
Symbolic Computation for
Nonlinear Wave Resonances

E. Kartashova, C. Raab, Ch. Feurer,
G. Mayrhofer, W. Schreiner

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz

Altenbergerstr. 69, A-4040 Linz, Austria

6th December 2007

1

http://www.risc.uni-linz.ac.at/�

Contents

1 Introduction 3

2 Mathematical Background 5

3 Equations for Wave Amplitudes 7
3.1 Method Description . 7
3.2 The Implementation . 8

3.2.1 Perturbation Equations, General Form 10
3.2.2 Perturbation Equations, Given Linear Mode 11
3.2.3 Time and Scale Averaging 11

3.3 Obstacles . 13
3.4 Results . 14

3.4.1 Atmospheric Planetary Waves 14
3.4.2 Ocean Planetary Waves 16

4 Resonance Conditions 16
4.1 Method Description . 17
4.2 The Implementation . 18

4.2.1 List of Indexes . 18
4.2.2 Weight Equation . 19
4.2.3 Linear Condition . 20
4.2.4 Scale Coefficients . 20

4.3 Results . 21

5 Structure of the Solution Set 21
5.1 Method Description . 21
5.2 Implementation . 23
5.3 Results . 25
5.4 Important Remark . 28

6 A Web Interface to the Software 28
6.1 The Interface . 29
6.2 The Implementation . 31
6.3 Extensions . 35

7 Discussion 35

2

1 Introduction

Resonance is a common thread which runs through almost every branch of
physics, without resonance we wouldn’t have radio, television, music, etc.
Resonance causes an object to oscillate, sometimes the oscillation is easy to
see (vibration in a guitar string), but sometimes this is impossible without
measuring instruments (electrons in an electrical circuit). A well-known ex-
ample with Tacoma Narrows Bridge (at the time it opened for traffic in 1940,
it was the third longest suspension bridge in the world) shows how disastrous
resonances can be: on the morning of November 7, 1940, the four month old
Tacoma Narrows Bridge began to oscillate dangerously up and down, tore
itself apart and collapsed. Though designed for winds of 120 mph, a wind
of only 42 mph caused it to collapse. The experts did agree that somehow
the wind caused the bridge to resonate, and nowadays, wind tunnel testing
of bridge designs is mandatory.

Another famous example are the experiments of Tesla who studied in 1898
experimentally vibrations of an iron column and noticed that at certain fre-
quencies specific pieces of equipment in the room would start to jiggle. Play-
ing with the frequency he was able to move the jiggle to another part of the
room. Completely fascinated with these findings, he forgot that the column
ran downward into the foundation of the building, and the vibrations were
being transmitted all over Manhattan. The experiments had started sort of a
small earthquake in his neighborhood with smashed windows, swayed build-
ings, and panicky people in the streets. For Tesla, the first hint of trouble
came when the walls and floor began to heave [1]. He stopped the experiment
as soon as he saw police rushing through the door.

The difference between resonances in a human made system and in some
natural phenomena is very simple. We can change the form of a bridge
and stop the experiment by switching off electricity but we can not change
the direction of the wind, the form of the Earth atmosphere or the sizes of
an ocean. What we can try to do is to predict drastic behavior of a real
physical system by computing its resonances. While linear resonances in
different physical systems are comparatively well studied, to compute char-
acteristics of nonlinear resonances and to predict their properties is quite a
nontrivial problem, even in the one-dimensional case. Thus, the notorious
Fermi-Pasta-Ulam numerical experiments with a nonlinear 1D-string (car-
ried out more then 50 years ago) are still not fully understood [2]. On the
other hand, nonlinear wave resonances in continuous 2D-media like ocean,
space, atmosphere, plasma, etc. are well studied in the frame of wave tur-
bulence theory [4] and provide a sound basis for qualitative and sometimes

3

also quantitative analysis of corresponding physical systems. The notion of
nonlinear wave interactions is crucial in the wave turbulence theory [3]. Ex-
cluding resonances allows to describe a nonlinear wave system statistically, by
wave kinetic equations and power-law energy spectra of turbulence [5], and
to observe this behavior in numerical experiments [6]. Direct computations
with Euler equations (modified for gravity water waves, [7]) show that the
existence of resonances in a wave system yield some additional effects which
are not covered by the statistical description. The role of resonances in the
evolution of water wave turbulent systems has been studied profoundly by
a great number of researchers. One of the most important conclusions (for
gravity water waves) made recently in [8] is the following: ”The four-wave
resonant interactions control the evolution of the spectrum at every instant
of time, whereas non-resonant interactions do not make any significant con-
tribution even in a short-term evolution.”

The behavior of a resonant wave system can be briefly described [9] as follows:
1) not all waves take part in resonant interactions, 2) resonantly interacting
waves form a few independent small wave clusters, such that there is no
energy flow between these clusters, 3) including some small but non-zero
resonance width into consideration does not destroy the clusters. A model
of laminated wave turbulence [10] allows to describe statistical and resonant
regimes simultaneously while methods to compute resonances numerically
are presented in [12] (idea) and in [13] (implementation). Our main purpose
here is to study the possibilities of a symbolic implementation of these general
algorithms using the computer algebra system Mathematica.

The implemented software can be executed with local installations of Math-
ematica and the corresponding method libraries; however, we have also de-
veloped a Web interface that allows to run the methods from any computer
in the Internet via a conventional Web browser. The implementation strat-
egy is simple and based on generally available technologies; it can serve as a
blueprint for other mathematical software with similar features.

We take as our principal example the barotropic vorticity equation in a
rectangular domain with zero boundary conditions which describes oceanic
planetary waves, and show how : (a) to compute interaction coefficients of
corresponding dynamical systems, (b) to solve resonant conditions, (c) to
construct the topological structure of the solution set, and (d) to use the
software via a Web interface over the Internet. A short discussion concludes
the paper.

4

2 Mathematical Background

Wave turbulence takes place in physical systems with nonlinear dispersive
waves thatare described by evolutionary dispersive NPDEs. The role of the
evolutionary dispersive NPDEs in the theoretical physics is so important
that the notion of dispersion is used for a physical classification of PDEs into
dispersive and non-dispersive. The well-known mathematical classification of
PDEs into elliptic, parabolic and hyperbolic equations is based on the form
of equations and can be applied to the second order PDEs on an arbitrary
number of variables. On the other hand, the physical classification is based
on the form of solutions and can be applied to PDEs of arbitrary order and
arbitrary number of variables. In order to construct the physical classification
of PDEs, two preliminary steps are to be made: 1) to divide all variables into
two groups - time- and space-like variables (t and x correspondingly); and 2)
to check that the linear part of the PDE under consideration has a wave-like
solution in the form of Fourier harmonic

ψ(x, t) = A exp i[kx− ωt]

with amplitude A, wave-number k and wave frequency ω. The direct substi-
tution of this solution into the linear PDE shows then that ω is an explicit
function on k, for instance:

ψt + ψx + ψxxx = 0 ⇒ ω(k) = k − 5k3.

If ω as a function on k is real-valued and such that d2ω/dk2 6= 0, it is
called a dispersion function and the corresponding PDE is called evolutionary
dispersive PDE. If the dimension of the space variable x is more that
1, i.e. ~x = (x1, ..., xp), ~k is called the wave-vector and the dispersion

function ω = ω(~k) depends on the coordinates of the wave-vector. This
classification is not complementary to a standard mathematical one. For
instance, though hyperbolic PDEs normally do not have dispersive wave
solutions, the hyperbolic equation ψtt − α2ψxx − β2ψ = 0 has them.

In the huge amount of application areas of NPDEs (classical and quantum
physics, chemistry, medicine, sociology, etc.) a nonlinear term of the cor-
responding NPDE can be regarded as small. This is symbolically written
as

L(ψ) = −εN(ψ) (1)

where L and N are linear and nonlinear parts of the equation correspondingly
and ε is a small parameter defined explicitly by the physical problem setting.
It can be shown that in this case the solution ψ of (1) can be constructed

5

as a combination of the Fourier harmonics with amplitudes A depending on
the time variable and possessing two properties formulated here for the case
of quadratic nonlinearity:

• P1 The amplitudes of the Fourier harmonics satisfy the following sys-
tem of nonlinear ordinary differential equations (ODEs) written for
simplicity in the real form

Ȧ1 = α1A2A3

Ȧ2 = α2A1A3 (2)

Ȧ3 = α3A1A2

with coefficients αj being functions on wave-numbers;

• P2 The dispersion function and wave-numbers satisfy the resonance
conditions

{
ω(~k1)± ω(~k2)± ω(~k3) = 0,
~k1 ± ~k2 ± ~k3 = 0.

(3)

The transition form (1) to (2) can be performed by some standard methods
(for instance, multi-scale method [11]) which also yields the explicit form of
resonance conditions.

Keeping in the mind our main problem - to find a solution of (1) - one
has to take care of the initial and boundary conditions. This is done in the
following way: the case of periodic or zero boundary conditions yields integer
wave numbers, otherwise they are real. Correspondingly, one has to find all
integer (or real) solutions of (3), substitute corresponding wave-numbers into
the coefficients αj and then look for the solutions of (2) with given initial
conditions.

One can see immediately a big problem which appears as soon as one has to
solve a NPDE with periodical or zero boundary conditions. Indeed, disper-
sion functions take different forms, for instance,

ω2 = k3, ω2 = k3 + αk, ω2 = k, ω = α/k, ω = m/n(n + 1) · · · , etc.

with ~k = (m,n), k =
√

m2 + n2 and α being a constant. This means that (3)
corresponds to a system of Diophantine equations of many variables, nor-
mally 6 to 9, with cumulative degrees 10 to 16. Those have to be solved
usually for the integers of the order ∼ 103, which means that computa-
tions has to be performed with integers of order 1048 and more. Original

6

algorithms to solve these systems of equations have been developed based on
some profound results of number theory [12] and implemented numerically
[13].

Further on, an evolutionary dispersive NPDE with periodic or zero boundary
conditions is called 3-term mesoscopic system if it has a solution of the form

ψ̃ =
∞∑

j=1

Aj exp i[~kj~xj − ωt]

and there exists at least one triple {Aj1 , Aj2 , Aj3} ∈ {Aj} such that P1 and
P2 keep true with some nonzero coefficients αj, αj 6= 0 ∀j = 1, 2, 3.

3 Equations for Wave Amplitudes

3.1 Method Description

The barotropic vorticity equation describing ocean planetary waves has the
form [15]

∂4ψ

∂t
+ β

∂ψ

∂x
= −εJ(ψ,4ψ) (4)

with boundary conditions

ψ = 0 for x = 0, Lx; y = 0, Ly.

Here β is a constant called Rossby number, ε is a small parameter and
the Jacobean has the standard form

J(a, b) =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
.

First we give a basic introduction on how a PDE can be turned into a system
of ODEs by a multi-scale method. Using operator notation, our problem (4)
is viewed as a perturbed version of the linear PDE L(ψ) = 0. We pick a
solution of this equation, say ψ0, which is a superposition of several waves
ϕj, i.e. ψ0 =

∑s
j=1 Ajϕj, each being a solution itself. To construct a solution

of the original problem we make the amplitudes time-dependent. As the size
of the nonlinearity in (1) is just of order ε, the amplitudes will vary only on
time-scales 1/ε times slower than the waves. Hence we define an additional

7

time-variable t1 := tε called ”slow time” to handle this time scale. So we
look for approximate solutions of (1) that have the following form

ψ0(t, t1, ~x) =
s∑

j=1

Aj(t1)ϕj(~x, t)

which for ε = 0 is an exact solution. The exact solution of the equation
is written as power series in ε around ψ0, i.e. ψ =

∑∞
k=0 ψkε

k. In our
computation it is truncated up to maximal order m which in our case is
m = 1, i.e.

ψ(t, t1, ~x) = ψ0(t, t1, ~x) + ψ1(t, t1, ~x)ε.

Plugging ψ(t, t1, ~x) one has to keep in mind that, since t1 = εt, we now have
d
dt

= ∂
∂t

+ ε ∂
∂t1

due to the chain rule. Equations are formed by comparing the

coefficients of εk. For k = 0 this gives back the linear equation, but we keep
the equation for k = 1. In particular, for (4) we arrive at

∂4ψ0

∂t
+ β

∂ψ0

∂x
= 0,

∂4ψ0

∂t1
+

∂4ψ1

∂t
+ β

∂ψ1

∂x
= −J(ψ0,4ψ0.)

In order to (2), we have to get rid of all other variables. This is done by
integrating against the ϕj’s, i.e. 〈., ϕj〉L2(Ω), and averaging over (fast) time,

i.e. limT→∞ 1
T

∫ T

0
. dt.

3.2 The Implementation

This method was implemented in Mathematica with order m = 1 in mind
only. So it won’t be immediately applicable to higher orders without some
(minor) adjustments. The ODEs are constructed done by the function

ODESystem[L(ψ), N(ψ), ψ,
{x1,..,xn}, t, domain, jacobian, m, s, A, linwav,

{λ1,..,λp}, paramvalues].

Basically this function takes the problem together with the solution of the
linear equation as input and computes the list of ODEs for the amplitudes
as output. Its arguments are in more detail:

8

• L(ψ), N(ψ): Linear and nonlinear part of equation (1), each applied
to a symbolic function parameter. Derivatives have to be specified with
Dt instead of D and the nonlinear part has to be a polynomial in the
derivatives of the function.

• ψ: symbol used for function in L(ψ), N(ψ)

• {x1,...,xn}, t: list of symbols used for space-variables, and symbol
for time-variable

• domain: The domain on which the equation is considered has to be
specified in the form {{x1,minx1,maxx1}, ..., {xn,minxn,maxxn}},
where the bounds on xi may depend on x1,...,xi−1 only.

• jacobian: For integration the (determinant of the) Jacobian must also
to be passed to the function. This is needed in case the physical domain
does not coincide with the domain of the variables above, it can be set
to 1 otherwise.

• m, s: maximal power of ε and number of waves considered

• A: symbol used for amplitudes

• linwav: General wave of the linear equation is assumed to have sep-
arated variables, i.e. ϕ(~x, t) = B1(x1)·...·Bn(xn) exp(iθ(x1, ..., xn, t)),
and has to be given in the form

{B1(x1), ..., Bn(xn), θ(x1,...,xn,t)}.
• {λ1,...,λp}: list of symbols of parameters the functions in linwav

depend on

• paramvalues: For each of the s waves explicit values of the parameters
{λ1,...,λp} have to be passed as a list of s vectors of parameter values.

ODESystem[linearpart_,nonlinearpart_,fun_Symbol,vars_List,

t_Symbol,domain_List,jacobian_,ord_Integer,num_Integer,

A_Symbol,linwav_List,params_List,paramvalues_List] :=

Module[{B,theta,eq,k},

eq = PerturbationEqns[linearpart,nonlinearpart,

fun,vars,t,ord];

eq = PlugInGenericWaveTuple[eq,fun,vars,t,A,B,theta,num]

/. fun[1]->(0&);

eq = Table[Resonance2[eq,linwav,vars,t,params,A,B,theta,

9

num,paramvalues,k],

{k,num}];

Map[Integrate[Simplify[#,And@@(Function[B,B[[2]]<B[[1]]<

B[[3]]]/@domain)]*jacobian,

Sequence@@domain]&,

eq,{2}]

]

Internally this function is divided into three subroutines briefly described
below.

3.2.1 Perturbation Equations, General Form

The first of the subroutines is

PerturbationEqns[L(ψ), N(ψ), ψ, {x1,...,xn}, t, m].

As mentioned before we approximate the solution of our problem by a polyno-
mial of degree m in ε. This subroutine works for arbitrary m. In the first step
we construct equations by coefficient comparison. Additional time-variables
will be created automatically and labeled t[1],...,t[m]. The output is a
list of m+1 equations corresponding to the powers ε0, ..., εm. The implemen-
tation is quite straightforward. First set ψ =

∑m
k=0 ψk(t, t1, ..., tm, x1, .., xn)εk

in (1), where tk = εkt, i.e. d
dt

= ∂
∂t

+
∑m

k=1 εk ∂
∂tk

. Then extract the coefficients

of ε0, ..., εm on both sides and assemble the equations. Finally replace εkt by
tk again.

PerturbationEqns[linearpart_,nonlinearpart_,fun_Symbol,

vars_List,time_Symbol,ord_Integer] :=

Module[{i,j,e,eq},

eq = ((linearpart == -e*nonlinearpart)

/. {fun->Sum[e^i*fun[i][time,Sequence@@Table[e^j*

time,{j,ord}],Sequence@@

DeleteCases[vars,time]],

{i,0,ord}]});

eq = (eq /. ((Dt[#, __]->0)& /@ Join[vars,{time,e}]));

eq = (Equal@@#)& /@

Transpose[Take[CoefficientList[#,e],1+ord]& /@

(List@@eq)];

eq /. Table[e^j*time->time[j],{j,ord}]

]

10

3.2.2 Perturbation Equations, Given Linear Mode

In step two we set ψ0(t, t1, ~x) =
∑s

j=1 Aj(t1)ϕj(~x, t) as described above. This
is done by the function

PlugInGenericWaveTuple[eq, ψ, {x1,...,xn}, t, A, B, θ, s]

where the first argument is the output of the previous step. The symbols B

and θ have to be passed for labeling the shape and phase functions respec-
tively. The output consists of two parts. The first part of the list formulates
the assumption L(ϕj) = 0 explicitly for each of the waves. This is not used in
subsequent computations, but is provided as a way to check the assumption.
The second part of the list is the equation corresponding to the coefficients
of ε from the previous step, with ψ0 as above. As the task of this step is so
short the implementation does not need further explanation.

PlugInGenericWaveTuple[eq_List,fun_Symbol,vars_List,

t_Symbol,A_Symbol,B_Symbol,theta_Symbol,num_Integer] :=

Module[{i,j,waves,n=Length[DeleteCases[vars,t]]},

waves = Table[A[j][Slot[2]]*

Product[B[i][j][Slot[i+2]],{i,n}]*

Exp[I*theta[j][Sequence@@Table[Slot[i+2],

{i,n}],Slot[1]]],

{j,num}];

{Table[eq[[1]] /. fun[0]->Function[Evaluate[waves[[j]]]],

{j,num}],

Expand /@

(eq[[2]] /. fun[0]->Function[Evaluate[Total[waves]]])

}]

3.2.3 Time and Scale Averaging

Step three is the most elaborate. Under the assumption that interchange of
averaging over time and inner product is justified, an integrand

h = lim
T→∞

1

T

∫ T

0

ψ0ϕk dt

is computed that when integrated over the domain yields
∫

Ω

h = lim
T→∞

1

T

∫ T

0

〈ψ0, ϕk〉L2(Ω) dt.

Resonance conditions posed on the phase functions are explicitly used by

11

Resonance[eq, linwav, {x1,..,xn}, t,

{λ1,..,λp}, A, B, θ, s, cond, k]

which receives the output from the previous step in eq. Here cond specifies
the resonance condition in terms of the θj, which have to be entered as
θ[j][x1,..,xn,t] respectively. The last argument is the index of the wave
ϕk in the integral above. Alternatively Resonance2 uses explicit parameter
settings paramvalues for the waves instead of cond. This has been necessary
because the general Resonance does not give useable results (see Section 3.3
for more details). The main work in this step is to find out which terms do
not contribute to the result. We exploit the fact that oscillating terms vanish
when averaged over time by simply omitting those summands of 〈ψ0, ϕk〉L2(Ω)

that have a factor exp(iθ) with some time-dependent phase θ. The code for
Resonance is not shown here, but is quite similar to Resonance2.

Resonance2[eq_List,linwav_List,vars_List,t_Symbol,params_List,

A_Symbol,B_Symbol,theta_Symbol,num_Integer,

paramvalues_List,testwave_Integer] :=

Module[{e,i,j,n=Length[DeleteCases[vars,t]]},

e = Expand[(List@@Last[eq])*

Exp[-I*theta[testwave][Sequence@@

DeleteCases[vars,t],

t]]];

e = e /.

Table[

theta[j] ->

(Evaluate[(linwav[[n+1]] /.

(Rule@@#& /@

Transpose[{params,paramvalues[[j]]}]

)

) /. Append[Table[

DeleteCases[vars,t][[i]]

-> Slot[i],

{i,n}],

t -> Slot[n+1]]

]&

),

{j,num}];

e = MapAt[

(Function[theta,If[FreeQ[theta,t],theta,0]

]

12

[Simplify[#]]

)&,

e,

Position[e,Exp[_]]];

e = Equal@@

(e*Conjugate[A[testwave]][t[1]]*

Product[Conjugate[B[i]

[testwave]

[DeleteCases[vars,t][[i]]]

],

{i,n}]

) /.

Flatten[

Table[B[i][j] ->

Function[

Evaluate[DeleteCases[vars,t][[i]]],

Evaluate[linwav[[i]] /.

(Rule@@#& /@

Transpose[

{params,paramvalues[[j]]

}]

)]],

{i,n},{j,num}]]

]

The integration of h is done by Mathematica and can be quite time-consuming.
So ODESystem simplifies the integrand first to make integration faster. Still
the expressions involved can be quite complicated. This is the most time-
consuming part during construction of the ODEs.

3.3 Obstacles

Mathematica sometimes does not seem to take care of special cases and con-
sequently has problems with evaluating expressions depending on symbolic
parameters. We give two simple examples to illustrate this issue:

• Orthogonality of sine-functions.
Indeed, it holds that

∀m,n ∈ N :

∫ 2π

0

sin(mx) sin(nx)dx = πδm,n.

13

Computing this in Mathematica by

Integrate[Sin[m*x]Sin[n*x], {x,0,2π},
Assumptions → m∈Integers && n∈Integers]

yields 0 independently of m,n instead.

• Computation of a limit.
Mathematica evaluates an expression

∀n ∈ Z : lim
x→n

sin(xπ)

x
= πδn,0

and similar expressions in two different ways getting two different an-
swers. On the one hand

Limit[Sin[(m-n)π]/(m-n), m→n,

Assumptions → m∈Integers && n∈Integers]
gives 0. On the other hand, however, when the condition m,n ∈ Z
is not used for computing the result Mathematica yields the correct
answer π, as with

Limit[Sin[(m-n)π]/(m-n), m→n].

Unfortunately these issues prevented us from obtaining a nice formula for
the coefficients in symbolic form by Resonance. So we just compute results
for explicit parameter settings using Resonance2.

3.4 Results

3.4.1 Atmospheric Planetary Waves

For the validation of our program we consider the barotropic vorticity equa-
tion on the sphere first. Here numerical values of the coefficients αi are
available (Table 1, [16]). The equation looks quite similar

∂4ψ

∂t
+ 2

∂ψ

∂λ
= −εJ(ψ,4ψ)

However in spherical coordinates (φ ∈ [−π
2
, π

2
], λ ∈ [0, 2π]) the differential

operators are different:

4 =
∂2

∂φ2
+

1

cos(φ)2

∂2

∂λ2
− tan(φ)

∂

∂φ

14

J(a, b) =
1

cos(φ)

(
∂a

∂λ

∂b

∂φ
− ∂a

∂φ

∂b

∂λ

)
.

The linear modes have in this case the following form [14]

Pm
n (sin(φ)) exp(i(mλ +

2m

n(n + 1)
t)) (5)

where Pm
n (µ) are the associated Legendre polynomials of degree n and order

m ≤ n, so again they depend on the two parameters m and n. Also resonance
conditions on the parameters look different in this case.

Now we compute the coefficient α3 in (2). In [16] we find the following
equation for the amplitude A3

n3(n3 + 1)
∂A3

∂t1
(t1) = 2iZ(n2(n2 + 1)− n1(n1 + 1))A1(t1)A2(t1)

so α3 = 2iZ n2(n2+1)−n1(n1+1)
n3(n3+1)

. Parameter settings and corresponding numer-

ical values for Z were taken from the table below (see [16]). For this equa-
tion and s = 3 results produced by our program have the form c1A3Ȧ3 =
c2A1A2A3, so α3 = c2/c1.

Testing all resonant triads from the Table 1 from [16], we see that the coeffi-
cients differ merely by a constant factor of ±√8 which is due to the different
scaling of the Legendre polynomials. In our computation they were nor-
malized s.t.

∫ 1

−1
Pm

n (µ)2dµ = 1. With three triads, however, results were
completely different. Interestingly this were exactly those triads for which
no ϕ0 appears in the table.

Furthermore, for the other coefficients in (2) our program computes α1 =
α2 = 0 in all tested parameter settings. This fact can be easily understood
in the following way. We checked only resonance conditions but not the
conditions for the interaction coefficients to be non-zero which are elaborated
enough:

mi ≤ ni, ni 6= nj ∀i = 1, 2, 3, |n1 − n2| < n3 < n1 + n2,

and
n1 + n2 + n3 is odd.

Randomly taken parameter setting does not satisfy these conditions.

15

3.4.2 Ocean Planetary Waves

Returning to the original example on the domain [0, Lx] × [0, Ly], we find
explicit formulae for the coefficients in [15]. According to Section 3.3 we can
only verify special instances and not general formulae.

Linear modes have now the form [15]

sin(π
mx

Lx

) sin(π
ny

Ly

) exp(i(
β

2ω
x + ωt)) (6)

with m,n ∈ N and ω = β

2π
q

(m
Lx

)2+(n
Ly

)2
.

Parameter settings solving the resonance conditions were computed as in
section 4. Unfortunately results do not match and we have no explanation
for that. In particular the condition α1

ω2
1

+ α2

ω2
2

+ α3

ω2
3

= 0 stated in [15] does not

hold for the results of our program since we got α1 = α2 = 0 in all tested
parameter settings, just as in the spherical case.

For example, if we try the triad {{2,4},{4,2},{1,2}} where Lx = Ly = 1

our program computes α3 = 32
√

5
11

π
(
sin(3

√
5π)− i(1 + cos(3

√
5π))

)
, whereas

the general formula yields α3 = 19+7
√

5
11

π sin(3
√

5π). However, if we use a triad
with q = 1, e.g. {{24,18},{9,12},{8,6}}, both agree on α1 = α2 = α3 = 0.

4 Resonance Conditions

The main equation to solve is

1√
(m1

Lx
)2 + (n1

Ly
)2

+
1√

(m2

Lx
)2 + (n2

Ly
)2

=
1√

(m3

Lx
)2 + (n3

Ly
)2

for all possible mi, ni ∈ Z with the scales Lx and Ly (also ∈ Z) and then
to check the condition n1 ± n2 = n3. In the following argumentation it will
be seen that Lx and Ly can be assumed to be free of common factors. Below
we refer to Lx and Ly as to the scale coefficients.

The first step of the algorithm implemented in Mathematica is to rewrite
the equation to 1√

m̃1
2+ñ1

2
+ 1√

m̃2
2+ñ2

2
= 1√

m̃3
2+ñ3

2
and transform it in the

following way: we factorize the result of each m̃i
2 + ñi

2 and obtain with
ρ1 · . . . ·ρr being the factors of m2

i +n2
i and α1 · . . . ·αr their respective powers:

m2
i + n2

i = ρα1
1 · ρα2

2 · . . . · ραr
r .

16

We will now define a weight γi of the wave-vector (mi, ni) as the product
of the ρj’s to the quotient of their respective αj and 2. The weight qi will be
the name of the product of the ρj’s which have an odd exponent:

√
m2

i + n2
i = γi

√
qi.

Our equation then can be re-written as

1

γ1
√

q1

+
1

γ2
√

q2

=
1

γ3
√

q3

and one easily sees that the only way for the equation to possibly hold is
q1 = q2 = q3 = q (see [12] for details). Further we call q an index of the
corresponding wave-vectors. The set of all wave-vectors with the same index
is called a class of index q and is denoted as Clq. Obviously, the solutions
of the resonance conditions are to be searched for with separate classes only.

At this point one can also see that only such scales, Lx and Ly, without
common factors are reasonable. If they had a common factor, it would cancel
out in the equation.

4.1 Method Description

The following five steps are the main steps of the algorithm:

• Step 1: Compute the list of all possible indexes q.

To compute the list of all indexes q, we use the fact that they have to
be square-free and each factor of q has to be different from 3 mod 4
(Lagrange theorem). There exist 57 possible possible indexes in our
computational domains q ≤ 300 :

{1, 2, 5, 10, 13, 17, 26, 29, 34, 37, 41, 53, 58, 61, 65, 73, 74, 82, 85, 89,

97, 101, 106, 109, 113, 122, 130, 137, 145, 146, 149, 157, 170, 173, 178,

181, 185, 193, 194, 197, 202, 205, 218, 221, 226, 229, 233, 241, 257,

265, 269, 274, 277, 281, 290, 293, 298}

• Step 2: Solve the weight equation 1
γ1

+ 1
γ2

= 1
γ3

.

For solving the weight equation, we transform it into the equivalent
form:

γ3 =
γ1 γ2

γ1 + γ2

(7)

17

The solution triples {γ1, γ2, γ3} can now be found by the two for-loops
over γ1 and γ2 up to a certain maximum parameter and γ3 is then being
founded constructively with formula (7).

• Step 3: Compute all possible pairs (mi, ni) - if there are any - that
satisfy m2

i + n2
i = γ2

i q.

To compute our initial variables mi, ni, we use the Mathematica stan-
dard function SumOfSquareRepresentation[d, x] which produces a
list of all possible representations of an integer x as a sum of d squares,
i.e. we can find all possible pairs (a, b) with d = 2 such that they
satisfy a2 + b2 = x. Therefore, checking the condition m2

i + n2
i = γ2

i q
is easy.

• Step 4: Sort out the solutions {m1, n1,m2, n2,m3, n3} that do not
fulfill the condition n1± n2 = n3.

• Step 5: Check if by dividing the mi by Lx and the ni by Ly there are
still exist some solutions.

Last two steps are trivial.

4.2 The Implementation

Our implementation is quite straightforward and the main program is based
on 4 auxiliary functions shown in the following subsections.

4.2.1 List of Indexes

The function constructqs[max] produces the list of all possible indexes q
up to the parameter max. The first (obvious) q’s sol = {1} is given and the
function checks the conditions starting with n = 2. Every time n satisfies
the conditions, it is appended to the list sol. If one condition fails, the next
n = n + 1 is considered and so on until n reaches the parameter max. Then
the list sol is returned:

Clear[constructqs];

constructqs[n , sol List, max]; n>max := sol (*6*)

constructqs[n ?SquareFreeQ, sol List, max]

:= constructqs[n+1, Append[sol, n], max] (*5*)

18

constructqs[n ?SquareFreeQ, sol List, max];

MemberQ[Mod[PrimeFactorList[n], 4], 3]

:= constructqs[n+1, sol, max] (*4*)

constructqs[n , sol List, max]; !SquareFreeQ[n]

:= constructqs[n+1, sol, max] (*3*)

constructqs[1] := {1} (*2*)

constructqs[max] := constructqs[3, {1}, max] (*1*)

4.2.2 Weight Equation

The function findγs[γmax] solves the weight equation in the following way.
For a fixed γ1 and γ2 running between 1 and γmax, it is checked if γ3 is
an integer. If it is, the triple {γ1, γ2, γ3} is added to the list sol which is
empty at the initial moment. Once γ2 reaches γmax, it is set to 1 again
and the search starts again with γ1 = γ1 + 1. This is done as long as both
γ1 and γ2 are lower than max. Finally the list sol is returned:

findγs[γmax , γ1 , γ2 , sol List];

γ1 > γmax := (Clear[γ3],sol) (*6*)

findγs[γmax , γ1 , γ2 , sol List]; (γ1 ≤ γmax && γ2>γmax &&

IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1+1, 1, Append[sol, {γ1, γ2, γ3}]] (*5*)

findγs[γmax , γ1 , γ2 , sol List];

(γ1 ≤ γmax && γ2>γmax &&

!IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1 + 1, 1, sol] (*4*)

findγs[γmax , γ1 , γ2 , sol List];

(γ1 ≤ γmax && γ2 ≤ γmax && IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1, γ2 + 1, Append[sol, {γ1, γ2, γ3}]] (*3*)

findγs[γmax , γ1 , γ2 , sol List];

(γ1 ≤ γmax && γ2 ≤ γmax && !IntegerQ[γ3=(γ1γ2)/(γ1+γ2)])
:= findγs[γmax, γ1, γ2 + 1, sol] (*2*)

findγs[γmax] := findγs[γmax, 1, 1, {}]) (*1*)

For findγs[γmax] to be executable, the iteration depth of 212 is not sufficient
and it was set to ∞.

19

4.2.3 Linear Condition

The third auxiliary function makemns checks whether the linear condition
n1 ± n2 = n3 is fulfilled and structures the solution set into a list of pairs
{{m1, n1}, {m2, n2}, {m3, n3}} :

Clear[makemns];

makemns[m1 , n1 , m2 , n2 , m3 , n3] := {} (*3*)

makemns[m1 , n1 , m2 , n2 , m3 , n3];

(n1 + n2 == n3 ‖ n1 - n2 == n3) :=

{{m1, n1}, {m2, n2}, {m3, n3}} (*2*)

makemns[mn1 List, mn2 List, mn3 List] :=

Cases[Flatten[Table[makemns[mn1[[i,1]], mn1[[i,2]],

mn2[[j,1]], mn2[[j,2]], mn3[[k,1]], mn3[[k,2]]],

{i, 1, Length[mn1]}, {j, 1, Length[mn2]},
{k, 1, Length[mn3]}], 2],

{{x1 ,x2 }, {x3 ,x4 }, {x5 ,x6 }}] (*1*)

The function makemns is called three times:

In (*1*) from 3 lists of arbitrarily many pairs {mi, ni}, a 3-dimensional
array is made combining entries of the 3 lists with each other. Each entry
calls the same program with the parameters of the current combination of
{m1,n1,m2,n2,m3,n3}.
In (*2*) and (*3*) it is decided whether the condition n1 ± n2 = n3
is fulfilled. If it is, a solution {{m1,n1},{m2,n2},{m3,n3}} is written in
the array. The table is then flattened to the level 2 in order to have a
list of solutions. In the end, all empty lists have to be sorted out, done
by the function Cases which keeps only those cases that have the shape
{{x1 ,x2 },{x3 ,x4 },{x5 ,x6 }}.

4.2.4 Scale Coefficients

Finally, the function respectL[sol, Lx, Ly] divides each component of the
solution by the pair (Lx, Ly) and sorts out the result if any of the 6 compo-
nents does not remain an integer:

respectL[sol List, Lx , Ly] :=

Map[solution[#]&,

Cases[Map[#/{Lx, Ly}&,
Map[#[[1]]]&, sol], {2}], {{ Integer, Integer},
{ Integer, Integer}, { Integer, Integer}}]]

20

The function respectL[sol, Lx, Ly] gets as an input the list of the form
{solution[{{m1,n1},{m2,n2},{m3,n3}}],...} and returns the list of the same
form.

4.3 Results

All solutions in the computation domain m,n ≤ 300 have been found in
a few minutes. Notice that computations in the domain m,n ≤ 20 by
direct search, without introducing indexes q and classes Clq took about
30 minutes. A direct search in the domain m,n ≤ 30 has been interrupted
after 2 hours, since no results were produced.

The number of solutions depends drastically on the scales Lx and Ly,
some data are given below (for the domain m,n ≤ 50 :)

(Lx = 1, Ly = 1) : 76 solutions;

(Lx = 3, Ly = 1) : 23 solutions;

(Lx = 6, Ly = 16) : 2 solutions;

(Lx = 5, Ly = 21) : 2 solutions;

(Lx = 11, Ly = 29) : no solutions (search up to 300, for both qmax and
γmax).

Interestingly enough, in all tried possibilities, only an odd q yield solutions.

5 Structure of the Solution Set

5.1 Method Description

The graphical way to present 2D-wave resonances suggested in [9] for 3-wave

interactions is to regard each 2D-vector ~k = (m,n) as a node (m,n) of inte-
ger lattice in the spectral space and connect those nodes which construct one
solution (triad, quartet, etc.). Having computed already all the solutions of
(3) in Section 4, now we are interested in the structure of resonances in spec-
tral space. To each node (m,n) we can prescribe an amplitude A(m,n, t1)
whose time evolution can be computed from the dynamical equations ob-
tained in Section 3. Thus, solution set of resonance conditions (3) can be
thought of as a collection of triangles, some of them are isolated, some form
small groups connected by one or two vertices. Corresponding dynamical

21

systems can be re-constructed from the structure of these groups. For in-
stance, a single isolated triangle corresponding to a solution with wave vectors
(m1, n1)(m2, n2)(m3, n3) and wave amplitudes {(A1, A2, A3)} corresponds to
the following dynamical system:

Ȧ1 = α1A2A3

Ȧ2 = α2A1A3

Ȧ3 = α3A1A2

with αi being functions of all mi, ni (see Section 3).

If that two triangles share one common vertex {(A1, A2, A3), (A3, A4, A5)},
the the corresponding dynamical system is

Ȧ1 = α1A2A3

Ȧ2 = α2A1A3

Ȧ3 = α3,1A1A2 + α3,2A4A5

Ȧ4 = α4A3A5

Ȧ5 = α5A3A4

If two triangles have two vertices in common {(A1, A2, A3), (A2, A3, A4)},
then the dynamical system is quite different:

Ȧ1 = α1A2A3

Ȧ2 = α2,1A1A3 + α2,2A3A4

Ȧ3 = α3,1A1A2 + α3,2A2A4

Ȧ4 = α4A2A3 =
α4

α1

Ȧ1

Using the fourth equation, the formulae for Ȧ2 and Ȧ3 can be simplified to:

Ȧ4 =
α4

α1

Ȧ1 ⇒ A4 =
α4

α1

A1 + β1

Ȧ2 = A1A3

(
α2,1 +

α2,2α4

α1

)
+

α4β1

α1

Ȧ3 = A1A2

(
α3,1 +

α3,2α4

α1

)
+

α4β1

α1

This means that qualitative dynamics of the 3-term mesoscopic system de-
pends not on the geometrical structure of the solution set but on its topological
structure. Constructing the topological structure of the solution set, we do

22

not consider concrete values of the solution but only the way how triangles
are connected. In any finite spectral domain we can compute all independent
wave clusters and write out corresponding dynamical systems thus obtain-
ing complete information about energy transfer through the spectrum. Of
course, quantitative properties of the dynamical systems depend on the spe-
cific values of mi, ni (for instance, values of interaction coefficients αi,
magnitudes of periods of the energy exchange among the waves belonging to
one cluster, etc.)

5.2 Implementation

To construct the topological structure of a given solution set we need first to
find all groups of connected triangles. This is done by the following proce-
dure:

FindConnectedGroups[triangles_List] :=

Block[{groups = {}, tr = triangles, newgroup},

While[Length[tr] > 0,

{newgroup, tr} =

FindConnectedTriangles[{First[tr]}, Rest[tr]];

groups = Append[groups, newgroup];

];

groups

];

FindConnectedTriangles[grp_List,triangles_List]:=

Module[{points,newGrpMember,tr=triangles},

points=Flatten[Apply[List,grp,2],1];

newGrpMember=Cases[tr, _[___,#1,___]]&/@points;

(tr=DeleteCases[tr, _[___,#1,___]])&/@points;

newGrpMember=Union[Join@@newGrpMember];

If[Length[newGrpMember]==0,

{grp,tr},

newGrpMember=FindConnectedTriangles[newGrpMember,tr];

{Join[grp,First[newGrpMember]],

newGrpMember[[2]]}

]

];

The function FindConnectedGroups expects a list of triangles as input, and
three different types for data structure can be used. The first type is just

23

a list of three pairs, where each pair contains the coordinates of a node, for
example {{1,2},{3,4},{5,6}}. An alternative type is like the type before
just with another head symbol instead of list, e.g.
Triangle[{1,2},{3,4},{5,6}].

The function also works for vertex numbers instead of coordinates, e.g.
Triangle[1, 2, 3]. In every case the function returns a partition of the
input list where all elements of a list are connected and elements of different
lists have no connection to each other.

The function FindConnectedTriangles is an auxiliary function which has
two parameters. The first list contains allconnected triangles. The second
list contains all other triangles which are possibly connected to one of the
triangles in the first list. The function FindConnectedTriangles returns a
pair of lists: the first list contains all triangles which are connected to the
selected triangles, the second list contains all remaining.

The input list for FindConnectedTriangles is a list of 3-element lists. Before
we can use the results produced in Section 4 as an input we have to transform
the data. This can be easily done by:

TransformSolution[sol_List]:=

Flatten[Rest/@sol]/.solution[trs:{___List}]->trs;

Some remarks on the implementation.

The function FindConnectedGroups selects a triangle, which is not yet in a
group and calls the function FindConnectedTriangles. Since the returned
first list always contains at least one triangle, the length of the list tr de-
creases in every loop call, hence the FindConnectedGroups terminates. The
question left is how to find all triangles connected with a certain triangle.
This has been done in the following way. First we search for all triangles
which share at least one node with this triangle. Then we restart the search
with all triangles found. For efficiency reasons it is better to perform the
search with all triangles we found in one step together. If in one step no fur-
ther triangles are found then we are ready and return the list of connected
triangles and the remaining list. In each step we remove all triangles we
found from the list of triangles which are not declared as connected. This
increases the speed because the search is faster if there are less elements to
compare. More important, this prevent us to search in loops and find some
triangles more than once. In general, search in a loop can be the reason for
a termination problem but due to shrinking the list of triangles to search for
in every step the termination can be guaranteed.

24

5.3 Results

In the Figure 1 the geometrical structure of the solution set is shown, for the
case mi, ni ≤ 50 and Lx = Ly = 1.

10 20 30 40 50

10

20

30

40

50

Figure 1: The geometrical structure of the result in domain D = 50

Below we show all the topological elements of this solution set.

1. 21 groups contain only one triangle (obviously, they have isomorphic
dynamical systems):

{{3, 18}, {36, 6}, {2, 12}} {{4, 46}, {14, 44}, {23, 2}}
{{6, 44}, {36, 26}, {13, 18}} {{6, 48}, {42, 24}, {3, 24}}
{{8, 26}, {16, 22}, {13, 4}} {{9, 24}, {48, 18}, {16, 6}}
{{14, 28}, {28, 14}, {7, 14}} {{18, 36}, {36, 18}, {9, 18}}
{{22, 16}, {26, 8}, {11, 8}} {{22, 20}, {28, 10}, {11, 10}}
{{22, 44}, {44, 22}, {11, 22}} {{22, 48}, {42, 32}, {21, 16}}
{{24, 18}, {9, 12}, {8, 6}} {{26, 28}, {28, 26}, {19, 2}}
{{28, 42}, {42, 28}, {21, 14}} {{28, 46}, {50, 20}, {7, 26}}
{{36, 22}, {42, 4}, {11, 18}} {{36, 30}, {15, 18}, {10, 12}}
{{38, 24}, {42, 16}, {21, 8}} {{44, 18}, {46, 12}, {23, 6}}
{{48, 36}, {18, 24}, {16, 12}}

2. Further 9 groups contain also one triangle, but in each triangle two points

25

coincide (again, they have isomorphic dynamical systems):

{{8, 2}, {8, 2}, {1, 4}} {{16, 2}, {16, 2}, {7, 4}}
{{16, 4}, {16, 4}, {2, 8}} {{24, 6}, {24, 6}, {3, 12}}
{{32, 8}, {32, 8}, {4, 16}} {{34, 8}, {34, 8}, {7, 16}}
{{46, 8}, {46, 8}, {17, 16}} {{48, 6}, {48, 6}, {21, 12}}
{{48, 12}, {48, 12}, {6, 24}}

3. There exist 2 groups with two triangles each (by observation of the geo-
metrical pictures it is easy to determine that both have isomorphic dynamical
systems):

{ {{2, 24}, {18, 16}, {9, 8}}, {{4, 48}, {36, 32}, {18, 16}} }
{ {{12, 26}, {26, 12}, {3, 14}}, {{26, 12}, {28, 6}, {13, 6}} }

4. Two further groups consist of two triangles each, but the common point is
contained twice in one triangle (the dynamical systems are isomorphic, but
different from the two groups above):

{ {{24, 22}, {32, 6}, {3, 16}}, {{32, 6}, {32, 6}, {11, 12}} }
{ {{8, 38}, {32, 22}, {11, 16}}, {{38, 8}, {38, 8}, {11, 16}} }

5. As we can see by inspecting their geometrical structures, further 7 groups
are not isomorphic to any group found above:

{ {{6, 12}, {12, 6}, {3, 6}}, {{12, 24}, {24, 12}, {6, 12}},
{{24, 48}, {48, 24}, {12, 24}} }

{ {{2, 16}, {14, 8}, {1, 8}}, {{4, 32}, {28, 16}, {2, 16}},
{{32, 4}, {32, 4}, {14, 8}} }

{ {{2, 4}, {4, 2}, {1, 2}}, {{4, 8}, {8, 4}, {2, 4}},
{{8, 16}, {16, 8}, {4, 8}}, {{16, 32}, {32, 16}, {8, 16}} }

{ {{4, 22}, {10, 20}, {11, 2}}, {{8, 44}, {20, 40}, {22, 4}},
{{10, 20}, {20, 10}, {5, 10}}, {{20, 40}, {40, 20}, {10, 20}} }

{ {{10, 40}, {26, 32}, {19, 8}}, {{26, 32}, {38, 16}, {13, 16}},
{{32, 26}, {40, 10}, {13, 16}}, {{40, 10}, {40, 10}, {5, 20}} }

{ {{4, 18}, {14, 12}, {7, 6}}, {{8, 36}, {28, 24}, {14, 12}},
{{12, 14}, {14, 12}, {9, 2}}, {{24, 28}, {28, 24}, {18, 4}},
{{36, 42}, {42, 36}, {27, 6}}, {{42, 36}, {21, 18}, {4, 18}} }

26

{ {{2, 36}, {20, 30}, {17, 6}}, {{4, 6}, {6, 4}, {3, 2}},
{{8, 12}, {12, 8}, {6, 4}}, {{12, 18}, {18, 12}, {9, 6}},
{{16, 24}, {24, 16}, {12, 8}}, {{18, 12}, {9, 6}, {4, 6}},
{{20, 30}, {30, 20}, {15, 10}}, {{20, 30}, {34, 12}, {1, 18}},
{{24, 36}, {36, 24}, {18, 12}}, {{30, 20}, {36, 2}, {1, 18}},
{{32, 48}, {48, 32}, {24, 16}}, {{34, 12}, {36, 2}, {15, 10}},
{{36, 24}, {18, 12}, {8, 12}}, {{45, 30}, {34, 12}, {12, 18}} }

Geometrical interpretation of all topological elements is given below. In
cases when there exist more then one element with given structure, wave
numbers are written at the picture corresponding to the element chosen for
presentation.

2 9 16 23 30 37
6

9

12

15

18

{2,12}

{3,18}

{36,6}

0 2 4 6 8

2

3

4

{8,2}

{1,4}

0 9 18 27 36
0
8

16
24
32
40
48

{36,32}

{18,16}

{4,48}

{2,24}

{9,8}

0 8 16 24 32

6

10

14

18

22

{32,6}

{24,22}

{3,16}

{11,12}

0 6 12 18 24 30 36 42 48
6

12
18
24
30
36
42
48

0 4 8 12 16 20 24 28 32
0

8

16

24

32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

5 10 15 20 25 30 35 40
0

10

20

30

40

5 12 19 26 33 40
8

16

24

32

40

6 12 18 24 30 36 42
0
6

12
18
24
30
36
42

0 6 12 18 24 30 36 42 48
0
6

12
18
24
30
36
42
48

27

5.4 Important Remark

To compute all non-isomorphic sub-graphs algorithmically is a nontrivial
problem. Indeed, all isomorphic graphs presented in previous section are
described by similar dynamical systems, only magnitudes of interaction co-
efficients αi vary. However, in the general case graph structure thus defined
does not present the dynamical system unambiguously. Consider Figure 2
below where two objects are isomorphic as graphs. However, the first object
represents 4 connected triads with dynamical system

(A1, A2, A3), (A1, A2, A5), (A1, A3, A4), (A2, A3, A6) (8)

while the second - 3 connected triads with dynamical system

(A1, A2, A5), (A1, A3, A4), (A2, A3, A6). (9)

A1 A2

A3A4

A5

A6

A1 A2

A3A4

A5

A6

ì

Figure 2: Example of isomorphic graphs and non-isomorphic dynamical sys-
tems. The left graph corresponds to the dynamical system (8) and the graph
on the right - to the dynamical system (9). To discern between these two
cases we set a placeholder inside the triangle not representing a resonance.

This problem has been solved in [17] by introducing hyper-graphs of a special
structure; the standard graph isomorphism algorithm used by Mathematica
has been modified in order to suit hyper-graphs.

6 A Web Interface to the Software

The previous sections have presented implementations of various symbolic
computation methods for the analysis of non-linear wave resonances. These
implementations are written in the language of the computer algebra system

28

Mathematica which provides an appealing graphical user interface (GUI)
for executing computations and presenting the results. For instance, the
pictures shown in Section 4.3 were produced by converting the computed
hyper-graphs to Mathematica plot structures that can be displayed by the
GUI of the system.

However, to run these methods the user needs an installation of Mathematica
on the local computer with the previously described methods installed in a
local directory. These requirements make access to the software difficult and
hamper its wide-spread usage. In order to overcome this problem, we have
implemented a Web interface such that the software can be executed from
any computer connected to the Internet via a Web browser without the need
for a local installation of mathematical software.

This implementation follows a general trend in computer science which turns
away from stand alone software (that is installed on local computers and
can be only executed on these computers via a graphical user interface) and
proceeds towards service-oriented software [18] (that is installed on remove
server computers and wraps each method into a service that can be invoked
over the Internet via standardized Web interfaces). Various projects in com-
puter mathematics have pursued middleware for mathematical web services,
see for instance [19, 20, 21]. On the long term, it is thus envisioned that math-
ematical methods generally become remote services that can be invoked by
humans (or other software) without requiring local software installations.

However, even without sophisticated middleware it is nowadays relatively
simple to provide (for restricted application scenarios) web interfaces to
mathematical software by generally available technologies. The web interface
presented in the following sections is deliberately kept as simple as possible
and makes only use of such technologies; thus it should be easy to take this
solution as a blueprint for other mathematical software with similar features.
In particular, the web interface is quite independent of Mathematica as the
system underlying the implementation of the mathematical methods; the
same strategy can be applied to other mathematical software systems such
as Maple, MATLAB, etc.

6.1 The Interface

Figure 3 shows the web interface to some of the methods presented in the
previous sections. Its functionality is as follows:

Create Solution Set The user may enter a parameter D in the first (small)
text field and then press the button “Create Solution Set”. This invokes

29

Figure 3: Web interface to the implementation

the method CreateSolutionSet which computes the set of all solutions
whose values are smaller than or equal to D. This set is written into
the second (large) text field in the form

{Solution[x1,y1,z1],...,Solution[xn,yn,zn]}
Plot Topology The user may enter into the second (large) text field a spe-

cific solution set (or, as show above, compute one), and then press
the button “Plot Topology”. This first invokes the method Topology

which computes the topological structure of the solution set as a list
of hyper-graphs and then calls the method PlotTopology which com-
putes a plot of each hyper-graph. The results are displayed in the right
frame of the browser window.

The web interface is available at the URL

http://www.risc.uni-linz.ac.at/projects/alisa

(Button “Discrete Wave Turbulence”)

To run the computations, an account and a password are needed.

30

6.2 The Implementation

The web interface is implemented in PHP, a scripting language for producing
dynamic web pages [22]. PHP scripts can be embedded into conventional
HTML pages within tags of form <php?...?>; when a Web browser requests
such a page, the Web server executes the scripts with the help of an embedded
PHP engine, replaces the tags by the generated output, and returns the
resulting HTML page to the browser. With the use of PHP, thus programs
can be be implemented that run on a web server and deliver their results to
a client computer which displays them in a web browser. The web interface
to the discrete wave turbulence package is implemented in PHP as sketched
in Figure 4 and described below (the parenthesized numbers in the text refer
to the corresponding numbers in the figure).

Create Solution Set The browser frame input on the left side contains
essentially the following HTML input form:

<form target="textarea"
action="https://apache2.../CreateSolutionSet.php"
method="post">

<input name="domain" size="3">
<input type="submit" value="Create Solution Set">

</form>

This form consists of an input field domain to receive a domain value and
a button to trigger the creation of the solution set. When the button is
pressed, (1) a request is sent to the web server which carries the value of
domain; this request asks the server to deliver the PHP-enhanced web page
CreateSolutionSet.php into the target frame textarea which is displayed
internally to input.

The file CreateSolutionSet.php has essentially the content

<?php
$math="/.../math";
$cwd="/.../DiscreteWaveTurbulence";
$domain = $_POST[’domain’];
$mcmd =
"SetDirectory[\"" . $cwd . "\"]; " .
"Needs[\"DiscreteWaveTurbulence‘SolutionSet‘\"]; " .
"sol=DiscreteWaveTurbulence‘SolutionSet‘CreateSolutionSet[" .

$domain . "]; ";

31

-

?

6

¾

resultinput

S

Mathematica

PHP Engine
Web Server/

Server Computer

Create Solution Set

Plot Topology

(1) D

Client Computer

D

CreateSolutionSet.php/

D (3)CreateSolutionSet[](2) S

textarea
<html>.. ..</html>(4) S

resultinput

Mathematica

PHP Engine
Web Server/

Server Computer

Create Solution Set

Plot Topology

Client Computer

textarea

(1)

S

PlotTopology.php/S

PlotTopology[... ...]S(2)

(3) Export["image-1.png",...]

(4)

<html>...

(6) GET image-1.png

N

(5)

Figure 4: Implementation of the web interface

32

$command="$math -noprompt -run ’" . $mcmd .
"Print[StandardForm[sol]]; Quit[];’";

$result = shell_exec("$command");
echo
...
"<textarea name=\"sol\" cols=\"60\" rows=\"20\">" .
htmlspecialchars($result) .
"</textarea>" .

...;
?>

After setting the paths $math of the Mathematica binary and $cwd of the
directory where the DiscreteWaveTurbulence package is installed, the script
sets the local variable $domain to the value of the input field domain. Then
the Mathematica command $mcmd is constructed in order to load the file
SolutionSet.m and execute the command CreateSolutionSet to compute
the solution set. Now the system command $command is constructed to (2)
invoke Mathematica which calls the previously constructed command and
(3) prints its result to the standard output stream which is captured in the
variable $result. From this, the script contstructs the HTML code of the
result document which is (4) delivered to the Web browser.

Plot Topology The browser frame textarea contains essentially the fol-
lowing HTML input form:

<form target="result"
action="https://apache2..../PlotTopology.php"
method="post">

<textarea name="sol" cols="60" rows="20">...</textarea>
<input type="submit" value="Plot Topology">
</center>

</form>

This form consists of the textarea field sol to receive the solution set and a
button to trigger the plotting of the topology of this set. When the button
is pressed, (1) a request is sent to the web server which carries the value
of sol; this request asks the server to deliver the PHP-enhanced web page
PlotTopology.php into the target frame result on the right side of the
browser.

The file CreateSolutionSet.php has essentially the content

33

<?php
$math="/.../math";
$basedir ="/.../DiscreteWaveTurbulence";
$baseurl ="http://apache2/.../DiscreteWaveTurbulence";
$sol = $_POST[’sol’];
... // create under $basedir a unique subdirectory $dir
$mcmd =
"SetDirectory[\"$basedir/$dir\"]; " .
"Needs[\"DiscreteWaveTurbulence‘Topology‘\"]; " .
"Needs[\"DiscreteWaveTurbulence‘SolutionSet‘\"]; " .
"top=DiscreteWaveTurbulence‘Topology‘Topology[$sol]; " .
"plots=DiscreteWaveTurbulence‘Topology‘PlotTopology1[top];";

$command="/usr/bin/Xvnc :20 & export DISPLAY=:20; " .
"export MATHEMATICA_USERBASE=$basedir/.Mathematica; " .
"$math -run ’" . $mcmd .
"Print[ExportList[plots,\"$image\"]]; Quit[];’";

$result = shell_exec("$command | tail -n 1");
for ($i=0;$i<$result;$i++)
echo "";

?>

For holding the images to be generated later, the script creates a unique
directory $basedir/$dir which is served by the web server under the url
$baseurl/$dir. The script extracts the solution set $sol from the request
and sets up the Mathematica command to compute its topological structure
and generate the plots from which ultimately the image files will be produced.

For this purpose, however, Mathematica needs an X11 display server running;
since a Web server has not access to an X11 server, we start the virtual X11
server Xvnc [23] as a replacement and set the environment variable DISPLAY

to the display number on which the number listens; Mathematica will subse-
quently send X11 requests to that display which will be handled by the virtual
server. Likewise, Mathematica needs access to a .Mathematica configuration
directory; the script sets the environment variable MATHEMATICA USERBASE

correspondingly.

With these provisions, we can (2) invoke first the command to compute
the plots and then the (self-defined) command ExportList to generate for
every plot an image in the previously created directory. For this purpose the
command uses (3) the Mathematica command EXPORT[file,plot,"PNG"]

which converts plot to an image in PNG format and writes the image to file.
ExportList returns the number of images generated which is (4) written
to the standard output stream which in turn is captured in the variable

34

$result. From this information, the script generates an HTML document
which contains a sequence of img elements referencing these images. After
this document has been (5) returned to the client browser, the browser (6)
requests the referenced images with GET messages from the web server.

6.3 Extensions

As an alternative to the display of static images, the Web interface also
provides an option “Applet Viewer” with somewhat more flexibility. If this
option is selected, Mathematica is instructed to save all generated plots as
files in the standard representation. The generated HTML document then
embeds (rather than img elements) a sequence of applet elements that load
instances of the “JavaView” applet [24]. These applets run in the Java Vir-
tual Machine of the Web browser on the client computer, load the plot files
from the web, and visualize them in the browser. Rather than just displaying
static images, the viewer allows to perform certain manipulations and trans-
formations of the plots such as scaling, rotating, etc. While this additional
flexibility is not of particular importance for the presented methods, they
may in the future become useful for others.

To limit access to the software respectively to the computing power of the
server computer, it may be protected by authentication mechanisms. For
example, on the Apache Web server, it suffices to provide in the installation
directory of the software a file .htaccess with content

<Files "*.php">
SSLRequireSSL
AuthName "your account"
AuthType Basic
Require valid-user

</Files>

With this configuration, the user is asked for the data of a valid account
on the computer running the Web server; other authentication mechanisms
based e.g. on password files may be provided in a similar fashion.

7 Discussion

Summing up all the results obtained, we would like to make some concluding
remarks.

35

• In general, coefficients αi can be computed symbolically by hand and
only numerically by Mathematica (see Section 3.3); at present we are
not aware of the possibility to overcome this problem.

• For the known case of spherical barotropic vorticity equation, values
of coefficients αi coincide with known form the literature for all triads
but three. These 3 triads, though satisfying resonant conditions, are
known to be special from the physical point of view in the following
sense (see [16] for details). Though resonance conditions are fulfilled
for the waves of these triads, they, so to say, do not have a place in the
physical space to interact and their influence (if any) on the dynamics
of the wave system has to be studied separately from all other waves.
Our results might indicate that also the coefficients αi of these triads
have to be defined in some other way compare to other resonant triads.
For instance, another way of space-averaging has to be chosen.

• The results of Section 3.4.2 show that analytical formulae given in [15]
for αj are not correct.

• The results of Section 4.3 show a crucial dependence of the number
of solutions on the form of the boundary conditions. In particular,
some boundary conditions (for example, (Lx, Ly) = (11, 29)) yield no
solutions which is of most importance for physical applications. From
the mathematical point of view, an interesting result has been observed:
in all our computations (i.e. for m,n ≤ 300) indexes corresponding
to non-empty classes, turned out to be odd. It would be interesting to
prove this fact analytically because if it keeps true, we can reduce the
computational time.

• The algorithm presented in Section 4 has been implemented before
numerically in Visual Basic, and our purpose here was to show that it
works fast enough also in Mathematica. The algorithms presented in
Section 3 and Section 5 have never been implemented before, the whole
work is usually done by hand and some mistakes as in [15] are almost
unavoidable: it takes sometimes a few weeks of skillful researchers to
compute interaction coefficients of dynamical systems for one specific
wave system.

• All the algorithms presented above can easily be modified for the case
of a 4-term mesoscopic system. The only problem left is a procedure
to establish all non-isomorphic topological elements for a quadruple
graphs, similar to the procedure given in [17] for a triangle graphs.

36

The structure of quadruple graphs is much more complicated while
some mechanisms of energy transfer in the spectral space do exist [25]
that are absent in 3-term mesoscopic systems. A complete classification
of quadruple graphs is still an open question but in a given spectral
domain it can be done directly (a very time consuming operation).

• We have developed a Web interface for the presented methods, which
turns the implementations from only locally available software to Web-
based services that can be accessed from any computer in the Internet
that is equipped with a Web browser. The presented implementation
strategy is simple and based on generally available technologies; it can
be applied as a blueprint for a large variety of mathematical software.
In particular, the results are not bound to the current Mathematica
implementation but can be adapted to any other computer algebra
system (e.g. Maple) or numerical software system (e.g. MATLAB) of
similar expressiveness.

• At present, an explicit form of eigen-modes (5), (6) is used as one of
the input parameters for our program package. Theoretically, at least
for some classes of linear partial differential operators and boundary
conditions, computing eigen-modes can also be performed symbolically
basing on the results in [26]. If this were done, not an eigen-mode but
boundary conditions would play role of input parameter.

Acknowledgements. Authors acknowledge the support of the Austrian
Science Foundation (FWF) under projects SFB F013/F1301 ”Numerical and
symbolical scientific computing”, P20164-N18 ”Discrete resonances in nonlin-
ear wave systems” and P17643-NO4 ”MathBroker II: Brokering Distributed
Mathematical Services”.

References

[1] M. Cheney. Tesla Man Out Of Time (Dorset Press, 1989)

[2] G.P. Berman, F.M. Israilev. ”The Fermi-Pasta-Ulam problem: Fifty
years of progress.” Chaos 15 (1), pp. 015104-015104-18 (2005)

[3] V. Zakharov, F. Dias, A. Pushkarev. ”One-dimensional wave turbu-
lence.” Physics Reports 398, pp.1-65 (2004)

37

[4] V.E. Zakharov V.E., V.S. L’vov, G. Falkovich. Kolmogorov Spectra
of Turbulence. Series in Nonlinear Dynamics, Springer (1992)

[5] V.E. Zakharov, N.N. Filonenko. ”Weak turbulence of capillary waves.”J.
Appl. Mech. Tech. Phys. 4, pp.500-515 (1967)

[6] A.N. Pushkarev, V.E. Zakharov. ”Turbulence of capillary waves - theory
and numerical simulations.” Physica D 135, pp.98-116 (2000)

[7] V.E. Zakharov, A.O. Korotkevich, A.N. Pushkarev, A.I. Dyachenko.
”Mesoscopic wave turbulence.” JETP Letters, 82 (8), 491 (2005)

[8] M. Tanaka. ”On the role of resonant interactions in the short-term evolu-
tion of deep-water ocean spectra.” J. Phys. Oceanogr. 37, pp.1022-1036
(2007)

[9] E.A. Kartashova ”Wave resonances in systems with discrete spectra”.
In book: V.E. Zakharov (Ed.) Nonlinear Waves and Weak Turbu-
lence, pp.95-129 (Series: Advances in the Mathematical Sciences, AMS,
1998)

[10] E. Kartashova. ”A model of laminated turbulence.” JETP Letters 83
(7), pp. 341-345 (2006)

[11] A.N. Nayfeh. Introduction to perturbation techniques. Wiley-
Interscience, NY (1981)

[12] E. Kartashova. ”Fast Computation Algorithm for Discrete Resonances
among Gravity Waves”. Low Temp. Phys. 145 (1-4), pp. 286-295 (2006)

[13] E. Kartashova, A. Kartashov. ”Laminated wave turbulence: generic al-
gorithms I”. Int. J. Mod. Phys. C 17(11), pp. 1579-1596 (2006); ”Lam-
inated wave turbulence: generic algorithms II”. Comm. Comp. Phys.
2 (4), pp. 783-794 (2007); ”Laminated wave turbulence: generic algo-
rithms III”. Physics A: Stat. Mech. Appl. 380, pp. 66-74 (2007)

[14] J. Pedlosky. Geophysical Fluid Dynamics (Springer, 1987)

[15] E.A. Kartashova, G.M. Reznik. ”Interactions between Rossby waves in
bounded regions.” Oceanology 31, pp.385-389 (1992)

[16] E. Kartashova, V.S. L’vov. ”A model of intra-seasonal oscillations in the
Earth atmosphere.” Phys. Rev. Lett. 98 (19): 198501 (2007) (featured
in Nature Physics 3(6): 368, 2007)

38

[17] E. Kartashova, G. Mayrhofer. ”Cluster formation in mesoscopic sys-
tems”. Physica A: Stat. Mech. Appl. 385, pp. 527-542 (2007)

[18] N. Gold, A. Mohan, C. Knight, M. Munro. “Understanding service-
oriented software” IEEE Software, 21(2): 71–77, March–April 2004.

[19] MathBroker II: Brokering Distributed Mathematical Services Reseach
Institute for Symbolic Computation (RISC), 2007. http://www.risc.uni-
linz.ac.at/projects/mathbroker2.

[20] MONET — Mathematics on the Web. The MONET Consortium, April
2004. http://monet.nag.co.uk.

[21] R. Baraka, W. Schreiner. “Semantic Querying of Mathematical Web
Service Descriptions”. Third International Workshop on Web Services
and Formal Methods (WS-FM 2006), Vienna, Austria, September 8–9,
2006. M. Bravetti, et al. (eds.), Lecture Notes in Computer Science 4184,
pp. 73-87. Springer.

[22] The PHP Group. “PHP: Hypertext Preprocessor”. http://www.php.net,
2007.

[23] RealVNC Remote Control Software. “VNC Free Edition 4.1”.
http://www.realvnc.com/products/free/4.1, 2007.

[24] The JavaView Project. “JavaView — Interactive 3D Geometry and Vi-
sualization”. http://www.javaview.de, 2007.

[25] E. Kartashova. ”Exact and quasi-resonances in discrete water-wave tur-
bulence.” Phys. Rev. Lett. 98 (21): 214502 (2007)

[26] M. Rosenkranz. ”A new symbolic method for solving linear two-point
boundary value problems on the level of operators”. J. Symb. Comp.
39, pp.171-199 (2005)

39

