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Abstract

This paper describes a light-weight, content-based, func-
tional query language. The Mathematical Services Query
Language (MSQL) has been developed for querying math-
ematical web services described in the Mathematical Ser-
vices Description Language (MSDL) and published in the
MathBroker registry. Based on a client query, MSQL uses
the registry to retrieve a candidate collection of documents
and then uses its own querying functionality to filter these
documents based on their contents.

1. Introduction

Describing, publishing, and discovering web services are
crucial issues that have recently received considerable at-
tention. A mathematical service is a web service that of-
fers the solution to a mathematical problem (based on e.g.
a computer algebra system or on an automated theorem
prover). In our MathBroker project [9], the XML-based
Mathematical Services Description Language (MSDL) [4]
has been developed to adequately describe mathematical
services respectively their constituent entities such as prob-
lems, algorithms, implementations, and machines. To facil-
itate the process of publishing and discovering mathemati-
cal services, we have developed the MathBroker registry [3]
where MSDL descriptions of services are published such
that clients can discover them by browsing or querying it.

Figure 1 illustrates the MathBroker information model
for the description of mathematical web services. It shows
the kinds of entities that constitute the description of a ser-
vice and the associations among them. The entities are:

• Problem that can be specified by input/output parame-
ters and input/output conditions. A problem can be a
special version of another problem.

∗This work was sponsored by the FWF Project P17643-NO4 “Math-
Broker II: Brokering Distributed Mathematical Services”.

• Algorithm that can be described by (a link to the de-
scription of) the problem it solves, as well as by time
and memory complexity, and termination conditions.

• Implementation that can be described by the software
used for implementing an algorithm and for the result-
ing runtime efficiency (absolute efficiency factors for
the algorithmic complexity).

• Realization that brings together the abstract specifica-
tion of the service functionality with the actual details
of the interface described in the Web Services Descrip-
tion Language (WSDL).

• Machine that can be described by its processor type
and speed, by its memory size, and by the type of the
operating system it uses.
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Figure 1. The MathBroker Information Model

A skeleton of a service description in MSDL contain-
ing these entities and their associations is shown in Fig-
ure 2. The associations are fixed within the description
(closed world assumption) because algorithms are designed
to solve specific problems, implementations realize specific
algorithms, etc. so that it is not the case that additional as-
sociations are established by external sources. Mathemati-
cal content in this description is written in OpenMath [11]



<monet:definitions>
<mathb:machine_hardware name="perseus">
...

</mathb:machine_hardware>
<monet:problem name="integration">
...

</monet:problem>
<monet:algorithm name="RischAlg">
...

</monet:algorithm>
<monet:implementation name="RImpl">
...

<monet:hardware href=".../perseus"/>
<monet:algorithm href=".../RischAlg"/>
</monet:implementation>
<monet:service name="RRISC">

...
<monet:problem href=".../integration"/>
<monet:implementation href=".../RImpl"/>
</monet:service>

</monet:definitions>

Figure 2. A Skeleton of a Service Description

which is an XML-based format for representing mathemat-
ical objects in a semantics-preserving way.

The MathBroker registry implementation incorporating
the information model provides a set of functionalities for
processing, classifying, associating, publishing, and search-
ing MSDL service descriptions in the registry. Service de-
scriptions are classified according to a predefined classifi-
cation taxonomy which represents a tree-structured way to
categorize descriptions. A common example of a classi-
fication in mathematics is the GAMS (Guide to Available
Mathematical Software) classification taxonomy.

Searching facilities of the MathBroker registry are rather
limited, they only allow to query metadata accompanying
the service when published in the registry. Although meta-
data such as the name, the unique identifier, the classifica-
tions, and the associations of a service are useful in some
cases, e.g. when we are seeking a service based on its asso-
ciations to other entities, they are insufficient in many cases
involving mathematical services as a basis for service dis-
covery, e.g., when we are seeking a service whose problem
has a certain input precondition. Therefore it is necessary to
resort to the contents of the MSDL description of a service
where the complete information can be found. To overcome
this limitation of the current search facilities of the registry,
we have designed and implemented the Mathematical Ser-
vices Query Language (MSQL) for querying the contents of
the MSDL documents that are published in a registry.

MSQL has a set of features compatible with today’s
XML query languages to make the process of querying
MSDL documents easy and efficient. The resulting simple,
light-weight, and content-based query language is currently
being extended to deal with the semantic content of MSDL

by automated reasoning techniques.
The rest of this paper describes the architecture (Sec-

tion 2), the features (Section 3), and the implementation
(Section 4) of MSQL.

2. The MSQL Architecture

Figure 3 provides a high-level overview of the MSQL
architecture which consists of the following parts:

• The MSQL Engine which constitutes the querying
functionality.

• The MathBroker Registry where MSDL documents are
published.

• The Reasoner which handles the part of a query that
needs reasoning (currently being implemented).

A client application sends a query to the engine and receives
a set of MSDL descriptions. These descriptions are either
returned to the user or processed further for specific tasks,
e.g., to access the service having the resulting description.

The MSQL Engine consists of the following components
which are designed according to the query structure ex-
plained in Section 3:

• The Query Processor receives the query, divides it
into processable parts, and hands each part to its cor-
responding component.

• The Registry Handler receives from the processor the
query part needed to retrieve documents from the reg-
istry based on their types and classifications.

• The Expression Evaluator evaluates the expression
part of a query against the documents retrieved from
the registry, filters them, and forwards those passing
the filter to the Result Quantifier and Sorter.

• The Reasoner Interface receives from the processor
the query part that needs semantic reasoning and sends
it to the reasoner.

• The Result Quantifier and Sorter decides whether to
return some or every queried document as a result and
whether to sort the resulting documents.

In this architecture, an MSQL query received from a
client is processed as follows:

• The query is parsed according to MSQL grammar and
transformed into an abstract syntax tree.

• The engine connects to the registry and invokes the
“MathBroker Query Manager” which is part of the
registry API. It queries the registry for candidate doc-
uments based on the type of document required and
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Figure 3. The MSQL Architecture

based on the classification node under which the re-
quired document is classified. It returns to the engine
the collection of candidate MSDL documents.

• The Expression Evaluator then evaluates the condition
expression of the query against each candidate docu-
ment and if the document satisfies the condition adds
it to the collection of resulting documents.

• The Result Quantifier and Sorter then quantifies and
orders the resulting documents depending on the kind
of query (see the next section).

The engine then returns the resulting MSDL documents to
the client application.

3. The MSQL Language

3.1. Motivation

Given a set of MSDL documents (of a structure such as
the one in Figure 2) published in the registry, we would like
to perform queries of the following kind:

Find every problem under classification concept
“/GAMS/Symbolic Computation” whose first in-
put argument has type “integer”.

To accomplish this request, we can do the following:

• consider the registry classification node
“/GAMS/Symbolic Computation” and fetch each
document with entity type “problem” beneath it.

• process each document and return it, if it satisfies the
following criteria: the first “input” occurring in the
“problem” has type “integer”.

The returned documents may need to be sorted according
to some criterion before being returned as a result.

The first step involves contacting the registry and fetch-
ing the candidate documents. The second step involves
processing the returned candidate documents to see if they
satisfy the stated criteria. Based on these steps we have de-
signed the language described in the next subsection.

3.2. The Query Structure

The general structure of a query in MSQL is:

SELECT EVERY|SOME <entity>
FROM <classificationConcept>
WHERE <expression>
ORDERBY <expression> ASCENDING|DESCENDING

The query has four main clauses: the SELECT clause,
the FROM clause, the WHERE clause, and the ORDERBY
clause. The FROM clause and part of the SELECT clause,
namely entity, are registry-oriented, i.e., their function-
ality is applied to the registry. They determine the type
and the classification of document and retrieve it from
the registry. This limits the range of documents to be
queried to those who are of type entity and classified un-
der classificationConcept. The entity types as
stated in the information model (see Figure 1) are PROB-
LEM, ALGORITHM, IMPLEMENTATION, REALIZA-
TION, and MACHINE. ClassificationConcept is
a node in a given classification taxonomy of the registry,
e.g., “/GAMS/Symbolic Computation” in the GAMS clas-
sification of mathematical subjects. The SELECT clause
also determines whether to return some or all of the result-
ing documents to the user by its SOME or EVERY clause.

The WHERE and the ORDERBY clauses apply their
expression parts to each candidate document retrieved
from the registry. The expression of the WHERE clause is
a logical condition: if it is evaluated to true, the document
is considered as (part of) the result of the query. The OR-
DERBY clause sorts the resulting documents in ASCEND-
ING/DESCENDING order based on the stated criteria. We
illustrate the structure described so far by an example.

Example 1. Find all problems under the classification concept
“/GAMS/Symbolic Computation” with first input of type integer
and order them according to their names in descending order.

SELECT EVERY problem



FROM /GAMS/Symbolic Computation
WHERE //body/input[1]/signature/om:OMOBJ/

om:OMS[1][(( @name = "Z" )
and ( @cd = "setname1" ))]

ORDERBY /problem/@name descending

This query asks for every “problem”, i.e., every docu-
ment of type “problem” classified under “/GAMS/Symbolic
Computation” that satisfies the WHERE expression. The
resulting documents are to be sorted in descending order ac-
cording to their names. The core of the query is its WHERE
expression which allows us to express the first input and
check its type (details is given below).

Since we are designing a light-weight query language,
we have specified a minimal set of expressions that are nec-
essary to address the contents of the target MSDL docu-
ments. MSQL expressions include: path expressions that
can access every part of an MSDL document; expressions
involving logical, arithmetic, and comparative operators;
conditional expressions; quantified expressions; functions;
and variable bindings. The formula is applied to an MSDL
document modeled as a tree of nodes. A node can be a root,
an element node (element), an attribute, or a text. The vari-
ous kinds of expressions are described below.

Path Expressions

These expressions are special XPath [6] expressions. A path
expression is used to locate nodes within a document tree.
It consists of a series of one or more steps, separated by “/”
or “//”, and optionally starting with “/” or “//”.

A “/” at the start of a path expression begins the path at
the root of the current node.

A “//” at the start of a path expression begins a sequence
that contains the root of the current node plus all nodes de-
scending from it. This node sequence is used as the input to
subsequent steps in the path expression. The //body step
in Example 1 traverses the root node and nodes descending
from it until the body node which is used as input to the
/input[1] step.

A step generates a sequence of items and then filters the
sequence by zero or more predicates. The value of the step
consists of those items that satisfy the predicates.

A predicate consists of an expression enclosed in square
brackets. The predicate expression can either be logical
which evaluates to a truth value or numeric which evalu-
ates to a numeric value. In Example 1, the predicate in step
/input[1] is numeric, it specifies the first input node.

The /om:OMS[1][(@name = ‘‘Z’’) and (@cd =

‘‘setname1’’)] step has a sequence of two predicates.
The first predicate is numeric and it specifies the first
om:OMS node. The second is logical that uses the = and
the and operators to evaluate to a truth value. It operates on
the om:OMS node to check if its name attribute has value

equal to Z and cd attribute has value equal to setname1.
The value of the second predicate represents the value
of the expression; if its value is true then the current
document is selected.

Operators

MSQL supports arithmetic, logical, and comparison opera-
tors for use within predicates. In Example 1, the expression
in the last predicate uses the comparison operator “=” and
the logical operator “and” to evaluate to a truth value.

Functions

In the context of a predicate, functions may be applied to the
current node to extract information used in some operations.

Example 2. Find all problems in “/GAMS/Arithmetic, error
analysis/Integer” that have no precondition.

SELECT EVERY problem
FROM /GAMS/Symbolic Computation
WHERE //body[empty(/pre-condition)]

In this example, the empty function takes a path expres-
sion and returns true if the node pointed to by the path is
empty. The query uses this function to check if the “body”
node has an empty “pre-condition” element node.

Conditional Expressions and Variable Bindings

Conditional expressions are used when the document to be
returned depends on some condition. An expression or a
value that is used in more than one place in a query can be
bound to a variable so it does not need to be defined again.

Example 3. Find every service in “/GAMS/Linear Algebra” such
that if it has an implementation it runs on a machine called perseus
or its interface is on the said machine.

SELECT EVERY service
FROM /GAMS/Linear Algebra
WHERE
if not (/service[empty(//implementation)])
then
let $d := doc(//implementation/@href) in
$d/hardware[contains(@name, "perseus")]

else //service-interface-description[
contains(@href, "perseus")]

Example 3 shows a query that uses a conditional expres-
sion to decide if the current service document node has
(IsBasedOn) an implementation. If this is the case, it
takes the URI of such implementation document and re-
trieves it from the registry and checks if this implementation
is related to the machine perseus. If this is not the case,
it checks (in the else) if the service has its interface on the



said machine, i.e., RunsOn on the said machine. The let
clause is used to bind a document to variable d. Variable d
is then used as part of the path expression.

In the same example, the contains function returns
true if its first argument value contains as part of it its sec-
ond argument value. The doc function returns the root node
of the document whose name appears as its argument. Its ar-
gument is a URI that is used as the address of the required
document in the registry.

The query in Example 3 aside from showing the expres-
siveness of MSQL in dealing with the MSDL content, it
also reveals how MSQL utilizes the structure of the MSDL
information model (see Figure 1) supported by the registry.
It uses associations (e.g., IsBasedOn, RunsOn) among
the entities of the model implicitly in the query.

Quantifiers

MSQL provides universal and existential quantifiers to test
if every/some element in a document satisfies a condition.

Example 4. Find all problems in “/GAMS/Arithmetic, error
analysis/Integer” in which the OpenMath content dictionary “sts”
and the “mapsto” symbol are used in the same signature.

SELECT EVERY problem
FROM /GAMS/Arithmetic,error analysis/Integer
WHERE every $p in /problem satisfies
some $s in $p//signature satisfies
$s/om:OMOBJ/om:OMA/om:OMS[@cd="sts"] and
$s/om:OMOBJ/om:OMA/om:OMS[@name="mapsto"]

The every quantifier requires all “problem” nodes to sat-
isfy the “some” quantifier which checks if at least one sig-
nature satisfies the condition specified.

Semantic Expressions

The above MSQL expressions are performed on the syn-
tactic structure of documents. We are currently working to
extend MSQL to provide also semantic queries.

Example 5. Find a problem whose input x and output y satisfy the
condition diff(y) = x (‘diff’ means symbolic differentiation).

SELECT SOME problem
WHERE let $a:= //input/@name,

$b:= //output/@name,
$ta:= //input/signature/om:OMOBJ,
$tb:= //output/signature/om:OMOBJ,
$p:= //post-condition/om:OMOBJ in

(satisfy(ombind(oms:quant1:forall
[omvar:$a@(oms:sts:type, $ta),
omvar:$b@(oms:sts:type, $tb)]

oma(oms:logic1:implies, $p,
oma(oms:relation1:eq,

oma(oms:calculus1:diff, omv:$b),
omv:$a)))))

The satisfy expression represents the quantified for-
mula: ∀ $a : $ta, $b : $tb ($p ⇒ diff($b) = $a) where
meta-variables $a and $b represent input/output variables
of the specification, $ta and $tb represent their types, and
$p represents the post-condition of the specification. The
query engine will substitute the actual content of the speci-
fied document for these meta-variables and forward the re-
sulting (OpenMath) formula to the reasoner (See Figure 3)
which returns the decision about its truth to the engine.

Thus the MSQL engine combines syntactic queries on
MSDL documents with semantic queries on their interpre-
tation in some mathematical domains.

4. The MSQL Implementation

The implementation of MSQL is based on a formal se-
mantics [1]. We have used the format of denotational se-
mantics [12] to give formal meaning to each construct de-
fined in the previous section. In the implementation, each
mathematical function mapping a syntactic domain to a se-
mantic domain is realized by a Java method whose body
corresponds to the mathematical function definition.

In the implementation of the MSQL engine architecture
(see Figure 3) the main functionality is exposed to the user
by the MSQL API [2]. The following code outlines one way
for using the API in client applications:

MsqlQuery msqlQuery = new MsqlQueryImpl();
MathBrokerConnection con =

msqlQuery.makeConnection(connectionProps);
ChildASTqueryTree =

msqlQuery.parseQuery(queryString);
Collection resultsCollection =

msqlQuery.performQuery(queryTree, con);

The interface MsqlQuery presents the MSQL engine
and contains the functionality for accessing the rest of the
API. A connection is made to the registry through the
makeConnection method. A received MSQL query
is parsed using the parseQuery method. The query is
processed and the results are returned all together as a col-
lection using the performQuery method.

An alternative to performQuery is iterateQuery
which allows the client to iteratively ask for one document
satisfying a query after the other (such that the engine needs
not process all candidate documents when the client is sat-
isfied with some result early).

We have tested MSQL engine with different examples
representing the various functionalities of MSQL and the
expected scenarios of its usability in the MathBroker frame-
work. However, the overall evaluation of the engine, e.g., in
terms of scalability needs further investigation.



5. Related Work

Existing XML query languages range from ones that
support simple node finding and path expressions to more
comprehensive ones that support processing, transforma-
tion, and querying tasks of XML documents. QUILT [5]
is a language that attempts to unify concepts from some of
these query languages in order to exploit the full versatility
of XML. Its proposal has been adopted latter as the basis
for the development of XQuery [7]. XQuery is intended pri-
marily as a query language for querying collections of XML
documents or documents viewed as XML (e.g., a SOAP
representation of any data source). The language is de-
signed to be broadly capable of dealing with many sources
of XML and not only query them, but also process them,
and have new XML structures as a result.

Unlike XQuery, MSQL is not intended to be a gen-
eral purpose XML query language. It is a domain-specific
querying language that addresses the querying and discov-
ery requirements of the MathBroker framework. Further-
more, although XQuery has a rich functionality, it cannot
address some of our requirements such as dealing with clas-
sification schemes and types of objects stored in the Math-
Broker registry. So, instead of using an XQuery based
query engine that might not be compatible with our se-
mantic extensions and might induce extra overhead, we de-
signed and implemented our own query language maintain-
ing a uniform framework. However, we used some fea-
tures of XQuery and of its predecessors, e.g., MSQL adapts
from XQuery the syntax for navigating in the hierarchi-
cal structure of MSDL documents. From SQL (Structured
Query Language), MSQL utilizes the idea of a series of
clauses based on keywords that provide a query pattern (the
SELECT-FROM-WHERE pattern in SQL).

At the semantic level of information representation and
searchability for XML, there exists a number of languages
such as RDF and OWL and a number of query tools for each
kind of representation. The use of these tools in describing
and discovering mathematical content is currently being in-
vestigated in another part of our MathBroker project [9].

Considering mathematical-oriented tools, there is a num-
ber of approaches [8] for searching mathematical content
that range from basic textual methods to semantic-driven
techniques. Their functionality depends on the representa-
tion of the target documents. One approach [10] for achiev-
ing service discovery performs matchmaking between rep-
resentations of tasks (client requests) and capabilities (ser-
vice descriptions). The approach applies a normalization
process on a task. It then compares the normalized task
with a registered capability calculating a similarity value
that is used in the matchmaking process. This approach cov-
ers certain semantical aspects of service descriptions but is
ultimately limited in its power.

6. Conclusion

The Mathematical Services Query Language (MSQL)
is a light-weight, content-based, functional query language
developed for querying mathematical descriptions given in
the Mathematical Services Description Language and pub-
lished in the MathBroker registry. MSQL complements the
metadata-based querying facility of the registry.

MSQL supports syntax-based queries on the syntactic
structure of mathematical service specifications. However,
we are currently working to extend MSQL to semantic
based querying where the engine contacts a reasoner that
operates on the underlying semantical structure of MSDL.
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