Extending Floyd-Hoare L ogic for Partial Pre- and
Postconditions

Andrii Kryvolap', Mykola Nikitchenkd, and Wolfgang Schreiner

! Taras Shevchenko National University of Kyiv, Kylvkraine
krivol apa@nai | . com ni ki t chenko@ni cyb. ki ev. ua
2 Johannes Kepler University, Linz, Austria
Wl f gang. Schrei ner @i sc. j ku. at

Abstract. Traditional (classical) Floyd-Hoare logic is defihfor a case of total
pre- and postconditions while programs can be gat the chapter we pro-
pose to extend this logic for partial conditions. do this we first construct and
investigate special program algebras of partiatligeges, functions, and pro-
grams. In such algebras program correctness asseire presented with the
help of a special composition called Floyd-Hoarenposition. This composi-
tion is monotone and continuous. Considering thesctd constructed algebras
as a semantic base we then define an extendedHdegatial Floyd-Hoare Log-
ic — and investigate its properties. This logic hatber complicated soundness
constraints for inference rules, therefore simgldfficient constraints are pro-
posed. The logic constructed can be used for pnogegification.

Keywords. Program algebra, program logic, partial predicapeindness, com-
position-nominative approach.

1 I ntroduction

Program logics are the main formalisms used fowipg assertions about program
properties. A well-known classical Floyd-Hoare o@ere also referred to as CFHL)
[1, 2] is an example of such logics. Semanticalys logic is defined for the case of
total predicates though programs can be partiah-(eaninating). In this case pro-
gram correctness assertions can be presented heithetlp of a special composition
over total predicates called Floyd-Hoare composi{ieH-composition). However, a
straightforward extension of CFHL for partial preates meets some difficulties. The
first one is that the FH-composition will not be matone with respect to partial pred-
icates. Monotonicity is an important property thates the possibility to reason about
the correctness of the program based on the coesxDf its approximations.

That is why the need of a modified definition o ttlassical Floyd-Hoare logic for
the case of partial mappings arises. We constuah fgics in this paper and called
them Partial Floyd-Hoare Logics (PFHL). Here welwdnsider only a special case
of partial mappings (predicates, ordinary functjoasd program functions) defined
over sets of named values (nominative sets). M@spaver classes of such sets are

called quasiary mappings [3] and corresponding fanogalgebras are called quasiary
program algebras. They form the semantic compaofelRFHL.

The syntactic component of such logics is presebtetheir languages and sys-
tems of inference rules. We study the possibilityuse classical rules for modified
logics with a monotone Floyd-Hoare composition. t8ys of such inference rules
should be sound to be of a practical use. Thiscdcbel achieved by adding proper
restrictions (constraints) to the inference ruléshe classical Floyd-Hoare logic that
fail to be sound. Thus, the proposed scheme petmittefine a Floyd-Hoare-like
logic for partial pre- and postconditions.

The rest of the chapter is structured as followsSéction 2 we analyze the tradi-
tional Floyd-Hoare logic and its potential to betemded for partial predicates. In
Section 3 we describe program algebras of quapi@gicates and functions at differ-
ent levels of abstraction, define a modified Fldyolare composition and specify the
syntax for the modified logic. In Section 4 we stutie soundness of the system of
inference rules for the introduced program algelamad define constraints for the
rules of the systems. We prove that obtained lagindeed an extension of classical
Floyd-Hoare logic. Also simpler constraints arenfotated. In Section 5 we describe
related work, and finally, we formulate conclusiom$Section 6.

2 Analysisof Classical Floyd-Hoare Logic

We first analyze the CFHL constructed for a verynge imperative language
WHILE [4]. The grammar of the (slightly modified) langgsis defined as follows:
an=K|x|ar+ay|a-a| a—a| @)

bi=T|F|a=a |a<a |bib, |-b] ([)
S:= x=a| skip |S; ; S| if b thenS, elseS; | whileb do S| beginS end
where:

- kranges over integetst={..., -2,-1,0, 1, 2, ...},

— Xxranges over variables (nam&s){ N, R, X, Y, Z, ...}
— aranges over arithmetic expressi@xexpr,

— branges over Boolean expressi@expr,

— Sranges over statements (progra®sh

Semantics of arithmetical expressions is denotedlab and of Boolean expres-

sions as [b] . Program states (also called data) are considasedollections of

named values. Program correctness assertionsréefes simply as assertions) are
Floyd-Hoare triples of the formp} S q} where p, q are predicates of some basic
predicate logic an&is a statement. An assertiop}[q} is said to be valid [4] if the
following proposition holds: iSis started in a state satisfyipgand if S eventually
terminates in some final state, then this finalestill satisfyq.

Analyzing this definition of assertion validity wahould admit that it permits se-
mantic treatment of assertiop{S{q} as a certain predicate defined on states. This
treatment of assertions will not be monotone unmiedicate extension. Indeed, con-
sider informally the following assertion:

{T} while T do skip {F}.

This Floyd-Hoare triple will be true on all statescause the infinite loop is unde-
fined on all states, and thus on all states thalition of validity for this assertion is
satisfied. Now consider a triplél] skip {F} that is false on all states. However, the
mapping ‘skip’ is an extension of ‘whil€ do skip’. Thus, monotonicity of assertion
validity fails.

Now we make a short analysis of the inference aydte WHILE presented by
rules of Table 1 [4].

Table 1. WHILE inference system for concrete syntax.

{dx—T[all} x=4 p R_as
{ gskip{ p R_skip
(B }a{g r R se
{#S gk —5¢d
{[b10g § A -[blT}p{S q R if
{@if then SelseS,{g -
{[b]0O3 $ Jp R wh
{ g while bdo S-[b]0 p W
%if p- pandd - q R_cons

These rules are oriented on the concrete syntsiXHfL E, and moreover they use
semantic mappings[al and [b] . We adopt the semantic-syntactic style, thus, we

present these rules as constructed over speciarmgEnprogram algebra. In this al-
gebra (see the formal definitions in the next sejtwe semantically treat program
structuring constructs as special operations cati@ehpositions. FOWHILE the
following compositions are introduced (we use riotabf [3, 5]):

- superpositionS; ;

- assignmenAs;

— sequential execution e ;

- conditionallF;

- cycle (loop)WH.

In the sequel pre- and postconditions are dengtess{bly with indexes) a3 q, r;
ordinary functions ad, s; program functions (semantics of statements) fag.
Statement ‘skip’ is semantically represented bwyiitie functionid. Data (states) are
usually denoted ab

Note, that we do not make an explicit distinctiatviieen a formula and its inter-
pretation. Thus, in the assertiop}{{ g} we treat p andq syntactically as formulas of
the logic language and semantically as predicdtdsegrogram algebra.

According to the introduced notations the inferesgstem can be presented by
rules of Table 2.

Table 2. WHILE inference system for semantic program algebra.

{S(ph A)b }p R_AS
{gid p R_SKIP
{g {h{lafgr
XL RSEQ
{rOp £ &{ -rOp{d g R IE
{g K f,9{d -
{rOg { b
(BWHr 9{-~r0p R_WH
%if p- pandd - q R_CONS

In the next sections we define a class of algebfasrtial predicates (semantics of
logic) and modify the inference system for suchdmates, thus obtaining Partial
Floyd-Hoare Logics.

3 Quasiary Program Algebras

To modify the classical Floyd-Hoare logic for paltjuasiary mappings, we will use
semantic-syntactic scheme [3, 5]. This means tleatvill first define the semantics in
the form of classes of quasiary program algebrasnThe language of the logic will
be defined as well as the interpretation mappings.

To emphasize a mappingpartiality/totality we write the signDD?_. for partial
mappings and the sigﬁﬂj — for total mappings. Given an arbitrary partial pisg

wDOP- D’,dID,SOD,S'0D’ wewrite:

p(d)! to denote that is defined ord;

p(d)! = d’to denote thap is defined ord with a valued’,
p(d)t to denote that is undefined oml;

MY ={d] /g ! dIJ Hto denote the image &under y;
LST={d [d i 4 d0F to denote the preimage (inverse image)Sof
under L.

3.1 Classesof Quasiary Mappings

LetV be a set ohames (variables) et A be a set obasic valuesGivenV andA, the
classA of nominative setis defined as the class of all partial mappingsnf¥/ to A,

thus, VA=V OF - A. Informally speaking, nominative sets representestaf varia-
bles.

Though nominative sets are defined as mappingsfollev mathematical tradi-
tions and also use a set-like notation for theseath In particular, the notation

d = [vi~a|i0I] describes a nominative sétwherev, — g [, d, which means that
d(v) is defined and its value & (d(vi)! =a;). The main operation for nominative sets
is the binarytotal overriding operatiori]: YA x YA I — VA defined by the formula
dOod,=[v> a w d, d0(vw &, di-0d v 'd, d))]. Intuitively,
givend; andd, this operation yields a new nominative set whiohsists of hamed
pairs ofd, and those pairs of whose names do not occurdn

Let Bool={ F, T} be the set of Boolean values. Rt"*=VA O Bool be the
set of all partial predicates ov&k. Such predicates are callpdrtial quasiary predi-

cates Let Fn"A=YA O - A be the set of all partial functions frof to A. Such
functions are callegbartial quasiary ordinary functionsHere ‘ordinary’ means that

the range of such functions is the set of basioes. Let FPrg**="A O . VA be
the set of all partial functions froffA to YA. Such functions are calldui-quasiary
functions

Quasiary predicates represent conditions which rottprograms, quasiary ordi-
nary functions represent the semantics of progrgmnessions, and bi-quasiary func-
tions represent program semantics.

The terms ‘partial’ and ‘ordinary’ are usually oted. In a general term, elements
of Pr¥A Fn“A andFPrg" * are calledjuasiary mappings

3.2 Hierarchy of Quasiary Program Algebrasand L ogics

Based on algebras with three carrig?s’(*, Fn""*, andFPrg”*) we can define logics
of three types (see details in [3, 5]):

1) pure quasiary predicate logics based on algebrah wne sortPr';
2) quasiary predicate-function logics based on algsbwith two sortsPr ¥+
andFn"";
3) quasiary program logics based on algebras with ¢hserts Pr', Fn**, and
FPrg"*.
The basic compositions of logics of the first tygre disjunctiori], negation-, re-
nomination R}, and quantificatiorix.

The basic compositions of logics of the second ggbditionally include superposi-

tionsS‘,Z and Sg and denomination functior

The basic compositions of logics of the third tygmilitionally include the follow-
ing program compositions: the parametric assignment composi-

tionAS*: F"*0 0. FPrg”®, the composition of sequential execution
«:FPrg"*xFPrg"*0 3, FPrg"", the conditional composition
IF :PrVAxFPrg"*xFPrg"*0 3 FPrg“” the cyclic (loop) composition
WH: Pr"*x FPrg"*0 t1. FPrg”*, and identity functiorid: FPrg“"!. Also we need

compositions that describe properties of the prograrhe Floyd-Hoare composition
FH:Pr'AxFPrg"*x PrV A0 3. Pr"%is the most important of them. Its formal
definition will be given in the next subsection.

3.3 Formal Definition of the Floyd-Hoare Composition

The required definition stems from the analysig-lufyd-Hoare assertions with total
predicates (see, for example, [4]). Namely, anrésse{p}f{q} is said to be valid if
and only if
for all d from YA if p(d) =T, f(d): = d’ for somed” thenq(d’) =T.
This definition permits to treap} f{ g} as a predicate because it is a pointwise def-
inition. Rewriting this definition for different s@s we get the following matrices
(Table 3) specifying the logical values qf}§{ g} for an arbitraryd.

Table 3. Logical values of p}f{ g} for total predicates.

a)f(d) is defined b) f(d) is undefined
p(d) \ g(f(d)) F T p(d) {p}{a}(d)
F T T F T
T F T T T

The example given in Section 2 demonstrates thigtddial predicates monotonic-
ity fails for the case whef(d) is undefined ang(d) | =T . Therefore, to define a
monotone interpretation of Floyd-Hoare triples foartial predicates we should
change the value opff{q} for this case. Also, we should specify the logicalues
of {p}f{q} for the cases when pre- or postconditions arededined. In Table 4 such
unspecified logical values are denoted by the duesharks.

Table4. Logical values of p} f{ g} for partial predicates, where question mark repres
values that should be changed to a Boolean values.

a) f(d) is defined b) f(d) is undefined
p(d) \ o(f(d)) F T | undefined p(d) {p{a}(d)
F T T ? F T
T Fl T 2 T ?
undefined ? ? ? undefined ?

While defining a required composition we adoptfililowing requirements:
— partiality of mappings;
— monotonicity of a composition on all its arguments;
- maximal definiteness of the obtained predicates ¢ak this as Kleene's re-
quirement).
To do this we use techniques for non-determinsimantics described in [6]. We
will treat the case when a predicate usdefined as non-deterministic valueb and

F. Thus, we can use Boolean values given in Talle évaluate a set of values for
cases with question marks. The obtained resultprasented in Table 5.

Tableb. Logical values of p}f{ g} for partial predicates presented as sets of Banledues.

a) f(d) is defined b) f(d) is undefined
p(d)\q(f(d)) | {F} |{T} [{FT} p(d) {p}f{ a}(d)
{F} { {1 {1} {F} {T}
{1} ;[[{Fm | 4D {F.T}
{F.T} {F.T} [{T} |{FT} {F.T} {F.T}

Now, replacing non-deterministic results,{T} on undefinedwe get the final re-
sults (Table 6).

Table 6. Logical values of p}f{ g} for partial predicates with undefined values.

a) f(d) is defined b) f(d) is undefined
p(d\a(f(d)) | F T | undefined p(d) | {P}H{a}(d)
F T T T F T
T F T | undefined T undefined
undefined | undefined T undefined undefined undefined

The obtained matrices define an interpretatiofpf{ g} for partial predicates. As
was said earlier, we formalize such triples as @&yd~dHoare composition

FH :PrV*xFPrg"*x Pr 0 . Pr** (p, qd Pr'4 fOFPrg"™, d 0VA):
T, if g(f(d))+=Torp(d)i=F,
FH(p.f, g)(d)={F, if p(d) =T andq(f(d)):=F,
undefinedn othercases.

3.4 Formal Definition of Program Algebra Compositions

In the previous subsection the formal definitionFéf-composition was presented. In
this subsection we give definitions of other conifass (see details in [3, 5]).
Propositional compositionsare defined as followsp(qO Pr'# dO"A):

T, ifp(d)1=T or g(d)i=T, T, if p(d) 1=F,
(pUa)(d)=4 F, if {d 1= Fandq(d)i= F, (=p)(d) =1 F,if p(d) =T,
undefined in other cases. undefinedif p(d) 1 .

Unary parametric composition of existential quacdfion [k with the parameter
XV is defined by the following formula@Pr¥*, d O VA):

T, if b0 Aexists:p(@d x— b)i= T,
(X p)(d)y=4 F, if p(ddx— gl= Fforeachdl A
undefined in other cases.
Here dx — ais a shorter form fodO[x— a] .
Parametric n-ary superpositionsith X =(x,...,%,) as the parameter are defined
by the following formulasH, s....., s, 0 Fn¥* p O Pr'A d 0"A):
(SE(hs.... sN(J= b A[> $ X... > 68,
(S(p s 9N(d= pA[x> $ W, %> 6)Y.
Null-ary parametric denomination compositiavith the parametex(lV is defined
by the following formulad VA): 'x(d) = d(x).
Identical program compositioid JFPrg” is simple:id (d) = d (d O"A).
Assignment compositida defined as followsh(d Fn¥*, d OVA):
AS'(H(d=d > b Y.
Composition of sequential executida introduced in the ordinary wayf, (
gOFPrg, d 0VA):
feg(d)=g(f(d).
Note, that we define by commuting arguments of conventional functicc@hpo-
sition: feg=go f.
Conditional compositiordepends on the value of the first argument whicthe
condition itself pO Pr¥A f, gOFPrg"*, d OVA):
f(d), if p(dyi=T,
IF(p, f,9)(d)=<9(d), if (di=F
undefined in other cast
Cycle (loop) compositions defined by the following formulas¥H(p, f)(d)= d,,
if there exists a sequendak,...,d, such thatd, =d, f(d,)¢=d,, ..., f(d,,)!=d,,
p(dy) =T, ..., p(d,) 1=T,p(d,) = F (p0d Pr*A fOFPrg*, d 0VA).
It means that we have defined the followingasiary program algebra
QPAV, A) = <PrA FnA FPrg" [0, -, SL , Sp, X, [X, id, AS™, », IF, WH, FH>.
The class of such algebras is the main object ofrwestigation.

3.5 Formal Definition of Program Algebra Terms

Terms of the algebr@PA(V, A) defined over sets of predicate symb®ss ordinary
function symbolsFs, program symbol®rs, and variable®/ specify the syntax (the
language) of the logic. We now give inductive difoms for terms
Tr(Ps Fs Prs V), formulas Fr(Ps, Fs Prs V), program textsPt(Ps Fs Prs\j},

and Floyd-Hoare assertiosHFr (Ps, Fs Prs V).

First we will define terms:

— if FOFs thenFOTr(Ps Fs Prs \);

— if vOV then'vOTr(Ps Fs Prs \};

— if FOFs, t,...,t, OTr(Ps, Fs Prs V), andv,,...,v, 0V (n>0) are distinct vari-
ables thenS#* (F, t,...,t)0 Tr(Ps Fs Prs V).

Then we will define program texts:

— if PrOPrs thenPrOPt(Ps Fs Prs \};
— [dOPt(Ps Fs Prs \);
— if vOVandtOTr(Ps Fs Prs \) then AS' ()0 P(Ps Fs Prs V;
— if pr, pr, OPt(Ps Fs Prs \) then pr,« pr, OPt(Ps Fs Prs \};
— if pr, pr,OPt(Ps Fs Prs\) and pOFr(Ps Fs Prs V) then

IF (p, pr, pr,) O Pt(Ps Fs Prs \);
— if prOPt(Ps Fs Prs\) and pOFr(Ps, Fs Prs V) then

WH(p, pr)O P{Ps Fs Prs V.

Finally, formulas and Floyd-Hoare triples are defin

— if POPsthenPOFr(Ps Fs Prs\);

— if ®,WOFr(Ps,Fs PrsV) then®OWOFr(Ps, Fs Prs \);

— if ®OFr(Ps, Fs PrsV) then-®OFr(Ps, Fs Prs V);

— if POPs, t,....,t, OTr(Ps, Fs Prs V), andv,,...,v, OV (nx0) are distinct vari-
ables thenSi* (PR t,...,1)0 Fr(Ps Fs Prs \j;

— if ®OFr(Ps, Fs PrsV) andvOV then v@ O Fr(Ps Fs Prs \);

— if fOPt(Ps Fs Prs\j and p,qO Fr(Ps Fs Prs \j then
{3 { By OFHRr Bs Es Prs)V.

After syntax and semantics have been defined, veel h@ specify the interpreta-
tion mappings, assuming that interpretation mappifay the predicate symbols

loo:PsO@ Pr“#, function symbolsl, :FsO% Fn"*, and program symbols
l,.:Prs0% FPrg"* are given. Letd,, : Fr(Fs,Ps Prs YO P¥* denote an
interpretation mapping for formulas),, : Tr(Fs Ps Prs \JO 3. Fh* denote an
interpretation mapping for terms ant}, : Pt(Fs Ps Prs VO 3. Pry”* denote an

interpretation mapping for programs (statementseyTare all defined in a natural
way, only the case with assertions needs speamideration:
Jene (B B = FE X0 X 30m -
Thus, an interpretatiodi is defined by some algeb@PA(V, A) and interpretation
mappingsl ., |-, andl,,. An assertion is said to hwlid (irrefutable) in an inter-

pretationJ (denoted] |=, {B f & or simply |={p} § §) if a predicate obtained
under interpretationd is not refutable An assertion is said to bealid (denoted

={g { §) if for any interpretatiod we havel ={g { § . In this chapter we do
not define interpretations explicitly expecting tttihey are clear from the context.
Thus, in the text the main reasoning steps areritbescfor program algebras though

to be precise we had to define an interpretatiost &ind then consider predicates of
the corresponding program algebra.

3.6 Monotonicity and Continuity of the Floyd-Hoare Composition

In the previous subsections a function-theoretjtesdf composition definitions was
used. To prove properties of the FH-compositiofis inore convenient to use a set-
theoretic style of definitions.

The following sets are called respectivaiyth, falsity, andundefinednesdomains
of the predicate overD:

p'={dl {9 =T,
p* ={dl Hd 1= B,
p’={dl {9 1}.

The following definitions introduce various imagaead preimages involved in
Floyd-Hoare composition:

q—T,f = f_l[qT],
q—F,f = f_l[qF],
g =1f"ql,
pr' = fp],
p™' = f[p°],
p*' = f[p].

Using these notations we can define FH-compositiprdescribing the truth and
falsity domains of the predicate that is the regfithe composition application:

FH(p, .o =p Oq"",

FH(p, f,a) =p' nqg"'.
Validity of formulas (predicates) is consideredrasfutability, that is

Fp-p =0.
From this follows that
FFH(p.f.a)= pPng™' =0.

Let us give a formal definition of a monotone comigion.
Composition C: (FPrg"*)"x(Pr¥ A *x(Fn“A ™0 Pr¥’ (with the class of

predicates as its range) is callesnotoneif the following condition holds for all
arguments o€:

f,00,..f09,p0¢,...,R0q, h0 s..., hO s=
c(f,....f.p-»A-N--.0)O0 C(G.... 8.9, . Q.5 , S

Here relation of partial ordell is defined as inclusion of graphs of the arguments
(which are mappings) of this relation.

Theorem 1. Floyd-Hoare composition is monotone for every argom

Let us prove monotonicity for every argument sefgdyaexamining their truth and
falsity domains. For the first argument (precomfijiwe have:
pOp=p 0p=p 0qg" ' 0p 0¢" =
FH(p, f,a)" O FH(p,, f,q)
and
pOp=p 0p=p g 0png"" =
FH(p, f,q)" O FH(p,, f,9".
Thus, p O p, = FH(p, f,q)0 FH(p,, f,q).
For the third argument (postcondition) the proddimsilar:
q0¢ = ' 0¢ = q'0¢" = pOqg'0p0g" =
FH(p, f,q)" O FH(p, . ¢)'
and
0= ¢ 0¢ = q"'0¢" = png™'Opng™ =
FH(p, f,q)" O FH(p, f,q) .

Thus,q 0q,= FH(p f,q)0 FH(p f, g).

Let us show the monotonicity of FP-composition thee second argument. For the
truth domains we have:

fl D fz - q—T,fl D q—T,f2 - pF I:l q—T,fl I:l pF I:l q—T,fz
= FH(p, ,,0)" O FH(p, £,,0)".
Similar, for the falsity domains:
f1 0 f2 = q—F,f1 0 q—F,fz = pT n q—F,f1 0 pT n q—F,f2 =
FH(p, f.,0)" O FH(p, £, 9.

Therefore, f, O f,= FH(p, f,q) 0 FH(p, f,,0).

Thus, it was shown that the composition is monotimnesvery component, what
was needed to prove.

For the constructed composition even stronger résutue, it is continuous. To
show this, the following definitions are made ahé hotion of continuity is given
(see, for example, [4]).

An infinite set of indexed mappings,, £, ..+ with 4 O u,,,i0w is called a
chainof mappings.

The supremunof the above-mentioned set of indexed mappingslied limit of
the chain, denoted gs] 4 .

f

The compositionC: (Prg”")"x(PrV#) ™ (Fn“A'0 . Pr"” is calledcontinu-
ous on the first argument if for arbitrary chaff,|iO«} the following property
holds:

CUIf G G R Ryo B)=]_[af g, g P R DN

Continuity on the other arguments is defined imailar manner.
Theorem 2. Floyd-Hoare composition is continuous on every argnt.

Though this result follows from the general consatien, we give here its direct
proof. Let us show the continuity on the first argant. In the case of other arguments

the proof will be similar.
Consider a chain of predicatd®. | iJ«} . Since Floyd-Hoare composition is

monotone, {FH(p, f,d|i0« will also be a chain. We need to show that
FH([Ip.f.a)=]]FH(p.f.q). To do this we demonstrate that

FH(Hp,, f,q)(d)is defined iff (H FH(p, f,q))(d) is defined, and in this case
FH (H p.f,g)(d)= (H FH(p, f,c|1))(d) for the arbitrary datal .

Thére are two differlent possibilities [p)(d) t+ and (J [p)(d) ¢ .

In the first case none of the elemelnts of the cﬁﬂaidlefined ond . Therefore
(H FH(p, f,q)(d) is defined iff g(f(d))!=T. But this means that
(H FH(p., f,9))(d) is defined with the same value.

In the second case(H p)(d) |), an element of the chain that is also defined on
this data could be found. Otherwise the limit woblize been undefined ah, what
is guaranteed by the inclusion relation on the ele@sof the chain. Thus, there exists

k such thatp, (d) | . Therefore
FH(I p. f.a)(d) = FH(p,, f.a)(d) and

FH(p,. f.a)(d) = (L] FH(R. f. A)(d).

since for any: i >k, p.(d) | = p (d) by the definition of the chain.
The following equality is obtamedFH(H p, f,q)(d) = (H FH(p, f, 9)(d).

Since the data was chosen arbitrary, we I@dl(]_[p,f.a)=]_[FH(p, f,q), what

was needed to prove.
The proof for the other arguments is similar. Thiee monotone Floyd-Hoare

composition is continuous on every argument.
The theorems 1 and 2 often permit to consider awbktef programs with cycles

their cycle-free approximations.

4 Inference System for PFHL

In this section we investigate possibility to usfefence rules of Table 2 for PFHL.

4.1 Soundnessof Classical Inference System for PFHL

Analysis of inference rules shows that soundneits fiar the rulesR_SEQ R_WH
and R_CONSThis can be demonstrated with the following example
First, let us show that for some interpretatiorrehean be suctp,q,r, f, and g

that E{p § &| % Ja{gd r ${=} p ft]g risfalse.

Considerp(d) 1=T, g(d)+ andr(d) 1=F for arbitrarydand f =g=id. In
this caseF{p { 3§ andF{d d) becausey’ =g =0, butg{p fed¥ . Thus,
F{p £ &l 4 Ja{dr H{=} p ft)g r isfalse.

Next example concerns the ruke WH We need to show that for sormef ,p
F{rOppfp andp{p WH t H{-rOp .

In this case we need at least three different dstates) d, # d, # d,. Then
r, f, p are defined in the following manner:

T,if d=dor d=d,

r(d)=<F,if d=d,
undefined in other case
d,,if d=d,
d,,if d=d,
d,,if d=d,
undefined in other case
T,ifd=d,
undefined, ifd = d, ,
F,if d =d,
undefined in other case

It is not hard to prove thatE{r Op} { p , because(r Op)(d) L =T only when
d=d,, butin this casef (d) 1= f(d)) {=d, and p(d,) t . This means that there is

no suchd that FH(r Op, f,p)(d) 1= F in the case of abovementioned interpreta-

tions.
Let us show that E{gWH){ -rOp . Consider the value of

FH (p,WH(r, f),~rOp)(d).
We have thatp(d) 1 =T, WH(r, f)(d) |=d,, (-rdp)(d,) 1=F.
Thus, FH(p,WH(r, f),~rOp)(d) = F. This givesg {gWH r){ -rOp .
So, E{rCpt{ p =4 pWH,r)f -r3p isfalse.

f(d) =

p(d) =

The case with the rullR_CONSis similar to the previous ones. Consider
p(d) =T, q(d)1=qd = F and p'(d)+ for arbitraryd . Then F{p}id ¢ ,
p- p andq - g, butiE{pgid 4 .

Thus,{p} 1 qd, p- P d- o= I} q isfalse.

Given examples prove that additional constraintaikhbe introduced in order for
inference system to be sound in the case of pantialicates.

4.2 Composition of Preimage Predicate Transfor mer

To introduce constraints for the rules of PFHL veah new compositions. They are
inspired by the weakest precondition and the seengostcondition predicate trans-
formers introduced by Dijkstra. But in the casepaftial mappings there can be more
than one definition what predicate should be carsid as weakest (or strongest)
therefore more adequate definitions are requinedhis chapter we restrict ourselves
by introducing only one composition calledmposition of preimage predicate trans-
former (preimage compositign This composition is a generalization of the wesik
precondition predicate transformer and is defimethe following way:

T,if f(d)! andq(f d))=T,
PC(f,q(d)y=< F, if f(dt andq(f(d))= F,
undefined in other cases.

In set-theoretic terms this composition can berdefias follows:
PC(f,9"=qg"", PC(f,9 =qg"".
Semantically,PC(f,g can be treated d&mckward predicate transformer.

Introduction of this composition means that now werk with algebras of the
form
QPATV, A) = <PrA FnA FPrg",

0, -, S, Sp, '% [X id, AS%, », IF, WH, FH, PC>.

Also, the introduced composition permits to refolael the assertion validity defi-
nition. Preliminary, we defingpl=q as |- p - Q.

Theorem 3. For any assertiofig §f § the following equivalence holds:
F{d {4 - pFPC(f 0.
To prove this theorem we first recall that
F{p{s - plng™' =0
Therefore pE PC(f,q) = F p—~ PQ f,d- (p~ PQ f Of =0 <
= p nPC(f,g) =0 pPndg"'=0=F{pfl.

4.3 Constraintsfor Partial Predicate I nference System

Analysis of the constraint problem demonstrates thiaan inference rule different
constraints can be formulated. We start with thestraints that practically are refor-
mulations of conditions of assertion validity. Sumdnstraints will be callettifling
constraintsbecause they do not give additional knowledgességion validity. Con-
straints will be formulated in terms of the preiraggedicate transformer.
The examples showed that validity constraints acgiired for the rulesR_SEQ
R_WH andR_CONSTrifling constraints are the following:
- pEPC(feg,r) forR_SEQ
- pEPC(WH(r, f),=r0O p) forR_WH
- pEPC(f,g forR_CONS
These constraints in a quite natural sense aressageand sufficient. But in this
form such constraints are not very useful, esplgcthk constraint foR_CONSbe-
cause it does not relate premises with conclusidhsrefore we formulate a more
stronger constraint for this rule, which will befstient but not necessary.
At first we introduce twaspecial logical consequence relatiomser the truth do-
main £, andover the falsity domaitfe.. in the following way:

- pk qiff p,” Oq," for every interpretatiod,
- pk qiff g, O p,7 for every interpretatiod.
In these terms a new constraint ®rCONSis pf,; p',d F- g. This gives us a
PFHL inference system with constraints WiHIL E presented in Table 7.

Table 7. PFHL inference system faWHILE with constraints in backward form.

{S(ph AL)b }p R_AS’
{Bid b R_SKIP’
B IMIAIT pEpo(re g R_SEQ
{r0p A% ~rOp(d g -
{g IR f,a{d -
LB pEPOWH(1D | R wH
%,DH P.dFe 0 R_CONS’

In this table a constrained rule consists of twagpgure inference rule and rule
constraint written on the right side of the purkeru

Theorem 4. PFHL inference rules of Table 7 are sound. That means:

1. F{S(p hy A K }p,

F{gid{ p,

F{gfalfl{drp=RCf,gr= E}pftlgr,

F{rOp { &£ -rOp{gta & &} p(IF ¢ {g q,

F{rOgf{p p=PCWH,rY -rOp=|F}p WH nf -~ }p,
6. F{p}fd b= P d= o= Ip{fta.

Let us prove this for each rule. Recall our assionpthat such properties are
proved for an implicitly given arbitrary interpréitan J.

1. ForE{S;(p h AL X }pto hold it is required that
FH(SI(pH, AS(h ¥ =(S p'n =0,
Let d be any data such thaO(S(p B)". Then p(ddJ[x— K d]) t= T. By

definiton of assignment composition it means thatOdp ™. So,

(S(p M) n pHP =0 and F{SK(p B} AY X }p.
2. E{ptid p follows from the definition ofd:
FH(p,id,p)f =p np"“=dn g=0.
3. Soundness condition for ruke SEQ'is obvious by theorem 3.

4. Letus proveF{r Op} { &| 4 ~rUp{gtq = &} p(IF ¢ Ha q.
SinceE{rOpt ¢ | £ ~rOp{gtg we have:
rOp)' ng ™" =0;(-rOp) ' ng™e=0.

We need to show that" n g =F"79 =11,

Let d be any data such thai(d) \=T and IF(r,f ,g)d)! . If r(d) (=T then
g(f(d)) 1=T by the first premise; ifr(d) {=F thenq(g(d)) .=T by the second
premise. Therefored 0g ™" "9 and E{pg IR, f, 9){§ .

5. Soundness condition for ruke WH'is obvious by theorem 3.

6. Letus proveF{p} { &, b= B 4= o= Ip{f}q.
We havefF{p} { ¢ whatmeansp” nq "' =0.

a s~

Also we have pf; p and q'F, q; using definitions we getp” O p™ and
q 0q-.

We need to show thgp' n g =0.

Letd be any data such thai(d) 1=T , f(d)!,andq'(f(d)) ! . By the second
premise p'(d) 1=T, by the first premise q'(f(d))1=T. If q(f(d))! then
q(f(d)) 1=T by the third premise; therefore Oq ™" . If q(f(d))+ then also
dOqg"™". Thus, in both casep’ n g ™' =0.

So, all rules are inspected and the theorem isgakov

Now we need to show that for total predicates prtigee of the classical Floyd-
Hoare logic will be preserved and that defineddagill be an extension of the Floyd-

Hoare logic. This means that for total predicateerdvation of a Floyd-Hoare asser-
tion in PFHL can be transformed to a derivatiortho$ assertion in CFHL and vice
versa: a derivation in CFHL can be presented aiwatem in PFHL. This property
holds because constraints of ruRsSEQ’andR_WH'’ will be satisfied automatically
in the case of total predicates; as R CONS'its constraint can be reduced to the
constraint of the ruleR_cons of CFHL. This will be granted by Theorem 5. Bet-b
fore that we show that for total predicates assentialidity in PFHL (&) is equiva-

lent to validity in CFHL (&,).

If we recall definitions of the classical (denoféldc) and monotone compositions
FH we will have:

T, if p(d=Forf(d)t or(f(d)! andq(f(d)F T)
FHc (p, f,0) = .
F, ifp(d=T, f(d!, andq(f(d))= F.
T, ifp(di=For(f(d)! andqg(f(d))i=T)
FH(p, f,q)=1F, ifp(di=T, f(d! ,andg(f(d)l= F,
undefined in other cases.
By the definitions, for total predicate®H (p, f,q)" = FH., (p, f,q) .
Thus, FH(p, f,q)" =0 « FH. (p, f,q" =0 . But
F{p ¥y <«/=FH pfp-=0 and
Fo{B Y <= FH p f hF:D-
So, we obtainF{p { & <] =.{ Jp{f} g . It means that for total predicates clas-
ses of valid assertions in PFHL and CFHL are timesa

Theorem 5. For total predicates the inference rules of PFHaL[€ 7) can be re-
duced to the inference rules of CFHL (Table 2).

To prove the theorem we should demonstrate thatdia predicates the con-
straints ofR_SEQ’andR_WH'’hold. It means that
F{p { &l K Ja{d r =|p=RC f,, g r and
F{rOpf b =p=PCWH,r) ~rp.
Letus prove that={g { 8| £ Ja{d r =|p=PC fo, § r.

This means that
P ng ' =0, nrf=0= p'nr™™9=0.

Indeed, r"" 9 =f[r "9 . Sinceq" nr"9=0 andq is total, we have that
rF90q". Andsincep’ n g ™" =0 we obtain thatp’ nr ™" =0 .

Letus provethaE{rOptf{ p = p=PCWH,r) = rOdp.

Using the definition of validity we have: (rOp)'np™'=0 and
p' n PC(WH(r, f),~rOp~ z0.

By definition of PC,

p' n PC(WH(r, f),~rOp =p' n(=rOp) "0,

Letd be any data such thai(d) 1 =T andWHJ(r, f)(d) | . Then there exists a se-

quenced,,d,,...,d, suchthatd,=d, f(dy))i=d, ..., f(d,)i=d,, r(d,) =T,

., rd,) =T, rd,)=F. Also, WH(r, f)(d)1=d, and p(d)!{=T. This
gives (r Op)(d,) \=T. Also, f(d,) !=d,, thus p(d,) |=T. With r(d,) {=T and
f(d)t=d, we obtain p(d,) I1=T. By induction we have
p(d,) ‘= p(WH(r, f)(d)i=T and r(d,)i=rWH(r,f)d))!=F. Thus,
dO(=rOp) """ D Therefore p' n(-rOp) """ =0 and consequently
pE PC(WH(r, f),= rO p).

4.4 Simpler constraintsfor Partial Predicate | nference System

The trifling constraints introduced for rul&s SEQ’and R_WH’of PFHL in some
cases can be changed to more stronger but simpiestraints. Such simpler con-
straints considered here stem from the followingestation for properties of asser-

tion validity for total predicates. In this casg{pg {§ implies p"'Oq",
gq" 0 p~"and, dually, p' g ™", ™' O p" because F{g §§ means that
p"" n g° =0 and predicates are total.

In terms of special consequence relations thespepties can be reformulated as
pE; PC(f,q), PC(f,QF: p.

Using these properties we can strengthen congtriinR_SEQ’'and R_WH:
Theorem 6. For PFHL the following properties hold:

1. F{gAaltiidrlp= RC Ha=|p= PC * BT,
2. F{gf{&l%){dr RC Hla= p=|p= PC# yr,
3. F{pf<laf{dria= RGyr=|p= PC # g,
4. F{p &l «{la{dr RCYIr=c o= [p= RPC & Y,
5 F{rOpfp PCfH=(rO0p= p=PCWH,r) - lp,
6. F{rOp R p(rOpl=PCfp= p=PCWH,r)-1p.

To prove the first property recall, tha{g {% means p'ng™' =0,
F{ddy means q nr™9=0, pk, PC(f,d means p' Oqg"', and
pE PC(fe g, 1) meansp’' nr "9 =0 Thus, we should prove

T

pPng™'=0,q9"nr"=0,p 0qg"" = p'nrf™e=0.

Let d be any data such thap(d) 1=T, fe g(d !, f(fe g(d)! . By the first
premiseq(f(d)) 1=T. By the second premisgf g(d)) t=T. Thus,dOr "9,
Thereforep’ nr m"9=0 .

Other properties related with_ SEQ’are proved in the same manner.

Consider properties related wigh WH'.
Property

F{rOpf{p PCfH=(rOp= p=PCWH,r) -~ 1)p
can be represented as
(rOp)'np™' =0, p™ " O(r0p", p'n(=rOp) """ =0,
Let d be any data such that
p(d) +=T, WH(r,)(d)+, (= rd p(WHr (D) .

By the definition of the loop composition we havmtt there exists a sequence
dy,d,....d, suchthatd,=d, f(d,)!=d, ..., f(d,_)¢=d,andrd,) =T, ...,
rd,,) !=T,r(d,) |=F. By induction onn taking into consideration the second
premise we get that p(d,) {=T, p(d)!=T, ...,p(d,) \=T. That means that
(=r Op)(d,) t=T. Thereforep’ n (=rdp) "D =0,

Another property related witR_WH'’is proved in the same manner.

This theorem permits to consider
pEr PC(f,q), PC(f,qF: p. akF: PC(g 1), PC(g Nk q
(or any their combination) as constraints RorSEQ’and
PC(f, Pk, (rOp), (rdp)F: PC(f, p)
as constraints foR_WH. These constraints are simpler than initial itrgfl con-
straints.

We can go further trying to identify cases in whibbse constraints hold automat-
ically. In other words to find cases in which th@@part of the inference rules can be
used in derivation without proving validity of cdrants.

One of such cases is described by the followingndieis.

Assertion {g { B is called T-increasing if pf; PC(f, gholds, andF-
decreasingf PC(f, g F. p holds.

Theorem 7. Let assertion{g f i be T-increasing or F-decreasing. Then

F{igfd.

Consider the casepl; PC(f,q). It means that p"' Oq"' therefore
p'ng

"' =0 . Other cases are considered in the same manner.

Theorem 8. All pure (with constraints omitted) inference milef PFHL except
rule R_CONS’ (Table 7) preserve the classes of T-increasigradecreasing asser-
tions.

Proofs for both properties is similar, thus consithe class of T-increasing asser-
tion.

1. ForR_AS’ the proof that{S(p h} AY)i }p is T-increasing can be easily

obtained from the proof of the corresponding itdrtheorem 4.
2. ForR_ID’ the proof is obvious.
3. ForR_SEQwe should prove

pPE: PC(f.q), qF; PC(g = pk; PC(fe g).
Thismeansp' Og ™", Or "= p"Or "9 The proof of this fact is trivial.
4. ForR_IF’ we need to prove
ripf; PC(f,0), -rOpk; PC(9,0 = pk; PC(IF(r, f,9).0).

This means(r dp)' Og ™', (~-rOp)’ ' O0qg "= p'Oqg"""""9 Letd be any
data such thap(d) {1 =T and IF(r,f,g)d) ! . If r({d) (=T thenr(f(d) (=T by
the first premise; ifr(d) 1=F thenr(gd) !=T by the second premise. Therefore
ddg""* "9 and pf, PC(IF(r, f,g),q).

5. ForR_WH’'we need to prove

ripk; PC(f,p)= pk; PC(WH(r,), p).

From this point the proof coincides with the cop@sding part of the proof of the-

orem 5 therefore it is omitted. So, we can conchide p |F, PC(WH(r, f)).

The theorem is proved.
As to ruleR_CONS'we can change it to rulR_CONS”with the following new
constraint:

PFr P andq’F; g.
It is easy to prove that the ruR_ CONS”with this constraint is sound, and being
restricted on the class of total predicates ieduced to the rulB_CONS

Theorem 9. RuleR_CONS”preserves the class of T-increasing assertions.

The proof is obvious.

The proved theorems permit to write Table 8 ford@WHILE inference system
which is valid and is an extension of the inferesggtem given in Table 2. In the new
system only rul®R_CONS"has a constraint. Simplicity of this system islakped by
the fact that ruleR_AS’andR_SKIP’(being axioms) specify T-increasing assertions
and the constraint dR_CONS" is simple sufficient constraint (though it is rath
expressive being an extensionRofcons.

Table 8. SimplePFHL inference system faWHIL E with T-increasing assertions.

{S(pht AL) }p R_AS
{gid p R_SKIP

(8 {n{aa r
(Bfegy RSEQ
{rOp 5 ~rOpldq -
(3 IFC T, 9L 4 -
)
(BWH T H{~rOp R_WH
e q , .
Y5} PE PLdErq R_CONS

Identification and investigation of other simplderence systems should be con-
tinued. One of such cases is induced by acyclignaros.

45 PFHL for Acyclic Programs

If we consider acyclic programs (loop-free prograntise preimage predicate trans-
former composition can easily be presented via fdasof predicate logic. This sim-
plifies constraints and reduces the problem ofrthalidity to the validity problem of
formulas of composition-nominative predicate logithese problems were investi-
gated in [3, 5, 7]. For the cyclic programs, thaiyclic approximations can be con-
sidered. Details are not presented here.

5 Related Work

The seminal work on a logical characterization afgpams by Floyd [1] and Hoare
[2] was purely axiomatic, i.e., not yet backed byoamal semantics of programs.
While also Dijkstra followed this tradition with siweakest precondition calculus [8],
he also systematically investigated the necesseogepties of his predicate trans-
former “wp”. In particular, he explicitly requireitt monotonicityand realized (after a

hint of J.C. Reynolds) the importance of ¢ntinuity for expressing effectively im-

plementable calculations (by ruling out unboundeddeterminism).

The crucial importance of monotonicity and contipudf functions for the set-
theoretic modeling of programs was exhibited byt&and Strachey’s denotational
semantics where unbounded repetition is modeletieagixed point of a continuous
functional [9,10]. Similar considerations of monaimity and continuity play a role in
those approaches to program semantics that ard basthe formal representation of
programs as state relations (predicates), e.g.’8ackl White’s Refinement Calculus
[11], Hoare's and He's Unifying Theory of Progranmmi[12] and Boute’s Calcula-
tional Semantics [13]. However, this work was tytlig performed in a context where
functions and predicates were basically assumdzk ttotal, i.e., well-defined for all
kinds of arguments (apart from the result of inérlibops which is usually represent-
ed by a special “non-termination” value).

From a logical perspectivpartial predicateq14] give rise tathree-valued logics
where the additional value may represent “unknown™error”. Depending on the
exact interpretation of this additional value, nuows variants of such logics have
been developed by tukasiewicz [15], Kleene [16]cBar [17] and others, see e.g.
Bergmann [18] for a survey. Moisil [19] provided the “tukasiewicz-Moisil Alge-
bras” an axiomatic algebraic framework for theirnfialization. A particular interest
in these non-standard logics arose in the contéxthe theory of computation
(McCarthy [20]), the modeling of processes (Bemgstnd Ponse [21]), and in particu-
lar in the formal specification and verification obmputer programs (Blikle [22],
Konikowska et al [23]).

Especially in the context of the algebraic speatfen of abstract datatypes [24],
the handling opartial functions(whose execution may not terminate or yield an er-
ror) plays an important role [25, 26]. Within asd&cal framework these may be han-
dled by explicitly restricting the domain of a paltfunction by a predicate and treat
the function result for arguments outside the donzei a definite (but unknown) val-
ue in the range of the function; this was alsolihsis of the work of one of the au-
thor's of the present chapter [27, 28].

On the other hand, one may also introduce exmigport for partial functions
within the logic itself such as in the Vienna Demhent Method (VDM) which in-
troduces a corresponding “logic of partial funcEdf29]. Broy and Wirsing devised
in the CIP project the concept of “partial algebi@®] where each carrier may con-
tain unacceptable values (e.g. “undefined”) whemeckl rules are given to deal with
the application of functions to unacceptable elesiethus even non-strict functions
may be specified that produce acceptable resuftairiacceptable arguments. This
concept has become the basis of a lot of subsequarkt[31-33] and also forms the
semantic basis of the “Common Algebraic Specifaratianguage” CASL [34].

6 Conclusions

In the chapter we have considered questions coimgerextension of traditional
Floyd-Hoare logic for partial pre- and postcondiso We have adopted a semantic-
syntactic style of logic definition. Therefore wiest have constructed and investigat-
ed special program algebras of partial predicdtes;tions, and programs. In such
algebras program correctness assertions can benpedswith the help of a special
composition called Floyd-Hoare composition. Weéavoved that this composition
is monotone and continuous. Considering the cldswpstructed algebras as a se-
mantic base we then have defined an extended lofartial Floyd-Hoare Logic —
and investigated its properties. This logic hasaatcomplicated soundness con-
straints for inference rules, therefore somewhapkr but also sufficient constraints
have been proposed. The logics constructed casdzbfar program verification.

This chapter can be considered as a first step eémeldping composition-
nominative program logics. The major directiongusther investigation are the ques-
tion of relative completeness of the system ofrifiee rules, invariants for cycles,

and types for variables and functions. Also ththars plan to construct a prototype
of a program reasoning system oriented on the angtsd logics.

References

1. Floyd R.W.: Assigning meanings to programs. Procegslof the American Mathematical
Society Symposia on Applied Mathematics, vol. 19,19-31 (1967)

2. Hoare C.A.R.: An axiomatic basis for computer prograng. Communications of the
ACM, issue 12, pp. 576-580,583 (1969)

3. Nikitchenko M.S., Shkilniak S.S.: Mathematical logind theory of algorithms. Publishing
house of Taras Shevchenko National University af/Kiyiv, (in Ukrainian) (2008)

4. Nielson H.R., Nielson F.: Semantics with ApplicasomA Formal Introduction. John
Wiley & Sons Inc, 240p. (1992)

5. Nikitchenko M.S., Tymofieiev V.G.: Satisfiabilityni Composition-Nominative Logics.
Central European Journal of Computer Science, vidse 3, pp. 194-213 (2012).

6. Avron A., Zamansky A.: Non-Deterministic Semantios Logical Systems. Handbook of
Philosophical Logic, vol. 16, pp. 227-304 (2011)

7. Nikitchenko M., Tymofieiev V.: Satisfiability and Validity Problems Many-sorted
Composition-Nominative Pure Predicate Logics. In:Evmolayev et al. (eds.): ICTERI
2012, CCIS 347, pp. 89-110. Springer, HeidelbergZp01

8. Dijkstra E.W.: A Discipline of Programming, Premgitiall, Englewood Cliffs, New Jer-
sey (1976).

9. Schmidt, D.A.: Denotational Semantics — A Methodgldor Language Development.
Allyn and Bacon, Boston, MA (1986).

10. Scott, D., and Strachey, C.: Towards a Mathema8eahantics for Computer Languages.
Proc. Symp. on Computers and Automata, Polytecmsiitlite of Brooklyn; also Tech.
Mon. PRG-6, Oxford U. Computing Lab., pp. 19-46 (1971

11. Back R.-J. and von Wright J.: Refinement Calculus: At&yatic Introduction. Springer,
New York (1998).

12. Hoare C.A.R. and Jifeng He. Unifying Theories of Pamgming. Prentice Hall, London,
UK (1998).

13. Boute, R.T.: Calculational Semantics: Deriving Prograng Theories from Equations by
Functional Predicate Calculus. ACM Transactions asgRamming Languages and Sys-
tems, 28(4):747-793 (2006).

14. Wang, H: The Calculus of Partial Predicates andExtgnsion to Set Theory. Zeitschr. f.
math. Logik und Grundlagen d. Math., Vol. 7., p3288 (1961).

15. tukasiewicz, J: O logice tréjwardoiowej (in Polish). Ruch filozoficzn$:170-171. Eng-
lish translation: On three-valued logic, in L. Bowski (ed.), Selected works by Jan
tukasiewicz, North—Holland, Amsterdam, pp. 87-887Q).

16. Kleene, S.C: On Notation for Ordinal Numbers. Jou®ymbolic Logic 3, 150 — 155
(1938).

17. Bochvar, D.A. On a 3-valued Logical Calculus andAfplication to the Analysis of
Contradictions (in Russian)," Matematiceskij sbornii, 4, pp. 287-308 (1939).

18. Bergmann M.: An Introduction to Many-Valued and Ruiogic: Semantics, Algebras,
and Derivation Systems, Cambridge University Préssnbridge, UK (2008).

19. Moisil, G.: Recherches sur les logiques nonchrysippés. Ann. Sci. Univ. Jassy 26, 431-

436 (1940).

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

McCarthy, J.: A Basis for a Mathematical Theory oh@utation, pp. 33-70 in Computer
Programming and Formal Systems, edited by P. Btafiod D. Hirshberg, North-
Holland, Amsterdam (1963).

Bergstra, J.A. and Ponse, A.: Bochvar-McCarthy Logi¢ Brocess Algebra, Notre Dame
Journal of Formal Logic, Volume 39, Number 4, pp4-4184 (1988).

Blikle A.: Three-Valued Predicates for Software Sfiestion and Validation, VDM '88:
VDM — The Way Ahead. Volume 328 of Lecture NotesGamputer Science, Springer,
New York, pp. 243-266 (1988).

Konikowska B., Tarlecki A., Blikle, A.: A Three-valdd_.ogic for Software Specification
and Validation. Fundam. Inform. 14(4): 411-453 (1p9

Sannella, D. and Tarlecki, A.: Foundations of Algéb Specification and Formal Soft-
ware Development, Monographs in Theoretical CompBtéence, Springer (2012).
Cheng, J. H. and Jones, C.B.: On the Usability of ¢®gihich Handle Partial Functions.
In C. Morgan and J. C. P. Woodcock, editof$ R&finement Workshop, 51-69 (1991).
Jones, C.B. Reasoning about Partial Functions in ¢inmd Development of Programs.
Electronic Notes in Theoretical Computer Sciendé&:3—2 (2006)

Schreiner W.: Computer-Assisted Program Reasoningdas a Relational Semantics of
Programs. In: Pedro Quaresma and Ralph-Johan BasR:(Bdoceedings First Workshop
on CTP Components for Educational Software (THedgu'ddly 31 2011, Wroctaw, Po-
land, number 79 of Electronic Proceedings in Thimak Computer Science (EPTCS),
ISSN: 2075-2180, pp. 124-142, (2012).

Schreiner W.: A Program Calculus Technical Report.eBeh Institute for Symbolic
Computation (RISC), Johannes Kepler University, Lidstria, http://www.risc.uni-
linz.ac.at/people/schreine/papers/ProgramCalcul&paf (2008).

Jones, C.B and Middelburg, C.A: A Typed Logic of Rdrunctions Reconstructed Clas-
sically, Acta Informatica, 31(5):399-430 (1994).

Broy M. and Wirsing M. Partial Abstract Data Typescta Informatica, 18(1):47-64
(1982).

Burmeister, P. A Model Theoretic Oriented ApproaohPartial Algebras. Akademie-
Verlag (1986).

Kreowski H.-J.: Partial Algebra Flows from Algelr&@pecifications. 12Int. Colloquium
on Automata, Languages and Programming, Vol. 26[Zecfure Notes in Computer Sci-
ence, pp. 521-530, Springer, Berlin (1987).

Reichel H.: Initial Computability, Algebraic Spediitions, and Partial Algebras. Oxford
University Press (1987).

Mosses Peter D.: CASL Reference Manual: The Completaibentation of the Common
Algebraic Specification Language. Volume 2960 o€tuee Notes in Computer Science,
Springer, Berlin (2004).

