
AUSTRIAN GRID

 1/18

AUSTRIAN GRID

THE INITIAL VERSION OF SEE-GRID

Document Identifier: AG-DA1c-1-2005_v1.doc

Workpackage: A1c

Partner(s): Research Institute for Symbolic Computation (RISC)
Upper Austrian Research (UAR)

Lead Partner: RISC

WP Leaders: Wolfgang Schreiner (RISC), Michael Buchberger (UAR)

AUSTRIAN GRID

 2/18

Delivery Slip

 Name Partner Date Signature

From Károly Bósa RISC 31.03.2005

Verified by

Approved by

Document Log

Version Date Summary of changes Author

1.0 2005-03-10 Initial Version See cover on page 3

AUSTRIAN GRID

 3/18

THE INITIAL VERSION OF SEE-GRID

Karoly Bosa
Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)

Johannes Kepler University Linz
{Karoly.Bosa, Wolfgang.Schreiner}@risc.uni-linz.ac.at

Michael Buchberger
Thomas Kaltofen

Department for Medical Informatics

Upper Austrian Research (UAR)
Thomas.Kaltofen@uar.at

April 19, 2005

AUSTRIAN GRID

 4/18

Table of Contents

ABSTRACT... 5

1 THE CURRENT ARCHITECTURE OF SEE-GRID.. 6
1.1 THE ALGORITHM AND THE BASIC PARALLELIZATION IDEA .. 7
1.2 DESIGN ADAPTATION FOR THE AUSTRIAN GRID ENVIRONMENT .. 8
1.3 THE CONFIGURATION OF OUR NETWORK FOR USING THE AUSTRIAN GRID .. 9

2 THE "SEE++ TO GRID BRIDGE" .. 10
2.1 HOW TO USE "SEE++ TO GRID BRIDGE" .. 10
2.2 STARTING PROCEDURE OF SEE++ SERVERS ON THE GRID ... 12

3 PARALLELISED GAZE PATTERN CALCULATION ... 13
3.1 NEW MESSAGE IN "SEEPP2GRID"-SERVER PROTOCOL... 15

4 INITIAL TESTING AND BENCHMARKS ... 15

5 CONCLUSIONS AND NEXT STEPS ... 17

REFERENCES.. 18

AUSTRIAN GRID

 5/18

Abstract

This document describes the functionality of the “SEE++ to Grid Bridge”, which is the initial
component of SEE-GRID. SEE-GRID is based on the SEE++ software for the biomechanical
simulation of the human eye. SEE++ was developed in the SEE-KID project by the Upper
Austrian Research and the Upper Austria University of Applied Sciences. SEE++ consists of
a client component for user interaction and of a server component that runs various
computations.

Via the “SEE++ to Grid Bridge”, normal SEE++ clients are able to access and exploit the
computational power of the Austrian Grid. The bridge starts SEE++ servers on various grid
sites and distributes to them computational tasks received from some SEE+ clients. This paper
addresses the following issues:

• How the initially proposed design of SEE-GRID was adapted to the current software
infrastructure of the Austrian Grid.

• How our environment was configured in order to access to the Austrian Grid.

• How the “SEE++ to Grid Bridge” works together with SEE++ clients and the

middleware software layer of the Austrian Grid.

• How SEE++ server processes are started in the grid environment.

• How computational tasks are distributed to the Austrian Grid resources.

• How and with what kind of parameters the “SEE++ to Grid Bridge” can be used.

 At the end of this paper, we summarize our first experiences and benchmark results related to
this initial version of SEE-GRID.

AUSTRIAN GRID

 6/18

1 The Current Architecture of SEE-GRID

SEE++ Clients

SEE++ Server

GRID (Globus PRE-OGSA)

SEE++ Server

SEE++ Server

.

.

.

SEE++ Server

SEE++ To GRID
Bridge

Figure 1: The Current Architecture of SEE-GRID

The design of SEE-GRID is based on the SEE++ software for the biomechanical simulation
of the human eye. SEE++ was developed in the frame of the SEE-KID project by Upper
Austrian Research and the Upper Austria University of Applied Sciences [SEE-KID,
Buchberger 2004, Kaltofen 2002]; it consists of a client component for user interaction and of
a server component that runs various computations ("currently "Hess Diagram Calculation").

In the first phase of the SEE-GRID project, our main goals were the followings. First of all,
we wanted to try out how the current version of the SEE++ software can be combined with
the architecture of Austrian Grid. Then, we wanted to demonstrate how a noticeable speedup
can be reached in SEE++ — by applying simple data parallelism — by the exploitation of the
huge computational power of the Austrian Grid.

For achieving this, we have implemented the initial component of SEE-GRID, called "SEE++
to Grid Bridge", via which the normal SEE++ client can get access to the Austrian Grid and
use its infrastructure to perform computations (see Figure 1). When this application is
executed, it starts some SEE++ server on one (or perhaps more) grid site(s) and then waits for
computational tasks from its clients. The SEE++ clients can access this application in the
same way as in the original SEE++ system; the usage of grid resources is completely
transparent to them.

AUSTRIAN GRID

 7/18

1.1 The Algorithm and the Basic Parallelization Idea

a.) b.)

c.)

Figure 2: Typical Gaze Patterns in SEE++:
a.) Default b.) Orbit and c.) Brainstem

SEE++ is able to simulate the result of the Hess-Lancaster test which is a test for binocular
functions with separated images for both eyes [SEE-KID, 2004]. A gaze pattern (or "Hess
Diagrams") which is the outcome this kind of examination is an eye pair’s image of set of
reference points in the plane (the most common gaze patterns used by the software are
depicted on Figure 2). If a patient stares such a diagram with a perfectly healthy pair eyes,
these points form a regular pattern (called intended gaze pattern) for her (see the blue lines on
Figures 2a, b and c). But if somebody has an impaired pair eyes, the seen pattern is distorted
(see the red lines on Figures 2a, b and c).

The algorithm of the gaze pattern calculation always receives a complete eye model (fixing
eye, following eye, reference eye) [SEE-KID, 2004] and a matrix with the coordinates of the
points of the currently used intended gaze pattern. The rough sketch of the algorithm is the
following:

hessDiagram(E1, E2, E, I):

 for each intended gaze position i � I do
 C[i] := position(E1, E2, E, i)
 return C

AUSTRIAN GRID

 8/18

position(E1, E2, E, i):

1. Compute from I and E the 3D gaze position i’.

2. Compute from i’ and E1 the innervations I1 of the fixing eye.
3. Compute from I1 and E the intended gaze position i1 of the fixing

eye.

4. Mirror i1 to yield the intended gaze position i2 of the following eye.

5. Compute from i2 and E the innervations I2 of the following eye.
6. Compute from E2 and I2 the gaze position c of the following eye.

return c

The output C is the (calculated) gaze pattern of the eye model for the points in the intended
gaze pattern.

From the algorithm sketch, it can be seen that the calculation of the different gaze points is
completely independent from each other. We exploited this fact for the parallelization of the
gaze pattern calculation in the "SEE++ to Grid Bridge" such that it is able to split gaze pattern
calculation requests of clients to independent subtasks and to distribute them among the
SEE++ servers (data parallelism).

1.2 Design Adaptation for the Austrian Grid Environment

In the original design document [SEE-GRID Design, 2004], we proposed to use the Web
Service (WS) interface of the latest stable release of Globus [Globus, 2004] (Globus 3.2) in
order to connect SEE++ to the Austrian Grid. For this, we planed to implement two
intermediate components. The first proposed component was a bridge/proxy between SEE++
clients and Globus, which would have been a dual role:

• To hide all the operations related to any interaction with Globus, since the SEE++
client (Windows application or Java applet) must not be affected by the proposed grid
extension.

• This component would have been a Java program, which encodes the requests from
the clients into strings which are "tunnelled" through the grid middleware layer. This
would have been necessary, because the SEE++ server is implemented in C++ and
communicates with the clients by exchanging C++ data structures in SOAP [SOAP,
2003] encoding, but the WS interface of the Globus 3.2 toolkit can be programmed
only in Java.

The second component would have been another Java program between Globus and each
SEE++ server; its role would have been to unpack the requests into the form expected by the
server.

Unfortunately, the WS part of Globus has not yet been integrated into the software
specification of Austrian Grid [AGRID S. Spec., 2004]. Therefore, we had to modify our
conception and to change our design to the pre-WS interface of Globus. The major alterations

AUSTRIAN GRID

 9/18

in our design were that we had to use C/C++ instead of Java, because the Globus pre-WS
interface is available only as C libraries.

Usage of C/C++ has some advantages in our case, since the tunnelling of the C++ data
structures contained by the SOAP messages became unnecessary and so did the second
intermediate component between the Globus and each SEE++ server. However, we lost
several benefits offered by the web service architecture. Therefore, after Globus 4 is issued
and deployed on the Austrian Grid in the near future, we will change to it, because it will
support to implement web services in C/C++ as well.

For implementing the communication protocol on the "SEE++ to Grid Bridge", we used
gSOAP [gSOAP, 2005] as in the case of the development of the original SEE++ components.
gSOAP is collection of (pre)compiler tools that provide a SOAP/XML to C/C++ language
binding to ease the development of SOAP/XML Web services and client application in C
and/or C++. Since gSOAP does not contain libraries for parsing XML from the source code
(in contrast to Java), every message content received by the "SEE++ to Grid Bridge" is
deserialized to C++ classes, which are processed for distribution to different servers and then
serialized again before sending further in SOAP messages.

1.3 The Configuration of our Network for Using the Austrian Grid

Currently we have set up a grid client/portal machine in the office of Upper Austrian Research
in Hagenberg. Since our network is protected by a firewall and we use DHCP and NAT
(Network Address Translation), the machines of this local network are normally not reachable
from outside. To configure the grid portal machine for the call back methods of Globus pre-
WS architecture, we had to give a fixed IP address to this machine in order to apply port
forwarding through our firewall to it. Then we configured our Globus installation on the
portal machine to use the specific port range for callbacks (by the environment variable
GLOBUS_TCP_PORT_RANGE).

Additionally, we had to adjust the primary domain name of the portal machine to the same
fully qualified domain name as our network is visible from outside (in order that the Globus
GRAM client module, GASS server module, etc. would be able to generate the corresponding
callback strings).

AUSTRIAN GRID

 10/18

2 The "SEE++ to Grid Bridge"

Figure 3: Gaze Pattern Calculation via "seepp2grid" Bridge

The "SEE++ to Grid Bridge" acts as a SEE++ sever to the SEE++ clients and as a Globus
client to the Austrian Grid.

2.1 How to Use "SEE++ to Grid Bridge"

Before running "SEE++ to Grid Bridge", the user has to create her own proxy certificate
[Globus, 2004] by the command

grid-proxy-init.

Then, she is able to start the executable called "seepp2grid" with some parameters (see
Figure 3). The only parameter that has to be given compulsory is the fully qualified domain
name of the grid site on which "seepp2grid" program will start a/some SEE++ server(s):

seepp2grid [-help] [options…] GRIDSITE

Initially, server processes can be started on only one grid site. If the user does not give any
other parameter, then the program assumes that the executable of the SEE++ server is located
in the corresponding home directory on the given grid site and it starts only one process of it
on the site. Then the "seepp2grid" starts to listen on the default port (8090) for client requests.

AUSTRIAN GRID

 11/18

The following parameters can be used for the "seepp2grid":

-help : To display a sort description about the usage of the
program.

-n <number> : The number of the SEE++ servers that are intended to

start on the grid site can be specified by this parameter.

-g <number> : The maximum number of the (intended gaze pattern's)

points whose coordinates are forwarded in a message to
the same SEE++ server. This parameter is used to
specify the granularity of the data parallelism (see
Section 3). Its minimum value is 1. The default is 9
(which is the number of the points in the default gaze
pattern used by SEE++, see Figure 2).

-path <remote path> : The location of the executable of the SEE++ server on

the grid site can be specified by this parameter.

-port <number> : A port number can be specified on which the

"seepp2grid" will wait for the connection requests of the
SEE++ clients.

For instance, the command

seepp2grid -n 9 -g 1 -path /home/local/agrid/ag10022
altix1.jku.austriangrid.at

starts 9 processes of SEE++ server located in the directory "/home/local/agrid/ag10022"on the
Austrian Grid site "altix1.jku.austriangrid.at".

During the execution of the "seepp2grid", the user can issue some commands additionally:

• By the command start [-path <remote path> -n <number>] GRIDSITE, some new

SEE++ servers can be started on the same or on a different grid site similarly as before.

• By the command exit, the user is able to shut down all SEE++ servers (started on every

grid site) and finish the execution of the "seepp2grid" program.

AUSTRIAN GRID

 12/18

2.2 Starting Procedure of SEE++ Servers on the Grid

GRID (Globus PRE-OGSA)
Bridge Server

File System

Named Pipe

seepp2grid

main thread

input thread

Gatekeeper

Globus GASS Server

Globus Job Manager

SEE++ Server

SEE++ Server
(child process)

1.) Start GASS Server

3.) Create a Job Manager
for the request

4.) Create
process

5.) Bind a free port
and fork a copy of itself

6.) Write the port
number to stdout

and terminate

7.) After the process
terminated the Job
Manager sends the port
number to the given
GASS server

8.) The GASS server sends/redirects
the port number to the “input thread” of
seepp2grid via a named pipe.

2.) Request for resource
allocation and SEE++
server process creation

Figure 4: Starting a SEE++ Server on Globus Site

In the first step, the "seepp2grid" starts a GASS server [Globus, 2004] on the local machine
(see Figure 4). To this server, the standard output streams (and standards error streams) of the
started SEE++ servers will be redirected by their Globus Job Managers. The GASS server in
turn forwards this received information to the "seepp2grid" application via a predefined
"named pipe". The Globus GASS server can be configured such that it prints out (to a
determined target file) a received line at a time, so multiple senders can access to it safely.

The SEE++ servers can be started on the grid sites as normal grid jobs (see Figure 4). This
means, the "seepp2grid" acts as a GRAM client and submits a job in a RSL (Resource
Specification Language [Globus, 2004]) expression on a particular grid site through its
Gatekeeper. The template of the RSL expression applied for starting a number of SEE++
server processes is the following:

&(executable="<location_of_the_executable>/grid-seeppserver")
(count=<number_of_processes>)

(stdout="<contact_string_of_GASS>/<location_of_a_named_pipe>")
(stderr="="<contact_string_of_GASS>/<location_of_a_named_pipe> ")

When a SEE++ server is started, it attempts to bind a free port in a predefined port range.
Then it should send this information back to the "seepp2grid". Unfortunately this is not a
trivial task, because it is not possible to communicate through the gatekeeper-connection in
"real time". This connection is an https-stream and everything sent through it is placed in the
GASS cache. But there is no possibility to force emptying of the GASS cache unless the

AUSTRIAN GRID

 13/18

submitted job terminates or one overflows the GASS cache by writing useless data to it. For
solving this problem, we applied a technique that has already been implemented in the
glogin [glogin, 2004] for a similar case. According to this, after the server process has bound
a free port and sent the port number to the client trough the gatekeeper connection, it forks
itself and then terminates. The Gatekeeper perceives the termination of the program and
empties the GASS cache.

Fortunately, once the Gatekeeper has started a program on a grid site, then this program will
take care of its communication itself. Therefore, the "seepp2grid" will be able to connect to
the socket, which is still held active by the previously forked copy of the started SEE++
server.

3 Parallelised Gaze Pattern Calculation

Figure 5: Communication between "seepp2grid" and SEE++ Servers with gSOAP
a.) without Threads b.) with Threads

After the SEE++ server(s) was/were started on a grid site and their port number(s) became
known, the "seepp2grid" bridge waits for connection requests from SEE++ clients. When the
user triggers a gaze pattern calculation on a SEE++ client, the following happens from the
point of view of the "seepp2grid" program:

• A message Calculate_Binocular_Test(E1, E2, E, I) [SEE-GRID Design, 2004]
arrives at the "seepp2grid" bridge from a client, where E1, E2, E define an eye
model (fixing eye, following eye, reference eye) and I is a matrix. I
determines/consists of the points of the current intended gaze pattern used on the
client.

T
I

M
E

seepp2grid

soap
message

soap
message

soap
message

soap
response

soap
response

soap
response

seepp2grid server
processes

T
I

M
E

soap
responses

a.) b.)

soap
messages

server
processes

AUSTRIAN GRID

 14/18

1. The "seepp2grid" creates a thread for processing the request of the client.

2. The program allocates a SEE++ server by a simple load balancing mechanism
which always chooses either the first idle server or that one which has the least
workload. The Server_Id of the allocated server is stored in an allocation table.

3. The program copies the data of the first/next n pieces of points to another matrix

I', where n is the granularity value of the data parallelism determined by the
parameter "-g" of the "seepp2grid" (see Section 2.1).

4. The program sends a message Calculate_Binocular_Test(E1, E2, E, I') to the

allocated SEE++ server.

5. The "seepp2grid" repeats the steps 2 to 4 until each point contained by the
matrix I is sent to a SEE++ server. The allocated servers for this request are
linked one after the other into the allocation table.

The usual two-way (request response) SOAP messages are performed in gSOAP
as "Remote Procedure Call" (RPC). This means, a message cannot be sent after
another one within a thread before the response for the first message arrives
back (see Figure 5a). Of course, this may block the execution several times and
may cause remarkable overhead in the communication. To avoid this, each
gSOAP RPC of each kind of two-way message is executed on "seepp2grid"
bridge in an independent thread (see Figure 5b).

6. When every such thread terminated, the Session_Id-s received as the responses

for the Calculate_Binocular_Test messages are stored in the allocation table
next to the corresponding Server_Id-s. Finally, a unique Allocation_Id is created
from them and sent back to the client as a response for the original
Calculate_Binocular_Test message (a Session_Id itself may be not unique any
more, because we may use more than one server).

• A message Poll_Status(Allocation_Id) [SEE-GRID Design, 2004] arrives at the
"seepp2grid" bridge from a client.

1. The "seepp2grid" creates a thread for processing the request of the client.

2. It takes all Server_Id - Session_Id pairs pointed by Allocation_Id in the

allocation table and sends message Poll_Status(Session_Id) to each server
identified by the corresponding Server_Id (in an independent thread).

3. When every such thread terminated, an average is calculated from the status

information Percentage-s received from the servers. This value is sent back to
the client as a response for the original Poll_Status message.

4. If the received status information indicate that a calculation is finished on a

server, then the "seepp2grid” triggers the sending of a message
Poll_Result(Session_Id) to the corresponding server in an independent thread.

AUSTRIAN GRID

 15/18

The parameter Session_Id of this message is the same as the parameter of the
Poll_Status message sent to the same server before (in step 2).

• A message Poll_Result(Allocation_id) [SEE-GRID Design, 2004] arrives at the

"seepp2grid" bridge from a client.

1. The "seepp2grid" creates a thread for processing the request of the client.

2. It collects all calculation results arrived as responses for the messages

Poll_Result(Session_Id) from the corresponding servers, compounds them
into one, and sends it back to the client as the result of the requested gaze
pattern calculation.

3.1 New Message in "seepp2grid"-server Protocol

For establishing the initial version of SEE-GRID, we added only one message to the
communication protocol:

• One-Way Message
Request: Terminate_Server

By this message, the SEE++ servers running on a grid site can be shut down remotely
from the "seepp2grid" bridge. Of course, if we change to Globus 4 WS architecture in
the future, this kind of message will become unnecessary.

4 Initial Testing and Benchmarks

For testing the speedup of the current version of SEE-GRID, we compared the calculation
time of some typical kinds of gaze patterns in some simple cases. We performed two kinds of
tests: local tests within our own network and grid-based tests across the Internet. In the local
tests, we used an AMD Dual Opteron 1.6Ghz. The grid-based tests were executed on the
Austrian Grid site altix1.jku.austriangrid.at, which contains 64 pieces of Ithanium processors.
In the second case, we investigated the effectiveness of the parallelism in different situations
where 1, 3, 5 or 9 processes of the SEE++ server are started and the maximum number of the
gaze pattern points which are sent together to one process (granularity value) is not limited, 3,
2 or 1.

The measured duration times presented below are only preliminary results of calculations that
executed on the default eye model parameters. An exhaustive benchmark with realistic
pathological cases will be performed later.

Each value located in the following tables is the median execution time of 5-7 executions. The
actual intended gaze pattern was always calculated first. Then we varied the parameters of the
eye model. We modified only the total strength (from 40% to 90%) of one or more eye
muscles [SEE-KID, 2004]:

AUSTRIAN GRID

 16/18

• In the second step, we changed the total strength of the muscle Medial Rectus
(MR � internal straight eye muscle) on the following eye.

• In the third step, we changed the total strength of MR together with the total strength

of the muscle Superior Rectus (SR �upper straight eye muscle) on the following eye.

• At the last step, we changed the total strength of MR and SR on both eyes.

For measuring, we installed the Ethereal network protocol analyzer [Ethereal, 2004] on the
machine where the SEE++ client is executed. By this software, the network traffic between
the local machine and the grid portal machine was filtered and each network package sent to
or received from the port of “seepp2grid” was captured. After the execution of a test case, the
duration time of the calculation can be determined from the recorded capture time of the first
sent and of the last received message.

Machine Name Dual
Opteron

Altix 350
(altix1.jku.austriangrid.at)

Server processes / Max.
number of points sent together

1/all 1/all 3/3 5/2 9/1

Calculating intended Gaze
Pattern.

3.8442s 2.0691s 1.1250s 0.9709s 0.7616 s

Changing the Total Strength
of MR on the following Eye.

12.8413s 6.0777s 2.5515s 2.0007s 1.2263 s

Changing the Total Strengths
of MR and SR on the
following Eye.

13.1153s 6.2380s 2.5802s 2.0347s 1.2432 s

Changing the Total Strengths
of MR and SR on both Eyes

13.5159s 6.4353s 2.6732s 2.1931s 1.3547 s

Table 1: Benchmark Results in case of the Calculation

of the Default Gaze Patterns (with 9 points)

On Table 1, the benchmark results can be seen in the case of the calculation of the default
gaze pattern (see Figure 2a). This kind of gaze pattern consists of only 9 points.

Machine Name Dual
Opteron

Altix 350
(altix1.jku.austriangrid.at)

Server processes / Max.
number of points sent together

1/all 1/all 3/3 5/2 9/1

Calculating intended Gaze
Pattern.

7.3532s 3.6820s 1.8305s 1.4224s 0.9592s

Changing the Total Strength
of MR on the following Eye.

26.5566s 12.0769s 7.3513s 4.7013s 2.5761s

Changing the Total Strengths
of MR and SR on the
following Eye.

28.2197s 12.9893s 8.8241s 5.7248s 3.4361s

Changing the Total Strengths
of MR and SR on both Eyes

30.5519s 13.5362s 10.3562s 6.9384s 4.3489s

Table 2: Benchmark Results in case of the Calculation

of the Orbit Gaze Patterns (with 21 points)

AUSTRIAN GRID

 17/18

On Table 2, the benchmark results can be seen in the case of the calculation of the orbit gaze
pattern (see Figure 2b). This kind of gaze pattern consists of 21 points.

Machine Name Dual
Opteron

Altix 350
(altix1.jku.austriangrid.at)

Server processes / Max.
number of points sent together

1/all 1/all 3/3 5/2 9/1

Calculating intended Gaze
Pattern.

14.5279s 7.5880s 5.8263s 2.9230s 1.6462s

Changing the Total Strength
of MR on the following Eye.

56.1237s 25.2703s 17.4387s 10.3963s 7.5788s

Changing the Total Strengths
of MR and SR on the
following Eye.

63.8593s 27.1793s 18.8115s 12.0023s 9.1101s

Changing the Total Strengths
of MR and SR on both Eyes

74.6623s 28.6750s 20.0424s 12.9812s 9.7951s

Table 3: Benchmark Results in case of the Calculation

of the Brainstem Gaze Patterns (with 45 points)

On Table 3, the benchmark results can be seen in the case of the calculation of the Brainstem
gaze pattern (see Figure 2c). This kind of gaze pattern consists of 45 points.

From the measurement results it can be seen that the calculations became approximately twice
fast by the usage of the more powerful hardware of the grid site (despite of the greater
communication overhead). Furthermore, more speedup can be expected for the benchmarks in
Table 3 if we use more computational processes and decrement the granularity value.

5 Conclusions and Next Steps

In the first phase of the project, we managed to achieve our main goals. We combined the
SEE++ software and the software architecture of Austrian Grid and reached a remarkable
speedup by applying of a simple data parallelism strategy (despite of the communication
overhead).

In the next step, we will deal with the speculative parallelism as it is described in [SEE-GRID
Design, 2004] Furthermore, we will change to the Web Service interface of Globus 4 and
implement the SEE++ server as a grid service as soon as Globus 4 is deployed on the Austrian
Grid resources.

Then we will start to investigate how the Pathology Fitting (and Surgery Simulation)
proposed by [SEE-GRID Design, 2004] can be implemented efficiently in a grid environment
(most probably by applying some combinatoric searching techniques).

In the future, we may also deal with the development of the automatic exploration of
available/free “SEE++ grid services” on the whole grid infrastructure. For achieving this, we
will intend to use the information provided by the information service of the Austrian Grid.

AUSTRIAN GRID

 18/18

References

[AGRID S. Spec., 2004] Austrian Grid Software Specification,
http://www.austriangrid.at/austriangrid/internal/deliverables/docs/WP_I-1/2004/AG-DI-1-
2_v0.3.pdf

[Buchberger, 2004] Michael Buchberger. Biomechanical Modelling of the Human Eye.
Ph.D. thesis, Johannes Kepler University, Linz, Austria, March 2004.
http://www.see-kid.at/download/Dissertation_MB.pdf

[Ethereal, 2004] Ethereal Network Protocol Analyzer. http://www.ethereal.com

[Globus, 2004] The Globus Tookit. http://www-unix.globus.org/toolkit/

[glogin, 2004] Herbert Rosmanith and Jens Volkert "glogin - Interactive Connectivity for the
Grid" in: Z. Juhasz, P. Kacsuk, D. Kranzlmüller, "Distributed and Parallel Systems - Cluster
and Grid Computing", Proc. of DAPSYS 2004, 5th Austrian-Hungarian Workshop on
Distributed and Parallel Systems, Kluwer Academic Publishers, Budapest, Hungary, pp. 3-11
(Sept. 2004). http://www.gup.uni-linz.ac.at/glogin/

[gSOAP, 2005] gSOAP 2.7.0 User Guide, 2005. http://www.cs.fsu.edu/~engelen/soap.html

[Kaltofen, 2002] Thomas Kaltofen. Design and Implementation of a Mathematical Pulley
Model for Biomechanical Eye Surgery. Diploma thesis, Upper Austria University of Applied
Sciences, Hagenberg, June 2002.
http://www.see-kid.at/download/Pulley_Model_Thesis.pdf

[SEE-GRID Design, 2004] Karoly Bosa, Wolfgang Schreiner, Rebhi Baraka, Michael
Buchberger, Thomas Kaltofen, Daniel Mitterdorfer. SEE-GRID Design Overview.
Austrian Grid Deliverable A1c-1, Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, November 2004.

[SEE-KID, 2004] SEE-KID home page, 2004. http://www.see-kid.at

[SOAP, 2003] SOAP Version 1.2 Part 1: Messaging Framework, W3C Recommendation,
June 2003. http://www.w3.org/TR/2003/REC-soap12-part1-20030624

