
 Extending Floyd-Hoare Logic for Partial Pre- and
Postconditions

Andrii Kryvolap1, Mykola Nikitchenko1, and Wolfgang Schreiner2

1 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
krivolapa@gmail.com, nikitchenko@unicyb.kiev.ua

2 Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner@risc.jku.at

Abstract. Traditional (classical) Floyd-Hoare logic is defined for a case of total
pre- and postconditions while programs can be partial. In the chapter we pro-
pose to extend this logic for partial conditions. To do this we first construct and
investigate special program algebras of partial predicates, functions, and pro-
grams. In such algebras program correctness assertions are presented with the
help of a special composition called Floyd-Hoare composition. This composi-
tion is monotone and continuous. Considering the class of constructed algebras
as a semantic base we then define an extended logic – Partial Floyd-Hoare Log-
ic – and investigate its properties. This logic has rather complicated soundness
constraints for inference rules, therefore simpler sufficient constraints are pro-
posed. The logic constructed can be used for program verification.

Keywords. Program algebra, program logic, partial predicate, soundness, com-
position-nominative approach.

1 Introduction

Program logics are the main formalisms used for proving assertions about program
properties. A well-known classical Floyd-Hoare logic (here also referred to as CFHL)
[1, 2] is an example of such logics. Semantically, this logic is defined for the case of
total predicates though programs can be partial (non-terminating). In this case pro-
gram correctness assertions can be presented with the help of a special composition
over total predicates called Floyd-Hoare composition (FH-composition). However, a
straightforward extension of CFHL for partial predicates meets some difficulties. The
first one is that the FH-composition will not be monotone with respect to partial pred-
icates. Monotonicity is an important property that gives the possibility to reason about
the correctness of the program based on the correctness of its approximations.

That is why the need of a modified definition of the classical Floyd-Hoare logic for
the case of partial mappings arises. We construct such logics in this paper and called
them Partial Floyd-Hoare Logics (PFHL). Here we will consider only a special case
of partial mappings (predicates, ordinary functions, and program functions) defined
over sets of named values (nominative sets). Mappings over classes of such sets are

called quasiary mappings [3] and corresponding program algebras are called quasiary
program algebras. They form the semantic component of PFHL.

The syntactic component of such logics is presented by their languages and sys-
tems of inference rules. We study the possibility to use classical rules for modified
logics with a monotone Floyd-Hoare composition. Systems of such inference rules
should be sound to be of a practical use. This could be achieved by adding proper
restrictions (constraints) to the inference rules of the classical Floyd-Hoare logic that
fail to be sound. Thus, the proposed scheme permits to define a Floyd-Hoare-like
logic for partial pre- and postconditions.

The rest of the chapter is structured as follows. In Section 2 we analyze the tradi-
tional Floyd-Hoare logic and its potential to be extended for partial predicates. In
Section 3 we describe program algebras of quasiary predicates and functions at differ-
ent levels of abstraction, define a modified Floyd-Hoare composition and specify the
syntax for the modified logic. In Section 4 we study the soundness of the system of
inference rules for the introduced program algebras and define constraints for the
rules of the systems. We prove that obtained logic is indeed an extension of classical
Floyd-Hoare logic. Also simpler constraints are formulated. In Section 5 we describe
related work, and finally, we formulate conclusions in Section 6.

2 Analysis of Classical Floyd-Hoare Logic

We first analyze the CFHL constructed for a very simple imperative language
WHILE [4]. The grammar of the (slightly modified) language is defined as follows:

a ::= k | x | a1 + a2 | a1 * a2 | a1 – a2 | (a)
b ::= T | F | a1= a2 | a1≤ a2 | b1∨b2 | ¬b | (b)
S ::= x:=a | skip | S1 ; S2 | if b then S1 else S2 | while b do S | begin S end
where:

− k ranges over integers Int={…, –2, –1, 0, 1, 2, …},
− x ranges over variables (names) V={ N, R, X, Y, Z, …}
− a ranges over arithmetic expressions Aexpr,
− b ranges over Boolean expressions Bexpr,
− S ranges over statements (programs) Stm.

Semantics of arithmetical expressions is denoted as 〚a〛and of Boolean expres-

sions as 〚b〛. Program states (also called data) are considered as collections of

named values. Program correctness assertions (referred to simply as assertions) are
Floyd-Hoare triples of the form {p} S{ q} where p, q are predicates of some basic
predicate logic and S is a statement. An assertion {p} S{ q} is said to be valid [4] if the
following proposition holds: if S is started in a state satisfying p, and if S eventually
terminates in some final state, then this final state will satisfy q.

Analyzing this definition of assertion validity we should admit that it permits se-
mantic treatment of assertion {p} S{ q} as a certain predicate defined on states. This
treatment of assertions will not be monotone under predicate extension. Indeed, con-
sider informally the following assertion:

{ T} while T do skip {F}.

This Floyd-Hoare triple will be true on all states because the infinite loop is unde-
fined on all states, and thus on all states the condition of validity for this assertion is
satisfied. Now consider a triple {T} skip {F} that is false on all states. However, the
mapping ‘skip’ is an extension of ‘while T do skip’. Thus, monotonicity of assertion
validity fails.

Now we make a short analysis of the inference system for WHILE presented by
rules of Table 1 [4].

Table 1. WHILE inference system for concrete syntax.

]{ [} : { }p x xa a p=֏� � R_as

{ }skip{ }p p R_skip

1 2

1 2

{ } { },{ } { }

{ } ; { }

p S q q S r

p S S r
 R_seq

1 2

1 2

{ } { },{ } { }

{ } if then else { }

p S q p S q

p b

b

S

b

S q

∧ ¬ ∧� � � �
 R_if

{ } { }

{ } while do { }

p S p

p b

b

bS p

∧
¬ ∧

� �

� �
 R_wh

{ } { }
if and

{ } { }

p f q
p p q q

p f q

′ ′ ′ ′→ → R_cons

These rules are oriented on the concrete syntax of WHILE, and moreover they use

semantic mappings 〚a〛and〚b〛. We adopt the semantic-syntactic style, thus, we

present these rules as constructed over special semantic program algebra. In this al-
gebra (see the formal definitions in the next section) we semantically treat program
structuring constructs as special operations called compositions. For WHILE the
following compositions are introduced (we use notation of [3, 5]):

− superposition x
PS ;

− assignment Asx ;
− sequential execution • ;
− conditional IF;
− cycle (loop) WH.
In the sequel pre- and postconditions are denoted (possibly with indexes) as p, q, r;

ordinary functions as h, s; program functions (semantics of statements) as f, g.
Statement ‘skip’ is semantically represented by identity function id. Data (states) are
usually denoted as d.

Note, that we do not make an explicit distinction between a formula and its inter-
pretation. Thus, in the assertion {p} f{ q} we treat p and q syntactically as formulas of
the logic language and semantically as predicates of the program algebra.

According to the introduced notations the inference system can be presented by
rules of Table 2.

Table 2. WHILE inference system for semantic program algebra.

{ (,)} (){ }x x
PS p h AS h p R_AS

{ } { }p id p R_SKIP

{ } { },{ } { }

{ } { }

p f q q g r

p f g r•
 R_SEQ

{ } { },{ } { }

{ } (, ,) { }

r p f q r p g q

p IF r f g q

∧ ¬ ∧
 R_IF

{ } { }

{ } (,) { }

r p f p

p WH r f r p

∧
¬ ∧

 R_WH

{ } { }
if and

{ } { }

p f q
p p q q

p f q

′ ′ ′ ′→ → R_CONS

In the next sections we define a class of algebras of partial predicates (semantics of

logic) and modify the inference system for such predicates, thus obtaining Partial
Floyd-Hoare Logics.

3 Quasiary Program Algebras

To modify the classical Floyd-Hoare logic for partial quasiary mappings, we will use
semantic-syntactic scheme [3, 5]. This means that we will first define the semantics in
the form of classes of quasiary program algebras. Then the language of the logic will
be defined as well as the interpretation mappings.

To emphasize a mapping’s partiality/totality we write the sign →p for partial

mappings and the sign →t for total mappings. Given an arbitrary partial mapping

µ: D →p
 D′ , d∈ D, S ⊆ D, S′ ⊆ D′ we write:

– µ(d)↓ to denote that µ is defined on d;
– µ(d)↓= d′ to denote that µ is defined on d with a value d′;
– µ(d)↑ to denote that µ is undefined on d;
– [] { () | () , }S d d d Sµ µ µ= ↓ ∈ to denote the image of S under µ;

– 1['] { | () , () '}S d d d Sµ µ µ− = ↓ ∈ to denote the preimage (inverse image) of S′
under µ.

3.1 Classes of Quasiary Mappings

Let V be a set of names (variables). Let A be a set of basic values. Given V and A, the
class VA of nominative sets is defined as the class of all partial mappings from V to A,

thus, VA=V →p
A. Informally speaking, nominative sets represent states of varia-

bles.

Though nominative sets are defined as mappings, we follow mathematical tradi-
tions and also use a set-like notation for these objects. In particular, the notation
d = [vi ֏ai | i∈I] describes a nominative set d where i i nv a d∈֏ , which means that

d(vi) is defined and its value is ai (d(vi)↓=ai). The main operation for nominative sets

is the binary total overriding operation ∇: VA × VA →t VA defined by the formula

1 2 2 1 2[| (())]n n nd d v a v a d v a d a v a d′ ′∇ = ∈ ∨ ∈ ∧ ¬∃ ∈֏ ֏ ֏ ֏ . Intuitively,
given d1 and d2 this operation yields a new nominative set which consists of named
pairs of d2 and those pairs of d1 whose names do not occur in d2.

Let },{ TFBool = be the set of Boolean values. Let PrV, A=VA →p
Bool be the

set of all partial predicates over VA. Such predicates are called partial quasiary predi-

cates. Let FnV, A=VA →p
A be the set of all partial functions from VA to A. Such

functions are called partial quasiary ordinary functions. Here ‘ordinary’ means that

the range of such functions is the set of basic values A. Let FPrgV, A=VA →p VA be
the set of all partial functions from VA to VA. Such functions are called bi-quasiary
functions.

Quasiary predicates represent conditions which occur in programs, quasiary ordi-
nary functions represent the semantics of program expressions, and bi-quasiary func-
tions represent program semantics.

The terms ‘partial’ and ‘ordinary’ are usually omitted. In a general term, elements
of PrV, A, FnV, A, and FPrgV, A are called quasiary mappings.

3.2 Hierarchy of Quasiary Program Algebras and Logics

Based on algebras with three carriers (PrV, A, FnV, A, and FPrgV, A) we can define logics

of three types (see details in [3, 5]):

1) pure quasiary predicate logics based on algebras with one sort: PrV,А;
2) quasiary predicate-function logics based on algebras with two sorts: Pr V,А

and FnV,А;
3) quasiary program logics based on algebras with three sorts: PrV,А, FnV,А, and

FPrgV,А.
The basic compositions of logics of the first type are disjunction ∨, negation ¬, re-

nomination Rv
x , and quantification ∃x.

The basic compositions of logics of the second type additionally include superposi-

tions v
FS and v

PS , and denomination function 'x.

The basic compositions of logics of the third type additionally include the follow-
ing program compositions: the parametric assignment composi-
tion , ,:x V A t V AAS Fn FPrg→ , the composition of sequential execution

, , ,: V A V A t V AFPrg FPrg FPrg• × → , the conditional composition
, , , ,: V A V A V A t V AIF Pr FPrg FPrg FPrg× × → , the cyclic (loop) composition

, , ,: V A V A t V AWH Pr FPrg FPrg× → , and identity function id: FPrgV,А. Also we need

compositions that describe properties of the programs. The Floyd-Hoare composition
, , , ,: V A V A V A t V AFH Pr FPrg Pr Pr× × → is the most important of them. Its formal

definition will be given in the next subsection.

3.3 Formal Definition of the Floyd-Hoare Composition

The required definition stems from the analysis of Floyd-Hoare assertions with total
predicates (see, for example, [4]). Namely, an assertion {p} f{ q} is said to be valid if
and only if

for all d from VA if p(d) =T, f(d)↓= d′ for some d′ then q(d′) =T.
This definition permits to treat {p} f{ q} as a predicate because it is a pointwise def-

inition. Rewriting this definition for different cases we get the following matrices
(Table 3) specifying the logical values of {p} f{ q} for an arbitrary d.

Table 3. Logical values of {p} f{ q} for total predicates.

 a) f(d) is defined b) f(d) is undefined
p(d) \ q(f(d)) F T

F T T

T F T

p(d) { p} f{ q}(d)

F T

T T

The example given in Section 2 demonstrates that for partial predicates monotonic-

ity fails for the case when f(d) is undefined and p(d) ↓ =T . Therefore, to define a
monotone interpretation of Floyd-Hoare triples for partial predicates we should
change the value of {p} f{ q} for this case. Also, we should specify the logical values
of {p} f{ q} for the cases when pre- or postconditions are not defined. In Table 4 such
unspecified logical values are denoted by the question marks.

Table 4. Logical values of {p} f{ q} for partial predicates, where question mark represents
values that should be changed to a Boolean values.

 a) f(d) is defined b) f(d) is undefined
p(d) \ q(f(d)) F T undefined

F T T ?

T F T ?
undefined ? ? ?

p(d) { p} f{ q}(d)

F T

T ?

undefined ?

While defining a required composition we adopt the following requirements:

− partiality of mappings;
− monotonicity of a composition on all its arguments;
− maximal definiteness of the obtained predicates (we call this as Kleene’s re-

quirement).
To do this we use techniques for non-deterministic semantics described in [6]. We

will treat the case when a predicate is ‘undefined’ as non-deterministic values T and

F. Thus, we can use Boolean values given in Table 4 to evaluate a set of values for
cases with question marks. The obtained results are presented in Table 5.

Table 5. Logical values of {p} f{ q} for partial predicates presented as sets of Boolean values.

a) f(d) is defined b) f(d) is undefined
p(d) \ q(f(d)) { F} { T} { F,T}

{ F} { T} { T} { T}

{ T} { F} { T} { F,T}

{ F,T} { F,T} { T} { F,T}

p(d) { p} f{ q}(d)

{ F} { T}
{ T} { F,T}

{ F,T} { F,T}

Now, replacing non-deterministic results {F, T} on undefined we get the final re-

sults (Table 6).

Table 6. Logical values of {p} f{ q} for partial predicates with undefined values.

a) f(d) is defined b) f(d) is undefined
p(d)\q(f(d)) F T undefined

F T T T

T F T undefined
undefined undefined T undefined

p(d) { p} f{ q}(d)

F T

T undefined

undefined undefined

The obtained matrices define an interpretation of { p} f{ q} for partial predicates. As

was said earlier, we formalize such triples as a Floyd-Hoare composition
, , , ,: V A V A V A t V AFH Pr FPrg Pr Pr× × → (p, q∈ PrV,A, f∈FPrgV,А, d ∈VA):

FH(p,f, q)(d)=








↓=↓=
↓=↓=

 cases.other in undefined

,))((and)(if,

,)(or))((if,

FdfqTdpF

FdpTdfqT

3.4 Formal Definition of Program Algebra Compositions

In the previous subsection the formal definition of FH-composition was presented. In
this subsection we give definitions of other compositions (see details in [3, 5]).

Propositional compositions are defined as follows (p, q ∈ PrV,A, d ∈VA):

, if () or () ,

()() , if () and () ,

undefined in other cases.

T p d T q d T

p q d F p d F q d F

 ↓= ↓=
∨ = ↓= ↓=











↑
↓=
↓=

=¬
 .)(if undefined

,)(if ,

,)(if ,

))((

dp

TdpF

FdpT

dp

Unary parametric composition of existential quantification ∃x with the parameter
x∈V is defined by the following formula (p ∈PrV,A, d ∈ VA):

, if exists: () ,

()() , if () for each ,

undefined in other cases.

T b A p d x b T

x p d F p d x a F a A

 ∈ ∇ ↓=


∃ = ∇ ↓= ∈



֏

֏

Here axd ֏∇ is a shorter form for][axd ֏∇ .

Parametric n-ary superpositions with 1(,...,)nx x x= as the parameter are defined

by the following formulas (h, s1,…, sn ∈ FnV,A, p ∈ PrV,A, d ∈VA):

1 1 1((, , ,))() ([(), , ()])x
F n n nS h s s d h d x s d x s d= ∇… ֏ … ֏ ,

1 1 1((, , ,))() ([(), , ()])x
P n n nS p s s d p d x s d x s d= ∇… ֏ … ֏ .

Null-ary parametric denomination composition with the parameter x∈V is defined
by the following formula (d∈ VA): 'x (d) = d(x).

Identical program composition id∈FPrgV,А is simple: ()id d d= (d ∈VA).

Assignment composition is defined as follows (h∈ FnV,A, d ∈VA):
()() [()]xAS h d d x h d= ∇ ֏ .

Composition of sequential execution is introduced in the ordinary way (f,
g∈FPrgV,А, d ∈VA):

() (())f g d g f d• = .

Note, that we define • by commuting arguments of conventional functional compo-
sition: f•g=g� f.

Conditional composition depends on the value of the first argument which is the
condition itself (p∈ PrV,A, f, g∈FPrgV,А, d ∈VA):

(), if () ,

(, ,)() (), if () ,

undefined in other cases.

f d p d T

IF p f g d g d p d F

 ↓=


= ↓=



Cycle (loop) composition is defined by the following formulas: (,)() nWH p f d d= ,

if there exists a sequence 0,..., nd d such that 0 ,d d= 0 1()f d d↓= , …, 1()n nf d d− ↓= ,

0()p d T↓= , … , 1()np d T− ↓= , ()np d F↓= (p∈ PrV,A, f∈FPrgV,А, d ∈VA).

It means that we have defined the following quasiary program algebra:

QPA(V, A) = < PrV,A, FnV,A, FPrgV,A; ∨, ¬, v
FS , v

PS , ′x, ∃x, id, AS x, •, IF, WH, FH>.

The class of such algebras is the main object of our investigation.

3.5 Formal Definition of Program Algebra Terms

Terms of the algebra QPA(V, A) defined over sets of predicate symbols Ps, ordinary
function symbols Fs, program symbols Prs, and variables V specify the syntax (the
language) of the logic. We now give inductive definitions for terms

(, , ,)Tr Ps Fs Prs V , formulas (, , ,)Fr Ps Fs Prs V , program texts (, , ,)Pt Ps Fs Prs V ,

and Floyd-Hoare assertions (, , ,)FHFr Ps Fs Prs V .

First we will define terms:

– if F Fs∈ then (, , ,)F Tr Ps Fs Prs V∈ ;

– if v V∈ then ' (, , ,)v Tr Ps Fs Prs V∈ ;

– if F Fs∈ , 1, , (, , ,)nt t Tr Ps Fs Prs V∈… , and 1, , nv v V∈… (0)n ≥ are distinct vari-

ables then 1, ,
1(, , ,) (, , ,)nv v

F nS F t t Tr Ps Fs Prs V∈…
… .

Then we will define program texts:

– if Pr Prs∈ then (, , ,)Pr Pt Ps Fs Prs V∈ ;

– (, , ,)id Pt Ps Fs Prs V∈ ;

– if v V∈ and (, , ,)t Tr Ps Fs Prs V∈ then () (, , ,)vAS t Pt Ps Fs Prs V∈ ;

– if 1 2, (, , ,)pr pr Pt Ps Fs Prs V∈ then 1 2 (, , ,)pr pr Pt Ps Fs Prs V• ∈ ;

– if 1 2, (, , ,)pr pr Pt Ps Fs Prs V∈ and (, , ,)p Fr Ps Fs Prs V∈ then

1 2(, ,) (, , ,)IF p pr pr Pt Ps Fs Prs V∈ ;

– if (, , ,)pr Pt Ps Fs Prs V∈ and (, , ,)p Fr Ps Fs Prs V∈ then

(,) (, , ,)WH p pr Pt Ps Fs Prs V∈ .

Finally, formulas and Floyd-Hoare triples are defined:

– if P Ps∈ then (, , ,)P Fr Ps Fs Prs V∈ ;

– if , (, , ,)Fr Ps Fs Prs VΦ Ψ ∈ then (, , ,);Fr Ps Fs Prs VΦ ∨ Ψ ∈

– if (, , ,)Fr Ps Fs Prs VΦ ∈ then (, , ,)Fr Ps Fs Prs V¬Φ ∈ ;

– if P Ps∈ , 1, , (, , ,)nt t Tr Ps Fs Prs V∈… , and 1, , nv v V∈… (0)n ≥ are distinct vari-

ables then 1, ,
1(, , ,) (, , ,)nv v

P nS P t t Fr Ps Fs Prs V∈…
… ;

– if (, , ,)Fr Ps Fs Prs VΦ ∈ and v V∈ then (, , ,)v Fr Ps Fs Prs V∃ Φ ∈ ;

– if (, , ,)f Pt Ps Fs Prs V∈ and , (, , ,)p q Fr Ps Fs Prs V∈ then

{ } { } (, , ,)p f q FHFr Ps Fs Prs V∈ .

After syntax and semantics have been defined, we need to specify the interpreta-
tion mappings, assuming that interpretation mappings for the predicate symbols

,: t V A
PsI Ps Pr→ , function symbols ,: t V A

FsI Fs Fn→ , and program symbols
,: t V A

PrsI Prs FPrg→ are given. Let ,: (, , ,) t V A
FrJ Fr Fs Ps Prs V Pr→ denote an

interpretation mapping for formulas, ,: (, , ,) t V A
TrJ Tr Fs Ps Prs V Fn→ denote an

interpretation mapping for terms and ,: (, , ,) t V A
PtJ Pt Fs Ps Prs V Prg→ denote an

interpretation mapping for programs (statements). They are all defined in a natural
way, only the case with assertions needs special consideration:

({ } { }) ((), (), ())FHFr Fr Pt FrJ p f q FH J p J f J q= .

Thus, an interpretation J is defined by some algebra QPA(V, A) and interpretation
mappings PsI , FsI , and PrsI . An assertion is said to be valid (irrefutable) in an inter-

pretation J (denoted J | { } { }IR p f q= or simply | { } { }p f q=) if a predicate obtained

under interpretation J is not refutable. An assertion is said to be valid (denoted
| { } { }p f q=) if for any interpretation J we have J | { } { }p f q= . In this chapter we do

not define interpretations explicitly expecting that they are clear from the context.
Thus, in the text the main reasoning steps are described for program algebras though
to be precise we had to define an interpretation first and then consider predicates of
the corresponding program algebra.

3.6 Monotonicity and Continuity of the Floyd-Hoare Composition

In the previous subsections a function-theoretic style of composition definitions was
used. To prove properties of the FH-composition, it is more convenient to use a set-
theoretic style of definitions.

The following sets are called respectively truth, falsity, and undefinedness domains
of the predicate p over D:

{ | () }Tp d p d T= ↓= ,

{ | () }Fp d p d F= ↓= ,

{ | () }p d p d⊥ = ↑ .

The following definitions introduce various images and preimages involved in
Floyd-Hoare composition:

, 1[]T f Tq f q− −= ,
, 1[]F f Fq f q− −= ,
, 1[]fq f q−⊥ − ⊥= ,
, []T f Tp f p= ,
, []F f Fp f p= ,
, []fp f p⊥ ⊥= .

Using these notations we can define FH-composition by describing the truth and
falsity domains of the predicate that is the result of the composition application:

,(, ,)T F T fFH p f q p q−= ∪ ,
,(, ,)F T F fFH p f q p q−= ∩ .

Validity of formulas (predicates) is considered as irrefutability, that is
| Fp p= ⇔ = ∅ .

From this follows that
,| (, ,) T F fFH p f q p q−= ⇔ ∩ = ∅ .

Let us give a formal definition of a monotone composition.
Composition , , , ,: () () ()V A n V A k V A m t V AC FPrg Pr Fn Pr× × → (with the class of

predicates as its range) is called monotone if the following condition holds for all
arguments of C:

1 1 1 1 1 1, , , , , , , ,n n k k m mf g f g p q p q h s h s⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⇒… … …

1 1 1 1 1 1(, , , , , , , ,) (, , , , , , , ,)n k m n k mC f f p p h h C g g q q s s⊆… … … … … … .

Here relation of partial order ⊆ is defined as inclusion of graphs of the arguments
(which are mappings) of this relation.

Theorem 1. Floyd-Hoare composition is monotone for every argument.

Let us prove monotonicity for every argument separately, examining their truth and
falsity domains. For the first argument (precondition) we have:

1 2p p⊆ ⇒ 1 2
F Fp p⊆ ⇒ , ,

1 2
F T f F T fp q p q− −∪ ⊆ ∪ ⇒

1 2(, ,) (, ,)T TFH p f q FH p f q⊆

and

1 2p p⊆ ⇒ 1 2
T Tp p⊆ ⇒ , ,

1 2
T F f T F fp q p q− −∩ ⊆ ∩ ⇒

1 2(, ,) (, ,)F FFH p f q FH p f q⊆ .

Thus, 1 2p p⊆ ⇒ 1 2(, ,) (, ,)FH p f q FH p f q⊆ .

For the third argument (postcondition) the proof is similar:

1 2q q⊆ ⇒ 1 2
T Tq q⊆ ⇒ , ,

1 2
T f T fq q− −⊆ ⇒ , ,

1 2
F T f F T fp q p q− −∪ ⊆ ∪ ⇒

1 2(, ,) (, ,)T TFH p f q FH p f q⊆

and

1 2q q⊆ ⇒ 1 2
F Fq q⊆ ⇒ , ,

1 2
F f F fq q− −⊆ ⇒ , ,

1 2
T F f T F fp q p q− −∩ ⊆ ∩ ⇒

1 2(, ,) (, ,)F FFH p f q FH p f q⊆ .

Thus, 1 2 1 2(, ,) (, ,)q q FH p f q FH p f q⊆ ⇒ ⊆ .

Let us show the monotonicity of FP-composition for the second argument. For the
truth domains we have:

1 2f f⊆ ⇒ 1 2, ,T f T fq q− −⊆ ⇒ 1 2, ,T f T fF Fp q p q− −∪ ⊆ ∪

⇒ 1 2(, ,) (, ,)T TFH p f q FH p f q⊆ .

Similar, for the falsity domains:

1 2f f⊆ ⇒ 1 2, ,F f F fq q− −⊆ ⇒ 1 2, ,F f F fT Tp q p q− −∩ ⊆ ∩ ⇒

1 2(, ,) (, ,)F FFH p f q FH p f q⊆ .

Therefore, 1 2 1 2(, ,) (, ,)f f FH p f q FH p f q⊆ ⇒ ⊆ .

Thus, it was shown that the composition is monotone for every component, what
was needed to prove.

For the constructed composition even stronger result is true, it is continuous. To
show this, the following definitions are made and the notion of continuity is given
(see, for example, [4]).

An infinite set of indexed mappings 0 1{ , , }µ µ … with 1,i i iµ µ ω+⊆ ∈ is called a

chain of mappings.
The supremum of the above-mentioned set of indexed mappings is called limit of

the chain, denoted as i
i

µ∐ .

The composition , , , ,: () () ()V A n V A m V A l t V AC Prg Pr Fn Pr× × → is called continu-

ous on the first argument if for arbitrary chain { | }if i ω∈ the following property

holds:

2 1 1 2 1 1(, , , , , , ,) (, , , , , , ,)i n m l i n m l
i i

C f g g p p h h C f g g p p h h=… … … … … …∐ ∐ .

Continuity on the other arguments is defined in a similar manner.

Theorem 2. Floyd-Hoare composition is continuous on every argument.

Though this result follows from the general consideration, we give here its direct
proof. Let us show the continuity on the first argument. In the case of other arguments
the proof will be similar.

Consider a chain of predicates { | }ip i ω∈ . Since Floyd-Hoare composition is

monotone, { (, ,) | }iFH p f q i ω∈ will also be a chain. We need to show that

(, ,) (, ,)i i
i i

FH p f q FH p f q=∐ ∐ . To do this we demonstrate that

(, ,)()i
i

FH p f q d∐ is defined iff ((, ,))()i
i

FH p f q d∐ is defined, and in this case

(, ,)()i
i

FH p f q d∐ = ((, ,))()i
i

FH p f q d∐ for the arbitrary data d .

There are two different possibilities – ()()i
i

p d ↑∐ and ()()i
i

p d ↓∐ .

In the first case none of the elements of the chain is defined on d . Therefore

((, ,))()i
i

FH p f q d∐ is defined iff (())q f d T↓= . But this means that

((, ,))()i
i

FH p f q d∐ is defined with the same value.

In the second case (()()i
i

p d ↓∐), an element of the chain that is also defined on

this data could be found. Otherwise the limit would have been undefined on d , what
is guaranteed by the inclusion relation on the elements of the chain. Thus, there exists
k such that ()kp d ↓ . Therefore

(, ,)()i
i

FH p f q d∐ = (, ,)()kFH p f q d and

(, ,)() ((, ,))()k i
i

FH p f q d FH p f q d= ∐ ,

since for any i: , () ()i ki k p d p d> ↓= by the definition of the chain.

The following equality is obtained: (, ,)() ((, ,))()i i
i i

FH p f q d FH p f q d=∐ ∐ .

Since the data was chosen arbitrary, we get (, ,) (, ,)i i
i i

FH p f q FH p f q=∐ ∐ , what

was needed to prove.
The proof for the other arguments is similar. Thus, the monotone Floyd-Hoare

composition is continuous on every argument.
The theorems 1 and 2 often permit to consider instead of programs with cycles

their cycle-free approximations.

4 Inference System for PFHL

In this section we investigate possibility to use inference rules of Table 2 for PFHL.

4.1 Soundness of Classical Inference System for PFHL

Analysis of inference rules shows that soundness fails for the rules R_SEQ, R_WH,
and R_CONS. This can be demonstrated with the following examples.

First, let us show that for some interpretation there can be such , , ,p q r f , and g

that | { } { },| { } { } | { } { }p f q q g r p f g r= = ⇒ = • is false.

Consider ()p d T↓= , () ↑q d and ()r d F↓= for arbitrary d and = =f g id . In

this case | { } { }= p f q and | { } { }= q g r because = = ∅T Fq q , but | { } { }≠ •p f g r . Thus,

| { } { },| { } { } | { } { }p f q q g r p f g r= = ⇒ = • is false.

Next example concerns the rule R_WH. We need to show that for some , ,r f p

| { } { }= ∧r p f p and | { } (,){ }p WH r f r p≠ ¬ ∧ .

In this case we need at least three different data (states) 1 2 3d d d≠ ≠ . Then

r , f , p are defined in the following manner:

1 2

3

, if or ,

() , if ,

undefined in other cases.

T d d d d

r d F d d

= =
= =



3 3

2 1

3 2

, if ,

, if ,
()

, if ,

undefined in other cases.

d d d

d d d
f d

d d d

=
 ==  =


1

2

3

, if ,

undefined, if ,
()

, if ,

undefined in other cases.

T d d

d d
p d

F d d

=
 ==  =


It is not hard to prove that | { } { }= ∧r p f p , because ()()r p d T∧ ↓= only when

1=d d , but in this case 1 2() ()f d f d d↓= ↓= and 2()p d ↑ . This means that there is

no such d that (, ,)()FH r p f p d F∧ ↓= in the case of abovementioned interpreta-

tions.
Let us show that | { } (,){ }≠ ¬ ∧p WH r f r p . Consider the value of

1(, (,),)()¬ ∧FH p WH r f r p d .

We have that 1()p d T↓= , 1 3(,)()WH r f d d↓= , 3()()r p d F¬ ∧ ↓= .

Thus, 1(, (,),)()FH p WH r f r p d F¬ ∧ ↓= . This gives | { } (,){ }≠ ¬ ∧p WH r f r p .

So, | { } { } | { } (,){ }r p f p p WH r f r p= ∧ ⇒ = ¬ ∧ is false.

The case with the rule R_CONS is similar to the previous ones. Consider
()p d T↓= , () ()q d q d F′ ↓= ↓= and ()′ ↑p d for arbitrary d . Then | { } { }′ ′= p id q ,

′→p p and ′ →q q , but | { } { }≠ p id q .

Thus, { } { }, , { } { }p f q p p q q p f q′ ′ ′ ′→ → ⇒ is false.

Given examples prove that additional constraints should be introduced in order for
inference system to be sound in the case of partial predicates.

4.2 Composition of Preimage Predicate Transformer

To introduce constraints for the rules of PFHL we need new compositions. They are
inspired by the weakest precondition and the strongest postcondition predicate trans-
formers introduced by Dijkstra. But in the case of partial mappings there can be more
than one definition what predicate should be considered as weakest (or strongest)
therefore more adequate definitions are required. In this chapter we restrict ourselves
by introducing only one composition called composition of preimage predicate trans-
former (preimage composition). This composition is a generalization of the weakest
precondition predicate transformer and is defined in the following way:

, if () and (()) ,

(,)() , if () and (()) ,

undefined in other cases.

T f d q f d T

PC f q d F f d q f d F

 ↓ ↓=


= ↓ ↓=



In set-theoretic terms this composition can be defined as follows:
,(,)T T fPC f q q−= , ,(,)F F fPC f q q−= .

Semantically, (,)PC f q can be treated as backward predicate transformer.

Introduction of this composition means that now we work with algebras of the
form

QPAT(V, A) = < PrV,A, FnV,A, FPrgV,A;

∨, ¬, v
FS , v

PS , ′x, ∃x, id, AS x, •, IF, WH, FH, PC>.

Also, the introduced composition permits to reformulate the assertion validity defi-
nition. Preliminary, we define |p q= as | p q= → .

Theorem 3. For any assertion { } { }p f q the following equivalence holds:

| { } { }p f q= | (,)p PC f q⇔ = .

To prove this theorem we first recall that

| { } { }p f q= ⇔ ,T F fp q−∩ = ∅ .

Therefore | (,) | (,) ((,))Fp PC f q p PC f q p PC f q= ⇔ = → ⇔ → = ∅ ⇔

,(,)) | { } { }T F T F fp PC f q p q p f q−⇔ ∩ = ∅ ⇔ ∩ = ∅ ⇔ = .

4.3 Constraints for Partial Predicate Inference System

Analysis of the constraint problem demonstrates that for an inference rule different
constraints can be formulated. We start with the constraints that practically are refor-
mulations of conditions of assertion validity. Such constraints will be called trifling
constraints because they do not give additional knowledge of assertion validity. Con-
straints will be formulated in terms of the preimage predicate transformer.

The examples showed that validity constraints are required for the rules R_SEQ,
R_WH, and R_CONS. Trifling constraints are the following:

− | (,)p PC f g r= • for R_SEQ,

− | ((,),)p PC WH r f r p= ¬ ∧ for R_WH,

− | (,)p PC f q= for R_CONS.

These constraints in a quite natural sense are necessary and sufficient. But in this
form such constraints are not very useful, especially the constraint for R_CONS be-
cause it does not relate premises with conclusions. Therefore we formulate a more
stronger constraint for this rule, which will be sufficient but not necessary.

At first we introduce two special logical consequence relations: over the truth do-
main |=T and over the falsity domain |=F in the following way:

− |=Tp q iff T T
J Jp q⊆ for every interpretation J,

− |=Fp q iff F F
J Jq p⊆ for every interpretation J.

In these terms a new constraint for R_CONS is | , |T Fp p q q′ ′= = . This gives us a

PFHL inference system with constraints for WHILE presented in Table 7.

Table 7. PFHL inference system for WHILE with constraints in backward form.

{ (,)} (){ }x x
PS p h AS h p R_AS’

{ } { }p id p R_SKIP’

{ } { },{ } { }
, | (,)

{ } { }

p f q q g r
p PC f g r

p f g r
= •

•
 R_SEQ’

{ } { },{ } { }

{ } (, ,){ }

∧ ¬ ∧r p f q r p g q

p IF r f g q
 R_IF’

{ } { }
, | ((,),)

{ } (,){ }

r p f p
p PC WH r f r p

p WH r f r p

∧ = ¬ ∧
¬ ∧

 R_WH’

{ } { }
, | , |

{ } { }

′ ′ ′ ′= =T F

p f q
p p q q

p f q
 R_CONS’

In this table a constrained rule consists of two parts: pure inference rule and rule

constraint written on the right side of the pure rule.

Theorem 4. PFHL inference rules of Table 7 are sound. That means:

1. | { (,)} (){ }x x
PS p h AS h p= ,

2. | { } { }p id p= ,

3. | { } { },| { } { }, | (,) | { } { }p f q q g r p PC f g r p f g r= = = • ⇒ = • ,

4. | { } { },| { } { } | { } (, ,){ }r p f q r p g q p IF r f g q= ∧ = ¬ ∧ ⇒ = ,

5. | { } { }, | ((,),) | { } (,){ }r p f p p PC WH r f r p p WH r f r p= ∧ = ¬ ∧ ⇒ = ¬ ∧ ,

6. | { } { }, | , | | { } { }T Fp f q p p q q p f q′ ′ ′ ′= = = ⇒ = .

Let us prove this for each rule. Recall our assumption that such properties are
proved for an implicitly given arbitrary interpretation J.

1. For | { (,)} (){ }x x
PS p h AS h p= to hold it is required that

, ()((,), (),) ((,))
xx x F x T F AS h

P PFH S p h AS h p S p h p−= ∩ = ∅ .

Let d be any data such that ((,))x T
Pd S p h∈ . Then ([()])p d x h d T∇ ↓=֏ . By

definition of assignment composition it means that , ()xT AS hd p−∈ . So,
, ()((,))

xx T F AS h
PS p h p−∩ = ∅ and | { (,)} (){ }x x

PS p h AS h p= .

2. | { } { }p id p= follows from the definition of id:
,(, ,)F T F id T FFH p id p p p p p−= ∩ = ∩ = ∅ .

3. Soundness condition for rule R_SEQ’ is obvious by theorem 3.
4. Let us prove | { } { },| { } { } | { } (, ,){ }r p f q r p g q p IF r f g q= ∧ = ¬ ∧ ⇒ = .

Since | { } { }, | { } { }= ∧ = ¬ ∧r p f q r p g q we have:
, ,() ;()− −∧ ∩ = ∅ ¬ ∧ ∩ = ∅T F f T F gr p q r p q .

We need to show that , (, ,)−∩ = ∅T F IF r f gp q .

Let d be any data such that ()p d T↓= and (, ,)()IF r f g d ↓ . If ()r d T↓= then

(())q f d T↓= by the first premise; if ()r d F↓= then (g())q d T↓= by the second

premise. Therefore , (, ,)T IF r f gd q−∈ and | { } (, ,){ }p IF r f g q= .

5. Soundness condition for rule R_WH’ is obvious by theorem 3.
6. Let us prove | { } { }, | , | | { } { }T Fp f q p p q q p f q′ ′ ′ ′= = = ⇒ = .

We have | { } { }p f q′ ′= what means ,T F fp q −′ ′∩ = ∅ .

Also we have | ′=Tp p and |′ =Fq q; using definitions we get ′⊆T Tp p and

′⊆F Fq q .

We need to show that ,T F fp q−∩ = ∅ .

Let d be any data such that ()p d T↓= , ()f d ↓ , and '(())q f d ↓ . By the second

premise '()p d T↓= , by the first premise '(())q f d T↓= . If (())q f d ↓ then

(())q f d T↓= by the third premise; therefore ,F fd q−∉ . If (())q f d ↑ then also
,F fd q−∉ . Thus, in both cases ,T F fp q−∩ = ∅ .

So, all rules are inspected and the theorem is proved.

Now we need to show that for total predicates properties of the classical Floyd-
Hoare logic will be preserved and that defined logic will be an extension of the Floyd-

Hoare logic. This means that for total predicates a derivation of a Floyd-Hoare asser-
tion in PFHL can be transformed to a derivation of this assertion in CFHL and vice
versa: a derivation in CFHL can be presented as derivation in PFHL. This property
holds because constraints of rules R_SEQ’ and R_WH’ will be satisfied automatically
in the case of total predicates; as to R_CONS’ its constraint can be reduced to the
constraint of the rule R_cons of CFHL. This will be granted by Theorem 5. But be-
fore that we show that for total predicates assertion validity in PFHL (|=) is equiva-

lent to validity in CFHL (| CL=).

If we recall definitions of the classical (denoted FHCL) and monotone compositions
FH we will have:

, if () or () or (() and (())),
(, ,)

, if () , () , and (()) .
CL

T p d F f d f d q f d T
FH p f q

F p d T f d q f d F

 = ↑ ↓ == 
= ↓ =

, if () or (() and (())) ,

(, ,) , if () , () , and (()) ,

undefined in other cases.

T p d F f d q f d T

FH p f q F p d T f d q f d F

 ↓= ↓ ↓=


= ↓= ↓ ↓=



By the definitions, for total predicates (, ,) (, ,)F F
CLFH p f q FH p f q= .

Thus, (, ,) (, ,)= ∅ ⇔ = ∅F F
CLFH p f q FH p f q . But

| { } { } | (, ,) Fp f q FH p f q= ⇔ = = ∅ and

| { } { } | (, ,) F
CL CLp f q FH p f q= ⇔ = = ∅ .

So, we obtain | { } { } | { } { }CLp f q p f q= ⇔ = . It means that for total predicates clas-

ses of valid assertions in PFHL and CFHL are the same.

Theorem 5. For total predicates the inference rules of PFHL (Table 7) can be re-
duced to the inference rules of CFHL (Table 2).

To prove the theorem we should demonstrate that for total predicates the con-
straints of R_SEQ’ and R_WH’ hold. It means that

| { } { },| { } { } | (,)p f q q g r p PC f g r= = ⇒ = • and

| { } { } | ((,),)r p f p p PC WH r f r p= ∧ ⇒ = ¬ ∧ .

Let us prove that | { } { },| { } { } | (,)p f q q g r p PC f g r= = ⇒ = • .

This means that
, ,;T F f T F gp q q r− −∩ = ∅ ∩ = ∅ ,T F f gp r− •⇒ ∩ = ∅ .

Indeed, , 1 ,[]F f g F gr f r− • − −= . Since ,T F gq r−∩ = ∅ and q is total, we have that
,F g Fr q− ⊆ . And since ,T F fp q−∩ = ∅ we obtain that ,T F f gp r− •∩ = ∅ .

Let us prove that | { } { } | ((,),)r p f p p PC WH r f r p= ∧ ⇒ = ¬ ∧ .

Using the definition of validity we have: ,() −∧ ∩ = ∅T F fr p p and

((,),)∩ ¬ ∧ ≠ ∅T Fp PC WH r f r p .

By definition of PC,
((,),)T Fp PC WH r f r p∩ ¬ ∧ , (,)()T F WH r fp r p −= ∩ ¬ ∧ .

Let d be any data such that ()p d T↓= and (,)()WH r f d ↓ . Then there exists a se-

quence 0 1, , ,… nd d d such that 0 ,d d= 0 1()f d d↓= , …, 1()n nf d d− ↓= , 0()r d T↓= ,

… , 1()nr d T− ↓= , ()nr d F↓= . Also, (,)() nWH r f d d↓= and ()p d T↓= . This

gives 0()()r p d T∧ ↓= . Also, 0 1() ↓=f d d , thus 1()p d T↓= . With 1()r d T↓= and

1 2() ↓=f d d we obtain 2()p d T↓= . By induction we have

() ((,)())np d p WH r f d T↓= ↓= and () ((,)())nr d r WH r f d F↓= ↓= . Thus,
, (,)() T WH r fd r p −∈ ¬ ∧ . Therefore , (,)()T F WH r fp r p −∩ ¬ ∧ = ∅ and consequently

| ((,),)p PC WH r f r p= ¬ ∧ .

4.4 Simpler constraints for Partial Predicate Inference System

The trifling constraints introduced for rules R_SEQ’ and R_WH’ of PFHL in some
cases can be changed to more stronger but simpler constraints. Such simpler con-
straints considered here stem from the following observation for properties of asser-
tion validity for total predicates. In this case | { } { }p f q= implies ,T f Tp q⊆ ,

,F F fq p⊆ and, dually, ,T T fp q−⊆ , ,F f Fq p− ⊆ because | { } { }p f q= means that
,T f Fp q∩ = ∅ and predicates are total.

In terms of special consequence relations these properties can be reformulated as
| (,)Tp PC f q= , (,) | FPC f q p= .

Using these properties we can strengthen constraints for R_SEQ’ and R_WH’.

Theorem 6. For PFHL the following properties hold:

1. | { } { },| { } { }, | (,) | (,)Tp f q q g r p PC f q p PC f g r= = = ⇒ = • ,

2. | { } { },| { } { }, (,) | | (,)Fp f q q g r PC f q p p PC f g r= = = ⇒ = • ,

3. | { } { },| { } { }, | (,) | (,)Fp f q q g r q PC g r p PC f g r= = = ⇒ = • ,

4. | { } { },| { } { }, (,) | | (,)Fp f q q g r PC g r q p PC f g r= = = ⇒ = • ,

5. | { } { }, (,) | () | ((,),)Tr p f p PC f p r p p PC WH r f r p= ∧ = ∧ ⇒ = ¬ ∧ ,

6. | { } { }, () | (,) | ((,),)Fr p f p r p PC f p p PC WH r f r p= ∧ ∧ = ⇒ = ¬ ∧ .

To prove the first property recall, that | { } { }p f q= means ,T F fp q−∩ = ∅ ,

| { } { }q g r= means ,T F gq r−∩ = ∅ , | (,)Tp PC f q= means ,T T fp q−⊆ , and

| (,)p PC f g r= • means ,T F f gp r− •∩ = ∅ . Thus, we should prove

,T F fp q−∩ = ∅ , ,T F gq r−∩ = ∅ , ,T T fp q−⊆ ,T F f gp r− •⇒ ∩ = ∅ .

Let d be any data such that () , () , (())p d T f g d r f g d↓= • ↓ • ↓ . By the first

premise (())q f d T↓= . By the second premise (())r f g d T• ↓= . Thus, ,F f gd r− •∉ .

Therefore ,T F f gp r− •∩ = ∅ .

Other properties related with R_SEQ’ are proved in the same manner.
Consider properties related with R_WH’.
Property

| { } { }, (,) | () | ((,),)Tr p f p PC f p r p p PC WH r f r p= ∧ = ∧ ⇒ = ¬ ∧

can be represented as
,() −∧ ∩ = ∅T F fr p p , , ()T f Tp r p− ⊆ ∧ , , (,)()−∩ ¬ ∧ = ∅T F WH r fp r p .

Let d be any data such that

() , (,)() , ()((,)())p d T WH r f d r p WH r f d↓= ↓ ¬ ∧ ↓ .

By the definition of the loop composition we have that there exists a sequence

0 1, , nd d d… such that 0 ,d d= 0 1()f d d↓= , …, 1()n nf d d− ↓= , and 1()r d T↓= , … ,

1()nr d T− ↓= , ()nr d F↓= . By induction on n taking into consideration the second

premise we get that 0()p d T↓= , 1()p d T↓= , …, ()np d T↓= . That means that

()()nr p d T¬ ∧ ↓= . Therefore , (,)()−∩ ¬ ∧ = ∅T F WH r fp r p .

Another property related with R_WH’ is proved in the same manner.

This theorem permits to consider
| (,)Tp PC f q= , (,) | FPC f q p= , | (,)Fq PC g r= , (,) | FPC g r q=

(or any their combination) as constraints for R_SEQ’ and
(,) | ()TPC f p r p= ∧ , () | (,)Fr p PC f p∧ =

as constraints for R_WH’. These constraints are simpler than initial trifling con-
straints.

We can go further trying to identify cases in which these constraints hold automat-
ically. In other words to find cases in which the pure part of the inference rules can be
used in derivation without proving validity of constraints.

One of such cases is described by the following definitions.

Assertion { } { }p f q is called T-increasing if | (,)Tp PC f q= holds, and F-

decreasing if (,) | FPC f q p= holds.

Theorem 7. Let assertion { } { }p f q be T-increasing or F-decreasing. Then

| { } { }p f q= .

Consider the case | (,)Tp PC f q= . It means that ,T T fp q−⊆ therefore
,T F fp q−∩ = ∅ . Other cases are considered in the same manner.

Theorem 8. All pure (with constraints omitted) inference rules of PFHL except
rule R_CONS’ (Table 7) preserve the classes of T-increasing and F-decreasing asser-
tions.

Proofs for both properties is similar, thus consider the class of T-increasing asser-
tion.

1. For R_AS’ the proof that { (,)} (){ }x x
PS p h AS h p is T-increasing can be easily

obtained from the proof of the corresponding item of theorem 4.
2. For R_ID’ the proof is obvious.
3. For R_SEQ’ we should prove

| (,)Tp PC f q= , | (,)Tq PC g r= | (,)Tp PC f g r⇒ = • .

This means , , ,,T T f T T g T T f gp q q r p r− − − •⊆ ⊆ ⇒ ⊆ . The proof of this fact is trivial.

4. For R_IF’ we need to prove
| (,)Tr p PC f q∧ = , | (,)Tr p PC g q¬ ∧ = | ((, ,),)Tp PC IF r f g q⇒ = .

This means , , , (, ,)() , ()T T f T T g T T IF r f gr p q r p q p q− − −∧ ⊆ ¬ ∧ ⊆ ⇒ ⊆ . Let d be any

data such that ()p d T↓= and (, ,)()IF r f g d ↓ . If ()r d T↓= then (()r f d T↓= by

the first premise; if ()r d F↓= then (g()r d T↓= by the second premise. Therefore
, (, ,)T IF r f gd q−∈ and | ((, ,),)Tp PC IF r f g q= .

5. For R_WH’ we need to prove
| (,)Tr p PC f p∧ = | ((,),)Tp PC WH r f p⇒ = .

From this point the proof coincides with the corresponding part of the proof of the-
orem 5 therefore it is omitted. So, we can conclude that | ((,))Tp PC WH r f= .

The theorem is proved.
As to rule R_CONS’ we can change it to rule R_CONS’’ with the following new

constraint:
| ′=Tp p and | Tq q′ = .

It is easy to prove that the rule R_CONS’’ with this constraint is sound, and being
restricted on the class of total predicates it is reduced to the rule R_CONS.

Theorem 9. Rule R_CONS’’ preserves the class of T-increasing assertions.

The proof is obvious.
The proved theorems permit to write Table 8 for simple WHILE inference system

which is valid and is an extension of the inference system given in Table 2. In the new
system only rule R_CONS’’ has a constraint. Simplicity of this system is explained by
the fact that rules R_AS’ and R_SKIP’ (being axioms) specify T-increasing assertions
and the constraint of R_CONS’’ is simple sufficient constraint (though it is rather
expressive being an extension of R_cons).

Table 8. Simple PFHL inference system for WHILE with T-increasing assertions.

{ (,)} (){ }x x
PS p h AS h p R_AS

{ } { }p id p R_SKIP

{ } { },{ } { }

{ } { }

p f q q g r

p f g r•
 R_SEQ

{ } { },{ } { }

{ } (, ,){ }

∧ ¬ ∧r p f q r p g q

p IF r f g q
 R_IF

{ } { }
,

{ } (,){ }

r p f p

p WH r f r p

∧
¬ ∧

 R_WH

{ } { }
, | , |

{ } { } T T

p f q
p p q q

p f q

′ ′ ′ ′= = R_CONS’’

Identification and investigation of other simple inference systems should be con-

tinued. One of such cases is induced by acyclic programs.

4.5 PFHL for Acyclic Programs

If we consider acyclic programs (loop-free programs), the preimage predicate trans-
former composition can easily be presented via formulas of predicate logic. This sim-
plifies constraints and reduces the problem of their validity to the validity problem of
formulas of composition-nominative predicate logics. These problems were investi-
gated in [3, 5, 7]. For the cyclic programs, their acyclic approximations can be con-
sidered. Details are not presented here.

5 Related Work

The seminal work on a logical characterization of programs by Floyd [1] and Hoare
[2] was purely axiomatic, i.e., not yet backed by a formal semantics of programs.
While also Dijkstra followed this tradition with his weakest precondition calculus [8],
he also systematically investigated the necessary properties of his predicate trans-
former “wp”. In particular, he explicitly required its monotonicity and realized (after a
hint of J.C. Reynolds) the importance of its continuity for expressing effectively im-
plementable calculations (by ruling out unbounded nondeterminism).

The crucial importance of monotonicity and continuity of functions for the set-
theoretic modeling of programs was exhibited by Scott’s and Strachey’s denotational
semantics where unbounded repetition is modeled as the fixed point of a continuous
functional [9,10]. Similar considerations of monotonicity and continuity play a role in
those approaches to program semantics that are based on the formal representation of
programs as state relations (predicates), e.g. Back’s and White’s Refinement Calculus
[11], Hoare’s and He’s Unifying Theory of Programming [12] and Boute’s Calcula-
tional Semantics [13]. However, this work was typically performed in a context where
functions and predicates were basically assumed to be total, i.e., well-defined for all
kinds of arguments (apart from the result of infinite loops which is usually represent-
ed by a special “non-termination” value).

From a logical perspective, partial predicates [14] give rise to three-valued logics
where the additional value may represent “unknown” or “error”. Depending on the
exact interpretation of this additional value, numerous variants of such logics have
been developed by Łukasiewicz [15], Kleene [16], Bochvar [17] and others, see e.g.
Bergmann [18] for a survey. Moisil [19] provided by the “Łukasiewicz-Moisil Alge-
bras” an axiomatic algebraic framework for their formalization. A particular interest
in these non-standard logics arose in the context of the theory of computation
(McCarthy [20]), the modeling of processes (Bergstra and Ponse [21]), and in particu-
lar in the formal specification and verification of computer programs (Blikle [22],
Konikowska et al [23]).

Especially in the context of the algebraic specification of abstract datatypes [24],
the handling of partial functions (whose execution may not terminate or yield an er-
ror) plays an important role [25, 26]. Within a classical framework these may be han-
dled by explicitly restricting the domain of a partial function by a predicate and treat
the function result for arguments outside the domain as a definite (but unknown) val-
ue in the range of the function; this was also the basis of the work of one of the au-
thor’s of the present chapter [27, 28].

On the other hand, one may also introduce explicit support for partial functions
within the logic itself such as in the Vienna Development Method (VDM) which in-
troduces a corresponding “logic of partial functions” [29]. Broy and Wirsing devised
in the CIP project the concept of “partial algebras” [30] where each carrier may con-
tain unacceptable values (e.g. “undefined”) where special rules are given to deal with
the application of functions to unacceptable elements; thus even non-strict functions
may be specified that produce acceptable results for unacceptable arguments. This
concept has become the basis of a lot of subsequent work [31–33] and also forms the
semantic basis of the “Common Algebraic Specification Language” CASL [34].

6 Conclusions

In the chapter we have considered questions concerning extension of traditional
Floyd-Hoare logic for partial pre- and postconditions. We have adopted a semantic-
syntactic style of logic definition. Therefore we first have constructed and investigat-
ed special program algebras of partial predicates, functions, and programs. In such
algebras program correctness assertions can be presented with the help of a special
composition called Floyd-Hoare composition. We have proved that this composition
is monotone and continuous. Considering the class of constructed algebras as a se-
mantic base we then have defined an extended logic – Partial Floyd-Hoare Logic –
and investigated its properties. This logic has rather complicated soundness con-
straints for inference rules, therefore somewhat simpler but also sufficient constraints
have been proposed. The logics constructed can be used for program verification.

This chapter can be considered as a first step in developing composition-
nominative program logics. The major directions of further investigation are the ques-
tion of relative completeness of the system of inference rules, invariants for cycles,

and types for variables and functions. Also the authors plan to construct a prototype
of a program reasoning system oriented on the constructed logics.

References

1. Floyd R.W.: Assigning meanings to programs. Proceedings of the American Mathematical
Society Symposia on Applied Mathematics, vol. 19, pp. 19-31 (1967)

2. Hoare C.A.R.: An axiomatic basis for computer programming. Communications of the
ACM, issue 12, pp. 576-580,583 (1969)

3. Nikitchenko M.S., Shkilniak S.S.: Mathematical logic and theory of algorithms. Publishing
house of Taras Shevchenko National University of Kyiv, Kyiv, (in Ukrainian) (2008)

4. Nielson H.R., Nielson F.: Semantics with Applications: A Formal Introduction. John
Wiley & Sons Inc, 240p. (1992)

5. Nikitchenko M.S., Tymofieiev V.G.: Satisfiability in Composition-Nominative Logics.
Central European Journal of Computer Science, vol. 2, issue 3, pp. 194-213 (2012).

6. Avron A., Zamansky A.: Non-Deterministic Semantics for Logical Systems. Handbook of
Philosophical Logic, vol. 16, pp. 227-304 (2011).

7. Nikitchenko M., Tymofieiev V.: Satisfiability and Validity Problems in Many-sorted
Composition-Nominative Pure Predicate Logics. In: V. Ermolayev et al. (eds.): ICTERI
2012, CCIS 347, pp. 89–110. Springer, Heidelberg (2013).

8. Dijkstra E.W.: A Discipline of Programming, Prentice-Hall, Englewood Cliffs, New Jer-
sey (1976).

9. Schmidt, D.A.: Denotational Semantics – A Methodology for Language Development.
Allyn and Bacon, Boston, MA (1986).

10. Scott, D., and Strachey, C.: Towards a Mathematical Semantics for Computer Languages.
Proc. Symp. on Computers and Automata, Polytechnic Institute of Brooklyn; also Tech.
Mon. PRG-6, Oxford U. Computing Lab., pp. 19-46 (1971).

11. Back R.-J. and von Wright J.: Refinement Calculus: A Systematic Introduction. Springer,
New York (1998).

12. Hoare C.A.R. and Jifeng He. Unifying Theories of Programming. Prentice Hall, London,
UK (1998).

13. Boute, R.T.: Calculational Semantics: Deriving Programming Theories from Equations by
Functional Predicate Calculus. ACM Transactions on Programming Languages and Sys-
tems, 28(4):747–793 (2006).

14. Wang, H: The Calculus of Partial Predicates and Its Extension to Set Theory. Zeitschr. f.
math. Logik und Grundlagen d. Math., Vol. 7., p. 283-288 (1961).

15. Łukasiewicz, J: O logice trójwartościowej (in Polish). Ruch filozoficzny 5:170–171. Eng-
lish translation: On three-valued logic, in L. Borkowski (ed.), Selected works by Jan
Łukasiewicz, North–Holland, Amsterdam, pp. 87–88 (1970).

16. Kleene, S.C: On Notation for Ordinal Numbers. Journal Symbolic Logic 3, 150 – 155
(1938).

17. Bochvar, D.A. On a 3-valued Logical Calculus and its Application to the Analysis of
Contradictions (in Russian)," Matematiceskij sbornik, vol. 4, pp. 287-308 (1939).

18. Bergmann M.: An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras,
and Derivation Systems, Cambridge University Press, Cambridge, UK (2008).

19. Moisil, G.: Recherches sur les logiques nonchrysippiennes. Ann. Sci. Univ. Jassy 26, 431-
436 (1940).

20. McCarthy, J.: A Basis for a Mathematical Theory of Computation, pp. 33-70 in Computer
Programming and Formal Systems, edited by P. Braffort and D. Hirshberg, North-
Holland, Amsterdam (1963).

21. Bergstra, J.A. and Ponse, A.: Bochvar-McCarthy Logic and Process Algebra, Notre Dame
Journal of Formal Logic, Volume 39, Number 4, pp. 464-484 (1988).

22. Blikle A.: Three-Valued Predicates for Software Specification and Validation, VDM ’88:
VDM – The Way Ahead. Volume 328 of Lecture Notes in Computer Science, Springer,
New York, pp. 243-266 (1988).

23. Konikowska B., Tarlecki A., Blikle, A.: A Three-valued Logic for Software Specification
and Validation. Fundam. Inform. 14(4): 411-453 (1991)

24. Sannella, D. and Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development, Monographs in Theoretical Computer Science, Springer (2012).

25. Cheng, J. H. and Jones, C.B.: On the Usability of Logics which Handle Partial Functions.
In C. Morgan and J. C. P. Woodcock, editors, 3rd Refinement Workshop, 51–69 (1991).

26. Jones, C.B. Reasoning about Partial Functions in the Formal Development of Programs.
Electronic Notes in Theoretical Computer Science, 145:3–2 (2006).

27. Schreiner W.: Computer-Assisted Program Reasoning Based on a Relational Semantics of
Programs. In: Pedro Quaresma and Ralph-Johan Back (eds.): Proceedings First Workshop
on CTP Components for Educational Software (THedu'11), July 31 2011, Wrocław, Po-
land, number 79 of Electronic Proceedings in Theoretical Computer Science (EPTCS),
ISSN: 2075-2180, pp. 124-142, (2012).

28. Schreiner W.: A Program Calculus Technical Report. Research Institute for Symbolic
Computation (RISC), Johannes Kepler University, Linz, Austria, http://www.risc.uni-
linz.ac.at/people/schreine/papers/ProgramCalculus2008.pdf (2008).

29. Jones, C.B and Middelburg, C.A: A Typed Logic of Partial Functions Reconstructed Clas-
sically, Acta Informatica, 31(5):399-430 (1994).

30. Broy M. and Wirsing M. Partial Abstract Data Types, Acta Informatica, 18(1):47-64
(1982).

31. Burmeister, P. A Model Theoretic Oriented Approach to Partial Algebras. Akademie-
Verlag (1986).

32. Kreowski H.-J.: Partial Algebra Flows from Algebraic Specifications. 14th Int. Colloquium
on Automata, Languages and Programming, Vol. 267 of Lecture Notes in Computer Sci-
ence, pp. 521-530, Springer, Berlin (1987).

33. Reichel H.: Initial Computability, Algebraic Specifications, and Partial Algebras. Oxford
University Press (1987).

34. Mosses Peter D.: CASL Reference Manual: The Complete Documentation of the Common
Algebraic Specification Language. Volume 2960 of Lecture Notes in Computer Science,
Springer, Berlin (2004).

