
A Lightweight Model Driven Development
Process based on XML Technology (Draft)

Gábor Guta∗

Gabor.Guta@risc.uni-linz.ac.at
Barnabás Szász

bszasz@gmail.com†

Wolfgang Schreiner∗

Wolfgang.Schreiner@risc.uni-linz.ac.at

March 18, 2008

∗Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Aus-
tria, http://www.risc.uni-linz.ac.at

†Faculty of Informatics, University of Debrecen, Hungary, http://www.inf.unideb.hu

1

Abstract

Model Driven Development and domain specific languages attract the
attention of the industrial practitioners. Recentely also more and more tools
have become available to support these. Unfortunately these paradigms are
typically discussed in a the frame of the water-flow development process,
which does not fit for small and mid sized agile teams.

To fill this gap, this article presents a lightweight, iterative, model driven
software development process which was implemented and tested in indus-
trial projects. After a short summary of the state-of-art of that field, we
present the process in an abstract form. Then we give a detailed description
of the actual realization based on XML technology. Finally we describe how
the explained process and technology was applied in a real-world project.

2

Contents

1 Introduction 5

1.1 Model Driven Development . 5

1.2 Problem Description . 7

1.3 Approach . 7

2 The Process Aspect 8

2.1 Process Definition . 8

2.1.1 Roles . 9

2.1.2 Artifacts . 9

2.1.3 Activities . 10

2.1.4 The Process . 11

2.1.5 The Template Development Activity 14

3 The Technology Aspect 15

3.1 XML and MDD . 15

3.2 The Code Generation Tool . 17

3.2.1 The Input . 18

3.2.2 Input Aggregation . 18

3.2.3 Verification . 18

3.2.4 Code Generation . 19

3.2.5 The Output . 20

4 The Practical Aspect 20

4.1 Description of the Project . 20

4.1.1 Initial Phase . 21

4.1.2 First Iteration . 22

4.1.3 Second Iteration . 22

4.1.4 Third Iteration . 23

4.1.5 Further Iterations . 23

3

4.1.6 Maintenance . 23

4.1.7 Metrics . 23

4.2 Best practices . 24

4.2.1 GUI Prototyping . 24

4.2.2 Features Priority . 24

4.2.3 Skip Integration . 24

4.2.4 Minimize Manual Merge 24

4.2.5 Variable Naming . 25

4.2.6 Testing Issues . 25

5 Conclusion and Outlook 26

4

1 Introduction

In this paper we describe a new lightweight model driven process and a supporting
XML-based MDD tool that we have developed and used in a real-life project. We
explain them in the context of the latest development of that field.

Model driven development (MDD) [35], software product lines, domain specific
languages (DSL), and other generative approaches of software development re-
ceive special attention both from the research community and from the industrial
practitioners [8, 36, 38]. There are plenty of tools for MDD, DSL and code gener-
ation available for diverse platforms. These technologies are different in approach
and have emphasis on different issues, but all of them are trying to solve almost the
same problem: to generate executable code from an abstract domain model. The
widely accepted enterprise software architectures require huge amount of code
and configuration, which is in most of the cases error prone and boring to write
by hand [18]. The interest in the community to use code generators indicates
that it is useful for the current architectural practice. There are lot of terms to
denote these approaches. The Object Management Group (OMG) calls its stan-
dard Model Driven Architecture (MDA) [31, 30], while Microsoft uses the terms
Software Factory and DSL [17] for its solution. In this article we refer to these
technologies in the general sense as Model Driven Development (MDD).

In OMG’s MDA, the domain model is represented in the Unified Modeling Lan-
guage (UML). Typically this is not pure UML, but extended with some extra nota-
tions called UML Profiles. MDA calls the initial model Computation-Independent
Model (CIM) and defines two intermediate models: the Platform Independent
Model (PIM) and the Platform Specific Model (PSM). In MDA the PSM is at the
same abstraction level as the artifacts.OMG also defines its own transformation
languages and interchange format. Tools supporting the standards are already
available.

Microsoft’s Software Factory [17] initiative has different emphasis: it provides a
toolkit that makes it efficient to create one’s own domain notation and it provides
some tooling to make code generation easier.

1.1 Model Driven Development

MDD can generally be represented as shown in Figure 1. It starts with an abstract
domain model from which different generated artifacts like source code are cre-
ated by transformation. Transformations are also called templates, if the results
are generated artifacts and not models. The MDD process can contain intermedi-
ate models with corresponding transformations. Models are typically represented

5

Figure 1: Model Driven Development

in different abstraction levels. Meta-models can be assigned for the domain model
and the intermediate models, which describe their meaning and the allowed con-
structs. The domain model can model a real life domain like a business process or
can be an implementation model like a website navigation flow.

Generally speaking, the different MDD approaches have to deal with the following
questions:

• What is the domain model (real life/implementation)?

• How can the domain meta-model be represented?

• What kind of notation do we use to communicate the domain model?

• How are the transformations defined?

• Do we allow to edit the intermediate models or the generated artifacts?

We can ask further important questions which are typically overlooked by the
modeling community:

• How does MDD affect the development process?

• Are we able to reverse the transformation (propagate changes of the gener-
ated artifacts back to the original model)?

• How can intermediate models be merged if the original generated model
was modified and a different one was generated after the domain model was
changed?

• What are the quality implications of the MDD? (How does it modify the test
and review procedures? What kind of additional problem can be expected?)

6

1.2 Problem Description

In practice, an important issue is how one can integrate a new technology to exist-
ing software processes. For small or mid size project teams with limited resources
this issue is even more critical.

Most of the resources available for practitioners focus on the technological as-
pects [3]. Books about this topic [14, 19, 17, 31, 30] also give no or little hint
about how MDD can be integrated the software development process. The pro-
cess, if mentioned, is explained in the context of technological steps [23]. On
the other side, proposed methodologies target enterprise environments with so-
phisticated, customizable methodologies [11, 15, 29, 16]. A case studies like [26]
even explicitly states that the MDA technologies are appropriate only for large
organizations. That opinion is also agreed by certain practitioners [39].

1.3 Approach

To successfully apply a new technology in one’s project there are several other
factors that are independent from theoretical soundness of the technology. The
learning curve of the technology, the maturity of the tools, or the adaptability of
the transformations to special requirements are probably the most crucial proper-
ties. We give here a short overview about these contributing factors in small and
mid sized development projects.

A lightweight approach for model driven development have to deal with the fol-
lowing issues:

• Most of the risks should be mitigated: The technology should not be based
on immature tools and the introduction of the technology should always
leave open the possibility to fall back to the traditional methodology without
MDA tools.

• The approach should not delay the schedule in general. It should have im-
mediate business advantage.

• The approach should be cost sensitive. Purchases of a high cost MDA tool
set and extensive training of experts is typically not possible.

• The domain-model should be kept as simple as possible and the generated
code should be human-readable and modifiable.

• The results should be reusable in other projects.

7

In the following sections we describe one possible solution to deal with the men-
tioned issues. First, we describe our lightweight MDD process and show how this
process can be supported by an XML-based tool. Both process and tool were de-
veloped in the end of 2006 and have been in use since that time. We present them
here in a form that is the results of several improvements according to the project
experiences. Then we describe how the process and the tool were applied in one
of the projects. Finally, we share our best practices which we consider necessary
to carry through a successful MDD project.

2 The Process Aspect

In this section we describe the process that we developed to help fulfill the require-
ments described in Section 1.2. Our process description focuses on the model
driven aspects and presents the process in its abstract form.

One of the key ideas behind our approach is that we explicitly support the partial
usage of MDD. Our process lets one consider in which aspects of the project the
use of MDD will pay off and employ it just for these. The advantage of that
approach is that the domain model can be easily kept focused and abstract. On
the other side, keeping track of which artifacts are generated and which are not
requires only minimal administrative overhead.

The process is defined as an extension of iterative methodologies in general [27].
It fits well in existing methodologies like eXtreme Programming [9] or the Ratio-
nal Unified Process [25].

2.1 Process Definition

In our development process we define two phases: the initial phase and the devel-
opment phase. The development phase can be repeated arbitrarily many times. We
introduce our own terms for the phases, because different methodologies define
varying numbers of phases and different terms and we do not want to stick a partic-
ular methodology [28, 24]. For the same reason we name our set of roles, artifacts,
and activities distinct from those of other methodologies. We mark those defini-
tions with a star which are supposed to defined by an other particular methodology.
On first reading, one may directly proceed to Section 2.1.4 and return to Sections
2.1.1 - 2.1.3 for definitions of the terms.

8

2.1.1 Roles

We define a role called model driven development expert (MDD expert). The
responsibility of this role is to deal with the activities related to model driven
technologies and support the managers, architects and developers. Naturally, in
case of bigger teams this role can be decomposed into more specific roles.

2.1.2 Artifacts

We use the following artifacts in the process description as it was defined in Sec-
tion 1.1: domain meta-model, domain model, generated artifacts, and templates.
We define some further artifacts as the following:

• A MDD vision is a document containing the strategic design decisions re-
lated to the MDD. It specifies which aspects of the requirement are imple-
mented with MDD technology. It also prescribes the abstraction level of the
domain model and its scope.

• A code generation tool tool is a collection of programs and scripts which
runs the templates on the models.

• A domain test model is a special model which serves as a test for the genera-
tion process. It is an artificially created small model with good meta-model
coverage. It is used by the developers and it does not represent any real life
model.

• A MDD environment is a collection of a domain meta-model, a domain test
model, and a Code Generation tool.

• Hand crafted software (*) is software or a collection of software fragments
created with some traditional software development methodology. It be-
comes available short before the end of a phase. It can be a design prototype,
a part of an internal release, or a part of a beta release.

• Released software is the software resulted by the integration of hand crafted
software and generated artifacts.

• A software requirement specification (or requirements in short) (*) is an
evolving document containing the requirements. In practice, other method-
ologies define other documents as well.

9

2.1.3 Activities

The following terms for the activities are used in the process:

• Domain model extraction is the activity which extracts the domain model
from the requirement specification and form other documents. During this
process the MDD vision and the initial domain model are created.

• The MDD environment setup is the activity when the code generation tool
is set up according to the MDD vision and the initial domain model. As part
of this activity, the initial version of the domain meta-model and the domain
test model are created.

• Domain Modeling is an activity by which the domain model is extended and
refined.

• The MDD environment development is the activity by which the MDD envi-
ronment is further developed. This development activity is typically exten-
sive and not corrective.

• Template development is the activity by which the templates are extended
and refined. This activity usually happens in three steps: the required func-
tionality is implemented in a software prototype; the implementation is ex-
tracted and to edited into the templates; finally, the they are tested with the
help of the domain test model.

• Code generation is the activity by which the generated artifacts are created
with the templates from the domain model. The consistency of the domain
model is always verified prior to the code generation.

• Integration is the activity by which the generated code and the hand-crafted
software are merged. After the merge, the integration test is carried through.

• Development (*) is the activity when new functions are designed, imple-
mented and tested. This activity is defined in more detail by particular
methodologies.

• Requirements Refinement (*) is the activity when requirements are refined
and extended.

• Architectural prototyping (*) is the activity by which the architecture of the
software elaborated. In the end of this activity the architecture of the soft-
ware is designed and a prototype which contains the initial implementation
of that architecture created.

10

• Design (*) is the activity when all kind of design activates are carried through.

• Development (*) is the activity when all development related activates (class
design, coding, and testing) are carried through.

2.1.4 The Process

Figure 2 gives an overview of the process. The artifacts are represented by boxes
and the activities are represented by ellipses. Shading of the shapes means that
they can be replaced by other activates or artifacts that are specific to a particular
methodology and have the same purpose in the process as we prescribed (they are
just included to help the understanding of the process). The flow chart is divided
by dashed lines into three ”swim-lanes”. The ”swim-lanes” represent three dif-
ferent internal team, namely: agile development team, business analyst team, and
model driven development team. The horizontal position of the activities express
which internal teams they belong to. If an activity or an artifact is positioned
between two swim-lanes, then it is a joint effort of the two teams.

• The agile development team can include roles like developer, designer, or
tester. This team is responsible for the development of all non-generated
software (functionality which is not represented in the domain model). The
non-generated parts of the software can be the following ones: larger spe-
cial components with custom functionality that are added only in a single
situation or components that are used globally in the application like utility
classes or authentication mechanisms.

• The business analyst team can include role like business analyst or devel-
oper who are responsible for business analysis activities. This team is re-
sponsible to keep in touch with the customer and is also responsible for the
requirements and the domain models.

• The model driven development team includes MDD experts and developers.
This team is responsible for the development of the MDD environment and
the templates.

The vertical axis in Figure 2 denotes the time and the horizontal lines represents
the borders of the phases. The figure shows the initial phase and two iterations
such that the connections between phases are depicted. The vertical positions of
the objects express how they are related in time. The arrows also provide informa-
tion about the dependency of two actions. If two objects are connected and they
have the same vertical position, they follow each other immediately. In detail, the
process proceeds as follows:

11

Figure 2: The Process

12

• The process starts with an initial phase (which can be preceded by phases
defined by the methodology that our process extends). There are three
groups of activities relevant in this phase:

– The business analysts team and the MDD team extract the domain
model by a joint effort. Domain experts from the customers can also
contribute.

– The agile development team elaborates the architecture of the soft-
ware. By the end of the initial phase they ship a sufficiently stable
prototype to the MDD team which starts to develop the transforma-
tion.

– The MDD team sets up the initial version of the code generator core.
This team also has to be familiar with the technology environment
used by the agile software team in order to be capable to take over the
architecture from the prototypes.

• During the iteration, the following activities are carried through in parallel:

– The business analyst team refines and extends the domain model. The
changes in the domain model do not affect the developers, so the
model can be changed until the code generation activity starts. This
team keeps in touch with the customer; its responsibility is to handle
the change-requests of the requirements.

– The agile development team develops the non-generated part of the
software. The customization of the generated parts and the integration
of the custom components are also the responsibility of this team. In
the end of the iteration this team receives the generated artifacts and
carries through the integration:

∗ the generated artifacts are collected together with the hand crafted
software;

∗ in case an artifact generated in the previous iteration is modified
by the agile development team, then this modification is applied
to the newly generated artifact too;

∗ the whole software is built and finally tested.

There are always cases when the newly generated artifacts need man-
ual modifications or interface mismatches have to be corrected. These
cases can be resolved in three different ways:

∗ The hand crafted software is modified by agile software team.

13

∗ The MDD team solves the problem in the next iteration; a tempo-
rary workaround is provided by the agile software team. If it is
not possible to solve the problem, then the templates are fixed by
the MDD team and the process is repeated starting with the code
generation activity.

∗ The problem can not be solved; consequently the automatic merge
does not become possible again. In that case, the affected artifacts
have to be merged in every iteration manually, if the correspond-
ing part of the domain model is changed. The business analyst
team keeps track of these artifacts and tries to avoid any changes
to them. It is crucial to keep these special cases minimal and
freeze the corresponding parts of the domain model as early as
possible.

To ensure the success of the integration also integration tests and re-
gression tests are carried through. Critical bugs are corrected during
the integration and the whole test activity is repeated.

– The MDD development team is busy with the template development
and the MDD environment development. In the end of the iteration
this team produces the generated artifacts from the domain model with
the help of the latest MDD environment and templates. The enhance-
ment of the MDD environment is usually orthogonal to the template
development.
During the iteration two different versions of the MDD environment
are used. The latest version from the stable branch is available at the
beginning of the iteration used for the template development and a sep-
arate development branch is used for the MDD environment develop-
ment. As the iterations make progress, the MDD environment needs
less and less modification; then the template development, in which
new features are added to the templates, becomes the main activity.
This will be explained in detail in Section 2.1.5.

2.1.5 The Template Development Activity

The template development is the most complex and critical activity of the process.
Typically for an iteration of the process several features are planned to be imple-
mented iteratively in the frame of this activity. The implementation of a feature
starts with its design, then the feature is coded and tested. During the implemen-
tation the generated development artifacts are extended.

Generated development artifacts are parts of the runnable application which is

14

generated by the latest version of the templates, of the code generation tool, and
of the domain test model. The implemented feature is extracted from the source
code and inserted into the templates with the necessary modifications. The gen-
erated development artifacts are re-created by the modified templates. The result
typically contains small errors, which can be detected when the result is built and
tested. The test is carried through with the test cases of the original feature im-
plementation. The templates are modified as long as no more errors occur during
the test of the generated development artifacts. Then the feature is considered
complete and the team moves on to implement the next one.

If a problem is recognized with the code generation tool, then it can be corrected
in the frame of the MDD environment development. The tool used in the template
development can be updated if the fixes are ready or if a new version is released
during the MDD environment development.

The first iteration differs sightly from the other iterations, because at that point
of time there are no prior generated development artifacts available. Before the
MDD team starts to implement the first feature, it has to extract the utility artifacts,
which is necessary to build and run the generated development artifacts. These
artifacts can be kept separate or they can shared with the agile development team.
In both cases these artifacts have to be stabilized and frozen as early as possible;
if change is necessary, the update must carried through in a planed and controlled
manner.

3 The Technology Aspect

In this section we show a particular XML-based code generation tool that we
designed and implemented to support the development process explained in Sec-
tion 2. First we describe how the components of the XML technology fit to gen-
eral MDD. Then we present the architecture of our tool. We will not disclose any
details about the domain model to protect the business interest of our customer.

3.1 XML and MDD

XML technologies can be used efficiently to implement one’s own code genera-
tion tool. In this subsection we go through the elements of MDD as mentioned in
Section 1.1 and explain which XML technology is appropriate to implement each
element.

The domain model is usually described by graphs. The graphs are represented as
trees with pointers [EXPLAIN], which allows to store the graph in XML format.

15

OMG’s MDA uses this approach for its XML based interchange format named
XMI [7]. Moreover, a tree based representation of the domain model and its
transformation fits better to problems with small and medium complexity [21].

The syntax of the domain meta-model can be expressed in the XML Schema lan-
guage [10]. XML Schema defines a grammar that expresses which XML struc-
tures are valid. However XML Schema is not expressive enough to formulate all
properties, e.g. it can not say ”If an N type node is referenced by an attribute A
of an M type node, then the M type node must have an attribute B whose value
is V ”. This type of properties can be checked with the help of Schematron [6] or
of XSLT (see below). More details on the expressive power of XML Schema and
related notations can be found in [32].

XSLT is the most well known standardized transformation language for XML.
It is capable to express all kinds of transformations [20] and is designed for
the efficient description of templates [22]. The main features that make it ef-
ficient for this kind of task are: basically it is a declarative (functional) lan-
guage, but it can also be used in rule-matching style (constructs template
and apply-templates) and imperative style (constructs call-template,
for-each, and if); it is capable to output the results into different files; it sup-
ports output in both plain text and XML format.

XML technologies are a good choice, because they are standardized and well
supported by the industry. Consequently, it is easy to find trained developers
and one can expect long-term support. Furthermore, there are various kinds of
tools available, e.g.: editors for XML, XML Schema, and XSLT and engines and
debuggers for XSLT. Most of these tools have been available for almost a decade,
so they can be considered mature.

XSLT was already used successfully by others for model transformation or for
code generation [37]. A detailed comparison of XSLT with 3GL programming
languages can be found in [34]. Borland’s Together 2007 DSL Toolkit uses a
special extension of XSLT to generate source code from models [2].

We have evaluated several alternative tools, before decided to build our XML-
based solution. The two most promising ones were AndroMDA 3.2 [1] and Iron
Speed Designer [4]. AndroMDA is an open source MDA tool supports the Java
platform. This tool uses the XMI output of an UML editor and its code generator
is written in Java. Although the tool initially seemed promising, we estimated that
it would need too much effort re-target it to our domain model and .NET platform.
On the other hand, Iron Speed Designer is a commercial tool which first generates
an ASP.NET web application from an existing database schema and then allows
a GUI based customization of the generated application. Also this tool did not
fit to our process, because we required an editable domain model from which the

16

Figure 3: The Architecture of the Code Generation Tool

application could be generated. The architecture of the generated application did
also not meet our requirements.

3.2 The Code Generation Tool

Figure 3 shows the architecture of our code generation tool. The ellipses indi-
cate three processing phases and the rectangles represent the artifacts which are
processed or produced. The purpose of the code generation tool is to generate a
runnable ASP.NET 2.0 web application from a given domain model. The artifacts
that are used to specify the domain model can be seen on the left side (the dia-
grams used to support the communication of the domain model are also indicated
there). These artifacts, which serve as an input for the tool, were created and re-
fined by the business analyst team. The generated artifacts are represented on the
right side. These artifacts are the result of the code generation activity and are
handed to the agile development team. The templates can be developed separately
from the other parts of the tool.

The whole system is implemented with the help of approximately 5000 lines of
XSLT templates and some hundred lines of shell scripts. The components of the

17

tool must be as simple as possible and easy to learn, because the development
process assumes short iterations (between two weeks and two months).

3.2.1 The Input

The domain model is represented in the form of Excel spreadsheets. These are
used for communication between the customer and the business analyst team.
Excel spreadsheets are a straight forward way to represent the domain model,
because all stake-holders fill comfortable to work with them (according to our ex-
perience managers find editing spreadsheets more simpler than editing diagrams).

The Class/ER diagrams are only used to provide visualization. They augment
the understanding of the big picture, but even customers trained to work with
diagrams show resistance to contribute to them (this behavior may have at least
two explanations: they do not feel comfortable with the diagramming tool or they
do not fully understand the details). The initial format of the Excel spreadsheets
is created during the domain model extraction; it can be refined during the domain
modeling.

3.2.2 Input Aggregation

Input aggregation is the first processing phase of the the code generation tool. The
Excel spreadsheets are converted to XML files, then are aggregated into a single
XML file with the help of scripts. The two representations of the domain model
are semantically equivalent. The conversion step also adds additional flexibility:
the representation format of the Excel spreadsheet can be changed without affect-
ing the other phases of the code generation tool. The part of the tool responsible
for the input aggregation is fine-tuned during the MDD environment development
activity.

3.2.3 Verification

Verification is the second processing phase. It consists two steps: an XML Schema
validation and a constraint check:

• In the first step, the XML Schema validation, it is ensured that the XML
representation of the domain model conforms to the XML Schema of its
domain meta model. This serves as an extra safety check of the aggregated
XML file.

18

• The second step, the constraint check, is the more important part of the ver-
ification. During this step several global constraints are checked (currently
24). The checks are implemented by some hundred lines of XSLT templates
(currently 156). While is it possible to check the properties ensured during
the first step by Excel macros, these global constraints can not, because this
check needs information stored in separated Excel spreadsheets.

The required infrastructure for both steps can be quickly elaborated by the MDD
team during the MDD environment setup and refined in the iterations during the
MDD environment development. The code generation tool can be used by the
business analyst team to verify the domain model by running only the first two
processing phases. This usage is typical during the domain modeling.

3.2.4 Code Generation

The final processing phase is the code generation. The code generation tool and
the templates are implemented in pure XSLT. The code generator core is a single
XSLT file which is implemented in rule-matching style and calls the templates
successively. The first template denormalizes the domain model before the tem-
plates are executed. The denormalization makes the templates simpler, because it
eliminates a lot of the complicated referencing and repetitive computation of the
values. The size of the XSLT templates varies between approximately 100 and
1500 lines. The bigger templates are already at the edge of maintainability.

The advantage of using XSLT to represent verification constraints, code generator
core, and templates is that the developers can be quickly reallocated and they can
also understand each others work with small extra effort. There were only two
minor annoyances with the XSLT templates: the generation of ASPX and the
formating of output.

• Microsoft’s ASP.NET technology, called Active Server Pages, defines an
extension for HTML to create web forms (ASPX). These files are neither
proper XML nor HTML formats; thus the output mode for they have to be
plain text, which implies that all special characters have to be escaped.

• The problem of output formating is more typical: to have the correct inden-
tation and human readable formating, extra effort is needed. This problem
is common with other template notations as well.

19

3.2.5 The Output

The result of the code generation is the source code of a web application. It
is runnable with the necessary utility files, and can be tested immediately. The
architecture of the generated application follows the current architecture guide-
lines [5, 12, 13, 33].

The MDD team has the task to keep the balance between the simplicity and size
of the generated code. Simplicity means that the generated code must remain
easy to understand and to extend. Size means that unnecessary duplication does
not occur. Certain architectural guidelines imply a lot of generated code: stored
procedures, data access objects, etc. On one hand, replications are not harmful if
they are applied in a controlled fashion, because they can make the code faster,
more readable, and easier to customize. On the other hand they make a certain
type of changes much harder. Certainly, in a lot of cases it is a question of taste
where and to which extend to apply replication.

The code generation approach helps also to eliminate certain types of errors, e.g.
broken string references. The references are represented as strings that denote
the stored procedures on the SQL-Server or information in the configuration files.
The integrity of these string references can not be checked by the compilers.

4 The Practical Aspect

In this section we describe how the process and the technology explained in the
previous sections have been applied in practice. We also describe minor details
necessary to understand for carrying through a successful project. Both the pro-
cess and the technology were successfully used in several projects. Here we de-
scribe that project in which they were applied for the first time. The project was
carried through in the end of 2006 at the site of a customer who ships applications
to its end customers.

4.1 Description of the Project

The aim of the project was to deliver an enterprise web application for a spe-
cific domain. The deliverable application had to build on top of Microsoft’s
ASP.NET 2.0 technology and an MS-SQL 2000 back-end. It also had to conform
to architectural guide lines for the multi-layer enterprise ASP.NET applications at
that time. Readable source code and complete developer documentation was also
a must, because the end customer intended to extend and maintain the delivered

20

application in house. The secondary goal was to introduce and evaluate the the
process and technology concepts which we have developed. The evaluation was
done according to the criteria explained in Section 1.2.

At the beginning of the described project a detailed preliminary database plan
and a detailed software requirement specification were available. These described
approximately 100 database tables and over 300 screen masks. In these early doc-
uments it was already easy to recognize repetitive functions and recurring simple
Create, Read, Update, Delete (CRUD) dialogs. Both of the mentioned documents
were accepted by the end customer, but they were too detailed and did not reflected
its real expectation. Additionally, the end customer also had a detailed intranet ap-
plication style guide. ASP.NET 1.1 software prototypes were available from our
customer to demonstrate certain features of the software it planed to build. Also
a technology demonstration prototype of the code generation tool was available
which generated HTML files out of a small domain model which was similar to
the target domain.

As a part of our work to develop the “Process and Technology Concepts” guide we
reviewed the available literatures and the tools. Our customer already knew both
the domain and the end customer well. This was an important factor, because, if
one is not confident with the the domain and the requirements of the end customer,
a longer initial phase is needed.

4.1.1 Initial Phase

The initial phase was started with the domain model extraction and took approxi-
mately one and a half months. In the first two weeks we fixed the initial version of
the the domain model. After that, we started to create the domain meta-model and
its XML Schema syntax. In parallel with that we started to set up the code gen-
eration tool. Our aim was that the initial version of this tool would include some
simple templates which generate from the XML files an ASP.NET 2.0 application
containing empty screens masks with navigation elements.

The first problem we faced was that the editing of the XML files was more chal-
lenging for the end customer than we thought. Initially, we planed to use XML
files as a temporary solution, until we would build our own domain language and
corresponding diagramming tool in a later iteration, but the time was not sufficient
for this. Thus, we adapted Excel spreadsheets as a solution.

By the end of the initial phase we had the first version of the domain model repre-
sented in Excel spreadsheets, an informal description of the domain meta-model,
a working version of the code generation tool and a part of the domain model as

21

a domain test model. Our customer successfully used the first generated code to
demonstrate to the end customer the navigation structure of the application.

4.1.2 First Iteration

The main goal of the first iteration was to generate in two weeks simple artifacts
for all layers of the application. During that time also the initial architecture was
fixed according to the architecture prototype developed by the agile development
team. By the end of the iteration, the templates were capable to generate the
following artifacts:

• the DDL scripts to create the database;

• simple stored procedures in T-SQL with SELECT statements;

• the methods in C# of the data access layer to call the stored procedures;

• the skeleton of the business objects in C#;

• and the ASPX forms to display data from the database.

The different generating phases in the prototype of the code generation tool had
to be run manually. That issue was solved with the help of simple shell scripts.

At that point the internal team structure allocation stabilized. Our method com-
pletely fitted completely to the situation: the concept of business analyst team was
not only a theoretical concept, but there was a real team who regularly met with
the end customer. That team collected the requirements and communicated to the
developers. The division of the development work between the agile development
team and the MDD team was also proved efficient. Summarizing, we did not have
any serious issue at the first iteration.

4.1.3 Second Iteration

This iteration was planed to take one month; its aim was to complete the function-
ality of the data access layer together with the necessary stored procedures and
the business objects. The other enhancement was that a special domain test model
was developed. This was necessary, because the original, which was a part of the
real domain model, did not cover a lot of possible cases in the domain meta-model
and was already too huge to get generated and compiled quickly.

22

4.1.4 Third Iteration

During this iteration, user interface features were implemented and enhanced. Ex-
tra functionality was also added to the data access layer according to the request of
the agile development team. The iteration was completed in two weeks. Here we
had the first serious integration problem: the iteration resulted in a lot of files that
needed to be merged and fixed manually. This issue emerged from the fact that
the teams did not take serious enough to keep track of the artifacts modified after
the generation. This issue was solved by moving features to separate methods in
C# partial classes, rather than code the features directly in the generated artifacts.
The files in the version tracking system were also cleaned up.

4.1.5 Further Iterations

The fourth iteration was a one week long bug fix iteration. An error was found in
the framework; this error was triggered by certain combination of the properties
in the domain model. The error was not reproducible with the domain test model.
[EXPLAIN] We closed this issue by developing a workaround and extending the
integration test. The fifth iteration contained the last set of the features and the
integration was gone smoothly.

4.1.6 Maintenance

During the maintenance most of the modification was carried out by the agile
development team. If the domain was modified, new artifacts were generated. The
integration of these new artifacts was carried through in a piece by piece manner:
instead of collecting together the generated artifacts and the hand crafted artifacts
and integrating them, the MDD team delivered just the requested new or modified
files to the agile development team, which merged these artifacts manually. This
ensured that the modification had as little effect on the other parts of the software
as possible.

4.1.7 Metrics

In the final release the total amount of source code developed was approximately
300 thousand lines of code (KLOC). This contained 200 KLOC of generated code,
which was produced from 900 lines of XML specification. [OTHER METRICS]

23

4.2 Best practices

In this section we describe the best practices were collected during our projects.
Although they are simple, they can save a lot of unnecessary effort.

4.2.1 GUI Prototyping

During the initial setup of the code generation tool, it is an important question
what kind of artifacts should be generated first. The generation of a rapid GUI
prototype is a reasonable choice. This task is a realistic aim and during its imple-
mentation the team can face with the typical implementation challenges. It also
results in valuable artifacts for the project stake-holders: a large scale GUI pro-
totype is capable to demonstrate that the planed navigational or menu structure is
not only effective with a small demonstration example.

4.2.2 Features Priority

[EXPLAIN]

4.2.3 Skip Integration

Integration is an important activity of the described MDD process. During this
activity the generated artifacts and the hand crafted software are merged. Even if
it proceeds smoothly, it takes time. If the changes do not affect the interfaces and
the customer can be satisfied by demonstrating the improvement of the deliver-
able system separately, the integration can be safely skipped. If the interfaces are
changed, then it is strongly recommended to do the integration. The more integra-
tion problems are postponed, the more problems have to be fixed later, which can
be much more painful.

4.2.4 Minimize Manual Merge

By the integration, two different versions of the artifacts may emerge: one version
of the artifact is generated during the previous integration and modified by the
agile development team, the other version of the artifact is newly generated by the
MDD team from the new templates and domain model. These versions have to be
merged manually by human interaction. If too many artifacts need manual merge
during the integration, this must be considered as a serious warning. The more
manual effort the integration needs, the more inefficient the MDD approach is. If

24

one does not start to solve this issue early, it can quickly become the bottleneck of
the process. This issue can be resolved by the following two options:

• split either the generated artifacts and handcrafted software into separate
files (e.g.: use partial classes in C#);

• or generate artifacts at the beginning and then, if the artifacts are customized,
freeze the specification and those templates which can change the result of
the generation.

It is important to document these decisions in the MDD vision document and eval-
uate which parts of the technological environment and the domain are more likely
to change. This documentation also helps the business analysts to understand how
much effort a different type of modification costs.

4.2.5 Variable Naming

The importance of selecting good variable names is well known by the software
development community. There are a lot of guidance and coding standards to help
developers in this task. While in the case of handcrafted software the variable
names chosen by the developers, in the case of generated artifacts it is derived
from the specification. Hence, business analysts have to be educated about the
importance of name selection. The developers of the templates also have to pay
extra attention to the variable names, even if it not affects their work directly.
They should avoid adding long or senseless pre- or postfixes or loop counters to
the identifiers.

4.2.6 Testing Issues

Testing is an important part of the current software quality assurance practice. In
our process we prescribe several point where testing should be done. If the domain
test model is carefully chosen, a high quality of the generated artifacts can be
ensured by testing a relatively small amount of code. The quality of the domain
test model can be expressed by the coverage of the templates and the coverage
of the domain meta-model. This kind of test does not rule out the traditional
integration, regression and stress tests.

25

5 Conclusion and Outlook

Model driven development and domain specific languages are active research ar-
eas both for the academic and the industrial communities. In this paper we de-
scribed a lightweight MDD process and a supporting XML-based technology
which were successfully applied in industrial projects. On one hand, we have
provided a concise and abstract description of the core ideas which should serve
as a referenceable source for the academic community. On the other hand, the
process and the tool have been explained in simple and practical way, so they can
be easily understand and applied by industrial practitioners. The process fits well
into the existing methodologies and we provide a comprehensive description of
the minor details which need to be understood for the real world projects. Our
approach not only usable for small and mid size projects, but can be also used as
preparatory step before the introduction of a heavyweight approach.

[OUTLOOK]

References

[1] AndroMDA 3.2. http://www.andromda.org.

[2] Borland Together 2007. http://www.borland.com
/us/products/together/index.html.

[3] Code Generation Network. http://www.codegeneration.net/.

[4] Iron Speed Designer. http://www.ironspeed.com.

[5] Enterprise Solution Patterns Using Microsoft .Net: Version 2.0 : Patterns &
Practices. Microsoft Press, 2003.

[6] ISO/IEC 19757-3 First edition, Information technology - Document Schema
Definition Languages (DSDL) - Part 3: Rule-based validation - Schematron.
ISO, 2006-06-01.

[7] MOF 2.0 / XMI Mapping Specification, v2.1.1. http://www.omg.org /tech-
nology/documents/formal/xmi.htm, 2007-12-01.

[8] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema.
Developing Applications Using Model-Driven Design Environments. Com-
puter, 39(2):33–40, Feb. 2006.

26

[9] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

[10] Cliff Binstock, Dave Peterson, Mitchell Smith, Mike Wooding, Chris Dix,
and Chris Galtenberg. The XML Schema Complete Reference. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[11] Fatemeh Chitforoush, Maryam Yazdandoost, and Raman Ramsin. Method-
ology Support for the Model Driven Architecture. In APSEC ’07: Proceed-
ings of the 14th Asia-Pacific Software Engineering Conference (APSEC’07),
pages 454–461, Washington, DC, USA, 2007. IEEE Computer Society.

[12] Bill Evjen, Scott Hanselman, Devin Rader, Farhan Muhammad, and Srini-
vasa Sivakumar. Professional ASP.NET 2.0 Special Edition (Wrox Profes-
sional Guides. Wrox Press Ltd., Birmingham, UK, UK, 2006.

[13] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[14] David S. Frankel. Model Driven Architecture: Applying MDA to Enterprise
Computing. Wiley, 2003.

[15] Anastasius Gavras, Mariano Belaunde, Luı́s Ferreira Pires, and João
Paulo A. Almeida. Towards an MDA-Based Development Methodology. In
Flávio Oquendo, Brian Warboys, and Ronald Morrison, editors, EWSA, vol-
ume 3047 of Lecture Notes in Computer Science, pages 230–240. Springer,
2004.

[16] Marie-Pierre Gervais. Towards an MDA-Oriented Methodology. In COMP-
SAC, pages 265–270. IEEE Computer Society, 2002.

[17] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Fac-
tories: Assembling Applications with Patterns, Models, Frameworks, and
Tools. Wiley, 2004.

[18] Jack Herrington. Code Generation in Action. Manning Publications, 2003.

[19] Richard Hubert. Convergent Architecture: Building Model Driven J2EE
Systems with UML. John Wiley & Sons, 2002.

[20] Wim Janssen, Alexandr Korlyukov, and Jan Van den Bussche. On the Tree-
Transformation Power of XSLT. Acta Inf., 43(6):371–393, 2006.

[21] G. Karsai. Why XML is Not Suitable for Semantic Translation. Research
note, Nashville, TN, 2000.

27

[22] Michael Kay. XSLT 2.0 Programmer’s Reference, 3rd Edition. Wrox Press
Ltd., 2004.

[23] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2003.

[24] Alan S. Koch. Agile Software Development: Evaluating The Methods For
Your Organization. Artech House Publishers, 2004.

[25] Per Kroll and Philippe Kruchten. The Rational Unified Process Made Easy:
a Practitioner’s Guide to the RUP. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[26] Vinay Kulkarni and Sreedhar Reddy. Introducing MDA in a Large IT Con-
sultancy Organization. In APSEC, pages 419–426. IEEE Computer Society,
2006.

[27] C. Larman and V.R. Basili. Iterative and Incremental Developments. A Brief
History. Computer, 36(6):47–56, June 2003.

[28] Craig Larman. Agile and Iterative Development: A Manager’s Guide.
Addison-Wesley Professional, 2003.

[29] Jason Xabier Mansell, Aitor Bediaga, Régis Vogel, and Keith Mantell. A
Process Framework for the Successful Adoption of Model Driven Develop-
ment. In Arend Rensink and Jos Warmer, editors, ECMDA-FA, volume 4066
of Lecture Notes in Computer Science, pages 90–100. Springer, 2006.

[30] Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation for
Model-Driven Architecture. Addison Wesley, 2002.

[31] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA Distilled:
Principles of Model-Driven Architecture. Addison Wesley, 2004.

[32] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Tax-
onomy of XML Schema Languages Using Formal Language Theory. ACM
Trans. Inter. Tech., 5(4):660–704, 2005.

[33] Joachim Rossberg Rickard Redler. Pro Scalable .NET 2.0 Application De-
signs. Apress, 2005.

[34] S. Sarkar. Model Driven Programming Using XSLT: an Approach to
Rapid Development of Domain-Specific Program Generators. www.XML-
JOURNAL.com, pages 42–51, August 2002.

28

[35] B. Selic. The Pragmatics of Model-Driven Development. Software, IEEE,
20(5):19–25, Sept.-Oct. 2003.

[36] Bran Selic. Model-Driven Development: Its Essence and Opportunities.
Object and Component-Oriented Real-Time Distributed Computing, 2006.
ISORC 2006. Ninth IEEE International Symposium on, pages 7 pp.–, 2006.

[37] Galen S. Swint, Calton Pu, Gueyoung Jung, Wenchang Yan, Younggyun
Koh, Qinyi Wu, Charles Consel, Akhil Sahai, and Koichi Moriyama. Clear-
water: Extensible, Flexible, Modular Code Generation. In ASE ’05: Pro-
ceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, pages 144–153, New York, NY, USA, 2005. ACM.

[38] Axel Uhl. Model-Driven Development in the Enterprise. Software, IEEE,
25(1):46–49, Jan.-Feb. 2008.

[39] Axel Uhl and Scott W. Ambler. Point/Counterpoint: Model Driven Archi-
tecture Is Ready for Prime Time / Agile Model Driven Development Is Good
Enough. IEEE Software, 20(5):70–73, 2003.

29

