
A Grid Software for Virtual Eye Surgery
Based on Globus 4 and gLite (DRAFT)

Károly Bósa
�
, Wolfgang Schreiner

�
, Michael Buchberger

�

and Thomas Kaltofen
�

�
Research Institute for Symbolic Computation (RISC), Johannes Kepler University

Email: FirstName.LastName@risc.uni-linz.ac.at�

Department for Medical Informatics, Upper Austrian Research (UAR)
Email: FirstName.LastName@uar.at

Fig. 1. The Output of the “SEE++ to Grid Bridge” and the GUI of SEE++

Abstract— “Grid-Enabled SEE++” is based on the SEE++
software system for the biomechanical simulation of the human
eye. “Grid-Enabled SEE++” extends SEE++ in several steps in
order to develop an efficient grid-based tool for “Evidence Based
Medicine”, which supports surgeons in choosing optimal surgery
techniques for the treatment of certain eye motility disorders.

Recently, we refined the design of “Grid-Enabled SEE++” and
we worked on an extended version of the software, which is able
to utilize the “Web Service Resource Framework”architecture
of the Globus Toolkit 4. Since we met with some limitations of
Globus 4, we also designed a version of “Grid-Enabled SEE++”
compatible with the gLite grid middleware. Besides we intend to
further develop the “Grid-Enabled SEE++” software system on
the basis of the higher services of gLite.

In this paper, we report on our experience of porting a grid
application to Globus 4 and gLite, describe the problems we
encountered and discuss possible solution strategies. This may
assist the porting of other applications to the grid using these
middleware products.

I. I NTRODUCTION

“Grid-Enabled SEE++” is based on the SEE++ [6], [14],
[19] software system for the biomechanical 3D simulation of
the human eye and its muscles. SEE++ simulates the common
eye muscle surgery techniques in a graphic interactive way
that is familiar to an experienced surgeon (see Figure 1).
SEE++ offers the possibility to use a client component for
user interaction and visualization and a server component for
running the actual calculations; the message protocol SOAP

Fig. 2. Gaze Patterns in SEE++: Intended (blue), Measured (green) and
Simulated (red)

is used for communication between the two components.
SEE++ deals with the support of diagnosis and treatment

of strabismus, which is the common name given to usually
persistent or regularly occurring misalignment of the eyes
where eyes point in different directions such that a person
may see double images. SEE++ is able to simulate the result
of the Hess-Lancaster test, from which the reason for the
pathological situation of the patient can be estimated. The
outcome of such an examination consists of twogaze patterns
of blue points and of red points respectively (see the diagrams
on Figure 2). The blue points represent the image seen by one
eye and the red points the image seen by the simulated other
eye; in a pathological situation there is a deviation between
the blue and the red points. The default gaze pattern that
is calculated from the patient’s eye data by SEE++ contains
9 points. Bigger gaze patterns with 21 and 45 are possible
and provide more precise results for the decision support
in case of some pathologies, but their calculations are more
time consuming.

It is also possible to give the measured gaze pattern of a
patient as input. In this case, SEE++ takes some default or
estimated eye data and modifies a subset of them until the cal-
culated gaze pattern of the simulated eye (red points) matches
the measured gaze pattern (green points). This procedure is
calledpathology fitting.

Strabismus can be rarely corrected sufficiently after the
first surgical treatment. One of the main goals of the SEE++

9 25 30 45

Changing the Total

Strengths of one

Muscle on one Eye

Changing the Total
Strengths of two

Strengths of two
Muscles on both
Eyes

Eye
Muscles on one

Changing the Total

Machine Name

Number of
Processors 31

altix1.jku.austriangrid.at
altix1.uibk.ac.at

altix1.jku.austriangrid.at

25 30 45

17.44s 7.58s 1.65s 1.57s

27.18s 1.78s

28.68s 1.90s 1.85s 1.59s9.80s

25.27s

18.81s

20.04s

1.57s

1.43s

1.82s9.11s

1.71s

1.88s

1.80s

1.96s

1.87s

2.03s 1.92s

2.01s

2.09s

(a) Execution Times

Number of
Processors

Number of
Processors

one Muscle on one Eye
Changing the Total Strength of

Changing the Total Strengths of
two Muscles on one Eye

Changing the Total Strengths of two
Muscles on both Eyes

5

10

15

20

25

1 3 9 25 30 45 1 25 30 453 9

30

35

EfficiencySpeedup

40 1

0,5

0,75

0.25

(b) Speedup and Efficiency Diagrams

Fig. 3. Benchmark Results for Gaze Pattern Calculations with 45 Points Executed on the Grid Sitealtix1.jku.austriangrid.at

software system is to give support to make the treatment of
strabismus easier and more efficient. Still the doctors have
to spend lots of time with changing the eye parameters by
a manual trial and error method and waiting for the results.
The current pathology fitting algorithm is time consuming (it
runs several minutes) and gives only a more or less precise
estimation for the pathology of the patient. Doctors want tosee
quickly the results from such a decision support system, but
for reaching adequate response times it is not sufficient to use
only local computational power. For this, some large-scalable
distributed resource would be appropriate, that provides the
ability to perform higher throughput computing by taking
advantage of many networked computers; such as thegrid is.

The goal of “Grid-Enabled SEE++” is to adapt and to
extend SEE++ in several steps and to develop an efficient grid-
based tool for “Evidence Based Medicine”, which supports
the surgeons in choosing optimal surgery techniques for the
treatments of different syndromes of strabismus.

Recently, we refined the design of “Grid-Enabled SEE++”
and we started to work on an extended version of the soft-
ware, which is able to utilize the“Web Service Resource
Framework” architecture of theGlobus Toolkit 4, see Sec-
tion III. Since we joined the“Enabling Grids for E-sciencE 2”
(EGEE2)project [7], we designed a version of “Grid-Enabled
SEE++” compatible with thegLite [10] middleware used in
EGEE2, see Section IV. According to this new design, we
intend to further develop the “Grid-Enabled SEE++” software
system on the basis of the higher services of the EGEE2
middleware (compared with the low-level services of the
Globus Toolkit).

II. FORMER RESULTS

In [3], we combined the SEE++ software with the Globus
(pre-Web Service) middleware [11] and developed a parallel
version of the simulation of theHess-Lancaster test, see
Section II-A.

Furthermore, we reported the prototype implementation of
a medical database component for “Grid-Enabled SEE++”,

which is going to be used for storing and sorting patient data
with gaze patterns and eye data, see Section II-B.

Finally, we designed a so called grid-basedPathology Fit-
ting algorithm, which would be able to determinate (or at least
estimate) automatically the pathological reason of a patient’s
strabismus, see Section II-C.

A. Parallel Gaze Pattern Calculation

The initial component of “Grid-Enabled SEE++” is the
“SEE++ to Grid Bridge” [3], via which the unchanged SEE++
client can get access to the infrastructure of the Austrian
Grid [1]. The “SEE++ to Grid Bridge” acts as a SEE++ server
to the SEE++ clients and as a Globus client to the Grid. When
the “SEE++ to Grid Bridge” is executed, it starts SEE++ server
processes on one (or perhaps more) grid site(s) and then waits
for computational tasks from its clients. The SEE++ server
processes are started on the grid sites as normal grid jobs
via the “Grid Resource Allocation Manager” (GRAM). The
SEE++ clients can communicate with these processes via the
“SEE++ to Grid Bridge” by the same messages as in the
original SEE++ software system; the usage of grid resources
is completely transparent to them. Messages are encoded in
the SOAP protocol which can be also used for communication
within the grid.

The “SEE++ to Grid Bridge” is able to split gaze pattern
calculation requests of clients into subtasks (which contain
only some gaze points of the original pattern) and to distribute
them among the servers (data parallelism). Since the calcula-
tions of each gaze points is completely independent from each
other, there is no communication among the server processes.
By this, we demonstrated how a noticeable speedup can be
achieved in SEE++ by the exploitation of the computational
power of the Austrian Grid.

In benchmarks (see Figure 3), we have investigated the
effectiveness of our grid-parallel solution in different situations
where 1, 3, 9, 25, 30 or 45 processors were used on the grid
(one SEE++ server process was started on each processor).

Each value in Figure 3(a) depicts the average execution
time of 5-7 computations of 45 gaze points. The test cases

Fig. 4. SEE++ Database Access Layer

were executed on the Austrian Grid sitealtix1.jku.
austriangrid.at, which contains 64 Intel Itanium pro-
cessors (1.4GHz) and resides at the Johannes Kepler Univer-
sity (JKU) in Linz. The “SEE++ to Grid Bridge” and SEE++
clients were always executed at the RISC Institute located in
Hagenberg which has a one Gigabit/sec connection to the JKU.

In case of 25 or more processors, we speeded up the
simulation of the Hess-Lancaster test by a factor of 14-17,
see Figure 3(b). If we started and used some processes on the
far grid sitealtix1.uibk.ac.at in Innsbruck as well, we
got slightly worse results with the speedup limited to a factor
of 12-14.

B. A Grid-Enabled Medical Database

As a starting point for the goal of developing a grid-enabled
database for SEE++, a database was designed [16] and proto-
typed as a Web Service application, see Figure 4. The SEE++
client interacts with the database via the SOAP protocol; the
communication protocol of SEE++ was extended by additional
SOAP messages used by the database application.

The medical data of SEE++ (patients’ data, eye model
parameters, measured gaze patterns, results of medical experi-
ments, etc.) are stored in the patient database. The data model
does not only support the needs of SEE++, it was designed
for supporting general medical databases [16]. Hence, the data
model is based on a metamodel, which consists of generally
applicable data structures based on various design patterns [8],
[17] instead of specific data types used by SEE++.

Since the “Grid-Enabled SEE++” database is designed for
storing patient records, security is a very important aspect. The
user database contains the user authentication and authoriza-
tion information of the system. The security implementation
ensures that every Web Service call is secured appropriately
by checking the caller’s identity. Furthermore, the accesslayer
employs many techniques to maximize security like:

� intercepting every Web Service method call and checking
the authorization for each method separately;

� supporting certificate-based and username/password-
based authentication;

� applying strong encryption of stored user passwords with
a SHA-512 salted hash code.

Our next steps concentrate on developing a distributed grid-
enabled database system that allows “Grid-Enabled SEE++”
to give efficient support to ”Evidence Based Medicine”. This
grid-based database also has to be able to perform various

data miningalgorithms on its data sets. Thus a huge number
of medical cases will be easily available for users/surgeons,
and for the grid variant of the pathology fitting described in
Section II-C.

To establish this proposed grid-based database without
any major modification in the existing data access layer, an
abstraction layer has to be introduced. Therefore, the proposed
grid database will be based either on theGrid Semantic Data
Access Middleware(G-SDAM) [12] developed by the Institute
for Applied Knowledge Processing (FAW) or on the “Web
Service Resource Framework” integrated in Globus 4.

As for the first possibility, G-SDAM is an open and easy
extensible grid-based software system focusing on seamless
data access. It is developed as a standalone grid middleware,
which does not require any underlying software layer (like
Globus), however it takes over and uses the applications Grid
CA and GridFTP developed by the Globus project.

C. Design of Grid-Based Pathology Fitting

Pathology Fitting is essentially a non-linear optimization
problem in a multidimensional parameter space, where a
subset of the patient’s eye model parameters is modified until
the calculated gaze pattern matches the measured one.

Unfortunately, a gaze pattern does not uniquely determine
the values of eye model parameters. Furthermore, the gaze
patterns cannot be measured with perfect precision, hence,the
simulated gaze patterns cannot be completely the same as the
measured one (see the differences between the green and the
red patterns in Figure 2). At the moment, we use a heuristic
that is able to exclude most of the pathologically irrelevant
solutions (solutions which are possible in the mathematical
model, but cannot occur in a real human eye) and give an
approximation of the correct solution.

We have already extended the pathology fitting component
of SEE++ by parallel gaze pattern calculation, since a pathol-
ogy fitting process often requires the calculation of approx.
60-100 gaze patterns. The speedup achieved by this implemen-
tation was limited to a factor of two, because the gaze pattern
calculations are triggered by consecutive optimization steps.

Since a gaze pattern does not uniquely determine a simula-
tion model and the current algorithm may not find always the
best solution (despite of the introduced heuristic, the quality of
outcome still depends on the initial estimation for the current
pathological case), we can exploit the grid infrastructureto
attempt to find better solutions:

1) by searching in the database concurrently for similar
cases as the one presented to the pathology fitter and

2) by starting concurrent pathology fitting processes with
these cases as the starting points of the optimizations
(parameter study).

The computed results will then be stored in the database as
feedback for providing better and better initial estimations for
later computations.

PATH. FITTER

HESS CALC.

HESS CALC.

.

..

PATH. FITTER

HESS CALC.

HESS CALC.

.

..

.

..

.

..

SEE++2GRID BRIDGE

SEE++

Client

SEE++

Client
. . .

.

..

(pre−WS) GRAM

. . .

MPI JOBMPI JOB
HESS CALC.

HESS CALC.

. . .
WSRF (JAVA) COREWSRF SERVICE WSRF SERVICE

WS−GRAM

WSRF (JAVA) CORE

G−SDAM

DATABASE

SEE−GRID

DATABASE

SEE−GRID

DATABASE

SEE−GRID

DATABASE

SEE−GRID

DATABASE

SEE−GRID

DATABASE

SEE−GRID

WEB SERVICE (AXIS)

WEB SERVICE (AXIS)

G R I D

Current Architecture

WS API WS API

WS API

W
S

 A
P

IW
S

 A
P

I

W
S

 A
P

I

GRAM API

WSRF API

WSRF API

WS−GRAM API

Fig. 5. The Extended Architecture of “Grid-Enabled SEE++” based on Globus Toolkit 4

III. N EW ARCHITECTURE BASED ONGLOBUS TOOLKIT 4

Based on the existing implementation of “Grid-Enabled
SEE++” which uses the pre-Web Service features of Globus,
we ported the software to the “Web Service Resource Frame-
work” (WSRF) supported by the newer Globus Toolkit 4.

The WSRF specification was developed by“Organization
for the Advancement of Structured Information Standards”
(OASIS)consortium; it defines a generic and open framework
for establishing and accessing stateful resources using Web
Services. The Globus Toolkit 4 is a software toolkit, developed
by The Globus Alliance, which can be used to program grid-
based applications and which includes a complete implementa-
tion of the WSRF specification. The WSRF part of the toolkit
is a very important since nearly every new high-level service
(e.g.: WS-GRAM, WS-MDS, etc) is built on top of it.

The new architecture (the box in Figure 5 bordered by
the dashed line) consists of the original Web Service based
database services, new WSRF-based database services, the
“SEE++ to Grid Bridge”, the grid-enabled SEE++ servers
(which are started via pre-WS GRAM and perform the gaze
pattern calculations) and the SEE++ clients.

According to this picture, the SEE++ Clients can connect
to all other components located on the grid via the “SEE++
to Grid Bridge” (the underlying grid-based infrastructureis
hidden from the clients). Furthermore, the clients can also
reach every Web Service based database component via the
bridge, although a client is also able to interact only with

one such database directly.
In the following, we report on the experience we gained

on developing the WSRF interface of the SEE++ medi-
cal database and making use of the WS-GRAM service
of Globus Tookit 4 for starting up the SEE++ server pro-
cesses on the grid.

A. Experiences with the Prototype of the WSRF-based SEE++
Medical Database

We finished the elementary integration of the prototype Web
Service based implementation of the SEE++ database into the
WSRF framework [4]. At the moment, the only differences
between the two software components are the interfaces via
which they connect to the differing underlying infrastructures
(Web Services vs.WSRF). For the underlying database system,
we decided to use MySQL, because in our comparative per-
formance tests it worked together with our developed software
architecture 4-8 times faster than postgreSQL.

We also kept the originally introduced security concept [16],
which was designed for the specific requirements of SEE++.
Later, we will combine these authorization and authentication
mechanisms with the grid style transport level security and
certifications for the interactions of the bridge and of the
WSRF services (the communication between the bridge and
the clients take place outside of the grid).

When we have started to extend the “SEE++ to Grid Bridge”
with the client side functionality for this database service,
we discovered some strong restrictions of the current WSRF

Number of 1 3 9 25 30 45

Server Processes

Submission via 0,85s 0,92s 0,98s 1,06s 1,09s 1,15s

(pre-WS) GRAM

Submission 7,5s 8s 9s 13s 14s 18s

via WS-GRAM

TABLE I

COMPARATIVE BENCHMARK OF THE SUBMISSION OFSEE++ SERVER

PROCESSES VIA PRE-WS GRAM AND WS-GRAM

framework existing in Globus 4. Since the “SEE++ to Grid
Bridge” is implemented in C/C++, we should apply the APIs
of the “Globus C WS Core” for implementing the client side
functionality of our database service. For this, we should
generate client side stub files from the interface file of the
SEE++ medical database withglobus-wsrf-cgen tool.

However, we notice, that this tool only generates ANSI-C
bindings, C++ bindings are not supported. The solution for
this problem is not easy, since we employed a very complex
data structure of the mathematical eye model as arguments
in the SOAP messages, whose bindings were implemented in
C++ on the “SEE++ to Grid Bridge” (whose implementation
was taken from the original SEE++ software). Therefore, we
must implement a conversion between the generated ANSI-
C bindings and the already applied C++ data structure (since
we do not want to re-implement the whole “SEE++ to Grid
Bridge” based on only the ANSI-C data structure).

We were most surprised, when we checked the generated
ANSI C stubs. Most of the data structure was omitted from
the generated C file. After a little while, we realized that
implementation of the data structure called“SOAP Encoded
Array” [15] is completely missing from the C WS Core of
Globus. Since our applied eye model strongly depends on
this data type, we cannot apply the WSRF framework in our
software system.

It also does not make sense to re-implement the whole
eye model without SOAP arrays, because the development of
“Grid-Enabled SEE++” would diverge from the development
line of the original SEE++, which could lead to serious
incompatibility problems between future versions of these
software packages. Consequently the WSRF integration of the
SEE++ database is stalled at the moment.

B. A WS-GRAM Compatible Extension of “Grid-Enabled
SEE++”

We also extended the “SEE++ to Grid Bridge” with the WS-
GRAM Client C API [5]. The scenario of the parallel simula-
tion of Hess-Lancaster is similar as before. Before the bridge
accepts the computational requests from the SEE++ clients,
it submits in advance some grid-enabled SEE++ servers into
the grid. These processes behave as some kind of “executer”
programs for the computation tasks such that the remarkable
latencies of the job submissions for the computational requests

can be avoided (since the parallel Hess-Lancaster test simula-
tion takes only approximately 1 up to 15 seconds on the grid).

Nevertheless, we found the same problem in WS-GRAM
as in the pre-WS services, namely how to send back the
contact information of the started server/executer processes
to the “SEE++ to Grid Bridge”. Therefore, we applied the
same solution as previously in case of the pre-WS GRAM.
According to this, such a process started on a grid node
forks itself after it allocated a port number and terminates.
By this approach, WS-GRAM perceives the termination of
the program and checks whether there is any predefined
fileStageOutprocedure. We can use this procedure to send
back the output files to the “SEE++ to Grid Bridge”, while the
forked process still runs on the grid and waits for connection
requests.

Unfortunately, it is quite easy to confuse the local resource
management applications, if a job spawns/forks a child process
and terminates. In this case, the local schedulers may consider
that the job is finished, while the child process is still active.
This may induce some problems, because a batch queueing
system assumes the resource is free and may assign some
other jobs to it or it may kill the forked process (in order to
clean up).

In order to avoid the mentioned difficulties which this
“fork and exit” method may cause, we applied a simple
technique outlined in [18]. According to this, we created a
session identifier for the forked process, such that a local
batch scheduler, likeGlobus fork-jobmanageror OpenPBS
can track the job. However in some other kind of resource
manager systems (e.g.: Condor), this may still not overcome
these problems.

We have compared the overheads of the submissions of
our SEE++ server processes via pre-WS and WS-GRAM in
different situations where 1, 3, 9, 25, 30 or 45 processes were
executed on the grid.

Each value in Table I depicts the average job submission
time of 5-7 computations. The test cases were executed on
the Austrian Grid sitealtix1.jku.austriangrid.at.
The “SEE++ to Grid Bridge” and SEE++ clients were again
executed at the RISC Institute located in Hagenberg.

From the measured values contained in Table I, we can see
obvious differences among the overheads of the job submis-
sions in pre-Web Service and Web Service Architectures of
Globus, i.e. the latter is an order of magnitude slower. One
reason for this is certainly the more robust architecture and
the new and more sophisticated services. Another reason may
be that the WSRF-based services were implemented in Java
(on the top of the Java WS Core) and not in C.

We hope that in the future versions of Globus the C
WS Core will be also extended to those Web Service-based
services and features which have already been in the Java
part, because this could cause an appreciable improvement in
the performance of the Globus Toolkit. At the moment, the
WS interface is due to this performance bottleneck and the
limitations described in Section III-A hardly useable for our
purposes.

gLite WMS C++ API

Job Job Job

Job Job

SEE++
Client

SEE++
Client

gLite−enabled

SEE++2GRID Bridge

SEE++
Client

SEE++
Client

gLite−enabled

SEE++2GRID Bridge

SEE++ Server SEE++ Server SEE++ Server

PIPE 1. PIPE 2. PIPE n.

WMS

CE 1. CE 2. CE n.. . .

Job Job

Job Collection

GRID GRID

CE n.CE 2.CE 1.

. . .

. . .

WMS

(b) SEE++ Server Processes started on the CEs
as Interactive Jobs

(a) Submission of the SEE++ Server Processes

as a Job Collection

Job

REALTIME CONNECTIONS

Fig. 6. The Initial Architecture of SEE++ based on gLite

IV. A GL ITE PORT OF THEARCHITECTURE

In the frame of the EGEE2 [7] project, we are currently de-
veloping a “Grid-Enabled SEE++” version that is compatible
with the new gLite 3.0.0 grid middleware [10].

EGEE2 is an international project that aims to integrate
current national, regional and thematic Grid efforts, in or-
der to create a seamless Grid infrastructure for the support
of scientific research. The gLite middleware comes from a
number of Grid projects, likeDataGrid, DataTag, Globus,
GriPhyN, iVDGL, LCG and of courseEGEE. This middleware
is currently installed in sites participating in EGEE2. This
infrastructure involves a production Grid distributed over more
than 200 sites around the world, with more than 30,000 CPUs
and 20 PB of data storage.

A. The Initial Version of the gLite compatible SEE++

Our first step was to migrate and integrate the already
existing components of our software system, like parallel gaze
pattern calculation, into the gLite architecture (see Figure 6).

We again use some kind of server jobs (as executers for
parallel Hess calculations) started via theWorkload Manage-
ment System (WMS)of gLite by the “SEE++ to Grid Bridge”.
For this, we modified the bridge and implemented some new
functionalities based on the WMS Job Submission C++ API.

Nevertheless, instead of forking and terminating these jobs
as before to return the allocated port number to the bridge, we
investigated the exploitation of the interactive job submission
feature of gLite. After such a job is submitted, the gLite
environment starts a listener process for the job on the client
side and establishes a real time connection with the remote
host such that the standard I/O streams (e.g.: stdin, stdout,
stderr) are redirected from/to remote host. Any user application
(like the “SEE++ to Grid Bridge”) is able to interact with

this process through named pipes. In this way, the server jobs
started on some Computing Elements (CEs) on the grid are
easily able to return their contact information to the “SEE++
to Grid Bridge”; in the other direction the bridge can send any
signal or instruction to them via these connections. However,
the computational tasks carrying eye model data and calculated
gaze pattern parts are transferred via the SOAP protocol (as
before in case of the Globus Toolkit), because it is more
efficient and secure (by use of the https transport protocol).

If more SEE++ server processes are started at the same time
on the grid, they are submitted as acollection of interactive
jobs [13], see Figure 6. Job collections are useful functional-
ities of WMS [10], defined as sets of independent jobs. This
speeds up the job submission time, compared to individual
jobs and it saves a lot of processing time by reusing the same
authentication for all the jobs in the collection.

Our SEE++ server jobs do not have any special requirements
on CEs (e.g.: deployment of certain softwares); we apply them
for numerous but relatively short gaze pattern calculations (like
a typical distributed application designed for a cluster).We
should therefore prefer those available CEs which have the
shorter estimated response time and the highest number of free
CPUs (practically this means that we should properly adjust
the Rankof the job submission [13]).

Since our SEE++ server jobs act as long-running executer
processes, they may fail due to the expiration of the user proxy.
To avoid this, we apply a usual proxy renewal mechanism
provided by a MyProxy server, where the corresponding
certificates can be stored.

The final version of the paper will contain a detailed
description of the gLite-based parallel gaze pattern calculation
with our experiences about the usage of the interactive jobs
in gLite. Furthermore, we will report some benchmarks about

node k

.
.
.

SEE++
Client

SEE++
Client

.
.
.

node i

node j

GRID

node n

node m

R−GMA Information System

Interactive Job
(Hess Calc.)

Interactive Job
(Hess Calc.)

Database Acess

Request

R−GMA C++ API

gLite−enabled SEE++2GRID

BRIDGE

HESS CALC. Request

PATHOLOGY FITTING

gLite WMS C++ API

gLite WMS C++ API

AMGA C++ API

and idle Nodes for Computations

gLite WMS gLite WMS

gLite WMS

.
.
.

HESS Calc.

HESS Calc.

SEE++ Data

PATH. FITTER

.
.
.

HESS Calc.

HESS Calc.

PATH. FITTER

AMGA Server

AMGA Server

DATABASE

DATABASE

Miner

Searching for Published Databases Searching for Published Databases

Fig. 7. The Design of the gLite Compatible SEE++

the execution of this SEE++ version on theGILDA Testbed[9]
that is the official test environment of EGEE2.

Later, we will employ and examine theWorkload Man-
agement Proxy (WMProxy)for the submission of the SEE++
server processes as well. WMProxy is a service providing
access to the WMS functionality through a Web Service
based interface. If the capabilities of WMProxy meet our
requirements, we will change from the solution based on
WMS C++ API to the one based on WMProxy, because of
the numerous advantages of the Web Services.

B. The Proposed Architecture

As the next step, we plan to replace the software architecture
and authentication methods applied earlier for the SEE++
medical databases by an AMGA-based solution, see Figure 7.
AMGA [2] is a database access service for grid applications,
which is part of the latest release of gLite. It is able to hidethe
differences of the user interfaces of the supported underlying
database systems and provides a unified access to them with
the grid style certificate-based authentication. Since AMGA
supports among others MySQL as well, it would be possible
to use the same medical databases in the Globus Toolkit 4 and
the gLite environments.

In the gLite compatible version of “Grid-Enabled SEE++”,
we will make one more step further in the development and
reach that the system will be able to discover automatically
the available databases and the executer jobs on the grid.
For this purpose, we plan to apply the“Relational Grid
Monitoring Architecture” (R-GMA)[10] information system
in gLite, which also allows users to publish their own data.

According to this, the “SEE++ to Grid Bridge” creates the
corresponding data structure for the SEE++ server processes
in the R-GMA system and registers them after it started them

and received their contact information. If the bridge terminates
a server process running on a CE (or the WMS system reports
a failure of such a process), then it removes the corresponding
entries from the R-GMA system.

If a pathology fitting is triggered by the user on the client,
the “SEE++ to Grid Bridge” starts a “SEE++ Data Miner”
process with a measured gaze pattern, see Figure 7. It first
looks up for available grid-based SEE++ medical databases in
R-GMA, and then searches for similar gaze patterns among
the former medical cases in the databases. Each result of
this parallel data mining will be stored in a separate file (the
functionalities of storing the eye model structure in files have
already been implemented in the original SEE++), with which
the subsequently started Pathology Fitting processes are fed
(an example of a parameter study).

Pathology Fitting is proposed to execute on the gLite
architecture as aparametric job [10]. A parametric job is
a job collection where the jobs are identical apart from the
values of their parameters. Since identifiers are assigned to
them by WMS, it is possible to monitor and control each
of them separately (via the parametric job handle). So, each
pathology fitting job will pick up one file established by
“SEE++ Data Miner” as a parameter. For accomplishing the
necessary gaze pattern calculations, each fitting process looks
up in R-GMA for the contact information of some idle SEE++
server processes running on the grid and sends the gaze pattern
computation tasks to them for processing.

Since security is a very important issue for the proposed
SEE++ medical databases, we will extend the already existing
security mechanisms, too. We plan to introduce grid-style
certifications for the user authorization in the database access
(instead of the existing password-based solution) and encrypt
every network transfer in the interactions of the “SEE++ to

Grid Bridge” and the database services.
Another important security concept is the managing of the

Virtual Organizations (VOs), since we need to control the
access to some kinds of grid resources. A VO is an entity
which typically corresponds to a particular organization or
group in the real world. Membership of a VO grants specific
rights to a user or a grid resource. Such an authentication
and authorization of the data sources on the grid is a critical
issue for “Grid-Enabled SEE++”, because we have to be sure
that the published medical data will be hosted only by certain
trusted grid nodes.

V. CONCLUSION

In this paper, we reported on our experience of porting a grid
application to Globus 4 and gLite, described the problems we
encountered and discussed possible solution strategies. This
may assist the porting of other applications to the grid using
these middleware products.

Our goal is to make “Grid-Enabled SEE++” an efficient tool
for supporting and improving the medical treatment of strabis-
mus. Initially we just focused on the development of a SEE++
version based on Globus 4, but we met some difficulties and
restrictions in the Globus Toolkit which prevented us to finish
the development of a fully functioning version of the software
based on WSRF. Therefore, we are implementing a variant
of “Grid-Enabled SEE++” which uses the Web Service based
interfaces of gLite services (e.g.: MWSproxy and SOAP-based
interface of AMGA) which will overcome these problems; we
plan to compare its performance with the other “Grid-Enabled
SEE++” version based on the Globus Toolkit 4.

We have also searched for and examined other grid-enabled
database access tools whose capabilities fit to our require-
ments. One option for establishing a grid-based distributed
medical database is to use the Grid Semantic Data Access
Middleware (G-SDAM) [12] developed by the Institute for
Applied Knowledge Processing (FAW). G-SDAM is still under
development and the first prototype will be issued in the
summer 2007. However, the developers of G-SDAM and
”Grid-Enabled SEE++” have already started to elaborate the
common requirements and to design interfaces to combine the
two software components.

On the basis of these developments, we are going to
implement a variant of pathology fitting that applies a grid-
based parallel search technique to find cases in a distributed
medical database of SEE++ that are similar to measured
patient data; using these cases as starting points, the method
executes multiple independent pathology fitting processeson
the grid. These achievements should make SEE++ an effective
grid-based tool for giving decision support to the surgeons
before eye surgeries.

ACKNOWLEDGMENT

The work described in this paper is partially supported by
the Austrian Grid Project, funded by the Austrian BMBWK
(Federal Ministry for Education, Science and Culture) under
contract GZ 4003/2-VI/4c/2004.

This work makes use of results produced by the Enabling
Grids for E-sciencE project, a project co-funded by the
European Commission (under contract number INFSO-RI-
031688) through the Sixth Framework Programme. EGEE
brings together 91 partners in 32 countries to provide a
seamless Grid infrastructure available to the European research
community 24 hours a day. Full information is available at
http://www.eu-egee.org.

The G-SDAM framework mentioned in Section II is de-
veloped by the Institute for Applied Knowledge Processing
(Institut Für Anwendungsorientierte Wissensverarbeitung —
FAW) as a partner of the “Grid-Enabled SEE++” project.

REFERENCES

[1] Austrian Grid home page.http://www.austriangrid.at
[2] AMGA User’s and Administrator’s Manual

http://project-arda-dev.web.cern.ch/
project-arda-dev/metadata/downloads/amga-manual_
1_2_3.pdf

[3] Karoly Bosa, Wolfgang Schreiner, Michael Buchberger, Thomas Kaltofen,
SEE-GRID, A Grid-Based Medical Decision Support System forEye
Muscle Surgery, 1st Austrian Grid Symposium, December 1-2, 2005,
Hagenberg, Austria. OCG Verlag, pp. 61-74.

[4] Karoly Bosa, Wolfgang Schreiner, Michael Buchberger, Thomas Kaltofen,
A Report on the First Prototype of a Grid-enabled Data Management
System for SEE-GRID, Austrian Grid Deliverable A1c-2-2006, Research
Institute for Symbolic Computation (RISC), Johannes Kepler University,
Linz, July 2006.

[5] Karoly Bosa, Wolfgang Schreiner, Michael Buchberger, Thomas Kaltofen,
A Report on the Use of Globus 4 and the Web Service Resource
Framework for SEE++, Austrian Grid Deliverable A1c-3-2006, Research
Institute for Symbolic Computation (RISC), Johannes Kepler University,
Linz, November 2006.

[6] Michael Buchberger,Biomechanical Modelling of the Human Eye,Ph.D.
thesis, Johannes Kepler University, Linz, Austria, March 2004.
http://www.see-kid.at/download/Dissertation_MB.
pdf

[7] EGEE-II home page, 2006.http://www.eu-egee.org
[8] Martin Fowler, Analysis Patterns: Reusable Object Models, Addison-

Wesley, 2004.
[9] Grid Infn Laboratory forDisseminationActivities (GILDA),

https://gilda.ct.infn.it
[10] gLite 3.0.0 home page, 2007.http://www.glite.org
[11] The Globus Tookit.http://www.globus.org/toolkit/
[12] A Report on a Unified Grid-aware Access Layer for SEE-GRID Data

Sets, Austrian Grid Deliverable M-4aA-1c, FAW Institute and RISC-Linz
Institute, Johannes Kepler University, Linz, August 2005.

[13] Job Description Language Attributes Specification for the gLite
Middleware,
https://edms.cern.ch/file/555796/1/
EGEE-JRA1-TEC-555796-JDL-Attributes-v0-8.pdf

[14] Thomas Kaltofen,Design and Implementation of a Mathematical Pulley
Model for Biomechanical EyeSurgery, Diploma thesis, Upper Austria
University of Applied Sciences, Hagenberg, June 2002.
http://www.see-kid.at/download/Pulley_Model_
Thesis.pdf

[15] Mapping WSDL and XSD schema to C in Globus 4,
www.globus.org/toolkit/docs/4.0/common/cwscore/
WSDLtoCBindings.pdf

[16] Daniel Mitterdorfer,Grid-Capable Persistance Based on a Metamodel
for Medical Decision Support, Diploma thesis, Upper Austria University
of Applied Sciences, Hagenberg, July 2005.

[17] NHS Healthcare Modelling Programme, 1995,
http://www.standards.nhsia.nhs.uk/hcm/index.htm.

[18] Herbert Rosmanith, Peter Praxmarer, Dieter Kranzmller, Jens Volkert,
Towards Job Accounting in Existing Resource Schedulers: Weaknesses
and Improvements, The 2nd International Conference on High Perfor-
mance Computing and Communications (HPCC-06), Munich, Germany,
September 13-15, 2006.

[19] SEE-KID home page, 2006.http://www.see-kid.at

