
Towards abstract and executable
multivariate polynomials in Isabelle

Florian Haftmann, TU Munich

Andreas Lochbihler, Institute of Information Security, ETH Zurich

Wolfgang Schreiner, RISC, Johannes Kepler University Linz

Abstract. This work in progress report envisions a library for multivariate poly-
nomials developed jointly by experts from computer theorem proving (CTP) and
computer algebra (CA). The urgency of verified algorithms has been recognised in
the field of CA, but the cultural gap to CTP is considerable; CA users expect high
usability and efficiency. This work collects the needs of CA experts and reports on
the design of a proof-of-concept prototype in Isabelle/HOL. The CA requirements
have not yet been fully settled, and its development is still at an early stage. The
authors hope for lively discussions at the Isabelle Workshop.

1 Introduction

The Isabelle distribution [Nip12] and the accompanying Archive of Formal Proof [afp]
already contain various formal developments about polynomials; abstract developments
include

1. a hierarchy of algebraic modules (locales) (theory UnivPoly) featuring an abstract
construction of univariate polynomials;

2. a type ′a poly (theory Polynomial) for univariate polynomials over an algebraic
structure ′a; this covers also advanced notions like polynomial division, polynomial
derivation and the fundamental theorem of algebra;

3. various application-specific fragments of polynomial theory, including Gröbner
bases (theory Groebner-Basis), Ferrante and Rackoff’s procedure with polynomial
parameters (theory Parametric-Ferrante-Rackoff), reflected decision procedures
(theories Reflected-Multivariate-Polynomial, Commutative-Ring), a particular ex-
ecutable representation of multivariate polynomials [ST10].

The development 1 is designed for abstract algebraic reasoning; the type 2 is a versatile
instrument to cover both abstract properties and concrete computations on polynomi-
als, using type nesting for multivariate polynomials; the examples 3 are very specificly
tailored towards their particular application.

1

What is unsatisfactory is the non-integration of all these formalisations: there are no
definitions or lemmas which relate the different approaches, i.e. each of the applications
3 features its own development of polynomial theory without relation to a common base.

The reason why ′a poly cannot serve as a common base is that it cannot express
the concept of a multivariate polynom with an arbitrary number of variables: although
e.g. ′a poly poly poly denotes a polynomial with (at most1) three variables, HOL’s type
system cannot express arbitrary type nesting ′a (polyn). Hence we cannot formulate
typical algorithms from computer algebra for arbitrary numbers of variables.

Therefore we suggest to develop a type for multivariate polynomials. The type ap-
proach is very suitable for formulating algorithms and program generation.

2 Future work includes inspection of approaches towards polynomials found in systems
like Coq.

1.1 Mathematical preliminaries about polynomials

In this section, we sketch the mathematical background relevant for the subsequent
discussion. We mostly rely on [Win96], but see also [GCL92, Coh02, Coh03, vzGG13].

The traditional interpretation of a “polynomial” (a Greek-Latin hybrid word meaning
“many terms”) is that of a symbolic expression composed from variables and constants
by addition, subtraction and exponentiation; e.g., 2x3 − 5x + 7 denotes a univariate
polynomial in three terms. A univariate polynomial cnx

n + . . . + c1x
1 + c0 can be

concisely written with the help of the summation quantifier as
∑n

i=0 cix
i. Based on this

view we may e.g. conveniently define the product of two polynomials by the equation(∑n
i=0 aix

i
)
·
(∑m

j=0 bjx
j
)

=
∑m+n

k=0

(∑i+j=k
i∈N0,j∈N0

ai · bj
)
· xk

However, while this view is sufficient for the paper and pencil work with polynomials,
it has in fact little to do with the actual implementation of a polynomial in computer
software, e.g., by an array of coefficients, where the code for polynomial multiplication
might look as follows:

int[] mult(int[] a, int[] b)

{

int m = a.length-1; int n = b.length-1;

int[] c = new int[m+n+1];

for (int i = 0; i <= m; i++)

for (int j = 0; j <= n; j++)

c[i+j] += a[i]*b[j];

return c;

}

On a more fundamental (logical or technological) level, a polynomial is neither a symbolic
expression nor an array. These two forms are just two different representations of a
more fundamental mathematical concept of a polynomial. Modern (computer) algebra
textbooks thus define polynomials in a more abstract fashion; e.g. in [Win96], we read

1since any variable may appear with degree 0 only
2FiXme Fatal: Shift to end

2

Let R be a ring. A (univariate) polynomial over R is a mapping p : N0 → R,n 7→ pn,
such that pn = 0 nearly everywhere, i.e., for all but finitely many values of n.

According to this definition, a univariate polynomial is in essence an infinite sequence of
coefficients (the sequence positions denote the corresponding exponents) of which only
finitely many are non-zero. The subsequent statement

If n1 < n2 < . . . < nr are the nonnegative integers for which p yields a non-zero
result, then we usually write p = p(x) =

∑r
i=1 pnix

ni .

makes clear that the symbolic representation of a polynomial as a sum is just a convenient
notation for paper and pencil work.

To consider polynomials as infinite sequences has substantial advantages, because it
simplifies the formal definition of polynomial operations. For instance, the definition of
polynomial multiplication given above is just a short form of the definition

· : (N0 → R)× (N0 → R)→ (N0 → R)

a · b := k ∈ N0 7→
∑i+j=k

i∈N0,j∈N0
ai · bj

Here · is a binary operation on infinite sequences of R values that defines for every
position k ∈ N0 of the resulting sequence the corresponding coefficient.

The set of polynomials over R with addition and multiplication defined like above form
a ring which is denoted by R[x] (actually x is not part of the formal definition but just
an indicator that this symbol is used to denote the polynomial which maps exponent 1
to coefficient 1 and every other exponent to coefficient 0).

The abstract concept can be generalized to multivariate polynomials in a straight-
forward way [Win96]:

An n-variate polynomial over the ring R is a mapping p : Nn
0 → R, (i1, . . . , in) 7→

pi1,...,in , such that pi1,...,in = 0 nearly everywhere. p is written as
∑
pi1,...,inx

i1
1 · · ·xinn

where the formal summation ranges over all tuples (i1, . . . , in) on which p does not
vanish. The set of all n-variate polynomials over R form a ring R[x1, . . . , xn]. [. . .]
In fact R[x1, . . . , xn] is isomorphic to (R[x1, . . . , xn−1])[xn].

Thus the formal definition maps every vector of n non-negative exponents (the abstract
representation of a monomial) to a coefficient. As before, this leads to simple and elegant
formal definitions.

An important aspect is the isomorphism stated above. It supports the view on the
ring R[x1, . . . , xn] of n-variate polynomials as the ring (R[x1, . . . , xn−1])[xn] of univari-
ate polynomials whose coefficients are from the ring R[x1, . . . , xn−1] of (n − 1)-variate
polynomials. Thus, if an operation depends only on the ring properties of the coefficient
domain, it naturally generalises to multivariate polynomials. However, this assumption
is not true for all operations; e.g. polynomial division is only defined on the ring K[x]
where K is a field. However, if R is at least an integral domain (as is the case for
R = K[x1, . . . , xn−1]) then R[x] supports “pseudo-division.” This suffices to generalize
the Euclidean algorithm for computing greatest common divisors to the multivariate
case.

3

The view of polynomials as mappings from an infinite domain of exponents respectively
monomials to the coefficient domain provides mathematical elegance. However, it cannot
serve as a representation in the computer. As a first step towards this goal, we have
to make the representation finite by only considering a finite subset of the domain that
contains all exponents respectively monomials that are mapped to non-zero coefficients.

In a second step, we can represent a univariate polynomial in two ways:

densely As a sequence [c0, . . . , cn] of coefficients where n is the degree of the polynomial
(i.e., the highest exponent with non-zero coefficient). This representation makes
sense (only) if most coefficients in the sequence are not 0.

sparsely As a sequence [(c0, e0), . . . , (cr, er)] that contains all pairs (ci, ei) of a non-zero
coefficient ci and the corresponding exponent ei. This representation is preferred
if many coefficients are zero.

In the n-variate case, we have two choices (which for n = 1 both coincide with the
representation of univariate polynomials):

recursively The polynomial is considered as a univariate polynomial whose coefficients
are (n − 1)-variate polynomials, i.e., as an element of (R[x1, . . . , xn−1])[xn]. The
univariate polynomial may be represented densly or sparsely as sketched above
(dense recursive representation or sparse recursive representation).

distributively The polynomial is considered as a mapping from monomials to coeffi-
cients, i.e., as an element of R[x1, . . . , xn]. Theoretically, we may choose a dense
distributive representation by fixing a total order of the monomials and listing all
exponents in the respective order until the last exponent vector with a non-zero
coefficient (this assumes that any monomial with non-zero coefficients has only
finitely many predecessors in the chosen order). However, due to the large number
of monomials, a more practical representation is the sparse distributive representa-
tion which lists all pairs of exponent vectors and non-zero coefficients (if we want
to make this representation unique, also here a total monomial order is required).

While many operations on multivariate polynomials are more naturally implemented on a
recursive representation, there are also exceptions. In particular, Buchberger’s Gröbner
Bases algorithm is realistically implemented only with a distributive representations,
because it processes the individual terms of a polynomial in a total order (that has
to satisfy certain properties); thus the polynomial should be represented in a (sparse)
distributive way by listing the monomials in the considered order.

1.2 Requirements and goals for a polynomial package

The core goal for the envisioned Isabelle package for multivariate polynomials is to have
a single computer-supported framework in which the working mathematician can both
of the following.

4

1. Develop mathematical theories in a style that is close to (modern) mathematical
practice, but on the basis of a sound logical and technological framework where e.g.,
definitions and theorems are mechanically type checked and proofs are developed
with computer support and thus mechanically verified.

2. Describe algorithms conveniently based on the developed mathematical notions
such that these algorithms (i) can be executed with reasonable efficiency (in the
sense of a rapid prototype, not of production quality code) and (ii) can be specified
formally and verified with computer assistance.

We approach these goals by providing

an abstract type of multivariate polynomials which is based on their modern mathe-
matical view (as mappings from an infinite domain of monomials to coefficients,
§2.1) such that on this type

a) the fundamental operations can be elegantly defined,

b) corresponding theorems can be conveniently formulated and proved,

c) algorithms (functional programs) can be formulated, and

d) these algorithms can be specified and verified to satisfy their specification;

multiple representation types of multivariate polynomials together with corresponding
implementations of the fundamental operations (§2.2) such that

a) the representation types can be proved to be refinements of the abstract types
such that variables of the abstract type can be instantiated with values of
any representation type and consequently all the theorems formulated on the
abstract types also hold for the representation types, and

b) from the representation types and the corresponding operations executable code
can be generated, and thus

c) the algorithms formulated on the abstract types become executable by plugging
in values of the executable representation types.

Clearly, algorithms should be formulated and verified on an abstract type rather than a
concrete representation. When instantiated with polynomials in the “wrong” representa-
tion, the generated code might be inefficient but nevertheless operable. This requires to
carry to the abstract type also several notions that originally stem from particular repre-
sentation types (e.g., the coefficient of a “main variable”, which stems from the recursive
representation, or the “leading term” with respect to a monomial ordering, which stems
from the distributed representation). Nevertheless it shall also be possible to explicitly
coerce polynomials from any (abstract or representation) type to a particular repre-
sentation type such that one can formulate individual algorithms that (from the point
of complexity) crucially depend on a particular representation (respectively formulate
composed algorithms where particular parts depend on particular representations).

Apart from these high-level strategic goals, there are also some low-level technical
requirements that have to be considered in the subsequent design decisions. In particular:

5

1. In a system with a static type system (such as Isabelle), the polynomial ring
R[x1, . . . , xn] must be mapped to an adequate type that is expressible in the type
system. Clearly, such a type P (R) should explicitly depend on (a static type for
the coefficient ring) R. Furthermore, as discussed above, in the modern view the
variables x1, . . . , xn do not play a role in the representation and can be ignored.
However, the number of variables n has to be modelled somehow. We see the
following options.

Dependent type A dependent polynomial type P (n,R) encodes the number of
variables. However, Isabelle does not support such types.

Type nesting Given a type P (R) of univariate polynomials in R, n-variate poly-
nomials have the type P (P (. . . (R)). This relies on P (. . . (R)) itself being a
ring. Then the type system prevents e.g. the illegal addition of a univariate
polynomial and a bi-variate polynomial, as their types P (R) and P (P (R)) dif-
fer. As discussed in §1, functions for polynomials with an arbitrary number
of types cannot be expressed in this approach.

Implicit The number of variables does not show up in the type, i.e., P (R) denote
the type of multivariate polynomials in R with an arbitrary number of vari-
ables. Instead, a function vars :: P (R) ⇒ N returns the number of variables
of a polynomial.

While this seems the most pragmatic solution, it has to address potential
consistency issues with respect to the number of variables, both inside a single
polynomial (how is this number modeled and does the representation conform
to it) and across polynomials (how to deal with situations when an operation
is applied to polynomials with different numbers of variables).

2. Since in some parts of polynomial theory a monomial order is relevant (in particular
the notion of the “leading monomial” with respect to such an order in Gröbner
bases theory), one has to consider whether and how to also model this order on
the level of the abstract polynomial type (in addition to the modeling of that order
on the distributive representation type). Since, e.g., the Gröbner bases algorithm
is only efficiently executable with respect to the monomial order in which the
monomials are actually listed in the distributed representation type, this order
must also appropriately modeled in the abstract type and cannot be just passed
as an independent argument to the algorithm.

Above goals and strategies have been deliberately formulated in an essentially system-
agnostic style; in the next section, we describe how to approach them in Isabelle.

2 Design of the prototype

Having stated the requirements and goals, we now present our design for multivari-
ate polynomials in Isabelle/HOL. The abstract type of polynomials (§2.1) captures the
modern mathematical view on polynomials. Several representation types (§2.2) provide

6

efficient implementations; refinement in the code generator connects them to the abstract
type.

2.1 A type of abstract polynomials

We present the construction of a type ′a mpoly for multivariate polynomials. Here ′a
is (the type of) the carrier over which the multivariate polynomials are constructed.
Variables are represented by natural numbers:

• Concrete names are an aspect of presentation rather than representation, e.g. the
polynomials x 2 + 2 are y2 + 2 considered equivalent.

• Specific algorithms have a notion of variable order, and this is most naturally
expressed using natural numbers.

Essential for our specification of multivariate polynomials is an auxiliary intermediate
type ′b ⇒0

′a isomorphic3 to ′b ⇒ ′a such that each function of ′b ⇒0
′a is “almost

everywhere zero”, ie. ∀ f :: ′b ⇒p
′a. finite {a. f a 6= 0}4. This notion of “almost

everywhere zero” is omnipresent: a power product is an almost everywhere zero mapping
from variable identifiers to exponents (nat ⇒0 nat), and a (multivariate) polynomial
in turn is isomorphic to an almost everywhere zero mapping from power products to
coefficients ((nat ⇒0 nat) ⇒0

′a).

2.1.1 Addition

We obtain the additive structure of polynomials (nat ⇒0 nat) ⇒0
′a by instantiating ′b

⇒0
′a pointwise:

0 = (λa. 0)

(f + g) a = f a + g a

(− f) a = − f a

(f − g) a = f a − g a

2.1.2 Multiplication

We define multiplication on ′b ⇒0
′a as a fold product, delegating to addition on ′b and

multiplication on ′a:

1 = (λa. 1)

(f ∗ g) a = (
∑

(b, c)∈{(b, c). b + c = a}. f a ∗ g b) (?)

3notationally we treat ′b ⇒0
′a as a subtype of ′b ⇒ ′a, using immediate application syntax etc.

40 is overloaded in Isabelle, which imposes a type class constraint zero on the result type ′a, which is
omitted here for succintness; similar for class constraint imposed by generic algebraic operations like
+, ∗ etc.

7

Here the definition of addition on ′b ⇒0
′a plays a role also: mapping the fold prod-

uct (?) to polynomials (nat ⇒0 nat) ⇒0
′a, the referenced addition on nat ⇒0 nat

turns into addition of exponents of variables, and the referenced multiplication on ′a to
multiplication of coefficients.

Type ′b ⇒0
′a is also used as base for the more specific type ′a nat-mapping used for

concrete representations5.

2.2 Representations for efficient computation

The abstract type ′a mpoly captures the mathematical notion of a multivariate polyno-
mial, but there is too little structure to efficiently implement operations on polynomials.
In this section, we add such structure in several refinement steps. The design goals are
the following.

Abstraction Abstract polynomials (type ′a mpoly) are as abstract as possible. Other-
wise, details of the representation would clutter the proofs.

Ease of use Algorithms formalised on ′a mpoly use the efficient implementations with
little or no intervention of the user.

User control The user of the library can control the choice of representations and convert
one into another.

Refinement can be done inside Isabelle’s logic [Lam13] or in the code generator [HKKN13].
We pick the latter option, because it has already been used successfully in the context
of container data structures [Loc13].

The code generator provides two kinds of refinement [HKKN13, HN10]. First, program
refinement separates the definition and implementation of functions. Any (executable)
equational theorem suffices for code generation, it need not be the definition. Second,
data refinement come in two forms. The user may declare pseudo-constructors for any
type, in terms of which this type will be implemented in the code. Neither need the new
constructors be injective and pairwise disjoint, nor exhaust the type in the logic; their
signature merely has to meet the requirements for a constructor. Functions on such a
refined type can pattern-match on these new pseudo-constructors in their code equations.
Alternatively, types can be made abstract by declaring a representation function (rather
than constructors) whose codomain determines the implementation type. Since values
of abstract types can be manipulated only by going through the representation function,
its range encodes an invariant on the implementation type such as a sortedness of lists.
Both forms can be combined by introducing an intermediate type constructor. Note
that refinement affects only code generation, but not the logical properties of the refined
type. Consequently, one cannot exploit the type’s new structure inside the logic.

Several refinement steps are needed to go from ′a mpoly to implemented algorithms;
Fig. 1 shows our current design. The representation types ′a poly-rec and ′a poly-distr
model the recursive and distributive representation of a polynomial.

5FiXme Fatal: not yet known how notation for nat mapping will look like; place reference here

8

′a mpoly

′a poly-rec ′a poly-distr

(power-product × ′a) list × monom-order′a′a poly-rec nat-mapping

(nat ⇒0 nat) ⇒0
′a

∼ =

nat nat-mapping
∼ =

Rec Distr

rlex lex
. . .

Rep-poly-distr
CoeffPowers

rec-of distr-of

distr-of-rec

rec-of-distr

′b nat-mapping

′b dense ′b sparse

′b list (nat × ′b) list

nat ⇒0
′b

∼ =

Dense Sparse

Rep-dense Rep-sparse

dense-of sparse-of

sparse-of-dense

dense-of-sparse

sparse-of-dense-impl

dense-of-sparse-impl

Legend:

constructor
pseudo-constructor
representation function

conversion function
∼= type isomorphism

Figure 1: Overview of the different representations of polynomials and their implemen-
tation types

9

The recursive representation is modelled as a datatype with two constructors Pow-
ers :: ′a poly-rec nat-mapping ⇒ ′a poly-rec and Coeff :: ′a ⇒ ′a poly-rec. The con-
structor Powers models the recursive view of a univariate polynomial (expressed as . . .
nat-mapping which is isomorphic to nat ⇒0

′b) with recursive polynomials as coeffi-
cients.6 Recursion terminates at a constant, i.e., a polynomial without variables, which
Coeff embeds into the type of polynomials.

The distributive representation consists of a finite map from power products to coeffi-
cients (type power-product ⇒0

′a) and a monomial ordering (type monom-order). This
type is implemented as an associative list (power-product × ′a) list and a monomial
ordering with the invariant that the power products are sorted according to the mono-
mial ordering and no power product is mapped to 0.7 These types explicitly include the
monomial order such that (i) users can choose a monomial ordering, and (ii) algorithms
like Buchberger’s can exploit the chosen ordering.

Two abstraction functions Rec :: ′a poly-rec ⇒ ′a mpoly and Distr :: ′a poly-distr
⇒ ′a mpoly abstract the representation details. They link the representations with the
abstract type and are declared as pseudo-constructors (we call them pseudo-constructors
because they are not disjoint). Operations on ′a mpoly select the algorithm on the
representation by pattern-matching. For example, the code equations for addition

Rec p + Rec q = Rec (plus-poly-rec p q)
Distr p + Distr q = Distr (plus-poly-distr p q)

(1)

call the implementations plus-poly-rec and plus-poly-distr on the representations. Such
code equations ensure that algorithms formulated in terms of executable operations on
′a mpoly immediately use the representations in the generated code—without any user
configuration.

The abstraction functions have counterparts rec-of and distr-of that are used to con-
vert between representations (distr-of is parametrised by a monomial order). They are
right-inverses of the abstraction functions.

Rec (rec-of p) = p and Distr (distr-of mo p) = p

Unfortunately, the recursive representation is not unique, i.e., Rec is not injective. For
example, Rec (Powers 0)= Rec (Coeff 0). Consequently, the conversion of an abstract
polynomial represented recursively to the recursive representation must normalise the
representation, e.g. by replacing all Powers subtrees of constant polynomials with Co-
eff. Hence, the following equations implement rec-of where rec-of-distr implements the

6In principle, the sub-polynomials of a recursive polynomial could be represented distributively, too,
i.e., Powers had the type ′a mpoly nat-mapping ⇒ ′a poly-rec. We decided not to support this,
because it would complicate recursive algorithms that are not just straightforward generalisations
from the univariate case.

7More efficient data structures like binary search trees would also be possible.

10

conversion from distributive to recursive functions.

rec-of (Rec p) = normalise-rec p
rec-of (Distr q) = rec-of-distr q

In contrast, the distributive representation is isomorphic to the abstract polynomials
for a fixed monomial order. Consequently, converting a distributive polynomial to the
distributive representation is a no-op provided that the monomial order matches.

distr-of mo (Distr p) = (if mo = monom-order-distr p then p else convert-mo mo p)
distr-of mo (Rec q) = distr-of-rec q

The code equation tests equality of two the monomial orders. However, the type
monom-order is defined as a set of functions, namely of all comparison operators that
satisfy the monomial order constraints. Hence, equality is undecidable. We nevertheless
can implement equality on those few monomial orders that are relevant in practice. To
that end, we name these (by defining constants such as rlex and lex) and declare these
names as pseudo-constructors of monom-order (they are pseudo-constructors because
they do not exhaust the type). Thus, equality becomes pattern-matching on names in
the code. This approach achieves that new monomial orders can always be added later.
The alternative of defining the datatype of the names in HOL would not.

Yet, these conversion function rec-of and distr-of break the abstraction of ′a mpoly.
Therefore, the user should not have to call them directly. Instead, we provide cast
operations rec-cast :: ′a mpoly ⇒ ′a mpoly and distr-cast :: monom-order ⇒ ′a mpoly
⇒ ′a mpoly, which are logically the identity on ′a mpoly. Their code equations call the
conversion function and wrap the result with the corresponding abstraction function.

2.3 Dense and sparse representations

In the previous section, we have discussed how recursive and distributive representations
for polynomials fit under one hood of abstract polynomials. It turns out that the same
ideas also work for handling dense and sparse representations uniformly (see the lower
part in Fig. 1). Here, we restrict ourselves to AEZ maps with natural numbers as
keys. In the distributive representation, the keys are the variables of the power product;
and in the recursive one, they are the exponents of the univariate argument to Powers.
Since data refinement requires a type constructor, we introduce the type ′b nat-mapping,
which is isomorphic to nat ⇒0

′b (and to ′b poly of univariate polynomials). Its non-
disjoint pseudo-constructors are the abstraction functions from the representation types.
The dense representation consists of a plain list of values, on which we impose the
invariant that the last element is not 0. As sparse representation, we use an associative
list whose keys appear in ascending order and whose values do not contain 0. The
invariants ensure that the representation types are isomorphic to the abstract type.
Hence, the conversion functions become no-ops when the argument already has the
right representation. Thanks to ′b nat-mapping, we can implement dense and sparse
representations uniformly for recursive polynomials and for power products.

11

3 Problems and open questions

The current design of the prototype is not completely satisfactory. There are unsolved
issues with respect to the implementation in Isabelle (§3.1 and §3.2), and some of the
requirements from CA are not addressed (§3.3). By presenting them below, we hope to
generate input from the community.

3.1 The ubiquitous type class zero

In the auxiliary type ′b ⇒0
′a, the zero type class determines the value that the func-

tion must take almost everywhere. This sort constraint propagates through most types
including auxiliary data structures and even their implementation types due to the in-
variants. This causes two problems.

First, the current design prevents re-use in two ways. On the one hand, it is hard to
re-use our data structures in other contexts, although most of them implement variations
of finite maps. Ordinary finite maps (a subtype of ′a ⇒ ′b option) uniformly store all
values of the codomain and distinguish lookup failure with None. In that sense, our
types conceptually remove 0 from the values. Hence, if we define 0 = None, the type ′a
⇒0

′b option acts like a finite map, but the signatures remain unnatural for other users.
On the other hand, it is also hard to re-use existing data structures (like red-black

trees) in our prototype, because the representation types rely on the invariant that 0 is
not stored as a value. Possibly, this could be improved by splitting this invariant off from
the data structure invariant, i.e., by introducing another intermediate type. It is not clear
how this affects performance, as implementations cannot exploit the combined invariants
any more. Independent of the sort constraint zero, supporting multiple monomial orders
complicates things, too. We might be able to reuse the implementation of efficient data
structures, but not the non-negligible wrapping-up of invariants which takes the order
from the standard type classes.

Second, the sort constraint also prevents the integration with Isabelle packages such
as lifting and BNF. On ′a ⇒0

′b, there is no map function map that commutes with
function composition, i.e., that satisfies

map f ◦ map g = map (f ◦ g)

for all f :: ′c ⇒ ′d and g :: ′b ⇒ ′c. The problem is that (f ◦ g) 0 = 0 does not imply f
0 = 0 and g 0 = 0. Hence, the intermediate map g p might not be 0 almost everywhere.

Consequently, ′a ⇒0
′b and similarly ′b nat-mapping are not bounded natural functors.

Thus, they cannot be registered with the new datatype package [BHL+14]. So, datatype
definitions cannot recurse through these types. This is why we were not able to define
the recursive representation with a package. Rather, we constructed it manually by
carving out the relevant subset from the following datatype and replacing the list with
nat-mapping, which essentially undoes the dense refinement from Fig. 1.

datatype ′a poly-rec-raw = Coeff-raw ′a | Powers-raw (′a poly-rec-raw list)

12

Similarly, there is no primitive recursor on ′a ⇒0
′b, either, and support for recursive

function definitions must installed manually.
For the same reason, we cannot register a quotient theorem with the lifting package

[HK13], either (we can prove one when the quotient relation respects 0, but the package
rejects such additional assumptions). Thus, transfer and lifting cannot work on types
that are nested in ′a ⇒0

′b or ′b nat-mapping. For example, they cannot help us with
constructing ′a poly-rec from ′a poly-rec-raw.

3.2 Strategies for selection of representations

Early on, we decided that representations should never be converted automatically into
one another. This gives the user full control over the chosen representations and avoid
surprises in efficiency and run-time. However, we are no longer sure that this is the best
option. For example, binary operations like addition are implemented only when both
operands have the same representation (1). Consequently, if a distributive polynomial
and a recursive one are to be added, the code raises an exception at run time. Such
run-time errors can be hard to debug, and Isabelle provides no support as this happens
outside the logic. To prevent such exceptions, the code equations must implement all
cases. However, in the missing cases, it is not clear how to choose the representation for
the result of the computation. This problem also arises when polynomials are required
as input. For example, it is tempting to write 2 to denote the constant polynomial with
coefficient 2. Yet, the code generator does not accept this, because the user has not
specified whether 2 should be represented recursively or distributively. Therefore, the
input syntax is currently cumbersome to write, and so is reading the output syntax.

Moreover, it turns out that the code equation should be able to query the representa-
tion details. Consider, e.g., the addition plus-poly-rec on recursive polynomials in Fig. 2.
When a polynomial p in n variables is added to a polynomial q in n + m variables, p
must be extended to n+m variables. The function plus-poly-rec silently does so when a
coefficient Coeff c is added to a univariate polynomial Powers q via the identity c = cx0.
That is, a coefficient becomes a univariate polynomial, so the representation (dense or
sparse) must be chosen. Clearly, it should be the same as q’s, but q’s is not known in
the logic. Therefore, we define single-element types with pseudo-constructors to make
representation information accessible in code equations; the overloaded function implT
extracts this information from abstract values. The functions to construct values of
abstract types (like single for nat-mapping) pattern-match on the pseudo-constructors
and thus pick the specified representation. Unfortunately, this technique addresses just
this special case—a general solution is still missing.

3.3 Remaining requirements from computer algebra

The Isabelle team quickly developed the prototype sketched in §2. The CA experts found
the speed challenging; they still find it hard to relate the goals in §1.2 to the details of
the design and the prototype. Below, we list the requirements that have not yet been
addressed.

13

plus-poly-rec (Coeff c) (Coeff d) = Coeff (c + d)

plus-poly-rec (Powers p) (Powers q) = Powers (zip-with (λ . plus-poly-rec) p q)

plus-poly-rec (Coeff c) (Powers q) =
Powers (zip-with (λ . plus-poly-rec) (single (implT q) 0 (Coeff c)) q)

plus-poly-rec (Powers p) (Coeff d) =
Powers (zip-with (λ . plus-poly-rec) p (single (implT p) 0 (Coeff d)))

Figure 2: Addition operation on recursive polynomials

Exploit representational notions at the abstract level The distributive and recursive
representations each have specific notions such as leading term and main variable
(see p. 5). In the current design, these notions are not part of ′a mpoly and thus
cannot be properties of a polynomial. It is unclear how algorithms on abstract
polynomials can exploit such notions, but this is definitely needed. Explicit pa-
rameters like for distr-of might be a solution.

Convenient input and output formats Prototyping benefits not only from short nota-
tions, as mentioned in §3.2; comprehensible visual representation of input and
output is equally important. Parsing and pretty-printing features are currently
missing, but first, a convenient syntax must be found.

Different kinds of divisions Division on polynomials is unique only in the univariate
case over a field. In other cases, the Euclidean algorithm can be formulated by
using a generalisation called pseudo-division. Since ′a mpoly does not distinguish
between uni- and multivariate polynomials, we can only have pseudo-division on
the abstract type. However, computer algebraists may want to use proper division
when they know that the polynomial is univariate. With a good solution, both use
cases can be handled uniformly. Maybe, a new type class pseudo-ring can capture
the nice properties of division and remainder in either case.

4 Current state of affairs

This paper takes a snapshot of an ongoing development for a polynomial library. Both
the design and the requirements are not set in stone, and we will try to align them
further. The open issues may serve as a starting point to explore new ideas, and we
are interested in new ideas and pointers by people in CTP or CA. This also includes
inspection of approaches towards polynomials found in other theorem provers.

Finally, a note on the cooperation between Isabelle and CA experts in this project. On
the one hand, we have found that CA experts consider the verification of CA software
as urgent. Being mathematicians, they are used to proving, but they see that the
implementations of their algorithms contradict to their professional honour. On the
other hand, they would use verified CA software in practice only if they provide a level

14

of usability and availability comparable to standard tools like SAGE or Singular—at
least in the domain of their personal expertise.

Academic CA and CA software development have become large-scale ventures with
high impact on science, technology and engineering. As the systems become increasingly
complex,

we need a coherent conceptual framework and a gap-less chain of tools
from proving properties of algorithms to generating efficient code.

We have found that Isabelle already provides both a logical base for a framework covering
theories and algorithms in CA, and core technologies for the tool chain, in particular
automated code generation.

References

[afp] Archive of formal proofs.

[BHL+14] Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz
Panny, Andrei Popescu, and Dmitriy Traytel. Truly modular (co)datatypes
for Isabelle/HOL. In Gerwin Klein and Ruben Gamboa, editors, Interactive
Theorem Proving (ITP 2014), LNCS. Springer, 2014.

[Coh02] Joel S. Cohen. Computer Algebra and Symbolic Computation: Elementary
Algorithms. A. K. Peters, Natick, Massachusetts, 2002.

[Coh03] Joel S. Cohen. Computer Algebra and Symbolic Computation: Mathematical
Methods. A. K. Peters, Natick, Massachusetts, 2003.

[GCL92] Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for
Computer Algebra. Springer, 1992.

[HK13] Brian Huffman and Ondřej Kunčar. Lifting and transfer: A modular design
for quotients in Isabelle/HOL. In Georges Gonthier and Michael Norrish,
editors, Certified Programs and Proofs (CPP 2013), volume 8307 of Lecture
Notes in Computer Science, pages 131–146. Springer, 2013.

[HKKN13] Florian Haftmann, Alexander Krauss, Ondřej Kunčar, and Tobias Nipkow.
Data refinement in Isabelle/HOL. In S. Blazy, C. Paulin-Mohring, and
D. Pichardie, editors, Interactive Theorem Proving (ITP 2013), volume 7998
of Lecture Notes in Computer Science, pages 100–115, 2013.

[HN10] Florian Haftmann and Tobias Nipkow. Code generation via higher-order
rewrite systems. In Matthias Blume, Naoki Kobayashi, and Germán Vidal,
editors, Functional and Logic Programming, volume 6009 of Lecture Notes
in Computer Science, pages 103–117. Springer Berlin / Heidelberg, 2010.

15

[Lam13] Peter Lammich. Automatic data refinement. In Sandrine Blazy, Christine
Paulin-Mohring, and David Pichardie, editors, Interactive Theorem Proving
(ITP 2013), volume 7998 of Lecture Notes in Computer Science, pages 84–99.
Springer, 2013.

[Loc13] Andreas Lochbihler. Light-weight containers for Isabelle: efficient, exten-
sible, nestable. In Sandrine Blazy, Christine Paulin-Mohring, and David
Pichardie, editors, Interactive Theorem Proving (ITP 2013), volume 7998 of
LNCS, pages 116–132. Springer, 2013.

[Nip12] Tobias Nipkow. Programming and proving in Isabelle/HOL. contained in
the Isabelle distribution, May 22 2012.

[ST10] Christian Sternagel and René Thiemann. Executable multivariate polyno-
mials. Archive of Formal Proofs, August 2010. http://afp.sf.net/entries/
Polynomials.shtml, Formal proof development.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Cambridge University Press, 3rd edition, 2013.

[Win96] Franz Winkler. Polynomial Algorithms in Computer Algebra. Texts and
Monographs in Symbolic Computation. Springer-Verlag, Wien, New York,
1996.

16

