1)\}
\]

From (3), (31), (70), (72), and the rules for \(\rightarrow\), we know
\((73) \vdash \operatorname{next}(T A 1(X, p 2, \operatorname{next}(f), f s)) \rightarrow(p, s \downarrow p, s(p), c) g\)
From (72), we know with \(|\mathrm{s} \downarrow \mathrm{p}|=\mathrm{p}\)
(74) \(f s=\{(p x, \operatorname{next}(f),(c .1[X \mapsto p x], c .2[X \mapsto s \downarrow p(p x)])) \mid p 1 \leq p x<\infty \min \infty(p, p 2+\infty 1)\}\)
and thus
(74') fs \(=\{(p x, \operatorname{next}(f),(c .1[X \mapsto p x], c .2[X \mapsto s(p x)])) \mid p 1 \leq p x<\infty \min \infty(p, p 2+\infty 1)\}\)

To show [2.a], we assume
(75) \(\neg(\exists \mathrm{b} \in\) Bool: \(\mathrm{g}=\) done (b) )
and show
[2.b] \(\exists \mathrm{gs} \in \mathbb{P}\) (TInstance) : (gs \(\neq \emptyset \vee \mathrm{p}+1 \leq \infty \mathrm{p} 2) \wedge\)
forallInstances(X,p,p0,p1,p2,next(f),s,e,gs) \(\wedge\)
\(g=\operatorname{next}(T A 1(X, p 2, \operatorname{next}(f), g s))\)
From (73), (75), and the rules for \(\rightarrow\), we know
(76) fs0 \(:=\) if \(p>\infty \quad p 2\) then fs else fs \(\cup\{(p, \operatorname{next}(f),(c .1[X \mapsto p], c .2[X \mapsto s(p)]))\}\)

(78) fs1 \(:=\{(t\), next (fc), c) \(\in\) TInstance \(\mid \exists g \in T F o r m u l a:(t, g, c) \in f s 0 \wedge\)
\(\vdash \mathrm{g} \rightarrow(\mathrm{p}, \mathrm{s} \downarrow \mathrm{p}, \mathrm{s}(\mathrm{p}), \mathrm{c}) \operatorname{next}(\mathrm{fc})\}\)
(79) \(\neg(f s 1=\emptyset \wedge p \geq \infty \mathrm{p} 2)\)
(80) \(\mathrm{g}=\operatorname{next}(\mathrm{TA} 1(\mathrm{X}, \mathrm{p} 2, \operatorname{next}(\mathrm{f}), \mathrm{fs} 1))\)

From (80), to show [2.b], it suffices to show
[2.b.1] fs1 \(\neq \emptyset \vee p+1 \leq \infty\) p2
[2.b.2] forallInstances(X,p,p0,p1,p2,next(f),s,e,fs1)
From \(p \in \mathbb{N}\) and (79), we have [2.b.1].
To show [2.b.2], we proceed by case distinction.
Case 2.2.1
(100) \(\mathrm{p}>\infty \mathrm{p} 2\)

From (76) and (100), we know
(101) \(\mathrm{fs} 0=\mathrm{fs}\)

From (74), (78), (101), we know
(102) \(\mathrm{fs} 1=\{(\mathrm{t}, \operatorname{next}(\mathrm{fc}),(\mathrm{c} .1[\mathrm{X} \mapsto \mathrm{t}], \mathrm{c} .2[\mathrm{X} \mapsto \mathrm{s} \downarrow \mathrm{p}(\mathrm{t})])) \mid\)
\(\mathrm{p} 1 \leq \mathrm{t}<\infty \min \infty(\mathrm{p}, \mathrm{p} 2+\infty 1) \wedge\)
\(\vdash \operatorname{next}(\mathrm{f}) \rightarrow(\mathrm{p}, \mathrm{s} \downarrow \mathrm{p}, \mathrm{s}(\mathrm{p}),(\mathrm{c} .1[\mathrm{X} \mapsto \mathrm{t}], \mathrm{c} .2[\mathrm{X} \mapsto \mathrm{s} \downarrow \mathrm{p}(\mathrm{t})])) \operatorname{next}(\mathrm{f} \mathrm{c})\}\)
To show [2.b.2], from the definition of "forallInstances", we have to show for arbitrary but fixed \(t \in \mathbb{N}, g \in\) TFormula, \(c 0 \in\) Context such that
(120) \((t, g, c 0) \in f s 1\)
the following:
[2.b.2.1] \(\forall \mathrm{t} 1 \in \mathbb{N}, \mathrm{~g} 1 \in\) TFormula, c \(1 \in\) Context:
\((\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs} 1 \wedge \mathrm{t}=\mathrm{t} 1 \Rightarrow(\mathrm{t}, \mathrm{g}, \mathrm{c} 0)=(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1)\)
[2.b.2.2] \(\exists \mathrm{gc} \in\) TFormulaCore: \(\mathrm{g}=\mathrm{next}(\mathrm{gc})\)
[2.b.2.3] c0.1=e[X \(\mapsto \mathrm{t}\) ]
```

[2.b.2.4] c0.2={(Y,s(c0.1(Y))) | Y \in dom(e) V Y = X}
[2.b.2.5] p1 \leq t \leq m min}\infty(p0-1,p2
[2.b.2.6] }\vdash\operatorname{next(f) ->*(p0-max(p,t),max(p,t),s,c0.1) g
From (102) and the fact that the rule system for }->\mathrm{ is deterministic,
we have [2.b.2.1].
From (102) and (120), we have for some fc\inTFormulaCore
(121) g=next(fc)
(122) c0=(c.1[X\mapstot],c.2[X\mapstos\downarrowp(t)])
(123) p1 \leq t <\infty min\infty(p,p2+\infty1)
(124) }\vdash\operatorname{next(f) }->(\textrm{p},\textrm{s}\downarrow\textrm{p},\textrm{s}(\textrm{p}),\textrm{c}0)\operatorname{next(fc)
From (121), we have [2.b.2.2].
From (122) and (2), we have [2.b.2.3].
To show [2.b.2.5], from (3), it suffices to show
[2.b.2.5.1] p1 \leq t
[2.b.2.5.2] t \leq p
[2.b.2.5.3] t \leq\infty p2
which all three follow from (123).
We now show [2.b.2.4]. From (122), we know
(125) c0.1 = c.1[X\mapstot]
(126) c0.2 = c. 2[X\mapstos}\downarrow\textrm{p}(\textrm{t})
From (123), we know
(127) t < p
From (126) and (127), we have
(128) c0.2 = c.2[X}\mapsto\textrm{s}(\textrm{t})
From (125) and (128), to show [2.b.2.4], it suffices to show
[2.b.2.4.a] c.2[X\mapstos(t)]={(Y,s(c.1[X\mapstot](Y))) | Y \in dom(e) V Y = X}
For this it suffices to show for arbitrary Y with Y \in dom(e) V Y = X
[2.b.2.4.b] c.2[X\mapstos(t)](Y) = s(c.1[X\mapstot](Y))
Case Y=X:
We have
(130) c.2[X\mapstos(t)](Y) = s(t)
(131) s(c.1[X\mapstot](Y)) = s(t)

```
and thus [2.b.2.4.b].
Case \(\mathrm{Y} \neq \mathrm{X}\) :

We have
(132) \(Y \in \operatorname{dom}(e)\)
(133) c. \(2[\mathrm{X} \mapsto \mathrm{s}(\mathrm{t})](\mathrm{Y})=\mathrm{c} .2(\mathrm{Y})\)
(134) \(\mathrm{s}(\mathrm{c} .1[\mathrm{X} \mapsto \mathrm{t}](\mathrm{Y}))=\mathrm{s}(\mathrm{c} .1(\mathrm{Y}))\)

From (2) and (132), we have
(135) c. \(1=\mathrm{e}\)
(136) c.2(Y) \(=s(e(Y))\)

From (133), (134), (135), (136), we have [2.b.2.4.b].
To show [2.b.2.6], by (3), it suffices to show
[2.b.2.6.a] \(\vdash \operatorname{next}(\mathrm{f}) \rightarrow *(\mathrm{p} 0-\max (\mathrm{p}, \mathrm{t}), \max (\mathrm{p}, \mathrm{t}), \mathrm{s}, \mathrm{c} 0.1) \mathrm{g}\)
From (123), we know
(140) \(\max (\mathrm{p}, \mathrm{t})=\mathrm{p}\)

From (3) and (140), it suffices to show
[2.b.2.6.b] \(\vdash \operatorname{next}(\mathrm{f}) \rightarrow *(1, \mathrm{p}, \mathrm{s}, \mathrm{c} 0.1) \mathrm{g}\)
From (2), (125), (128), we know
(141) \(c 0=(c 0.1,\{(Y, s(c 0.1(Y))) \mid Y \in \operatorname{dom}(c 0.1)\})\)

From (141) and the definition of \(\rightarrow *\), it suffices to show
[2.b.2.6.c] \(\vdash \operatorname{next}(\mathrm{f}) \rightarrow(\mathrm{p}, \mathrm{s} \downarrow \mathrm{p}, \mathrm{s}(\mathrm{p}), \mathrm{c} 0) \mathrm{g}\)
which follows from (121) and (124).
Case 2.2.2
(200) \(\mathrm{p} \leq \infty \mathrm{p} 2\)

To show [2.b.2], from the definition of "forallInstances", we have to show for arbitrary but fixed \(t \in \mathbb{N}, g \in T F o r m u l a, c 0 \in\) Context such that
(201) \((t, g, c 0) \in f s 1\)
the following:
[2.b.2.1] \(\forall t 1 \in \mathbb{N}, g 1 \in\) TFormula, c1 \(\mathcal{C}\) Context:
\((\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs} 1 \wedge \mathrm{t}=\mathrm{t} 1 \Rightarrow(\mathrm{t}, \mathrm{g}, \mathrm{c} 0)=(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1)\)
[2.b.2.2] \(\exists \mathrm{gc} \in\) TFormulaCore: \(\mathrm{g}=\) next (gc)
[2.b.2.3] c0.1=e[X \(\mapsto \mathrm{t}\) ]
```

[2.b.2.4] c0.2={(Y,s(c0.1(Y))) | Y \in dom(e) V Y = X}
[2.b.2.5] p1 \leq t \leq m min}\infty(p0-1,p2
[2.b.2.6] }\vdash\operatorname{next(f) ->*(p0-max(p,t),max(p,t),s,c0.1) g
We define
(202) c1 := (c.1[X\mapstop],c.2[X\mapstos(p)])
From (76), (200), (202), we know
(203) fs0 = fs U {(p,next(f),c1)}
From (78) and (203), we know
(204) fs1 = { (t,next(fc),c) \in TInstance |
(}\exists\textrm{g}\in\textrm{TFormula: (t,g,c)\infs ^
g}->(\textrm{p},\textrm{s}\downarrow\textrm{p},\textrm{s}(\textrm{p}),\textrm{c})\operatorname{next(fc)) \vee
(t = p ^c = c1 ^ F next(f)) (p,s\downarrowp,s(p),c1) next(fc)) }

```

From (74'), (204), and the fact that the rule system is deterministic, we have [2.b.2.1].

From (201) and (204), we have [2.b.2.2].
It thus remains to show [2.b.2.3-6].

From (201), (202) and (204) we have two cases:
Case 2.2.2.1

There exists some \(f c \in\) TFormulaCore such that
(220) \(\mathrm{t}=\mathrm{p}\)
(221) g=next(fc)
(222) \(\vdash \operatorname{next}(f) \rightarrow(\mathrm{p}, \mathrm{s} \downarrow \mathrm{p}, \mathrm{s}(\mathrm{p}), \mathrm{c} 0)\) next (fc)
(223) c0.1=c.1[X \(\mapsto \mathrm{p}]\)
(224) c0.2=c.2[X \(\mapsto \mathrm{s}(\mathrm{p})]\)

From (2), (223), (224), we have [2.b.2.3].
From (2), (222), (223), (224), we have [2.b.2.4].
From (3) and (70) and (220), we have
(230) \(\mathrm{p} 1 \leq \infty \mathrm{t}\)

From (200) and (220), we have
(231) \(\mathrm{t} \leq \infty \mathrm{p} 2\)

From (3) and (220), we have
(232) \(\mathrm{t}<\infty \mathrm{p} 0\)

From (230), (231), (232), we have [2.b.2.5].

To show [2.b.2.6], from (3) and (220), it suffices to show
[2.b.2.6.a] \(\vdash \operatorname{next}(\mathrm{f}) \rightarrow *(1, \mathrm{p}, \mathrm{s}, \mathrm{c} 0.1) \mathrm{g}\)

From the definition of \(\rightarrow *\), (2), (223), (224), it suffices to show
[2.b.2.6.b] \(\vdash \operatorname{next}(f) \rightarrow(p, s \downarrow p, s(p), c 0) g\)
which follows from (221) and (222).
Case 2.2.2.2
There exist some fceTFormulaCore and g0 0 TFormula such that
(240) \(\mathrm{g}=\operatorname{next}(\mathrm{fc})\)
(241) ( \(\mathrm{t}, \mathrm{g} 0, \mathrm{c} 0) \in \mathrm{fs}\)
(242) \(\vdash \mathrm{g} 0 \rightarrow(\mathrm{p}, \mathrm{s} \downarrow \mathrm{p}, \mathrm{s}(\mathrm{p}), \mathrm{c} 0) \mathrm{g}\)

From (74') and (241), we know
(243) g0 \(=\operatorname{next}(f)\)
(244) c0.1 = c.1[X \(\mapsto \mathrm{t}]\)
(245) c0.2 = c.2[X \(\mapsto \mathrm{s}(\mathrm{t})]\)
(246) \(\mathrm{p} 1 \leq \mathrm{t}\)
(247) t < p
(248) \(\mathrm{t} \leq \infty \mathrm{p} 2\)

From (2) and (244), we know [2.b.2.3].
From (2), (244) and (245), we know [2.b.2.4].

From (3), (246), (247), and (248), we know [2.b.2.5].
From (247), we know
(249) \(\max (\mathrm{p}, \mathrm{t})=\mathrm{p}\)

From (3) and (249), to show [2.b.2.6], we have to show
[2.b.2.6.a] \(\vdash \operatorname{next}(f) \rightarrow *(1, p, s, c 0.1) g\)
From the definition of \(\rightarrow *\), (2), (244), (245), it suffices to show
[2.b.2.6.b] \(\vdash \operatorname{next}(\mathrm{f}) \rightarrow *(\mathrm{p}, \mathrm{s} \downarrow \mathrm{p}, \mathrm{s}(\mathrm{p}), \mathrm{c} 0) \mathrm{g}\)
which follows from (242) and (243).

Induction Step

We assume
(1) forall(n, X, b1, b2, next (f))
and show
[1] forall(n+1,X,b1,b2, next(f))
i.e. by the definition of "forall" for arbitrary but fixed
\(\mathrm{p} \in \mathbb{N}\), \(s \in\) Stream, e \(\in\) Environment, \(g \in\) TFormula, \(c \in\) Context, \(p 1 \in \mathbb{N} \infty, \mathrm{p} 2 \in \mathbb{N} \infty\) under the assumptions
(2) \(\vdash \operatorname{next}(T A(X, b 1, b 2, f)) \rightarrow *(n+1, p, s, e) g\)
(3) \(c=(e,\{(Y, s(e(Y))) \mid Y \in \operatorname{dom}(e)\})\)
(4) \(\mathrm{p} 1=\mathrm{b} 1(\mathrm{c})\)
(5) p2 = b2(c)
the goal
[2] (
            \(\mathrm{n}+1=1 \wedge(\mathrm{p} 1=\infty \vee \mathrm{p} 1>\infty \mathrm{p} 2) \wedge \mathrm{g}=\) done(true)
    )
V
(
    \(\mathrm{n}+1 \geq 1 \wedge \mathrm{p} 1 \neq \infty \wedge \mathrm{p} 1 \leq \infty \mathrm{p} 2 \wedge \mathrm{p}+\mathrm{n}+1 \leq \mathrm{p} 1 \wedge\)
    \(\mathrm{g}=\mathrm{next}(\mathrm{TAO}(\mathrm{X}, \mathrm{p} 1, \mathrm{p} 2, \operatorname{next}(\mathrm{f})))\)
    )
    v
    (
        \(\mathrm{n}+1 \geq 1 \wedge \mathrm{p} 1 \neq \infty \wedge \mathrm{p} 1 \leq \infty \mathrm{p} 2 \wedge \mathrm{p}+\mathrm{n}+1>\mathrm{p} 1 \wedge\)
        (
            ( \(\exists \mathrm{b} \in\) Bool: \(\mathrm{g}=\) done(b)) \(\vee\)
            ( \(\exists \mathrm{gs} \in \mathbb{P}(\) TInstance \():(\mathrm{gs} \neq \emptyset \vee \mathrm{p}+\mathrm{n}+1 \leq \infty \mathrm{p} 2) \wedge\)
                forallInstances(X,p,p+n+1,p1,p2,next(f),s,e,gs) \(\wedge\)
                \(g=\operatorname{next}(T A 1(X, p 2, \operatorname{next}(f), g s)))\)
        )
    )
which with (0) can be simplified to
[3] (
        \(\mathrm{p} 1 \neq \infty \wedge \mathrm{p} 1 \leq \infty \mathrm{p} 2 \wedge \mathrm{p}+\mathrm{n}+1 \leq \mathrm{p} 1 \wedge \mathrm{~g}=\mathrm{next}(\mathrm{TAO}(\mathrm{X}, \mathrm{p} 1, \mathrm{p} 2, \operatorname{next}(\mathrm{f})))\)
    )
    V
    (
        \(\mathrm{p} 1 \neq \infty \wedge \mathrm{p} 1 \leq \infty \mathrm{p} 2 \wedge \mathrm{p}+\mathrm{n}+1>\mathrm{p} 1 \wedge\)
        (
            ( \(\exists \mathrm{b} \in\) Bool: \(\mathrm{g}=\) done(b)) \(\vee\)
            ( \(\exists \mathrm{gs} \in \mathbb{P}\) (TInstance): \((\mathrm{gs} \neq \emptyset \vee \mathrm{p}+\mathrm{n}+1 \leq \infty \mathrm{p} 2) \wedge\)
                    forallInstances (X,p,p+n+1,p1,p2,next(f),s,e,gs) \(\wedge\)
                        \(\mathrm{g}=\operatorname{next}(\mathrm{TA1}(\mathrm{X}, \mathrm{p} 2, \operatorname{next}(\mathrm{f}), \mathrm{gs})))\)
        )
    )

From (2) and Lemma 2 "Equivalence of Left- and Right-Recursive Definitions of n -Step Reductions", we know
(6) \(\vdash \operatorname{next}(\mathrm{TA}(\mathrm{X}, \mathrm{b} 1, \mathrm{~b} 2, \mathrm{f})) \rightarrow \mathrm{l} *(\mathrm{n}+1, \mathrm{p}, \mathrm{s}, \mathrm{e}) \mathrm{g}\)

From (6) and the definition of \(\rightarrow 1 *\), we know for some Ft' \(\in\) TFormula
(7) \(\vdash \operatorname{next}(\mathrm{TA}(\mathrm{X}, \mathrm{b} 1, \mathrm{~b} 2, \operatorname{next}(\mathrm{f}))) \rightarrow \mathrm{l} *(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}) \mathrm{Ft}\),
(8) \(\vdash \mathrm{Ft} \rightarrow(\mathrm{p}+\mathrm{n}, \mathrm{s} \downarrow(\mathrm{p}+\mathrm{n}), \mathrm{s}(\mathrm{p}+\mathrm{n}), \mathrm{c}) \mathrm{g}\)

From (7) and Lemma 2 "Equivalence of Left- and Right-Recursive Definitions of n -Step Reductions", we know
(9) \(\vdash \operatorname{next}(\mathrm{TA}(\mathrm{X}, \mathrm{b} 1, \mathrm{~b} 2, \operatorname{next}(\mathrm{f}))) \rightarrow *(\mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{e}) \mathrm{Ft}\),

From (1), (3), (4), (5), (9), and the definition of "forall", we know
(10) (
\(\mathrm{n}=1 \wedge(\mathrm{p} 1=\infty \vee \mathrm{p} 1>\infty \mathrm{p} 2) \wedge \mathrm{Ft} \mathrm{A}^{\prime}=\) done (true)
)
V
(
\(\mathrm{n} \geq 1 \wedge \mathrm{p} 1 \neq \infty \wedge \mathrm{p} 1 \leq \infty \mathrm{p} 2 \wedge \mathrm{p}+\mathrm{n} \leq \mathrm{p} 1 \wedge \mathrm{Ft} \mathrm{F}^{\prime}=\mathrm{next}(\mathrm{TAO}(\mathrm{X}, \mathrm{p} 1, \mathrm{p} 2, \operatorname{next}(\mathrm{f})))\)
)
V
(
\(\mathrm{n} \geq 1 \wedge \mathrm{p} 1 \neq \infty \wedge \mathrm{p} 1 \leq \infty \mathrm{p} 2 \wedge \mathrm{p}+\mathrm{n}>\mathrm{p} 1 \wedge\)
(
( \(\exists \mathrm{b} \in\) Bool: Ft'=done(b)) \(\vee\)
( \(\exists \mathrm{gs} \in \mathbb{P}\) (TInstance): \((\mathrm{gs} \neq \emptyset \vee \mathrm{p}+\mathrm{n} \leq \infty \mathrm{p} 2) \wedge\)
forallInstances(X,p,p+n,p1,p2,next(f),s,e,gs) \(\wedge\) Ft' \(=\operatorname{next}(T A 1(X, p 2, \operatorname{next}(f), g s)))\)
)
)

From (10), we proceed by case distinction.
Case 1
(20) \(\mathrm{n}=1\)
(21) \(\mathrm{p} 1=\infty \vee \mathrm{p} 1>\infty \mathrm{p} 2\)
(22) Ft'=done(true)

By the definition of \(\rightarrow\), (22) contradicts (8).
Case 2
------
(50) \(\mathrm{n} \geq 1\)
(51) p1 \(\neq \infty\)
(52) \(\mathrm{p} 1 \leq \infty\) p2
(53) \(\mathrm{p}+\mathrm{n} \leq \mathrm{p} 1\)
(54) Ft ' \(=\operatorname{next}(\mathrm{TAO}(\mathrm{X}, \mathrm{p} 1, \mathrm{p} 2, \operatorname{next}(\mathrm{f})))\)

By the definition of \(\rightarrow\), from (8) and (54), we have two subcases.
Subcase 2.1
(60) \(\mathrm{p}+\mathrm{n}<\mathrm{p} 1\)
(61) \(\mathrm{g}=\mathrm{Ft}\) '

From (60), we know
(62) \(\mathrm{p}+\mathrm{n}+1 \leq \mathrm{p} 1\)

From (51), (52), (54), (61), (62), we have [3] (first disjunct).
Subcase 2.2

There exists fs such that
(70) \(\mathrm{p}+\mathrm{n} \geq \mathrm{p} 1\)
(71) \(f s=\{(p x, \operatorname{next}(f),(c .1[X \mapsto p x], c .2[X \mapsto s \downarrow(p+n)(p x+p+n-|s \downarrow(p+n)|)])) \mid\) \(\mathrm{p} 1 \leq \mathrm{px}<\infty \min \infty(\mathrm{p}+\mathrm{n}, \mathrm{p} 2+\infty 1)\}\)
(72) \(\vdash \operatorname{next}(T A 1(X, p 2, \operatorname{next}(f), f s)) \rightarrow(p+n, s \downarrow(p+n), s(p+n), c) g\)

From (71), we know
(73) \(\mathrm{fs}=\{(\mathrm{px}, \operatorname{next}(\mathrm{f}),(\mathrm{c} .1[\mathrm{X} \mapsto \mathrm{px}], \mathrm{c} .2[\mathrm{X} \mapsto \mathrm{s}(\mathrm{px})])) \mid \mathrm{p} 1 \leq \mathrm{px}<\infty \min \infty(\mathrm{p}+\mathrm{n}, \mathrm{p} 2+\infty 1)\}\)

From (51), (52), (70), to show [3], it suffices to show
[4]
```

(\existsb\inBool: g=done(b)) V
(\existsgs\in\mathbb{P}(TInstance): (gs \not=\emptyset\vee p+n+1 \leq\infty p2) ^
forallInstances(X,p,p+n+1,p1,p2,next(f),s,e,gs) ^
g = next(TA1(X,p2,next(f),gs)))

```

To show [4], we assume
(74) \(\forall \mathrm{b} \in\) Bool: \(\mathrm{g} \neq\) done(b)
and show
[5] ( \(\exists \mathrm{gs} \in \mathbb{P}(\) TInstance \():(\mathrm{gs} \neq \emptyset \vee \mathrm{p}+\mathrm{n}+1 \leq \infty \mathrm{p} 2) \wedge\)
forallInstances (X,p,p+n+1,p1,p2,next(f),s,e,gs) \(\wedge\)
\(\mathrm{g}=\operatorname{next}(\mathrm{TA} 1(\mathrm{X}, \mathrm{p} 2, \operatorname{next}(\mathrm{f}), \mathrm{gs})))\)
From (72) and (74), we know by the definition of \(\rightarrow\) for some fs0 and fs1
(75) fs0 \(=\) if \(p+n>\infty \quad p 2\) then fs else
fs \(\cup\{(\mathrm{p}+\mathrm{n}, \operatorname{next}(\mathrm{f}),(\mathrm{c} .1[\mathrm{X} \mapsto \mathrm{p}+\mathrm{n}], \mathrm{c} .2[\mathrm{X} \mapsto \mathrm{s}(\mathrm{p}+\mathrm{n})]))\}\)
(76) \(\neg \exists \mathrm{t} \in \mathbb{N}, \mathrm{g} \in\) TFormula, \(\mathrm{c} \in\) Context: \((\mathrm{t}, \mathrm{g}, \mathrm{c}) \in \mathrm{fs} 0 \wedge\)
\(\vdash \mathrm{g} \rightarrow(\mathrm{p}+\mathrm{n}, \mathrm{s} \downarrow(\mathrm{p}+\mathrm{n}), \mathrm{s}(\mathrm{p}+\mathrm{n}), \mathrm{c})\) done (false)
(77) fs1 \(=\{(t, \operatorname{next}(f c), c) \in\) TInstance \(\mid \exists g \in\) TFormula: ( \(t, g, c) \in f s 0 \wedge\)
\(\vdash \mathrm{g} \rightarrow(\mathrm{p}+\mathrm{n}, \mathrm{s} \downarrow(\mathrm{p}+\mathrm{n}), \mathrm{s}(\mathrm{p}+\mathrm{n}), \mathrm{c}) \operatorname{next}(\mathrm{fc})\}\)
(78) \(\neg(f s 1=\emptyset \wedge p+n \geq \infty \mathrm{p} 2)\)
(79) \(\mathrm{g}=\operatorname{next}(\mathrm{TA} 1(\mathrm{X}, \mathrm{p} 2, \operatorname{next}(\mathrm{f}), \mathrm{fs} 1))\)

To show [5], it suffices to show (gs:=fs1)
[5.1] fs1 \(\neq \emptyset \vee p+n+1 \leq \infty\) p2
[5.2] forallInstances (X,p,p+n+1,p1,p2,next(f),s,e,fs1)
[5.3] \(\mathrm{g}=\operatorname{next}(\mathrm{TA} 1(\mathrm{X}, \mathrm{p} 2, \operatorname{next}(\mathrm{f}), \mathrm{fs} 1))\)

To show [5.1], we assume
(80) \(\mathrm{fs} 1=\emptyset\)
and show
[5.1.a] \(\mathrm{p}+\mathrm{n}+1 \leq \infty \mathrm{p} 2\)
From (78) and (80), we know
(81) \(\mathrm{p}+\mathrm{n}<\infty \mathrm{p} 2\)

From (81), we know [5.1.a].
From (79), we know [5.3].

It remains to show [5.2], i.e., by the definition of "forallInstances", for arbitrary \(t \in \mathbb{N}, g 0 \in T F o r m u l a, c 0 \in\) Context, that under the assumption
(82) \((\mathrm{t}, \mathrm{g} 0, \mathrm{c} 0) \in \mathrm{fs} 1\)
the following holds:
[5.2.1] ( \(\forall \mathrm{t} 1 \in \mathbb{N}, \mathrm{~g} 1 \in\) TFormula, \(\mathrm{c} 1 \in\) Context:
\((\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{fs} 1 \wedge \mathrm{t}=\mathrm{t} 1 \Rightarrow(\mathrm{t}, \mathrm{g} 0, \mathrm{c} 0)=(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1)\)
[5.2.2] \(\exists \mathrm{gc} \in\) TFormulaCore: \(\mathrm{g} 0=\) next (gc)
[5.2.3] \(\mathrm{c} 0.1=\mathrm{e}[\mathrm{X} \mapsto \mathrm{t}]\)
[5.2.4] c0.2=\{(Y,s(c0.1(Y))) | Y \(\in \operatorname{dom}(e) V Y=X\}\)
[5.2.5] \(\mathrm{p} 1 \leq \mathrm{t}\)
[5.2.6] \(\mathrm{t} \leq \mathrm{p}+\mathrm{n}\)
[5.2.7] \(\mathrm{t} \leq \infty \mathrm{p} 2\)
[5.2.8] \(\vdash \operatorname{next}(\mathrm{f}) \rightarrow *(\mathrm{p}+\mathrm{n}+1-\max (\mathrm{p}, \mathrm{t}), \max (\mathrm{p}, \mathrm{t}), \mathrm{s}, \mathrm{c} 0.1) \mathrm{g} 0\)
From (77) and (82), we know for some fc0 0 TFormulaCore, g1 \(1 \in\) TFormula
(83) \(\mathrm{g} 0=\mathrm{next}(\mathrm{fc} 0)\)
(84) ( \(\mathrm{t}, \mathrm{g} 1, \mathrm{c} 0) \in \mathrm{fs} 0\)
(85) \(\vdash \mathrm{g} 1 \rightarrow(\mathrm{p}+\mathrm{n}, \mathrm{s} \downarrow(\mathrm{p}+\mathrm{n}), \mathrm{s}(\mathrm{p}+\mathrm{n}), \mathrm{c} 0) \mathrm{g} 0\)

From (53) and (70), we know
(86) \(\mathrm{p}+\mathrm{n}=\mathrm{p} 1\)

From (73) and (86), we know
(87) \(\mathrm{fs}=\emptyset\)

From (84), we know
(88) fs0 \(\neq \emptyset\)

From (75), (87), and (88), we know
(89) \(\mathrm{fs} 0=\{(\mathrm{p}+\mathrm{n}, \operatorname{next}(\mathrm{f}),(\mathrm{c} .1[\mathrm{X} \mapsto \mathrm{p}+\mathrm{n}], \mathrm{c} .2[\mathrm{X} \mapsto \mathrm{s}(\mathrm{p}+\mathrm{n})]))\}\)
```

From (84) and (89), we know
(100) t = p+n
(101) g1 = next(f)
(102) c0.1 = c.1[X\mapstop+n]
(103) c0.2 = c.2[X\mapstos(p+n)]

```
From (77), (89), and the fact that the rule system is deterministic,
we know [5.2.1].
From (83), we know [5.2.2].
From (3), (100), (102), and (103) we know [5.2.3] and [5.2.4].
From (86) and (100), we know [5.2.5] and [5.2.6].
From (52), (86), and (100), we know [5.2.7].
From (0) and (100), we know
(104) \(\max (\mathrm{p}, \mathrm{t})=\mathrm{t}\)
From (100), (101) and (104), to show [5.2.8], it suffices to show
[5.2.8.a] \(\vdash \mathrm{g} 1 \rightarrow *(1, \mathrm{p}+\mathrm{n}, \mathrm{s}, \mathrm{c} 0.1) \mathrm{g} 0\)
From the definition of \(\rightarrow\), (85), (3), (102), and (103), we have [5.2.8.a].
Case 3
(200) \(\mathrm{n} \geq 1\)
(201) p1 \(\neq \infty\)
(202) p1 \(\leq \infty\) p2
(203) \(\mathrm{p}+\mathrm{n}>\mathrm{p} 1\)
(204) ( \(\exists \mathrm{b} \in\) Bool: Ft '=done(b)) \(V\)
    ( \(\exists \mathrm{gs} \in \mathbb{P}(\) TInstance \():(\mathrm{gs} \neq \emptyset \vee \mathrm{p}+\mathrm{n} \leq \infty \mathrm{p} 2) \wedge\)
        forallInstances(X,p,p+n,p1,p2,next(f),s,e,gs) \(\wedge\)
        Ft' \(=\operatorname{next}(T A 1(X, p 2, \operatorname{next}(f), g s)))\)
From (204), we proceed by case distinction.
Subcase 3.1
We have some \(b \in B o o l\) such that
(210) Ft'=done (b)
By the definition of \(\rightarrow\), (210) contradicts (8).
Subcase 3.2
We have some gs \(\in \mathbb{P}\) (TInstance) such that
(301) gs \(\neq \emptyset \vee \mathrm{p}+\mathrm{n} \leq \infty \mathrm{p} 2\)
(302) forallInstances(X,p,p+n,p1,p2,next(f),s,e,gs)
```

(303) Ft' = next(TA1(X,p2,next(f),gs))
We define
(304) fs0 = if p+n >\infty p2 then gs else gs U
{(p+n,next(f),(c.1[X\mapstop+n],c.2[X\mapstos(p+n)]))}
From (8), (303), and (304), we have by the definition of }->\mathrm{ three cases.
Subsubcase 3.2.1
We have some t0\in\mathbb{N},g0\inTFormula,c0\inContext such that
(310) (t0,g0,c0)\infs0
(311) }\vdash\textrm{g}0->(\textrm{p}+\textrm{n},\textrm{s}\downarrow(\textrm{p}+\textrm{n}),\textrm{s}(\textrm{p}+\textrm{n}),\textrm{c})\mathrm{ done(false)
(312) g = done(false)
From (201), (202), (203), and (312), we have [3] (second disjunct, first case).
Subsubcase 3.2.2
We have some fs1 such that
(320) }\neg\exists\textrm{t}\in\mathbb{N},\textrm{g}\in\mathrm{ TFormula,c}c\in\mathrm{ Context: (t,g,c) }\in\textrm{gs}
\& }->(\textrm{p}+\textrm{n},\textrm{s}\downarrow(\textrm{p}+\textrm{n}),\textrm{s}(\textrm{p}+\textrm{n}),\textrm{c})\mathrm{ done(false)
(321) fs1 = { (t,next(fc),c) \in TInstance | \existsg\inTFormula: (t,g,c)\infs0 ^
\vdashg->(p+n,s\downarrow(p+n),s(p+n),c) next(fc)}
(322) fs1 = \emptyset
(323) p+n \geq\infty p2
(324) g = done(true)
From (201), (202), (203), and (324), we have [3] (second disjunct, first case).
Subsubcase 3.2.3
We have some fs1 such that
(330) }\neg\exists\textrm{t}\in\mathbb{N},\textrm{g}\in\mathrm{ TFormula, c}\in\mathrm{ Context: (t,g,c) }\textrm{gss}
f }->(\textrm{p}+\textrm{n},\textrm{s}\downarrow(\textrm{p}+\textrm{n}),\textrm{s}(\textrm{p}+\textrm{n}),\textrm{c})\mathrm{ done(false)
(331) fs1 = { (t,next(fc),c) \in TInstance | \existsg\inTFormula: (t,g,c)\infs0 ^
\& }->(\textrm{p}+\textrm{n},\textrm{s}\downarrow(\textrm{p}+\textrm{n}),\textrm{s}(\textrm{p}+\textrm{n}),c)\operatorname{next(fc)}
(332) \neg(fs1 = \emptyset ^ p+n \geq\infty p2)
(333) g = next(TA1(X,p2,next(f),fs1))
From (201), (202), (203), and (333), to show [3], it suffices to show
(second disjunct, second case, gs:=fs1):
[3.1] fs1 }\not=\emptyset\veep+n+1\leq\infty p
[3.2] forallInstances(X,p,p+n+1,p1,p2,next(f),s,e,fs1)
[3.3] g = next(TA1(X,p2,next(f),fs1)))
From (332), we have [3.1].
From (333), we have [3.3].
To show [3.2], by the definition of "forallInstances", we take
arbitrary t,g0,c0 such that

```
(340) \((t, g 0, c 0) \in f s 1\)
and show
[3.2.1] \(\forall \mathrm{t} 1 \in \mathbb{N}, \mathrm{~g} 1 \in\) TFormula, \(\mathrm{c} 1 \in\) Context:
\[
(t 1, g 1, c 1) \in f s 1 \wedge t=t 1 \Rightarrow(t, g 0, c 0)=(t 1, g 1, c 1)
\]
[3.2.2] \(\exists \mathrm{gc} \in\) TFormulaCore: \(\mathrm{g} 0=\mathrm{next}(\mathrm{gc})\)
[3.2.3] \(\mathrm{c} 0.1=\mathrm{e}[\mathrm{X} \mapsto \mathrm{t}]\)
[3.2.4] c0.2=\{(Y,s(c0.1(Y))) | Y \(\in \operatorname{dom}(e) V Y=X\}\)
[3.2.5] \(\mathrm{p} 1 \leq \mathrm{t}\)
[3.2.6] \(\mathrm{t} \leq \mathrm{p}+\mathrm{n}\)
[3.2.7] \(\mathrm{t} \leq \infty \mathrm{p} 2\)
[3.2.8] \(\vdash \operatorname{next}(\mathrm{f}) \rightarrow *(\mathrm{p}+\mathrm{n}+1-\max (\mathrm{p}, \mathrm{t}), \max (\mathrm{p}, \mathrm{t}), \mathrm{s}, \mathrm{c} 0.1) \mathrm{g} 0\)
From (331) and (340), we have some fc0 TFormulaCore, g1 \(\in\) TFormula with
(341) g0 \(=\operatorname{next}(f c 0)\)
(342) ( \(\mathrm{t}, \mathrm{g} 1, \mathrm{c} 0) \in \mathrm{fs} 0\)
(343) \(\vdash \mathrm{g} 1 \rightarrow(\mathrm{p}+\mathrm{n}, \mathrm{s} \downarrow(\mathrm{p}+\mathrm{n}), \mathrm{s}(\mathrm{p}+\mathrm{n}), \mathrm{c} 0) \operatorname{next}(\mathrm{fc} 0)\)

From (341), we have [3.2.2].
It remains to show [3.2.1] and [3.2.3-8].
From (302) and the definition of "forallInstances", we know
(344)
```

$\forall \mathrm{t} \in \mathbb{N}, \mathrm{g} \in$ TFormula, $\mathrm{c} 0 \in$ Context: $(\mathrm{t}, \mathrm{g}, \mathrm{c} 0) \in \mathrm{gs} \Rightarrow$
($\forall \mathrm{t} 1 \in \mathbb{N}$, g1 \in TFormula, $\mathrm{c} 1 \in$ Context:
$(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1) \in \mathrm{gs} \wedge \mathrm{t}=\mathrm{t} 1 \Rightarrow(\mathrm{t}, \mathrm{g}, \mathrm{c} 0)=(\mathrm{t} 1, \mathrm{~g} 1, \mathrm{c} 1)) \wedge$
($\exists \mathrm{gc} \in \mathrm{TFormulaCore:} \mathrm{g=next(gc))} \wedge$
$\mathrm{c} 0.1=\mathrm{e}[\mathrm{X} \mapsto \mathrm{t}] \wedge \mathrm{c} 0.2=\{(\mathrm{Y}, \mathrm{s}(\mathrm{c} 0.1(\mathrm{Y}))) \mid \mathrm{Y} \in \operatorname{dom}(\mathrm{e}) \vee \mathrm{Y}=\mathrm{X}\} \wedge$
$\mathrm{p} 1 \leq \mathrm{t} \leq \infty \min \infty(\mathrm{p}+\mathrm{n}-1, \mathrm{p} 2) \wedge$
$\vdash \operatorname{next}(\mathrm{f}) \rightarrow *(\mathrm{p}+\mathrm{n}-\max (\mathrm{p}, \mathrm{t}), \max (\mathrm{p}, \mathrm{t}), \mathrm{s}, \mathrm{c} 0.1) \mathrm{g}$

```

We proceed by case distinction.
Subsubsubcase 3.2.3.1
(350) \(\mathrm{p}+\mathrm{n}>\infty \mathrm{p} 2\)

From (304) and (350), we have
(351) fs0 \(=g s\)

From (342), (351), and (344), we know for some gc0 0 TFormulaCore
(352) \(\forall \mathrm{t} 2 \in \mathbb{N}, \mathrm{~g} 2 \in\) TFormula, \(\mathrm{c} 2 \in\) Context:
\((\mathrm{t} 2, \mathrm{~g} 2, \mathrm{c} 2) \in \mathrm{gs} \wedge \mathrm{t}=\mathrm{t} 2 \Rightarrow(\mathrm{t}, \mathrm{g} 1, \mathrm{c} 0)=(\mathrm{t} 2, \mathrm{~g} 2, \mathrm{c} 2)\)
(353) g1=next (gc0)
(354) c0.1=e[X \(\mapsto t]\)
(355) \(c 0.2=\{(Y, s(c 0.1(Y))) \mid Y \in \operatorname{dom}(e) V Y=X\}\)
(356) \(\mathrm{p} 1 \leq \mathrm{t}\)
```

(357) t < p+n
(358) t \leq\infty p2
(359) }\vdash\operatorname{next(f) }->*(\textrm{p}+\textrm{n}-\textrm{max}(\textrm{p},\textrm{t}),\operatorname{max}(\textrm{p},\textrm{t}),\textrm{s},\textrm{c}0.1)\textrm{g}
From (331), (351), (352), and the fact that the rule system for }->\mathrm{ is
deterministic, we know [3.2.1].
From (354), we know [3.2.3].
From (355), we know [3.2.4]
From (356), we know [3.2.5].
From (357), we know [3.2.6].
From (358), we know [3.2.7].
From (359) and Lemma 2 "Equivalence of Left- and Right-Recursive Definitions
of n-Step Reductions", we know
(360) }\vdash\operatorname{next(f) }->\textrm{l}*(\textrm{p}+\textrm{n}-\operatorname{max}(\textrm{p},\textrm{t}),\operatorname{max}(\textrm{p},\textrm{t}),\textrm{s},\textrm{c}0.1) g
From (343) and (360), we know by the definition of }->
(361) \vdash next(f) }->l*(p+n+1-max(p,t),max(p,t),s,c0.1) next(fc0
From (361) and Lemma 2 "Equivalence of Left- and Right-Recursive Definitions
of n-Step Reductions", we know
(362) }\vdash\operatorname{next(f) }->*(\textrm{p}+\textrm{n}+1-\operatorname{max}(\textrm{p},\textrm{t}),\operatorname{max}(\textrm{p},\textrm{t}),\textrm{s},\textrm{c}0.1)\operatorname{next}(\textrm{fc}0
From (341) and (362), we know [3.2.8].
Subsubsubcase 3.2.3.2
(400) p+n \leq\infty p2
From (304) and (400), we know
(401) fs0 = gs U{(p+n,next(f),(c.1[X\mapstop+n],c.2[X\mapstos(p+n)]))}
From (342) and (401), we have two cases.
Subsubsubsubcase 3.2.3.2.1
(410) (t,g1, c0)\ings
From (344) and (410), we know for some gc0\inTFormulaCore
(412) }\forall\textrm{t}2\in\mathbb{N},g2\inTFormula,c2\inContext
(t2,g2,c2)\ings ^ t=t2 \# (t,g1, c0)=(t2,g2, c2)
(413) g1=next(gc0)
(414) c0.1=e[X \mapsto t]
(415) c0.2={(Y,s(c0.1(Y))) | Y \in dom(e) V Y = X}
(416) p1 \leq t
(417) t < p+n
(418) t \leq\infty p2
(419) }\vdash\operatorname{next(f)}->*(\textrm{p}+\textrm{n}-\operatorname{max}(\textrm{p},\textrm{t}),\operatorname{max}(\textrm{p},\textrm{t}),\textrm{s},\textrm{c}0.1)\textrm{g}

```

To show [3.2.1], we take arbitrary t2 \(2 \in \mathbb{N}, \mathrm{~g} 2 \in\) TFormula, \(\mathrm{c} 2 \in\) Context for which we assume
(420) \((\mathrm{t} 2, \mathrm{~g} 2, \mathrm{c} 2) \in \mathrm{fs} 1\)
(421) \(\mathrm{t}=\mathrm{t} 2\)
and show
[3.2.1.a] \((t, g 0, c 0)=(t 2, g 2, c 2)\)

To show [3.2.1.a], from (421), it suffices to show
[3.2.1.a.1] \(\mathrm{g} 0=\mathrm{g} 2\)
[3.2.1.a.2] \(\mathrm{c} 0=\mathrm{c} 2\)
From (331) and (420), we have some g3 TFormula, fc3 \(\mathcal{F}\) TFormulaCore such that
(422) g2=next(fc3)
(423) \((t, g 3, c 1) \in f s 0\)
(424) \(\vdash \mathrm{g} 3 \rightarrow(\mathrm{p}+\mathrm{n}, \mathrm{s} \downarrow(\mathrm{p}+\mathrm{n}), \mathrm{s}(\mathrm{p}+\mathrm{n}), \mathrm{c} 1) \mathrm{g} 2\)

From (401), (417), and (423), we know
(425) \((t, g 3, c 1) \in g s\)

From (410), (412), and (425), we have
(426) g1 = g3
(427) c0 = c1

From (341), (343), (426), and (427), we have
\((428) \vdash \mathrm{g} 3 \rightarrow(\mathrm{p}+\mathrm{n}, \mathrm{s} \downarrow(\mathrm{p}+\mathrm{n}), \mathrm{s}(\mathrm{p}+\mathrm{n}), \mathrm{c} 1) \mathrm{g} 0\)
From (424), (428), and the fact that the rule system for \(\rightarrow\) is deterministic, we have [3.2.1.a.1].

From (427), we have [3.2.1.a.2].
From (414), we know [3.2.3].
From (415), we know [3.2.4]
From (416), we know [3.2.5].
From (417), we know [3.2.6].
From (418), we know [3.2.7].

From (419) and Lemma 2 "Equivalence of Left- and Right-Recursive Definitions of n -Step Reductions", we know
(450) \(\vdash \operatorname{next}(\mathrm{f}) \rightarrow \mathrm{l} *(\mathrm{p}+\mathrm{n}-\max (\mathrm{p}, \mathrm{t}), \max (\mathrm{p}, \mathrm{t}), \mathrm{s}, \mathrm{c} 0.1) \mathrm{g} 1\)

From (343) and (450), we know by the definition of \(\rightarrow *\)
\((451) \vdash \operatorname{next}(f) \rightarrow l *(p+n+1-\max (p, t), \max (p, t), s, c 0.1) \operatorname{next}(f c 0)\)

From (451) and Lemma 2 "Equivalence of Left- and Right-Recursive Definitions of n -Step Reductions", we know
```

(452) \vdash next(f) }->*(\textrm{p}+\textrm{n}+1-\operatorname{max}(\textrm{p},\textrm{t}),\operatorname{max}(\textrm{p},\textrm{t}),\textrm{s},\textrm{c}0.1) next(fc0

```

From (341) and (452), we know [3.2.8].
Subsubsubsubcase 3.2.3.2.2
(500) \(\mathrm{t}=\mathrm{p}+\mathrm{n}\)
(501) g1=next(f)
(502) c0.1=c.1[X \(\mapsto \mathrm{p}+\mathrm{n}]\)
(503) \(\mathrm{c} 0.2=\mathrm{c} .2[\mathrm{X} \mapsto \mathrm{s}(\mathrm{p}+\mathrm{n})]\)

To show [3.2.1], we take arbitrary t \(2 \in \mathbb{N}, \mathrm{~g} 2 \in\) TFormula, c \(2 \in\) Context
for which we assume
(520) ( \(\mathrm{t} 2, \mathrm{~g} 2, \mathrm{c} 2) \in \mathrm{fs} 1\)
(521) \(\mathrm{t}=\mathrm{t} 2\)
and show
[3.2.1.a] \((t, g 0, c 0)=(t 2, g 2, c 2)\)
To show [3.2.1.a], from (521), it suffices to show
[3.2.1.a.1] \(\mathrm{g} 0=\mathrm{g} 2\)
[3.2.1.a.2] \(\mathrm{c} 0=\mathrm{c} 2\)

(522) g2=next(fc3)
(523) ( \(t, \mathrm{~g} 3, \mathrm{c} 2) \in \mathrm{fs} 0\)
(524) \(\vdash \mathrm{g} 3 \rightarrow(\mathrm{p}+\mathrm{n}, \mathrm{s} \downarrow(\mathrm{p}+\mathrm{n}), \mathrm{s}(\mathrm{p}+\mathrm{n}), \mathrm{c} 2) \mathrm{g} 2\)

From (344) and (500), we know
(525) \((t, g 3, c 2) \notin g s\)

From (401), (523), (525), we know
(526) g3 \(=\operatorname{next}(f)\)
(527) c2.1 = \(\mathrm{c} .1[\mathrm{X} \mapsto \mathrm{p}+\mathrm{n}]\)
(528) c2.2 \(=c .2[\mathrm{X} \mapsto \mathrm{s}(\mathrm{p}+\mathrm{n})]\)

From (341), (343), (501), (524), (527), (528), we know
(529) \(\vdash \mathrm{g} 3 \rightarrow(\mathrm{p}+\mathrm{n}, \mathrm{s} \downarrow(\mathrm{p}+\mathrm{n}), \mathrm{s}(\mathrm{p}+\mathrm{n}), \mathrm{c} 2) \mathrm{g} 0\)

From (524), (529), and the fact that the rule system for \(\rightarrow\) is deterministic, we have [3.2.1.a.1].

From (502), (503), (527), (528), we know [3.2.1.a.2].

From (2), (500), (502), (503), we know [3.2.3] and [3.2.4].
From (203) and (500), we know [3.2.5].
From (500), we know [3.2.6].
From (400) and (500), we know [3.2.7].
From (500), to show [3.2.8], it suffices to show
[3.2.8.a] \(\vdash \operatorname{next}(\mathrm{f}) \rightarrow *(1, \mathrm{p}+\mathrm{n}, \mathrm{s}, \mathrm{c} 0.1) \mathrm{g} 0\)
From (526), (529), [3.2.1.a.2], and the definition of \(\rightarrow *\), we know [3.2.8.a].
Q.E.D.```


[^0]:    *The project "LogicGuard: The Efficient Checking of Time-Quantified Logic Formulas with Applications in Computer Security" is sponsored by the FFG BRIDGE program, project No. 832207.

