
The RISC ProgramExplorer
Tutorial and Manual1

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

April 8, 2010

1The hypertext version of this document is available at http://www.risc.jku.
at/research/formal/ProgramExplorer/manual.

Abstract

This document describes the use of the RISC ProgramExplorer, an interactive
program reasoning environment that is under development at the Research Insti-
tute for Symbolic Computation (RISC). The current version is a first demonstrator
skeleton that incorporates the overall technological and semantic framework (pro-
gramming language and formal specification language) and integrates the RISC
ProofNavigator as an interactive proving assistant. Work is going on to provide
this skeleton with the envisioned program reasoning capabilities. The software
runs on computers with x86-compatible processors under the GNU/Linux operat-
ing system; it is freely available under the terms of the GNU GPL.

Contents

1 Introduction 4

2 User Interface 6

3 Examples 14

3.1 Computing Factorial Numbers 14

3.2 Searching for Records . 24

3.3 Failed Tasks and Interactive Proofs 31

A Programming Language 36

B Specification Language 39

B.1 Logic Language . 39

B.1.1 Declarations . 39

B.1.2 Types . 40

B.1.3 Mapping Program Types to Logical Types 41

B.1.4 Program Variables . 42

B.1.5 Program States . 43

B.1.6 State Functions . 44

B.2 Theory Definitions . 46

B.3 Class Specifications . 47

B.4 Method Specifications . 48

B.5 Loop Specifications . 50

B.6 Statement Specifications . 51

CONTENTS 3

C Program Invocation 52

D Program Installation 55

D.1 README . 55

D.2 INSTALL . 58

E Task Directories 62

F Grammars 64

F.1 Programming Language . 64

F.2 Specification Language . 69

Chapter 1

Introduction

This document describes the current state and the use of the RISC ProgramEx-
plorer, an interactive program reasoning environment that is under development
at the Research Institute for Symbolic Computation (RISC). The work reported
in this document is based on prior work on the RISC ProofNavigator [8, 5], an
interactive proving assistant that is fully integrated into the RISC ProgramEx-
plorer. Eventually the environment shall provide advanced program analysis and
reasoning capabilities based on a calculus elaborated in [6, 7]. The current version
should be mainly considered as a first demonstrator skeleton that incorporates the
overall technological and semantic framework (programming language and for-
mal specification language) in an elaborated graphical user interface. The actual
analysis and reasoning capabilities will be integrated in a future edition.

The system is freely available under the GNU Public License at the URL

http://www.risc.jku.at

/research/formal/software/ProgramExplorer

It has been reasonably well tested with small examples but is certainly not free of
bugs; the author is glad to receive error reports at

Wolfgang.Schreiner@risc.jku.at

The remainder of the document is split in two parts:

• Chapters 2–3 essentially represent a tutorial for the RISC ProgramExplorer
based on examples contained in the software distribution; for learning to use
the system, we recommend to study this material in sequence.

5

• Appendices A–F essentially represent a reference manual with an explana-
tion of the software’s programming and specification language; this material
can be studied on demand.

The RISC ProgramExplorer uses the following third party software; detailed ref-
erences can be found in the README file of the distribution listed on page 55:

• CVC Lite

• RIACA OpenMath Library

• General Purpose Hash Function Algorithms Library

• ANTLR

• Eclipse Standard Widget Toolkit

• Mozilla Firefox

• GIMP Toolkit GTK+

• Sun JDK

• Tango Icon Library

Many thanks to the respective authors for their great work.

Chapter 2

User Interface

In the following we explain the main points of interaction with the user inter-
face of the RISC ProgramExplorer. We assume that the system is appropriately
installed (see Appendix D) and that the current working directory is the subdi-
rectory examples of the installation directory with write permission enabled (re-
spectively a writable copy of that directory). After typing on the command line

ProgramExplorer &

a window pops up that displays the startup screen shown in Figure 2.1.

This window has three menus at the top:

File The menu entry “New File” creates a new file; files with extension .java are
considered as program files, files with extension .theory are considered
as specification files. The menu entry “Open File” opens such a file. The
menu entry “Close file” closes the currently selected open file. The menu
entry “Close all files” closes all open files. The menu entry “Save file” saves
the currently selected open file to disk.

The menu entry “Workspace...” displays the window shown in Figure 2.2.
This window displays those directories that together represent the root of
the package hierarchy for the RISC ProgramExplorer. The default is the
list of those directories set in the environment variable PE CLASSPATH (see
Section C) respectively, if the variable is not set, the current working direc-
tory. The buttons “Add Directory” and “Remove Directory” modify the list,
the button “Restore Directories” restores the original setting. The button
“Okay” activates the current selection, the button “Cancel” discards it.

7

Figure 2.1: Startup Window

Figure 2.2: Workspace Configuration

8 Chapter 2. User Interface

Figure 2.3: Properties Configuration

The menu entry “Properties...” displays the window shown in Figure 2.3.
The window allows to configure various properties: the path to the exe-
cutable of the Cooperating Validity Checker Lite (CVCL) version 2.0, the
path to the Java compiler, the path to the Java application launcher, the path
of the working directory (used e.g. for creating new files), the path for the
main class of the program (the class containing method main). The val-
ues of these variables can be configured by various environment variables
(see Section C). The button “Okay” confirms any modifications, the button
“Cancel” discards them.

The menu entry “Quit” terminates the program.

Edit The menu entry “Undo” undoes the last change in the file currently being
edited, the menu entry “Bigger/Smaller font” allows to change the size of
the font of the editor and of the console.

Help The entry “Online Manual” displays the hypertext version of this document;
the entry “About RISC ProgramExplorer” displays a copyright message.

Below the menu, a row of buttons is displayed as shown in Figure 2.4.

9

Figure 2.4: Analyze Buttons

New File Like the menu option “New File”, this button creates a new file
and opens it in the editing area.

Open File Like the menu option “Open File”, this button opens an already
existing file.

Save File Like the menu option “Save File”, this button saves an open file
that was modified in the editing area.

Refresh View This button removes from the view all information (symbols
and tasks) that was created by processing a class or theory.

Run Program This button calls the Java compiler to compile the “Main”
class indicated in the “Properties” configuration and calls the Java applica-
tion launcher to execute it; the output is displayed in the console window
(currently no input is possible).

The main area of the window is split into four areas (whose borders may be
dragged by the mouse pointer). The central area (which is initially empty) is the
“editing” area where program and specification files may be displayed and edited.
The other three areas are:

Console This area displays textual output of the RISC ProgramExplorer, initially
a copyright message. When program/specification files are processed, this
area displays the success status respectively error messages, if something
went wrong.

Files/Symbols In this area, the tabs “Files” and “Symbols” display the directory
respectively symbol structure of the workspace as shown in Figure 2.5. By
moving the mouse pointer over a directory/file, a yellow “tip” window pops
up that displays the path of the corresponding directory/file respectively
information on the corresponding symbol.

Double-clicking on a file opens the corresponding file in the central edit-
ing area. Right-clicking on a directory opens a pop-up menu with an op-
tion “Refresh” to refresh the display of the directory content and an option

10 Chapter 2. User Interface

Figure 2.5: Workspace Files/Symbols

11

“Delete” to delete the directory (after a confirmation). Right-clicking on
a file opens a pop-up menu with an option “Open” to open the file in the
editing area and an option “Delete” to delete the file (after a confirmation).

Double-clicking on a symbol (e.g. a class symbol or a theory symbol) also
opens the corresponding source file (a .java file or a .theory file) in
the editor but also immediately processes it; the success of the operation is
displayed in the “Console” area. There are the following kinds of symbols:

Package A symbol denoted by a package declaration.

Class A symbol introduced by a class declaration.

Class Variable A symbol introduced by the declaration of a static

variable in a class.

Object Variable A symbol introduced by the declaration of a non-
static variable in a class.

Class Method A symbol introduced by the declaration of a static

method in a class.

Object Method A symbol introduced by the declaration of a non-sta-
tic method in a class.

Constructor A symbol introduced by the declaration of a constructor
in a class.

Method Parameter A symbol introduced by the declaration of a pa-
rameter in a method header in a class.

Theory A symbol introduced by a theory declaration.

Type A symbol introduced by a TYPE declaration in a theory.

Value A symbol introduced by a value declaration in a theory.

Formula/Axiom A symbol introduced by a FORMULA/AXIOM declara-
tion in a theory.

All Tasks/Open Tasks In this area, the tabs “All Tasks” and “Open Tasks” dis-
play the tree of all tasks organized in task folders respectively the list of all
open tasks as shown in Figure 2.6. The status of the task is indicated by in
icon and the color of the description:

New Task This task (described in red color) is new i.e. it has not yet
been attempted to solve it.

Open Task This task is (described in red color) open i.e. it has been
attempted but not yet solved.

12 Chapter 2. User Interface

Figure 2.6: All/Open Tasks

13

Closed Task This task is closed, i.e. it has been successfully solved.
The task is typically described in blue; if the description is in violet,
the task was solved by a proof in a previous invocation of the RISC
ProgramExplorer. The corresponding proof may be then replayed in
the current invocation.

Failed Task This task (described in red) is failed, i.e. the task is im-
possible to solve (which indicates a program/specification error).

By moving the mouse pointer over a task, a yellow “tip” window pops up
that displays information on the task such as the kind of task and its sta-
tus. By double-clicking on the task, the position in the source code of the
program or theory is displayed that triggered the creation of the task.

By right-clicking on the task a pop-up menu shows various options depend-
ing on the kind of task: “Execute Task” attempts to solve the task e.g. by
an automatic proof or, if that fails, by a computer-assisted interactive proof;
“Print Task” prints information on the task (the content of the “tip” window)
in the “Console” area. “Print State Proving Problem” prints a translation of
the task into a proving problem in an extended logic that involves reasoning
about program states. “Print Classical Proving Problem” prints a translation
of the problem into a classical predicate logic proving problem. “Print Sta-
tus Evidence (Proof)” shows an associated proof; “Reset Task” resets the
task into the “new” state (and deletes any associated proof).

By right clicking on a task folder, a pop-up menu shows up whose option
“Execute Task” attempts to solve all tasks in the folder by an automatic
proof (interactive proofs have to be individually triggered as shown above).
By right the tab “All Tasks/Open Tasks” itself, a menu pops up whose option
“Execute all tasks” attempts to solve all tasks by automatic proofs; task
folders that only contain closed proofs are then closed as well.

Chapter 3

Examples

In this chapter, we are going to illustrate the current features of the RISC Program-
Explorer by some small examples (that are included in the software distribution).
The software currently represents in essence a demonstrator skeleton which allows

• to write programs in a subset of Java called “MiniJava” (see Appendix A)
and have them parsed and type-checked;

• to use a logic language (see Appendix B.1) in order to write logical theories
(see Appendix B.2) and have them parsed and type-checked;

• annotate programs with program specifications (see Appendix B) and have
them parsed and type-checked;

• prove the generated type-checking conditions, either by automatic proofs
(using the integrated Cooperating Validity Checker Lite CVCL [3, 2]), or, if
this should not succeed, by a computer-assisted interactive proof (using the
integrated RISC ProofNavigator [8, 5]).

A future edition of the RISC ProgramExplorer will support true reasoning/veri-
fication tasks derived from the formal program specifications.

3.1 Computing Factorial Numbers

This example is about the specification of the following program

3.1 Computing Factorial Numbers 15

public class Factorial
{
public static int fac(int n)
{
int i=1;
int p=1;
while (i <= n)
{
p = p*i;
i = i+1;

}
return p;

}
}

The program is written in Java-syntax; it introduces a method fac which is sup-
posed to return the factorial of its argument n.

The specification of the program is to be based on the mathematical function
factorial : N→ N which is uniquely characterized by the axioms

factorial(0) = 1
∀n ∈ N : factorial(n+1) = (n+1) · factorial(n)

First we describe how to define the corresponding mathematical theory, next we
describe how to specify the program with the help of this theory.

Theory We define a theory Math which introduces a function factorial on the
natural numbers and constrains its behavior by two axioms as discussed above:

theory Math
{
// an axiomatic specification of
// the factorial function
factorial: NAT -> NAT;
fac_1: AXIOM factorial(0) = 1;
fac_2: AXIOM FORALL(n: NAT):
factorial(n+1) = (n+1)*factorial(n);

}

We can use the RISC ProgramExplorer to write this theory in a file Math.theory
in the unnamed top-level package as follows: we select the button New File ,

16 Chapter 3. Examples

Figure 3.1: A Logic Theory

enter the file name Math.theory, and press Okay. In the central region a new
editing area titled Math.theory opens; we enter above theory declaration and press
the button Save File . The RISC ProgramExplorer window has then the state
shown in Figure 3.1. The theory is displayed as

3.1 Computing Factorial Numbers 17

with colors indicating keywords of the specification language. Identifiers are ac-
tive, e.g. by double-clicking on factorial the identifier is highlighted, the tab Sym-
bol on the left side of the window highlights the corresponding symbol and the
Console area displays

value factorial: (NAT) -> NAT
factorial: (NAT) -> NAT

(likewise the identifiers Math, fac 1, and fac 2 can be double-clicked). Moving
the mouse pointer over the symbol on the left tab displays a corresponding yel-
low “tip” window, clicking with the right mouse-button allows to choose between
Print Symbol and Print Declaration. Choosing the symbol Math and selecting
Print Symbol displays in the console area output similar to

theory Math (file /.../examples/Math.theory)

Selecting Print Declaration displays

theory Math
{
factorial: (NAT) -> NAT;
fac_1: AXIOM factorial(0) = 1;
fac_2: AXIOM FORALL(n: NAT): factorial(n+1) = ...;

}

If we introduce in the declaration an error, e.g. by mistyping the function name as
factorials in axiom

fac_1: AXIOM factorials(0) = 1;

the Console area shows the output

ERROR (Math.theory:5:16):
there is no value named factorials

theory Math was processed with 1 error

In the editing area, the theory is then displayed as

18 Chapter 3. Examples

The position of the error in the file is indicated by an icon on the left bar, by a
corresponding red marker on the right bar and by underlining the syntactic phrase
in red; moving the mouse pointer over the icon on the left or over the marker on
the right displays the corresponding error message. The same icon at the top of the
editing tab and in the tab Symbols indicates that the theory has an error. Moving
the mouse pointer over the red square on the top-right corner of the editing area
displays the number of errors in the theory. After fixing the error and pressing the
button Save File , the correct state is restored.

The tab All Tasks on the right now looks as follows:

It displays a folder theory Base with subfolder type checking conditions; the folder
icons indicate that these folders contain (subfolders with) open tasks to be
performed. Indeed, the subfolder type checking conditions contains two tasks
labeled Interval [MIN INT..MAX INT] is not empty and Interval [0..MAX INT] is
not empty (the task labels start with automatically generated tags of the form [ccc]
for unique referencing). The icon indicates that this task is “new”, the red font
of the task description indicates that the task is not yet performed. Moving the
mouse pointer over the tasks (respectively right-clicking the tasks and selecting
the option Print Task) shows the task descriptions:

3.1 Computing Factorial Numbers 19

Task: [2f4] Interval [MIN_INT..MAX_INT] is not empty
Status: new
Type: verify type checking condition
Goal formula: MIN_INT <= MAX_INT

Task: [xlq] Interval [0..MAX_INT] is not empty
Status: new
Type: verify type checking condition
Goal formula: MIN_INT <= MAX_INT => 0 <= MAX_INT

Right-clicking the tasks and selecting the option Print Classical Proving Problem
shows the detailed proofs to be performed for performing the tasks: in the first
case, this proof is

Declarations:
STRING: TYPE;
MIN_INT: INT = -2147483648;
MAX_INT: INT = 2147483647;
Goal: MIN_INT <= MAX_INT

and in the second case, this proof is

Declarations:
STRING: TYPE;
MIN_INT: INT = -2147483648;
MAX_INT: INT = 2147483647;
Goal: MIN_INT <= MAX_INT => 0 <= MAX_INT

As indicated by the folder names theory Base and type checking conditions, these
tasks have been generated by type-checking the automatically constructed theory
Base displayed in the Symbol tab to the left; Right-clicking the theory symbol and
selecting the option Print Declaration displays the definition of the theory

theory Base
{
MIN_INT: INT = -2147483648;
MAX_INT: INT = 2147483647;
int: TYPE = [MIN_INT..MAX_INT];
nat: TYPE = [0..MAX_INT];
...

}

20 Chapter 3. Examples

The theory introduces two types int and nat as integer intervals with bounds
MIN INT and MAX INT respectively 0 and MAX INT. Since types must not be
empty, the type checker generated the tasks to prove MIN INT ≤ MAX INT and
0 ≤ MAX INT shown above. These simple tasks can be automatically proved.
Right-clicking the tasks and selecting the option Execute Task immediately closes
the tasks (alternatively we may also right-click the parent folder and select Exe-
cute Task or right-click the All Tasks button and select Execute All Tasks). The tab
All Tasks now looks as follows:

The task icon and the blue font color indicate that the tasks are now “closed”,
so the theory could be type-checked well. Right-clicking the tasks and selecting
“Reset Task” resets the tasks to their original “new” state.

Program We can now create (in analogy to the creation of file Math.theory) a
program file with the name Factorial.java which holds the program class Facto-
rial described above. Saving the file type-checks it and creates in tab Symbols
a class symbol Factorial with method symbol fac and parameter symbol n. As
for theories, also the identifiers in the source file are active, double-clicking e.g.
on fac in the editing area prints the method declaration in the Console area and
highlights the symbol fac in the Symbols tab. Correspondingly, double-clicking
the symbol fac moves the editor to the position of the declaration of the method
and highlights its header.

To formally specify the behavior of the method fac with the help of the the-
ory Math, we annotate the class Factorial by special program comments /*@
...@*/ as follows:

/*@
theory uses Math {

3.1 Computing Factorial Numbers 21

// the mathematical factorial function
factorial: NAT -> NAT = Math.factorial;

}
@*/
public class Factorial
{
public static int fac(int n) /*@
requires VAR n >= 0;
ensures VALUE@NEXT = factorial(VAR n);

@*/
{
int i=1;
int p=1;
while (i <= n) /*@
invariant 1 <= VAR i AND VAR i <= VAR n+1

AND VAR p = factorial(VAR i);
decreases VAR n - VAR i + 1;

@*/
{
p = p*i;
i = i+1;

}
return p;

}
}

The RISC ProgramExplorer window has then the state shown in Figure 3.2. The
actual program code is displayed as shown in Figure 3.3. Annotations can become
“folded” away from the program source code; clicking on the icon folds the
annotation, clicking on the icon unfolds it again. Moving the mouse pointer
over the icon displays the content of the folded annotation in a yellow “tip”
window.

The annotation theory ... before the class declaration introduces the “local”
theory for the class i.e. those entities that may be further on referenced by short
names; the uses Math clause indicates that the local theory refers to entities of
the previously defined theory Math. The local theory is simple: it just defines a
function factorial by the corresponding function in theory Math which can be ref-
erenced by the long name Math.factorial. Alternatively, we might have referred
in the following directly to Math.factorial (however, even then an empty decla-
ration theory uses Math { } is required because we refer to theory Math) or
we might have just axiomatized the function factorial directly in the local theory
(without referring to theory Math at all).

22 Chapter 3. Examples

Figure 3.2: A Program Class

The annotation requires ...ensures ... after the header of method fac
introduces a method specification by a precondition (requires ...) that de-
scribes the assumptions on the prestate of the method call (in particular constraints
of the method arguments) and a postcondition (ensures ...) that describes the
obligation on the poststate of the method call (in particular obligations on the
method result). In our case, the precondition

requires VAR n >= 0;

states that the value of the program variable n (the method parameter) indicated by
the term VAR n must not be negative when the method is called; the postcondition

ensures VALUE@NEXT = factorial(VAR n);

states the method result indicated by the term VALUE@NEXT must be identical to
the value of the logical function factorial when applied to the value of n.

3.1 Computing Factorial Numbers 23

Figure 3.3: The Program Class in Detail

Finally, the body of the while loop is annotated by a loop invariant and a termi-
nation term: the loop invariant essentially states the relationship of the prestate of
the loop to the poststate of every iteration of the loop body; the termination term
denotes a non-negative integer number that is decreased by every iteration of the
loop. In our case, the invariant

invariant 1 <= VAR i AND VAR i <= VAR n+1
AND VAR p = factorial(VAR i);

limits the range of the iteration counter i and states that the value of the program
variable p is identical to the factorial of the value of i. The termination term

decreases VAR n - VAR i + 1;

states that the value of i is decremented by every loop iteration but does not be-
come bigger than n+1.

24 Chapter 3. Examples

Type-checking the annotation gives rise to two new tasks inserted in task folder
class Factorial, subfolder method fac, subfolder type checking conditions. As
usual double-clicking on the tasks highlights the corresponding source code posi-
tions; moving the mouse over the tasks shows their description:

Task(Factorial.java:15:32:4:36):
[twk] value is natural number

Annotation line:
ensures VALUE@NEXT = factorial(VAR n);

ˆ
Status: new
Type: verify type checking condition
Goal formula: old n >= 0 => MIN_INT >= 0 OR var n >= 0

Task(Factorial.java:23:20:3:35):
[hx3] value is natural number

Annotation line:
AND VAR p = factorial(VAR i);

ˆ
Status: new
Type: verify type checking condition
Goal formula:
old n >= 0 AND 1 <= var i AND var i <= (var n+1) =>
MIN_INT >= 0 OR var i >= 0

As we can see, both conditions were derived from applying the function factorial
to the value of a program variable. Since factorial is only defined on natural
numbers, it has to be proved that the value of the respective program variable is
not negative. Right-clicking on the folder type checking conditions and selecting
the option Execute Task discharges these conditions automatically such that no
task remains open.

3.2 Searching for Records

This example deals with the specification of a program that searches in an array
of records for a record with a specific key. The example is based on the following
program class:

class Record
{
String key;

3.2 Searching for Records 25

int value;

Record(String k, int v)
{
key = k;
value = v;

}

boolean equals(String k)
{
boolean e = key.equals(k);
return e;

}

public static int search(Record[] a, String key)
{
int n = a.length;
for (int i=0; i<n; i++)
{
Record r = new Record(a[i].key, a[i].value);
boolean e = r.equals(key);
if (e) return i;

}
return -1;

}

public static void main()
{
int N = 10;
Record[] a = new Record[N];
for (int i=0; i<N; i++)
a[i] = new Record("abc", i);

a[5] = new Record("xyz", 5);
int i = search(a, "xyz");
System.out.println(i);

}
}

This program introduces an object type Record with a string field key and an inte-
ger field value. The type has an constructor to build a record from an given string
and integer and a method equals that allows to check whether the record has the
denoted key. This function calls the method equals on object type String; while
this class is part of the Java standard library, it has to be explicitly defined in the

26 Chapter 3. Examples

RISC ProgramExplorer. We therefore introduce a dummy class

package java.lang;
public class String
{
public boolean equals(String s) return false;

}

solely for declaring the method equals (without caring for the actual representa-
tion of strings or the actual implementation of the method). Unlike real Java, our
programming language only allows to call program methods with return values
to initialize/assign to variables, not as parts of program expressions1. The two
statements

boolean e = key.equals(k);
return e;

in the body of equals can therefore not be merged into one.

The core of the program is the method search which takes an array a of records
and a key and returns the index of the first record in a that contains that key (or
−1, if there is no such record). The core of the method body is represented by the
two statements

Record r = new Record(a[i].key, a[i].value);
boolean e = r.equals(key);

The first statement builds a record r from the key and the value of record a[i].
The second statement calls the method equals on r to compare its key with key.
This apparently clumsy way of using the function equals is necessary because
the specification formalism considers object variables (variables of object types)
to hold object values rather than object references (which considerably simplifies
reasoning because then the modification of an object via one variable cannot affect
an object referenced by another variable).

However, since the programming language Java (like most programming lan-
guages) lets object variables hold references, the semantics of our programming
language would deviate from classical program semantics. Therefore the type
checker ensures that two different program variables cannot refer to the same ob-
ject; consequently it does not make any difference whether an object variable

1The reason is that methods may cause side effects and we do not want the computation of
program expressions to cause side effects

3.2 Searching for Records 27

holds an object value or an object reference. Consequently, if equals would mod-
ify its record, above solution would not update array a (independent of whether
object variables hold object values or object references) while the solution

Record r = a[i];
boolean e = r.equals(key);

would update a in a language with reference semantics for objects but not in a
language with value semantics. For similar reasons, the even shorter solution

boolean e = a[i].equals(key);

is also (even syntactically) prohibited. See Appendix A for a more thorough de-
scription of the constraints of our programming language compared to Java.

The method main of the program creates an array, fills it with values, updates
it, and calls the method search in the usual way. It also calls the method Sys-
tem.out.println of the Java Standard API. This method has to be declared with the
help of the dummy classes

package java.lang;
import java.io.*;
public class System
{
public static PrintStream out;

}

package java.io;
public class PrintStream
{
public void println(boolean b)
public void println(int i)
public void println(char c)
public void println(String s)
public void println()

}

Type-checking the class Record creates a new theory Record in the same package
as the class. Right-clicking this theory from the tab Symbols and selecting Print
Declaration displays

theory Record uses java.lang.String, Base

28 Chapter 3. Examples

{
Record: TYPE =
[#key: java.lang.String.String, value: Base.int#];

null: Record;
nullArray: ARRAY Base.int OF Record;
length: (ARRAY Base.int OF Record) -> Base.nat;

}

which introduces the following entities:

• a logical record type Record which contains one field for each object vari-
able in class Record; the specification language considers program variables
of object type Record to hold values of the logical type Record;

• a constant null representing the logical counterpart of the null pointer of
type Record.

• a type nullArray representing the logical counterpart of the null pointer of
type Record[].

• a function length representing the logical counterpart of the program selec-
tor .length when applied to arrays of type Record[].

As can be seen from the declaration, the logical counterparts of program arrays
have logical type ARRAY Base.int OF . . . where Base.int (type int in theory Base)
denotes the logical counterpart of the program type int.

The program is now specified with the help of the following local theory

/*@
theory uses Base, Record, java.lang.String
String: TYPE = java.lang.String.String;
notFound:
PREDICATE(ARRAY Base.int OF Record.Record,
Base.int, String) =

PRED(a:ARRAY Base.int OF Record.Record,
n: Base.int, key: String):
FORALL(i:INT):
0 <= i AND i < n => a[i].key /= key;

@*/
class Record { ... }

3.2 Searching for Records 29

which introduces a predicate notFound to describe that in an array a of records,
all positions less than n hold records whose keys are different from key.

The program method search can now be specified as

public static int search(Record[] a, String key) /*@
requires VAR a /= Record.nullArray;
ensures
(LET result=VALUE@NEXT,

n = Record.length(VAR a)
IN
IF result = -1 THEN
notFound(VAR a, n, VAR key)

ELSE
0 <= result AND result < n AND
notFound(VAR a, result, VAR key) AND
VAR a[result].key = VAR key

ENDIF);
@*/
{ ... }

The method’s precondition states that search must not be called with the array
null as argument and that its result is either−1 (indicating that the given key has
not been found in the array) or that its result is the smallest index of the array such
that the corresponding record has the denoted key. The specification makes use
of local logical variables result and n representing the return value of the method
and the length of the method parameter a.

The core loop of the method’s body can be annotated as

for (int i=0; i<n; i++)
/*@
invariant VAR a /= Record.nullArray

AND VAR n = Record.length(VAR a)
AND 0 <= VAR i AND VAR i <= VAR n
AND notFound(VAR a, VAR i, VAR key);

decreases VAR n - VAR i;
@*/
{ ... }

to give a suitable invariant and termination term.

The state after type-checking the annotated program is shown in Figure 3.4.

Type checking the annotated program class generates two type checking condi-
tions. The first one is generated for the local theory of Record and printed as

30 Chapter 3. Examples

Figure 3.4: Searching for Records

Task(Record.java:1:1:6:44):
[s3f] value is in interval

Annotation line:
FORALL(i:INT): 0 <= i AND i < n =>
a[i].key /= key;
ˆ

Status: new
Type: verify type checking condition
Goal formula:
0 <= i AND i < n => MIN_INT <= i AND i <= MAX_INT

It has to make sure that variable i is an element of type Base.int (the base type of
the array type of a). The second is generated for the method search and printed as

Task(Record.java:15:52:6:27):
[qtt] value is in interval

3.3 Failed Tasks and Interactive Proofs 31

Annotation line:
notFound(VAR a, n, VAR key)

ˆ
Status: new
Type: verify type checking condition
Goal formula:
old a /= Record.nullArray AND result = value@next
AND n = Record.length(var a) =>
(MIN_INT <= 0 OR MIN_INT <= n) AND
(MAX_INT <= MAX_INT OR n <= MAX_INT)

It has again to make sure that variable i is an element of type Base.int (the type
of the parameter n of notFound). Right-clicking on task folder class Record and
selecting the menu option Execute Task automatically discharges these tasks.

3.3 Failed Tasks and Interactive Proofs

The previous sections dealt only with tasks (type-checking conditions) that could
be automatically solved by the integrated decision procedure. In this section, we
will discuss what happens if the automatic decision procedure does not succeed.

The first kind of failure can be demonstrated by the theory

theory Proving1
{
// type-checking task can be proved unsatisfiable
a: INT = 1;
b: INT = 0;
T: TYPE = [a..b];

}

which attempts to erroneously define an empty type T (by an interval of the in-
tegers whose lower bound is bigger than the upper bound). Type-checking this
theory generates the task

Task(Proving1.theory:6:13):
[iai] Interval [a..b] is not empty

Status: new
Type: verify type checking condition
Goal formula: a <= b

If we select Execute Task, the task is now printed as

32 Chapter 3. Examples

Task(Proving1.theory:6:13):
[iai] Interval [a..b] is not empty

Status: failed
(deemed unsolvable by decision procedure)

Type: verify type checking condition
Goal formula: a <= b

and tagged in the task tree with the icon (which indicates task status “failed”).
The reason is that the RISC ProgramExplorer, after unsuccessfully trying to per-
form the task with goal a ≤ b, tries to perform the opposite of the task, i.e. the
task with the negated goal formula a > b. Since this succeeded, the original task
can be considered as impossible, i.e. it receives status “failed”. A task with such a
status indicates an error in the corresponding theory/program written by the user.

The second kind of failure can be demonstrated by the theory

theory Proving2
{
// type-checking task cannot be solved
a: INT;
b: INT;
T: TYPE = [a..b];

}

which defines a type as a subrange of the integers with unspecified bounds a and b.
Type checking this theory yields the task

Task(Proving2.theory:6:13):
[iai] Interval [a..b] is not empty

Status: new
Type: verify type checking condition
Goal formula: a <= b

If we select Execute Task, the task is now printed as

Task(Proving2.theory:6:13):
[iai] Interval [a..b] is not empty

Status: open (interactive proof required)
Type: verify type checking condition
Goal formula: a <= b

and tagged in the task tree with the icon (which indicates task status “open”).
In this case, neither the task nor its opposite could be automatically solved, i.e.

3.3 Failed Tasks and Interactive Proofs 33

Figure 3.5: An Interactive Proof

the automatic decision procedure has failed. The only chance to solve this task (if
any) is now by a computer-assisted interactive proof. If we select Execute Task for
a second time, the RISC ProgramExplorer switches to the view “Verify” depicted
in Figure 3.5.

This view is essentially a view on the RISC ProofNavigator [8, 5], a computer-
assisted interactive proving assistant integrated into the RISC ProgramExplorer.
The task generated by the RISC ProgramExplorer has been translated into a prov-
ing problem of the RISC ProofNavigator which can now be attempted with the aid
of human intelligence. However, in our example, this attempt is in vain: the proof
situation does not contain any assumptions, pressing the button View Declarations
displays the corresponding declarations shown in Figure 3.6. Since a and b are
undefined, there is no chance of completing the proof successfully. We therefore
press the button Quit Proof and return (after a confirmation) to the “Analyze”
view with task status still unchanged as indicated by the icon .

34 Chapter 3. Examples

Figure 3.6: The Declarations

It is unlikely (but nevertheless possible) that the type-checker generates tasks that
cannot be solved by the integrated automatic decision procedure but can be solved
by an interactive proof. If this should be the case, the proof remains persistent
across multiple invocations of the RISC ProgramExplorer; it can be later dis-
played (menu option Print Status Evidence) and also replayed again (menu option
Execute Task). Menu option Reset Task erases the proof and returns the task to
state “new”.

If there is no ongoing interactive proof, the user may manually switch to the view
“Verify” and enter declarations and commands of the RISC ProofNavigator. The
use of the software is then essentially the same as in the standalone version of the
RISC ProofNavigator.

Thus the RISC ProofNavigator is already fully integrated into the task solution
framework of the RISC ProgramExplorer; while this is not of major importance
for the purpose of verifying type checking conditions, it will become essential in
the future for verifying tasks originating from the envisioned more general rea-
soning and verification problems.

References

[1] ANTLR v3 Parser Generator, 2010. http://www.antlr.org.

[2] Clark Barrett. CVC Lite Homepage, April 2006. New York University, NY,
http://www.cs.nyu.edu/acsys/cvcl.

[3] Clark Barrett and Sergey Berezin. CVC Lite: A New Implementation of the
Cooperating Validity Checker. In Computer Aided Verification: 16th Interna-
tional Conference, CAV 2004, Boston, MA, USA, July 13–17, 2004, volume
3114 of Lecture Notes in Computer Science, pages 515–518. Springer, 2004.

[4] The Java Modeling Language (JML), 2010. http://www.jmlspecs.org.

[5] The RISC ProofNavigator, 2010. Research Institute for Symbolic Computa-
tion (RISC), Johannes Kepler University, Linz, Austria, http://www.risc.
jku.at/research/formal/software/ProofNavigator.

[6] Wolfgang Schreiner. A Program Calculus. Technical report, Research
Institute for Symbolic Computation (RISC), Johannes Kepler University,
Linz, Austria, September 2008. http://www.risc.jku.at/people/

schreine/papers/ProgramCalculus2008.pdf.

[7] Wolfgang Schreiner. Understanding Programs. Technical report, Re-
search Institute for Symbolic Computation (RISC), Johannes Kepler Uni-
versity, Linz, Austria, July 2008. http://www.risc.uni-linz.ac.at/

people/schreine/papers/Understanding2008.pdf.

[8] Wolfgang Schreiner. The RISC ProofNavigator: A Proving Assistant for
Program Verification in the Classroom. Formal Aspects of Computing,
21(3):277–291, 2009.

Appendix A

Programming Language

In this appendix, we sketch the language that is used in the RISC ProgramExplorer
for describing programs (its formal syntax is described in Appendix F.1). This
programming language can in the following sense be considered as a “MiniJava”,
i.e. as (a variant of) a subset of Java: Assume that a program can be parsed and
type-checked by the RISC ProgramExplorer without error. If this program can be
also compiled by the Java compiler without error, the execution of the generated
target code behaves as specified by Java1.

Deviations In detail, MiniJava has the following deviations compared to Java
(such that a program that can be parsed and type-checked by the RISC Program-
Explorer cannot be compiled in Java):

Visibility Modifiers The modifiers public, protected, and private are rec-
ognized but ignored; in fact MiniJava treats all entities as if declared with
modifier public. Consequently, if a MiniJava program violates the speci-
fied access constraints, it cannot be compiled by a Java compiler.

Constraints The following items describe constraints of MiniJava (such that a
program that can be compiled with Java cannot be parsed or type-checked by the
RISC ProgramExplorer)2.

1It should be noted that “MiniJava” was designed as a simple imperative programming lan-
guage whose concrete syntax and semantics is immediately familiar to many programmers and
can thus represent the basis for understanding formal specifications of imperative languages. It is
not designed as the starting point of the specification of full Java.

2Actually, only the major constraints are listed (more constraints can be detected by investigat-
ing the syntax specified in Appendix F.1).

37

Inheritance MiniJava does not support inheritance; every class denotes an object
type that is incompatible with the object type of any other class.

Interfaces MiniJava does not support interfaces.

Method Calls A method call with a return value may only appear on the right
side of of a variable initialization or of a variable assignment, not as an
expression within another expression.

Throwing Exceptions An exception can be only thrown by a statement of form
throw new Exception(string) where string denotes a string literal,
respectively a value of type java.lang.String.

References The type system of MiniJava restricts a program such that that every
object variable can be considered to hold an object value itself (rather than a
reference to the actual object value) which considerably simplifies reasoning
about objects. More concretely, this restriction ensures that two different
references cannot denote the same object (and so an update of the object
value via one reference cannot affect the object value denoted by any other
reference). In particular,

• a variable of an object type may only receive the result of a constructor
call or of a method call;

• a return statement may only return (the result of) a constructor call, a
method call, or an object path v..., where v denotes a local variable
of the current method;

• a method/constructor call may receive as an argument of an object type
only (the result of) a constructor call, a method call, or an object path
v... where v denotes a local variable or a method parameter that is
not the base of an object path which appears as another argument in
the same method/constructor call.

Here an object path v... denotes the variable v, possibly trailed by a se-
quence of selectors of the form .var (an object variable selector) or [exp]
(an array index selector).

Java Classes The RISC ProgramExplorer does not itself provide/implement the
classes of the Java API (also not the classes java.lang.String used for charac-
ter strings or java.lang.System used for standard input/output); if such classes
are used in programs, the programmer must provide corresponding class stubs in
(a subpackage of) a package java within the package hierarchy seen by the RISC
ProgramExplorer (see Section C).

38 Chapter A. Programming Language

Specification Comments The contents of program comments of the form /*@

...@*/ and //@ ... are interpreted as formal program specifications; the lan-
guage of these specifications are explained in the following section.

Appendix B

Specification Language

In this appendix, we describe the language that is used in the RISC ProgramEx-
plorer for specifying programs. This language is based upon the logic language of
the RISC ProofNavigator as explained in Section B.1. With this language whose
formal syntax is described in Appendix F.2, theories can be constructed as de-
scribed in Sections B.2 and B.3. With the help of theories, we may specify pro-
grams as described in Sections B.4, B.5, and B.6.

B.1 Logic Language

The logic language of the RISC ProgramExplorer is based on the language of the
RISC ProofNavigator [5, 8]. In the following, we only describe the differences
respectively extensions.

B.1.1 Declarations

The logic language allows to introduce by declarations

• type constants,

• object/function/predicate constants,

• constants denoting formulas (to be proved) and axioms (assumed true).

While the language of RISC ProofNavigator considers both terms and formulas as
elements of the syntactic domain (value) expression (formulas are just expressions

40 Chapter B. Specification Language

denoting a Boolean value, mismatches between terms and formulas are detected
by the type checker), the RISC ProgramExplorer decomposes expression into two
syntactic domains term and formula (which already enables the parser to detect
mismatches). Nevertheless, on the semantic level predicates are just considered
as functions whose result is a Boolean value.

Object/function/predicate constants can now be defined as follows:

ident:type=term This definition introduces an object constant ident defined
as term. If type denotes the type BOOLEAN, ident can be used as a 0-ary
predicate constant.

ident:type<=>formula This definition introduces a 0-ary predicate constant
ident; here type must denote the type BOOLEAN.

ident:type=LAMBDA(params):term This definition introduces a new func-
tion constant ident which is defined as a function that binds its concrete ar-
guments to the parameters params and returns as a a result the value of term
in the environment set up by the binding. Here type must denote a corre-
sponding function type. If the domain of type denotes the type BOOLEAN,
ident can be considered as a predicate constant.

ident:type=PRED(params):formula This definition introduces a predicate
constant ident which is defined as a predicate that binds its concrete argu-
ments to the parameters params and returns as a a result the truth value of
formula in the environment set up by the binding. Here type must denote
a corresponding function type whose domain denotes the type BOOLEAN;
here the type PREDICATE (see the following subsection) is recommended.

B.1.2 Types

The RISC ProgramExplorer introduces the additional types

STRING
PREDICATE(types)

STRING is an unspecified type which plays a role in the mapping of program types
to logical types, see the next subsection.

PREDICATE(types) is a synonym of

(types)->BOOLEAN

The use of this type syntactically simplifies the definitions of predicate constants
(see the previous subsection).

B.1 Logic Language 41

B.1.3 Mapping Program Types to Logical Types

The subsequent subsections describe how a logical formula may refer to the values
of program variables. This requires the mapping of program values to logical
values and of program types to logical types.

This mapping is based on the automatically generated theory Base in the unnamed
top-level package:

theory Base
{
MIN_INT: INT = -2147483648;
MAX_INT: INT = 2147483647;
int: TYPE = [MIN_INT..MAX_INT];
nat: TYPE = [0..MAX_INT];
char: TYPE;
nullIntArray: ARRAY int OF int;
lengthIntArray: (ARRAY int OF int) -> nat;
nullCharArray: ARRAY int OF char;
lengthCharArray: (ARRAY int OF char) -> nat;
nullBooleanArray: ARRAY int OF BOOLEAN;
lengthBooleanArray: (ARRAY int OF BOOLEAN) -> nat;
nullStringArray: ARRAY int OF STRING;
lengthStringArray: (ARRAY int OF STRING) -> nat;

}

In detail, program types are mapped to logical types as follows:

boolean The program type boolean is mapped to the logical type BOOLEAN.

int The program type int is mapped to the logical type Base.int which is a
subrange of INT.

char The program type char is mapped to the logical type Base.char (which
is currently unspecified).

class C Every class C is automatically translated to a theory C that resides
in the same package as the class. This theory contains a record type C that
contains one field for every object variable of the class. The program type C
is mapped to this record type C.

Additionally the automatically generated theory contains the constant

null: C;

that represent the program value null of type C.

42 Chapter B. Specification Language

Character strings If the user provides a program class java.lang.String,
string literals in programs are considered as values of this class which is
mapped to the logical type java.lang.String.String.

However, if the user does not provide such a class, string literals in programs
are considered as values of a pseudo-type that is mapped to the logical type
STRING.

T[] The program type T[] is mapped to the type ARRAY Base.int OF T’

where T’ is the logical type to which the program type T is mapped.

For every class C, the automatically generated theory contains the constants

nullArray: ARRAY Base.int OF C;
length: (ARRAY Base.int OF C) -> Base.nat;

that represent the program value null of the array type C[] respectively
the field access operator .length for arrays of type C[].

For the program types boolean[], int[], char[], and String[], the
theory Base contains constants that represent the null values of these array
types respectively the field access operator .length for arrays of these
types.

B.1.4 Program Variables

Synopsis

OLD var
VAR var

Description Within the context of a state predicate of a specification (e.g. a
method precondition), both OLD var and VAR var refer to the “current” state of
the program variable var.

Within the context of a state relation of a specification (e.g. a method postcondi-
tion or loop invariant), OLD var refers to the value of the program variable var
in the prestate of the specified execution; VAR var refers to the value of var in
the corresponding poststate.

More specifically, OLD var respectively VAR var denotes the logical value to
which the value of the program variable is mapped. Therefore the type of OLD
var respectively VAR var is the logical type to which the type of the program
variable is mapped.

B.1 Logic Language 43

Pragmatics A reference to a program variable var in a formula is tagged with
keyword OLD or VAR to explicitly distinguish it from a reference to a logical vari-
able; we thus emphasize that its value actually results from mapping a program
value to a logical value.

We choose the keywords and their interpretations in both state conditions and state
relations in order to minimize the confusion of programmers:

• If there is a corresponding state relation (e.g. method postcondition), we
may prefer in the precondition the use of OLD var since we thus refer
in both the precondition and the postcondition to the same value in the
same way.

However, if there is no corresponding state relation, the syntax OLD var in
a state condition looks awkward since the condition only refers to a single
state: here we may prefer VAR var.

• In a loop invariant (which also denotes a state relation), VAR var refers to
the value of the variable after the execution of the loop body, while OLD

var refers to the state of the variable in the prestate of the loop. If the
invariant does not refer to the prestate (as it is often the case), the invariant
can be thus expressed in terms of VAR var only.

B.1.5 Program States

The logic language introduces a new kind of values called states with correspond-
ing types, constants, functions, and predicates.

B.1.5.1 Type STATE

Synopsis

STATE
STATE(type)

Description A type of this family denotes the set of states that may result from
the execution of a command. The type STATE indicates that the execution of
the command must not return a value (i.e. that the command is executed within a
function of result type void); the type STATE(type) indicates that the command
may return a value of the denoted type.

44 Chapter B. Specification Language

B.1.5.2 State Constants

Synopsis

NOW
NEXT

Description Within the context of a state predicate of a specification (e.g. a
method precondition), both constants NOW and NEXT denote the “current” state.

Within the context of a state relation of a specification (e.g. a method postcon-
dition or loop invariant), the constant NOW denotes the prestate of the specified
execution while the constant NEXT denotes the corresponding poststate.

Pragmatics To simplify the semantics, NEXT is also defined in the context of a
state predicate.

In a loop invariant, NOW refers to the prestate of the loop, while NEXT refers to the
poststate of the loop body.

B.1.6 State Functions

Synopsis

VALUE@state
MESSAGE@state

Description These functions are evaluated over state whose type is of form
STATE or STATE(result).

If state results from the execution of return value, the term VALUE@next

refers to (the logical mapping of) value. The type of state must be of form
STATE(result); the type of VALUE@next is result (which is the logical map-
ping of the type of value).

If state results from the execution of throw new exception(message), the
term MESSAGE@next refers to (the logical mapping of) message. Its type is the
logical mapping of the program type java.lang.String (which must be the
type of message).

B.1 Logic Language 45

B.1.6.1 State Predicates

Synopsis

EXECUTES@state
CONTINUES@state
BREAKS@state
RETURNS@state
THROWS@state
THROWS(exception)@state

Description These predicates are evaluated over state whose type is of form
STATE or STATE(result):

• EXECUTES@state is true if and only if none of the following four predi-
cates is true.

• CONTINUES@state is true if and only if state results from the execution of
continue.

• BREAKS@state is true if and only if state results from the execution of
break.

• RETURNS@state is true if and only if state results from the execution of
return of return value.

• THROWS@state is true if and only if state results from the execution of
throw new exception(message) (for any exception type and string
message).

• THROWS(exception)@state is true if and only if state results from the
execution of throw new exception(message) (for any character string
message).

B.1.6.2 State Pair Predicates

Synopsis

READSONLY
WRITESONLY var, ...

46 Chapter B. Specification Language

Description These formulas are evaluated in the context of a pair of execution
states (e.g. a method postcondition or loop invariant) called the “prestate” and the
“poststate” of the execution.

READSONLY is true if and only if the value of every program variable is in the
poststate of the execution the same as in the prestate.

WRITESONLY name, ... is true if and only if the value of every program vari-
able that is not listed in “var, . . . ” is in the poststate of the execution the same as
in the prestate.

B.2 Theory Definitions

Synopsis

package package ;
import package.* ;
import package.theory ;
...
theory theory uses theories
{ declarations }

Description A theory definition introduces by a list of declarations a “the-
ory” i.e. a collection of logic entities that may be used in other theories or for the
specification of programs.

The clause theory theory states the name of the theory as theory. The op-
tional clause package package states that the new theory resides in package

and may be referenced elsewhere by the long name package.theory; likewise
any entity introduced by declarations may be referenced elsewhere by the
long name package.theory.entity. If the package clause is omitted, the
theory resides in the unnamed top-level package.

An import clause imports theories from other packages such that they may be
referenced from the current theory not only by their long names of form pack-

age.theory by also by their short names of form theory. A clause

import package.*;

imports all theories from package; a clause

import package.theory;

B.3 Class Specifications 47

imports from package only theory. If multiple package.* import theories
with the same name, these theories can be only referenced by their long name
unless one of the packages is also imported as package.theory; then this theory
can also be referenced by the short name. Multiple package.theory imports of
different theories with the same short name theory are prohibited.

Every theory referenced by declarations in the current theory must be listed in
the clause uses theory, ..., either by the long name of the theory or, if the
theory was imported, by its short name.

Pragmatics A theory with long name package.theory must reside in a file
theory.theory in a subdirectory package of a directory that is considered as a
root of the package hierarchy. The name packagemay have form p1.p2....pn;
the corresponding directory path is then p1/p2/.../pn.

The clause import ... is modeled after the semantics of the corresponding Java
clause but imports theories rather than classes.

The clause uses theory, ... was introduced to simplify the computation of
dependencies between classes and theories; in a subsequent version of the lan-
guage, this clause may be well dropped.

B.3 Class Specifications

Synopsis

/*@
import package.*;
import package.theory;
...
theory uses theory, ...
{ declarations }

@*/
classheader { ... }

Descriptions A class specification introduces by a list of declarations the
“local theory” of a class i.e. a theory of those entities that may be referenced by
their short names in the specification of methods, loops, and commands of the
class (the entities introduced in other theories may be always referenced by the
long name package.theory.entity). If a class has no such specification, the

48 Chapter B. Specification Language

local theory is empty; the specifications in this class may therefore only refer to
entities introduced in other theories.

An import clause imports theories from other packages, see Section B.2.

Every theory referenced by declarations in the local theory (respectively by the
specifications of methods, loops, statements in the current class) must be listed in
the clause uses theory, ..., either by the long name of the theory or, if the
theory was imported, by its short name.

Pragmatics The clause import ... is modeled after the semantics of the cor-
responding Java clause but imports theories rather than classes.

The clause uses theory, ... was introduced to simplify the computation of
dependencies between classes and theories; in a subsequent version of the lan-
guage, this clause may be well dropped.

B.4 Method Specifications

Synopsis

methodheader
/*@
assignable vars ;
signals exceptions ;
requires formula ;
diverges formula ;
ensures formula ;
decreases term ;

@*/
{ statements }

Description This specification describes the observable behavior of a method
(class method, object method, or constructor) by the following clauses:

assignable vars This optional clause lists the variables vars that are visible
in the scope of the declaration of the method (object and class variables
of the current class, class variables of other classes, respectively variables
that represent components of such variables, but not parameters and local
variables of the method) and whose values may be changed by the execution
of the method.

B.4 Method Specifications 49

If the clause is omitted, the method must not modify any variable that is
visible in the scope of the method declaration.

signals exceptions This optional clause lists the types of the exceptions that
may be thrown by the execution of the method (excluding “runtime excep-
tions” such as “division by zero” that may be thrown by the execution of
primitive operations).

If the clause is omitted, the method must not throw any exception.

requires formula This optional clause states that it is only legal to call the
method in a state (the method’s “prestate”) that satisfies the given formula.

If the clause is omitted, the formula is considered as “true”, i.e. it is legal to
call the method in any state.

diverges formula This optional clause states that the method will terminate
(by returning normally or by throwing an exception) when called in any
legal state that satisfies also the negation of formula (i.e. the method is al-
lowed to run forever when called in any legal state that satisfies formula).

If the clause is omitted, the formula is considered as “false”, i.e. the method
must terminate when called in any legal prestate.

ensures formula This optional clause states that, for every legal prestate of
the method, every state in which the method terminates is only legal if it is
related to the method’s prestate by formula.

If the clause is omitted, the formula is considered as “true”, i.e. the method
may terminate with any poststate.

decreases term This optional clause states that, for every call of the method in
a legal state, the value of term denotes a non-negative integer number which
is decreased in every (directly or indirectly) recursive call of the method
(such that chain of recursive method calls must eventually end).

If the clause is omitted, no default is assumed.

Pragmatics This specification is in essence modeled after the “light-weight”
specification format of JML, the Java Modeling Language [4]; however, a fixed
order is required and specific default values for missing clauses are given. Fur-
thermore, the specification follows (not precedes) the method’s declaration header
to emphasize that the specification appears in the scope of the parameters of the
method.

If the clause decreases term is missing in a (directly or indirectly recursive)
method, the termination of the method can probably not be proved.

50 Chapter B. Specification Language

B.5 Loop Specifications

Synopsis

while (exp) for (forheader)
/*@ /*@
invariant formula ; invariant formula ;
decreases term ; decreases term ;

@*/ @*/
body body

Description The optional clause invariant formula states that the state in
which the loop checks the value of exp for the first time (the loop’s “prestate”) is
related by formula

1. to the loop’s prestate itself and

2. to every state that arises immediately after the execution of the loop’s body
(the body’s “poststate”).

If the clause is omitted, the formula is assumed to be “true”.

The optional clause decreases term states that

1. the value of term in the loop’s prestate and in every poststate of the loop’s
body denotes a non-negative integer number, and that

2. the value of term immediately before the execution of the loop’s body is
greater than the value of term after the execution of the loop’s body.

Consequently the loop cannot perform an infinite number of iterations.

Pragmatics It should be noted that the formulation of the invariant above re-
lates the loop’s prestate to the body’s poststate which, due to the existence of state
functions and state predicates in the formula language, may be considered as dif-
ferent from the prestate of the subsequent loop iteration, respectively, if the loop
terminates, from the loop’s poststate. For instance, if the body executes a break
statement, the loop’s prestate is related to the body’s poststate by the formula
BREAKS@NEXT but to the loop’s poststate by EXECUTES@NEXT. The first formula
is more precise since it describes that the loop terminates from the execution of the
loop body which the second formula does not. Our formulation therefore allows
to express stronger invariants.

B.6 Statement Specifications 51

B.6 Statement Specifications

Synopsis

//@ assert formula ’;’
statement

Description The specification states that immediately before the execution of
statement (i.e. in the statement’s “prestate”) formula holds.

Pragmatics The specification creates an additional proof obligation but then
also more information for the verification of statement and its successors.

Appendix C

Program Invocation

The shell script ProgramExplorer is the main interface to the program i.e. the
program is typically started by executing

ProgramExplorer &

However, if the script is copied/renamed/linked to ProofNavigator and exe-
cuted as

ProofNavigator &

the program starts with a standalone interface to the RISC ProofNavigator [5]
(which is part of the RISC ProgramExplorer).

Invoking the script as

ProgramExplorer -h

gives the following output which lists the available startup options and the envi-
ronment variables used:

RISC ProgramExplorer Version 0.3 (April 8, 2010)
http://www.risc.jku.at/research/formal/software/ProgramExplorer
(C) 2008-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL.
Execute "ProgramExplorer -h" to see the options available.

Usage: ProgramExplorer [OPTION]...
OPTION: one of the following options:

53

-h, --help: print this message.
-cp, --classpath [PATH]: directories representing

the top package.

Environment Variables:
PE_CLASSPATH:

the directories (separated by ":") representing
the top package
(default the current working directory)

PE_CVCL
the command for executing the cvcl checker
(default "cvcl")

PE_JAVAC
the command for compiling java programs
(default "javac")

PE_JAVA
the command for executing java programs
(default "java")

PE_CWD
the directory used for compiling/executing
(default the current working directory)

PE_MAIN
the name of the main class of the program
(default "Main")

The command accepts the following startup options:

-h, –help With this option, the description shown above is printed and the pro-
gram terminates.

-cp, –classpath Path This option expects as Path a sequence of directories sepa-
rated by the colon character “:”. The program considers these directories
to jointly represent the root of the package hierarchy; by default, the current
working directory (path “.”) alone represents the root. The various direc-
tories in Path must not have different class files (extension .java), theory
files (extension .theory), or subdirectories of the same name.

The program uses the values of the following environment variables.

PE CLASSPATH If the program is started without the command line option
-cp/--classpath Path, the value of this variable is considered as the
Path, see the description of the option given above.

PE CVCL The value of this environment variable is considered as the path to the
executable of the Cooperating Validity Checker (CVC) Lite version 2.0; by
default, the path cvcl is assumed.

54 Chapter C. Program Invocation

PE JAVAC The value of this environment variable is considered as the path to
the executable of the Java compiler; by default, the path javac is assumed.

PE JAVA The value of this environment variable is considered as the path to the
executable of the Java runtime environment; by default, the path java is
assumed.

PE CWD The value of this environment variable is considered as the path of the
directory used for compiling/executing respectively creating subdirectories;
by the default the current working directory “.” is used.

PE MAIN The value of this environment variable is considered as the name of
the main class of the program to be compiled and executed; by default the
value Main is used.

Appendix D

Program Installation

The installation of the program is thoroughly described in the files README and
INSTALL of the distribution; we include these files verbatim below.

D.1 README

--
README
Information on the RISC ProgramExplorer.

Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
Copyright (C) 2008-, Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria, http://www.risc.jku.at

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
--

RISC ProgramExplorer

http://www.risc.jku.at/research/formal/software/ProgramExplorer

This is the RISC ProgramExplorer, an interactive program reasoning environment
that is under development at the Research Institute for Symbolic Computation
(RISC). This software is freely available under the terms of the GNU General
Public License, see file COPYING.

56 Chapter D. Program Installation

The current version is a first demonstrator skeleton that incorporates the
overall technological and semantic framework (programming language and formal
specification language) and integrates the RISC ProofNavigator as an
interactive proving assistant. Work is ongoing to provide this skeleton with
the envisioned program reasoning capabilities.

The RISC ProgramExplorer runs on computers with x86-compatible processors
under the GNU/Linux operating system. For learning how to use the software,
see the file "main.pdf" in directory "manual"; examples can be found in
directory "examples".

Please send bug reports to the author of this software:

Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
http://www.risc.jku.at/home/schreine
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University
A-4040 Linz, Austria

Third Party Software

The RISC ProgramExplorer uses the following open source programs and
libraries. Most of this is already included in the RISC ProgramExplorer
distribution, but if you want or need, you can download the source code from
the denoted locations (local copies are available on the RISC ProgramExplorer
web site) and compile it on your own. Many thanks to the respective
developers for making this great software freely available!

CVC Lite 2.0
http://www.cs.nyu.edu/acsys/cvcl

This is a C++ library/program for validity checking in various theories.

The RISC ProgramExplorer currently only works with CVCL 2.0, not the newer
CVC3 available from http://www.cs.nyu.edu/acsys/cvc3. To download the CVCL 2.0
source, go to the RISC ProofNavigator web site (URL see above), Section "Third
Party Software", and click on the link "CVCL 2.0 local copy".

RIACA OpenMath Library 2.0
http://www.riaca.win.tue.nl/products/openmath/lib

This is a library for converting mathematical objects to/from
the OpenMath representation.

Go to the link "OMLib 2.0" and then "Downloads".
Download one of the "om-lib-src-2.0-rc2.*" files.

General Purpose Hash Function Algorithms Library
http://www.partow.net/programming/hashfunctions

A library of hash functions implemented in various languages.

Go to the link "General Hash Function Source Code (Java)" to download
the corresponding zip file.

ANTLR 3.2
http://www.antlr.org

This is a framework for constructing parsers and lexical analyzers used for
processing the programming/specification language of the RISC ProgramExplorer.

On a Debian 5.0 GNU/Linux distribution, just install the package "antlr3"

D.1 README 57

by executing (as superuser) the command

apt-get install antlr3

ANTLR 2.7.6b2
http://www.antlr.org

This is a framework for constructing parsers and lexical analyzers used for
processing the logic language of the RISC ProofNavigator.

On a Debian 5.0 GNU/Linux distribution, just install the package "antlr"
by executing (as superuser) the command

apt-get install antlr

The Eclipse Standard Widget Toolkit 3.5
http://www.eclipse.org/swt

This is a widget set for developing GUIs in Java.

Go to section "Stable" and download the version "Linux (x86/GTK2)" (if you use
a 32bit x86 processor) or "Linux (x86_64/GTK 2)" (if you use a 64bit x86
processor).

Mozilla Firefox 3.* or SeaMonkey 2.* (or higher)
http://www.mozilla.org

See the question "What do I need to run the SWT browser in a standalone
application on Linux GTK or Linux Motif?" in the FAQ at
http://www.eclipse.org/swt/faq.php.

Chances are that the SWT browser will work with the Firefox included in your
Linux distribution (but it will *not* work with the Firefox downloaded from
the Mozilla site). For instance, on a Debian 5.0 GNU/Linux distribution, just
install Firefox by executing (as superuser) the command

apt-get install iceweasel

If the SWT browser does not work with the Firefox included in your GNU/Linux
distribution, go to the page http://www.mozilla.org/projects/seamonkey to
download and install the SeaMonkey 2.* browser instead. You might have to
set the environment variable MOZILLA_FIVE_HOME in the "ProgramExplorer" script
to "/usr/lib/mozilla".

The GIMP Toolkit GTK+ 2.X (or higher)
http://www.gtk.org

This library is required by "Eclipse Linux (x86/GTK2)" and by
"Mozilla 1.7.8 GTK2".

On a Debian 3.1 GNU/Linux distribution, the package is automatically
installed, if you install the "mozilla-browser" package (see above).

On another GNU/Linux distribution, go to the GTK web package, section
"Download", to download GTK+.

Java Development Kit 6 (or higher)
http://java.sun.com/j2se

Go to the "Downloads" section to download the Sun JDK 6.

Tango Icon Library 0.8.9

58 Chapter D. Program Installation

http://tango-project.org/

Go to the section "Base Icon Library", subsection "Download", to download
the icons used in the ProgramExplorer.

--
End of README.
--

D.2 INSTALL

--
INSTALL
Installation notes for the RISC ProgramExplorer.

Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
Copyright (C) 2008-, Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria, http://www.risc.jku.at

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
--

Installation

The RISC ProgramExplorer is available for computers with x86-compatible
processors (32 bit as well as 64 bit) running under the GNU/Linux operating
system. The core of the RISC ProgramExplorer is written in Java but it depends
on various third-party open source libraries and programs that are
acknowledged in the README file.

To use the RISC ProgramExplorer, you have three options:

A) You can just use the distribution, or
B) you can compile the source code contained in the distribution, or
C) you can download the source from a Subversion repository and compile it.

The procedures for the three options are described below.

A Note for Users of Other Operating Systems

The RISC ProgramExplorer currently runs on computers with
x86-compatible processors under GNU/Linux only.

If your computer has an x86-compatible processor but runs another operating
system (e.g. MS Windows or MacOS), you may setup a virtual machine that runs
GNU/Linux as the guest operating system by using some virtualization software

D.2 INSTALL 59

such as the free VirtualBox software (http://www.virtualbox.org). Then you can
install the RISC ProgramExplorer in the guest operating system and thus also
use the software on your computer.

Currently the RISC ProgramExplorer is only a demonstrator; once it becomes
generally usable, we will provide a corresponding virtual machine for download
from the RISC ProgramExplorer web site.

A) Using the Distribution

We provide a distribution for computers with ix86-compatible processors
running under the GNU/Linux operating system (the software has been developed
on the Debian 5.0 "lenny" distribution, but any other distribution will work
as well). If you have such a computer, you need to make sure that you also have

1) A Java 6 or higher runtime environment.

You can download the Sun JRE 6 from
http://java.sun.com/j2se

2) The Mozilla Firefox or SeaMonkey browser.

On a Debian 5.0 GNU/Linux system, just install the package
"iceweasel" by executing (as superuser) the command

apt-get install iceweasel

On other Linux distributions, first look up the FAQ on

http://www.eclipse.org/swt/faq.php

for the question "What do I need to run the SWT browser in a standalone
application on Linux GTK or Linux Motif?" The RISC ProgramExplorer uses the
SWT browser, thus you have to install the software described in the FAQ.

See the README file for further information.

3) The GIMP Toolkit GTK+ 2.6.X or higher.

On a Debian 5.0 GNU/Linux system, GTK+ is automatically installed,
if you install the Mozilla browser as described in the previous paragraph.

On other Linux distributions, download GTK+ from http://www.gtk.org

For installing the RISC ProgramExplorer, first create a directory INSTALLDIR
(where INSTALLDIR can by any directory path). Download from the website the
file

ProgramExplorer-VERSION.tgz

(where VERSION is the number of the latest version of the ProofNavigator) into
INSTALLDIR, go to INSTALLDIR and unpack by executing the following command:

tar zxf ProgramExplorer-VERSION.tgz

This will create the following files

README ... the readme file
INSTALL ... the installation notes (this file)
CHANGES ... the change history
COPYING ... the GNU Public License
bin/

60 Chapter D. Program Installation

ProgramExplorer ... the main script to start the program
cvcl ... CVC Lite, a validity checker used by the software.

doc/
index.html ... API documentation

examples/
README ... short explanation of examples

*.theory ... some example theories

*.java ... some example program specifications
lib/

*.jar ... Java archives with the program classes
swt32/ ... SWT for GNU/Linux computers with 32 bit processors

swt.jar
swt64/ ... SWT for GNU/Linux computers with 64 bit processors

swt.jar
manual/
main.pdf ... the PDF file for the manual
index.html ... the root of the HTML version of the manual

src/
fmrisc/ ... the root directory of the Java package "fmrisc"

ProgramExplorer/
Main.java ... the main class for the RISC ProgramExplorer

ProofNavigator/

*.java ... the sources for the RISC ProofNavigator
External/

*.java ... third-party sources

Open in a text editor the script "ProgramExplorer" in directory "bin" and
customize the variables defined for several locations of your environment. In
particular, the distribution is configured to run on a 32-bit processor. If
you use a 64-bit processor, uncomment the line "SWTDIR=$LIBDIR/swt64" (and
remove the line "SWTDIR=$LIBDIR/swt32").

Put the "bin" directory into your PATH

export PATH=$PATH:INSTALLDIR/bin

You should now be able to execute

ProgramExplorer

to run the RISC ProgramExplorer. If you rename/copy/link the script to
"ProofNavigator" and execute

ProofNavigator

the program starts with a standalone interface to the RISC ProofNavigator.

B) Compiling the Source Code

To compile the Java source, first make sure that you have the Java 6 SE
development environment installed. You can download the Sun Java 6 SE from

http://java.sun.com/javase/downloads/index.jsp

Furthermore, on a GNU/Linux system you need also the Mozilla Firefox or
SeaMonkey browser, GTK2 and the GIMP toolkit GTK+ installed (see Section A).

Now download the distribution and unpack it as described in Section A.

The RISC ProgramExplorer distribution contains an executable of the validity
checker CVC Lite for GNU/Linux computers with x86-compatible processors. To
compile the validity checker for other systems, you need to download the CVC

D.2 INSTALL 61

Lite source code (see the README file) and compile it with a C++ compiler. See
the CVC Lite documentation for more details.

To compile the Java source code, go to the "src" directory and execute from
there

javac -cp ".:../lib/*:../lib/swt32/*" fmrisc/ProgramExplorer/Main.java

(replace "swt32" by "swt64" on a 64bit system).

You may ignore the warning about "unchecked" or "unsafe" operations, this
refers to Java files generated automatically from ANTLR grammars.

Then execute

jar cf ../lib/fmrisc.jar \
fmrisc/*/*.class fmrisc/*/*/*.class fmrisc/*/*/*/*.class

Finally, you have to customize the "ProgramExplorer" script in directory "bin"
as described in Section A. You should then be able to start the program by
executing the script.

C) Downloading the Source Code from the Subversion Repository

You can now download the source code of any version of the ProofNavigator
directly from the ProofNavigator Subversion repository.

To prepare the download, first create a directory SOURCEDIR (where SOURCEDIR
can be any directory path).

To download the source code, you need a Subversion client, see
http://en.wikipedia.org/wiki/Comparison_of_Subversion_clients for a list of
available clients. On a computer with the Debian 5.0 distribution of
GNU/Linux, it suffices to install the "svn" package by executing (as
superuser) the command

apt-get install svn

which will provide the "svn" command line client.

Every ProofNavigator distribution has a version number VERSION (e.g. "0.1"),
the corresponding Subversion URL is

svn://svn.risc.jku.at/schreine/FM-RISC/tags/VERSION

If you have the "svn" command-line client installed, execute the command

svn export
svn://svn.risc.jku.at/schreine/FM-RISC/tags/VERSION SOURCEDIR

to download the source code into SOURCEDIR. With other Subversion clients, you
have to check the corresponding documentation on how to download a directory
tree using the URL svn://... shown above.

After the download, SOURCEDIR will contain the files of the distribution as
shown in Section A; you can compile the source code as explained in Section B.

--
End of INSTALL.
--

Appendix E

Task Directories

The system generates in the current working directory (respectively the direc-
tory specified by the environment variable PE CWD, see the previous section) two
subdirectories named ProofNavigator and .PETASKS.Tag.0. The directory
ProofNavigator represents a context directory of the form that is described in
the manual of the RISC ProofNavigator [5]; it is used, if the user enters in the An-
alyze view directly (not in the context of any task as described below) commands
for the RISC ProofNavigator.

The directory .PETASKS.Tag.0 represents the persistent store for the task tree of
the program; Tag is a number that denotes the time when the program was started
that created this directory. The content of the directory is a hierarchy of subdirec-
tories that corresponds to the hierarchy of task folders and tasks of the program.
Each directory is named Name.Tag.Cntr where Name is derived from the name
of the task folder respectively task, Tag denotes the time when the program was
started that created this directory, and Cntr represents an automatically generated
sequence counter.

The content of each task directory depends on the particular kind of the task.
Currently the directory may contain the following items:

File goal This file contains the log of an attempt to perform the task fully auto-
matically by translating it to a CVCL query and invoking CVCL.

Directory ProofNavigator This directory represents a context directory of the
RISC ProofNavigator [5] that contains all information related to an attempt
to perform the task by a computer-assisted manual proof.

Every directory generated by the RISC ProgramExplorer contains a file .PEDIR;
if the directory contains also a file FREED this indicates that the directory was freed

63

and may be reused. If a new directory is to be created, it is first attempted to reuse
a directory with the same basic Name from a previous invocation of the program
(as indicated by Tag) or a freed directory of the same invocation (as indicated by
Tag and FREED); in both cases, thus previously created RISC ProofNavigator
proofs of tasks with the same names will be retained. Otherwise, a new directory
is created; if a directory of the desired name already exists, the value of Cntr is
incremented to yield a new directory name.

Appendix F

Grammars

In this appendix, we describe the concrete syntax of the programming language
and of the specification language. The grammars are given in the notation of the
parser generator ANTLR v3 [1] used for the implementation of the parser and of
the lexical analyzer. Non-determinism in grammatical rules is resolved by extra
means provided by ANTLR (in particular semantic predicates) which are omitted
from this presentation. On the level of the programming language described in
Section F.1, every specification annotation is lexically parsed as a comment yield-
ing the token ANNOTATION; the actual grammar of the various kinds of annota-
tions is described in Section F.2 under the header “specifications” by the syntactic
domains unitspec, methodspec, loopspec, and statementspec. The grammar of
theory declarations is specified there by the syntactic domain theorydecl.

F.1 Programming Language

// ---
// classes and methods
// ---

// a compilation unit
unit : classdecl ;

// a class declaration
classdecl :
(’package’ ’;’)?
(’import’ name (’.’ ’*’)? ’;’)*
(ANNOTATION)?
(’abstract’ | ’final’ | ’public’)* ’class’ IDENT
(’extends’ name ’implements’ names)?

F.1 Programming Language 65

’{’ (topdecl)* ’}’
EOF ;

// a top-level declaration
topdecl :
objectvar | classvar |
constructor | objectmethod | classmethod ;

// an object variable, possibly with initialization
objectvar : modifiers typeexp IDENT (’=’ valexp)? ’;’ ;

// a class variable, possibly with initialization
classvar : modifiers ’static’ modifiers typeexp IDENT
(’=’ valexp)? ’;’ ;

// a constructor declaration
constructor :
visibility IDENT ’(’ (params)? ’)’ throwdecls
(ANNOTATION)?
b=block ;

// declaration of an object method
objectmethod :
modifiers
(typeexp | ’void’) IDENT ’(’ (params)? ’)’ throwdecls
(ANNOTATION)?
b=block ;

// declaration of a class method
classmethod :
modifiers ’static’ modifiers
(typeexp | ’void’) IDENT ’(’ (params)? ’)’ throwdecls
(ANNOTATION)?
block ;

// ---
// statements
// ---

// an execution statement
statement :
(an=ANNOTATION)?
(emptystat | block | assignment | methodcall | localvar
| conditional | whileloop | forloop
| continuestat | breakstat | returnstat | throwstat | trycatch
| assertion) ;

// an empty statement
emptystat : ’;’ ;

66 Chapter F. Grammars

// a statement block
block : ’{’ (statement)* ’}’ ;

// an assignment or method call with return value
assignment : assigncore ’;’ ;

// the core of an assignment statement
assigncore :
lval (’=’

(valexp | n=name ’(’ vs=valexps ’)’
| ’new’ t=name ’(’ vt=valexps ’)’)

| ’++’
| ’+=’ valexp
| ’--’
| ’-=’ valexp
) ;

// a method call without return value
methodcall : name ’(’ valexps ’)’ ’;’ ;

// a local variable declaration, possibly with initialization
localvar : localvarcore ’;’ ;

// the core of a local variable declaration
localvarcore :
(’final’)? typeexp IDENT
(’=’ (valexp | name ’(’ valexps ’)’

| ’new’ name ’(’ valexps ’)’))? ;

// a conditional statement with one or two branches
conditional :
’if’ ’(’ valexp ’)’ statement (’else’ statement)? ;

// a while loop
whileloop : ’while’ ’(’ valexp ’)’ (ANNOTATION)? statement ;

// a for loop
forloop :
’for’
’(’ (assigncore | localvarcore)? ’;’

(valexp)? ’;’ (assigncore)? ’)’
(ANNOTATION)?
statement ;

// a continue statement
continuestat : ’continue’ ’;’ ;

// a break statement

F.1 Programming Language 67

breakstat : ’break’ ’;’ ;

// a return statement, possibly with return value
returnstat : ’return’ (valexp)? ’;’ ;

// a throw statement
throwstat : ’throw’ ’new’ name ’(’ valexp ’)’ ’;’ ;

// a try catch block
trycatch : ’try’ block (’catch’ ’(’ param ’)’ =block)+ ;

// an assertion
assertion : ’assert’ valexp ’;’ ;

// ---
// value expressions
// (binding powers taken from "Java in a Nutshell", 5th ed, p.29)
// ---

// value expressions
valexp : valexp3 ;

// disjunctions
valexp3 : valexp4 (’||’ v1=valexp4)* ;

// conjunctions
valexp4 : valexp8 (’&&’ valexp8)* ;

// equalities/inequalities
valexp8 : valexp9 (’==’ valexp9 | ’!=’ valexp9)* ;

// relations
valexp9 : valexp11
(’<’ valexp11 | ’<=’ valexp11 |
’>’ valexp11 | ’>=’ valexp11)* ;

// sums and differences
valexp11 : valexp12 (’+’ valexp12 | ’-’ valexp12)*
;

// products and quotients
valexp12 : valexp13
(’*’ valexp13 | ’/’ valexp13 | ’%’ valexp13)* ;

// array creation
valexp13 : ’new’ typeexp ’[’ valexp ’]’ | valexp14 ;

// unary operators
valexp14 : ’+’ valexp14 | ’-’ valexp14

68 Chapter F. Grammars

| ’!’ valexp14 | valexp15 ;

// selector operations
valexp15 : valexp16 (rselector (r1=rselector)*)? ;

// atoms
valexp16 :
IDENT | INT | ’true’ | ’false’ | ’null’

| STRING | CHAR | ’(’ valexp ’)’ ;

// --
// auxiliaries
// --

// class-level modifiers
modifiers: visibility (’final’ visibility)? ;

// visibility modifiers
visibility: (’private’ | ’protected’ | ’public’)? ;

// throw declarations
throwdecls: (’throws’ names)? ;

// a method’s parameter list
params : param (’,’ param)* ;

// a method parameter
param : typeexp IDENT ;

// a type expression
typeexp : typeexpbase (’[’ ’]’)* ;

// a type expression
typeexpbase : ’int’ | ’boolean’ | ’char’ | name | IDENT ;

// a value expression list
valexps : (valexp (’,’ valexp)*)? ;

// a name
name : (IDENT ’.’)* IDENT ;

// a sequence of names
names: name (’,’ name)* ;

// a location of a variable
lval : IDENT (lselector)* ;

// an lvalue selector
lselector : ’[’ valexp ’]’ | ’.’ IDENT ;

F.2 Specification Language 69

// an rvalue selector
rselector :
’[’ valexp ’]’ | ’.’ ’getMessage’ ’(’ ’)’ | ’.’ IDENT ;

// --
// lexical syntax
// --

IDENT : REALLETTER (LETTER | DIGIT)* ;

INT : DIGIT (DIGIT)* ;

STRING : ’"’ (˜(’"’ | ’\\’ | EOL) | ESCAPED)* ’"’ ;

CHAR : ’\’’ (˜(’\’’ | ’\\’ | EOL) | ESCAPED) ’\’’ ;

WS : (’ ’ | ’\t’ | EOL) ;

ANNOTATION
(’//’ (’@’ .* EOL | (˜’@’) => .* EOL) WS?)+

| ’/*’ (’@’ .* ’@*/’ | .* ’*/’) ;

fragment
REALLETTER : (’a’..’z’ | ’A’..’Z’);

fragment
LETTER : (’a’..’z’ | ’A’..’Z’ | ’_’);

fragment
DIGIT : (’0’..’9’);

fragment
EOL : (’\n’ | ’\r’ | ’\f’ | ’\uffff’);

fragment
ESCAPED : ’\\’
(’\\’ | ’"’ | ’\’’ | ’n’ | ’t’ | ’b’ | ’f’ | ’r’
| (’u’ HEX HEX HEX HEX)) ;

fragment
HEX : ’0’..’9’ | ’a’..’f’ | ’A’..’F’ ;

F.2 Specification Language

// ---
// specifications

70 Chapter F. Grammars

// ---

// a unit specification
unitspec :
imports ’theory’ (’uses’ names)?
’{’ declarations ’}’ EOF ;

// a method specification
methodspec :
(’assignable’ names ’;’)?
(’signals’ names ’;’)?
(’requires’ formula ’;’)?
(’diverges’ formula ’;’)?
(’ensures’ formula ’;’)?
(’decreases’ term ’;’)?
EOF ;

// a loop annotation
loopspec :
(’invariant’ formula ’;’)?
(’decreases’ term ’;’)? EOF ;

// a command pre-state annotation
statementspec : (’assert’ formula ’;’)? EOF ;

// a theory declaration
theorydecl :
(’package’ name ’;’)? imports
(’public’)* ’theory’ IDENT (’uses’ names)?
’{’ ((declaration)? ’;’)* ’}’ EOF ;

// ---
// declarations and types
// ---

imports : (’import’ name (’.’ ’*’)? ’;’)* ;

declarations : ((declaration)? ’;’)* ;

declaration :
IDENT ’:’
(’TYPE’
| ’TYPE’ ’=’ typeExp
| ’FORMULA’ formula
| ’AXIOM’ formula
| typeExp (’=’ term

| ’=’ ’PRED’ paramList ’:’ formula
| <=>’ formula)?

) ;

F.2 Specification Language 71

typeExp :
typeExpBase ’->’ typeExp

| ’(’ typeExp (’,’ typeExp)+)’ ’->’ typeExp
| ’ARRAY’ typeExpBase ’OF’ typeExp
| typeExpBase ;

typeExpBase :
name

| ’BOOLEAN’
| ’INT’
| ’NAT’
| ’REAL’
| ’STRING’
| ’STATE’ (’(’ typeExp ’)’)?
| ’[’ typeExp (’,’ typeExp)+ ’]’
| ’[’ t0=typeExp ’]’
| ’[#’ IDENT ’:’ typeExp (’,’ IDENT ’:’ typeExp)* ’#]’
| ’SUBTYPE’ ’(’ term ’)’
| ’[’ term ’..’ term ’]’
| ’PREDICATE’ (’(’ typeExp (’,’ typeExp)* ’)’)?
| ’(’ t0=typeExp ’)’
;

// --
// formulas
// --

// quantifiers bind weakest
formula :
’FORALL’ paramList ’:’ formula

| ’EXISTS’ paramList ’:’ formula
| formula10
;

// lets
formula10 returns [Formula value = null;] :
’LET’ vdefinition (’,’ vdefinition)* ’IN’ formula10

| f=formula20
;

// implications, equivalences, exclusive ors
formula20 :

formula30 ’=>’ formula20
| formula30 (’<=>’ formula30 | ’XOR’ formula30)?

;

// disjunctions
formula30 : formula40 (’OR’ formula40)*

72 Chapter F. Grammars

;

// conjunctions
formula40 : formula50 (’AND’ formula50)*
;

// logical negations
formula50 : ’NOT’ formula50 | formula60 ;

// equality and inequality and relations
formula60 :
term (’=’ term | ’/=’ term |

’<’ term | ’<=’ term | ’>’ term | ’>=’ t1=term)
| formula70 ;

// atomic predicates
formula70 :
name ’(’ term (’,’ term)* ’)’

| ’EXECUTES’ ’@’ statearg
| ’CONTINUES’ ’@’ statearg
| ’BREAKS’ ’@’ statearg
| ’RETURNS’ ’@’ statearg
| ’THROWS’ ’@’ statearg
| ’THROWS’ ’(’ name ’)’ ’@’ statearg
| formula100
;

// argument to state predicate
statearg : ’NOW’ | ’NEXT’ | name ;

// atoms
formula100 :
name | ’OLD’ name | ’VAR’ name

| ’TRUE’ | ’FALSE’
| ’IF’ formula ’THEN’ formula
(’ELSIF’ formula ’THEN’ formula)* ’ELSE’ formula ’ENDIF’

| ’WRITESONLY’ names | ’READSONLY’
| ’(’ formula ’)’ ;

// --
// terms
// --

// quantifiers bind weakest
term :
(
’LAMBDA’ paramList ’:’ term

| ’ARRAY’ paramList ’:’ term
| term10

F.2 Specification Language 73

)
;

// lets
term10 :
’LET’ vdefinition (’,’ vdefinition)* ’IN’ term10

| term20 ;

// sums and differences (differences are left-associative)
term20 : term30 (’+’ term30 | ’-’ term30)* ;

// products and quotients (quotients must be left-associative)
term30 : term40 (’*’ t1=term40 | ’/’ term40)* ;

// power terms (left-associative to be compatible with CVCL)
term40 : term50 (’ˆ’ t1=term50)* ;

// unary arithmetic operators
term50 : ’+’ term50 | ’-’ term50 | term60 ;

// updates
term60 :
term70 (’WITH’
(’.’ (NUMBER | IDENT) | ’[’ term ’]’)+ ’:=’ term70)* ;

// selections
term70 : term80 (’.’ (NUMBER | IDENT) | ’[’ term ’]’)* ;

// applications
term80 :
’VALUE’ ’@’ term100

| ’MESSAGE’ ’@’ term100
| term100 (’(’ term (’,’ term)* ’)’)* ;

// atoms
term100 :
name

| NUMBER
| STRING
| ’TRUE’
| ’FALSE’
| ’OLD’ name
| ’VAR’ name
| ’NOW’
| ’NEXT’
| ’(’ term (’,’ term)* ’)’
| ’(#’ IDENT ’:=’ term (’,’ IDENT ’:=’ term)* ’#)’
| ’IF’ formula ’THEN’ term
(’ELSIF’ formula ’THEN’ term)* ’ELSE’ term ’ENDIF’ ;

74 Chapter F. Grammars

paramList : ’(’ param (’,’ param)* ’)’ ;

param : IDENT (’,’ IDENT)* ’:’ typeExp ;

// value definition
vdefinition :
IDENT ’:’ typeExp ’=’ term

| IDENT ’=’ term ;

// a name
name : IDENT (’.’ IDENT)* ;

// a sequence of names
names : name (’,’ name)* ;

// ---
// lexical syntax
// ---

IDENT: REALLETTER (LETTER | DIGIT)* ;
NUMBER: DIGIT (DIGIT)* ;

// strings
STRING : ’"’ (˜(’"’ | ’\\’ | EOL) | ESCAPED)* ’"’ ;

fragment
REALLETTER: (’a’..’z’ | ’A’..’Z’);

fragment
LETTER: (REALLETTER | ’_’);

fragment
DIGIT: (’0’..’9’);

WS: (’ ’ | ’\t’ | EOL | COMMENT) ;

fragment
EOL: (’\n’ | ’\r’ | ’\f’);

fragment
COMMENT : ’//’ .* EOL | ’/*’ .* ’*/’ ;

fragment
ESCAPED : ’\\’
(’\\’ | ’"’ | ’\’’ | ’n’ | ’t’ | ’b’ | ’f’ | ’r’
| (’u’ HEX HEX HEX HEX)) ;

fragment HEX : ’0’..’9’ | ’a’..’f’ | ’A’..’F’ ;

