
Predicting Space Requirements for a Stream
Monitor Specification Language?

David M. Cerna, Wolfgang Schreiner, Temur Kutsia

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

Abstract. The LogicGuard specification language for the runtime mon-
itoring of message/event streams specifies monitors by predicate logic
formulas of a certain kind. In this paper we present an algorithm that
gives upper bounds for the space requirements of monitors specified in a
formally elaborated core of this language. This algorithm has been imple-
mented in the LogicGuard software and experiments have been carried
out to demonstrate the accuracy of its predictions.

1 Introduction

We investigate the space complexity of the LogicGuard stream monitor spec-
ification language [13], which was developed in an industrial collaboration for
the runtime monitoring of networks for security violations [10]. LogicGuard rep-
resents an alternative to the commonly used language of linear temporal logic
(LTL) [11], from which efficient stream monitors can be generated but in which,
due to its limited expressiveness, it can be difficult to formulate more complex
properties of interest. The LogicGuard language is more expressive than LTL,
because it encompasses a large fragment of predicate logic, in particular, it sup-
ports value computation and the construction of virtual streams by a form of
set builder notation. However, the inclusion of such elements can make moni-
toring of specifications inefficient. We thus aim to identify such specifications
expressing properties of interesting for which monitoring is effectively possible.

First, since a LogicGuard monitor is able to “look into the past”, it has in
general to preserve the complete history of the stream in memory. Thus a static
analysis was developed to determine whether a specification gives rise to a moni-
tor that is able to operate with only a finite number of past messages in memory.
This analysis was shown to be sound [9] and resulted in a “history pruning” opti-
mization that enabled effective monitoring. For the soundness proof, a simplified
core language with a formal operational semantics was devised.

Second, we investigated for the same core language a complementary analy-
sis to determine the space requirements that are due to the abilities of monitors
to “look into the future”. In particular, we are interested in the number of for-
mula instances which have to be preserved in memory, because their truth values

? Supported by the Austrian Research Promotion Agency (FFG) in the frame of the
BRIDGE program 846003 “LogicGuard II”.

cannot be determined from the observations made so far. Based on preliminary
investigations in [3], we have in [4] provided upper bounds for the space com-
plexity of monitors. The present paper improves this work by capturing these
bounds more precisely, in some cases even optimally. Together with the history
size, the result of this analysis bounds the memory requirements of the monitor
and also the time required for processing every message/event.

The LogicGuard core language has much in common with Monadic First-
Order Logic (MFO) [12]. LTL captures the class of star-free languages; its for-
mulas can be translated into MFO formulas. The full language, on the other hand
is more closely related to Monadic Second-Order Logic (MSO) [1] which captures
the class of omega-regular languages. Most space complexity results with respect
to MFO and MSO use as a measure the size of the non-deterministic Büchi au-
tomaton that accepts the language of a formula as a measure. For MFO this size
is in the worst case exponential in the formula size [14]; for MSO, it is in general
even non-elementary [6]. These measures are relevant for model checkers which
operate on non-deterministic automata; for runtime monitoring, the automata
have to be determinized which results in another exponential blowup.

Because of this state space explosion, more restricted logics have been inves-
tigated. The hardware design language PSL [7] which is based on LTL defines a
“simple subset” that restricts the use of disjunction to avoid exponential blow
up. In [8], the class of “locally checkable” properties (a subclass of the “lo-
cally testable” properties introduced in [12]) is defined, where a word satisfies a
property, if every k-length subword of the word does so; such properties can be
recognized by deterministic automata whose size is exponential in k but inde-
pendent of the formula size. In [5] a procedure for synthesizing monitor circuits
from LTL specifications is defined that restricts the exponential blow-up to those
parts of a formula that involve unbounded-future operators.

However, in our work we do not consider the translation of formulas to au-
tomata, nor use automata sizes as a space complexity measure. The operational
form of a LogicGuard monitor is not an automaton but a structure that keeps in
memory a (nested) set of formula instances that dynamically grows and shrinks
during by the evaluation of the monitor on the stream. Thus we have investigated
in [4] the number of instances kept in memory by abstracting the operational
semantics into a rewriting system that is applied recursively to the formula
structure. This allowed for complexity results not only in terms of asymptotic
bounds but also in terms of concrete complexity functions. However, the method
suffered from severe overestimation; in the present paper, we devise an analysis
that provides much more accurate results. This analysis was also implemented
in the LogicGuard software to estimate the space requirements of real monitors.

The rest of this paper is structured as follows: in Section 2, we present the core
of the LogicGuard specification language and sketch its operational semantics. In
Section 3, we define the space complexity of monitors and describe the algorithm
that represents the core of the analysis. In Sections 4 and 5, we present the formal
details; in Section 6, we discuss experimental results. In Section 7, we conclude
by outlining a few open problems which we would like to address in future work.

2 Core Language

The LogicGuard language [13] for monitoring event streams allows, for example,
the derivation of a higher level stream (representing e.g. a sequence of messages
transmitted by the datagrams) from a lower level input stream (representing e.g.
a sequence of TCP/IP datagrams). Such a stream is processed by a monitor for
a particular property (e.g. that every message is within a certain time bound
followed by another message whose value is related in a particular way to the
value of the first one). A specification of this kind has the following form:

type tcp; type message; ...

stream<tcp> IP;

stream<message> S = stream<IP> x satisfying start(@x) :

value[seq,@x,combine]<IP> y

with x < _ satisfying same(@x,@y) until end(@y) :

@y ;

monitor<S> M = monitor<S> x satisfying trigger(@x) :

exists<S> y with x < _ <=# x+T:

match(@x,@y);

After the declaration of types tcp and message and external functions and
predicates operating on objects of these types, a stream IP of TCP/IP datagrams
is declared that is connected by the runtime system to the network interface.
From this stream, a “virtual” stream S of “messages” is derived; each message
is created by sequentially combining every datagram at position x on IP (whose
value is denoted by @x) that satisfies a predicate start by application of a
function combine with every subsequent datagram at position y that is related
to the first one by a predicate same until a termination condition end is satisfied.
The stream S is monitored by a monitor M that checks whether for every message
on S that satisfies a trigger predicate within T time a partner message appears
that fits to the first message according to some match predicate.

To support a formal analysis, in [9] a core version of the LogicGuard language
was defined and given a formal operational semantics. This core language has
been subsequently used to analyze the complexity of monitoring and to derive
the results presented in this paper. The analysis was also implemented in the
LogicGuard system by translating specifications from the full language to the
core language such that the analysis of the translated specification also predicts
the complexity of monitoring the original specification (the translation is not
semantics-preserving but generates a specification for which monitoring is at
least as complex as the monitoring of the original one).

In the remainder of this section, we introduce this core language, partially
relying on material from [4]. Its syntax is depicted to the left of Fig. 1 where the
typed variables M,F, . . . denote elements of the syntactic domains M,F, . . . of
monitors, formulas, etc. A monitor M has form ∀0≤V : F for some variable V
and formula F ; it processes an infinite stream of truth values > (true) or ⊥
(false) by evaluating F for V = 0, V = 1, . . . The predicate @V denotes the value
in the stream at position V , ¬F denotes the negation of F , F1 ∧ F2 denotes

M ::= ∀0≤V : F.
F ::= @V | ¬F | F ∧ F | F &F

| ∀V ∈[B,B]: F.
B ::= 0 | ∞ | V | | B ±N.
V ::= x | y | z | . . .
N ::= 0 | 1 | 2 | . . .

m ::= ∀P(N×f×c)
0≤V : f

f ::= d(>) | d(⊥) | n(g)
g ::= @V | ¬f | f ∧ f | f & f
| ∀V ∈[b,b]: f | ∀V ∈[N∞,N∞]: f

| ∀P(N×f×c)
V≤N∞ : f

b ::= c→ N∞

c ::= (V →part. N)× (V →part. {>,⊥})

T (∀0≤V : F) := ∀∅0≤V : TF(F)

TF(@V) := n(@V)

TF(¬F) := n(¬TF(F))

TF(F1 ∧ F2) := n(TF(F1) ∧ TF(F2))

TF(F1 &F2) := n(TF(F1) &TF(F2))

TF(∀V ∈[B1,B2]: F) := ∀V ∈[TB(B1),TB(B2)]: T
F(F)

TB(0) := λc. 0

TB(∞) := λc. ∞

TB(V) := λc. c.1(V)

TB(B ±N) := λc. TB(B)(c)±N

Fig. 1. The core language: syntax, runtime representation, translation.

parallel conjunction (both F1 and F2 are evaluated simultaneously), F1 &F2

denotes sequential conjunction (the evaluation of F2 is delayed until the value of
F1 becomes available), ∀V ∈[B1,B2]: F denotes universal quantification over the
interval [B1, B2].

Monitor M ∈ M is translated by the function T : M → M defined at the
bottom of Fig. 1 into its runtime representation m = T (M) ∈M whose structure
is depicted to the right; here the typed variables m, f, . . . denote elements of the
runtime domains M,F , . . ., i.e., the runtime representations of M,F, . . . Over
the domain N∞ = N ∪ {∞} arithmetic operations are interpreted in the usual
way, i.e., the operator − is interpreted as truncated subtraction and for every
n ∈ N we have ∞ ± n = ∞. The notions P(S) and A →part. B denote the
powerset of S and the set of partial mappings from A to B, respectively. A
context c consists of a pair of partial functions that assign to every variable its
position and the truth value that the stream holds at that position, respectively.

During the execution of monitor M , its runtime representation m = ∀I0≤V : f
holds in set I those instances of its body F which could not yet be evaluated to >
or ⊥; each such instance is represented by a tuple 〈p, f, c〉 where p is the position
assigned to V , f is the (current) runtime representation of F , and c represents
the context to be used for the evaluation of f . A runtime representation f can be
a tagged value n(g) where g represents the runtime representation of the formula
to be evaluated in the next step; when the evaluation has completed, its value
becomes d(t) where the truth value t represents the evaluation result.

The evaluation of a monitor’s runtime representation is formally defined by a
small-step operational semantics with a 6-ary transition relation m→p,s,v,R m′

where m is the runtime representation of the monitor prior to the transition,
m′ is its representation after the transition, p is the stream position of the next

Atomic Formulas

Transition Constraints

A1 n(@V)→ d(c.2(V))) V ∈ dom(c.2)

. . .

Sequential conjunction

C1 n(f1 & f2)→ n(n(f ′1) & f2) f1 → n(f ′1)

C2 n(f1 & f2)→ d(⊥) f1 → d(⊥)

C3 n(f1 & f2)→ n(f ′2) f1 → d(>), f2 → n(f ′2)

Quantification

Q1 ∀V ∈[b1,b2]: f → d(>) p1 = b1(c) , p2 = b2(c) , p1 =∞∨ p1 > p2

Q2 ∀V ∈[b1,b2]: f → f ′
p1 = b1(c) , p2 = b2(c), p1 6=∞ , p1 ≤ p2,

n(∀V ∈[p1,p2]: f)→ f ′

Q3 n(∀V ∈[p1,p2]: f)→ n(∀V ∈[p1,p2]: f) p < p1
Q4 n(∀V ∈[p1,p2]: f)→ f ′ p1 ≤ p, n(∀I0V≤p2

: f)→ f ′

Q5 n(∀IV≤p2
: f)→ d(⊥) DF

Q6 n(∀IV≤p2
: f)→ d(>) ¬DF , I ′′ = ∅, p2 < p

Q7 n(∀IV≤p2
: f)→ n(∀I

′′
V≤p2

: f) ¬DF , (I ′′ 6= ∅ ∨ p ≤ p2)

Fig. 2. The operational semantics of formula evaluation.

message value v to be processed, s denotes the sequence of p messages that have
previously been processed, and R denotes the set of those positions which are
reported by the transition to make the monitor body false. The monitor thus
processes a stream 〈v0, v1, . . .〉 by a sequence of a transitions(

∀I00≤x: f
)
→0,s0,v0,R0

(
∀I10≤x: f

)
→1,s1,v1,R1

(
∀I20≤x: f

)
→ · · ·

where sp = 〈v0, . . . , vp−1〉. Each set Ip contains those instances of the monitor
which, by the p messages processed so far, could not be evaluated to a truth
value yet and each set Rp contains the positions of those instances that were
reported to become false by transition p. In particular, we have

Ip+1 = {(t, n(g), c) ∈ I | ∃f ∈ F : (t, f, c) ∈ I ′ ∧ ` f →p,sp,vp,c n(g)}
Rp+1 = {t ∈ N | ∃f ∈ F , c ∈ C : (t, f, c) ∈ I ′ ∧ ` f →p,sp,vp,c d(⊥)}

where I ′ = Ip ∪ {(p, f, ((V, p) , (V, vp)))}. The transition relation on monitors
depends on a corresponding transition relation f →p,s,v,c f ′ on formulas where
c represents the context for the evaluation of f . In each step p of the monitor
transition, a new instance of the monitor body F is added to set Ip, and all
instances in that set are evaluated according to the formula transition relation.
Note that each formula instance in that set contains the runtime representation
of a quantified formula (otherwise, it could have been immediately evaluated)
which in turn contains its own instance set; thus instance sets are nested up to
a depth that corresponds to the quantification depth of the monitor.

Fig. 2 shows an excerpt of the operational semantics of formula evaluation
(the full semantics is given in [9]) where the transition arrow → is to be read as

→p,s,v,c and rules Q4–Q7 are based on the following definitions.

I0 = {(i, f, (c.1[V 7→ i], c.2[V 7→ s(i + p− |s|)])) | p1 ≤ i ≤ min {p2 + 1, p}}

I ′ =

{
I if p2 < p

I ∪ (p, f, (c.1[V 7→ p], c.2[V 7→ v])) otherwise

I ′′ = {(t, n(g), c) ∈ I ′ | (t, f, c) ∈ I ′ ∧ ` f → n(g)}
DF ≡ ∃t ∈ N, f ∈ F , c ∈ C : (t, f, c) ∈ I ′ ∧ ` f → d(⊥)

We provide an example adapted from [4] on the application of these rules.

Example 1. We take the monitor M = ∀0≤x: ∀y∈[x+1,x+2]: @x& @y, which states
that the current position of the stream is true as well as the next two future
positions. We determine its runtime representation m = T (M) as m = ∀∅0≤x: f
with f = ∀y∈[b1,b2]: g for some b1 and b2 and g = @x& @y. We evaluate m

over the stream 〈>,>,⊥, . . .〉. First consider the transition (∀∅0≤x: f) →0,〈〉,>,∅

(∀I00≤x: f). which generates the instance set

I0 =
{

(0, n(∀y∈[1,2]: g), ({(x, 0)}, {(x,>)}))
}
.

Performing another step (∀I00≤x: f)→1,〈>〉,>,∅ (∀I10≤x: f) we get

I1 =
{

(1, n(∀y∈[2,3]: g), ({(x, 1)}, {(x,>)})),
(0, n(∀∅y≤2: g), ({(x, 0)}, {(x,>)}))

} .

The instance set ∅ in the runtime representation of the formula is empty, because
the body of the quantified formula is propositional and evaluates instantly. Notice
that the new instance is the same as the instance in I0 but the positions are
shifted by 1. The next step is (∀I10≤x: f)→2,〈>,>〉,⊥,{0,1} (∀I20≤x: f) where

I2 =
{

(2, n(∀y∈[3,4]: g), ({(x, 2)}, {(x,⊥)}))
}
.

The first two instances evaluate at this point and both violate the specification,
thus yielding the set {0, 1} of violating positions of the monitor. Again, the
remaining instance is shifted by one position.

3 Space Complexity

Our goal is to determine the maximum size of the runtime representation of a
monitor during its execution. For doing this we have to define the size of the
runtime representation of monitors, formulas and formula instances.

Definition 1. We define the functions cm : M → N, cf : F →part. N, cg :
G → N, and ci : I → N which denote the size of the runtime representation of

a monitor respectively unevaluated formula (with and without tag) respectively
formula instance:

cm(∀I0≤V : f) =
∑

g∈I ci(g) cf(n(g)) = cg(g)

cg(@V) = 0 cg(f1 ∧ f2) = cf(f1) + cf(f2)
cg(¬f) = cf(f) cg(f1 & f2) = cf(f1) + cf(f2)

cg(∀V ∈[b1,b2]: f) = 1 cg(∀IV≤p: f) = 1 +
∑

g∈I ci(g)

cg(∀V ∈[p1,p2]: f) = 1 ci((n, f, c)) = cf(f)

Our notion of size thus only considers the quantifier structure of a monitor and
its formulas that are being evaluated and ignores their propositional contents
(because it is this structure that dominates the space complexity).

Now we can define a relation which determines the maximum size of the
runtime representation of a monitor encountered during its execution.

Definition 2. We define the relation (⊆M×N×{>,⊥}∗×N×N inductively
as follows:

M (p,s,0 S′ ↔ S′ = cm(M)
M (p,s,(n+1) S

′ ↔(
∃R. (M →p,s,s(p),R M ′) ∧ (M ′ (p+1,s,n S) ∧ S′ = max {cm(M), S}

)
Essentially, M (p,s,n S states that S is the maximum size of the representation
of monitor m during the execution of n transitions over the stream s starting at
position p. Our goal is to compute/bound the value of S by a static analysis, i.e.,
without having to actually perform the transitions. We will later in Theorem 2
formalize the connection between our analysis and the relation given above. In
a nutshell, this analysis proceeds as follows:

1. We compute from a monitor M ∈M the dominating monitor M ′ = D(M) ∈
M whose space requirements on the one hand bound the requirements of M
and and other hand can be determined exactly by the subsequent analysis.

2. We translate M ′ ∈ M into a quantifier tree qt = QT (M ′) which contains
the essential information required for the analysis.

3. We translate qt into an annotated quantifier tree aqt = AQT (qt) which labels
every node with the maximum interval bound of the corresponding subtree.

4. Finally, we compute the space requirements SR(aqt) ∈ N by application of
Algorithm 1.

While the various steps will be explained in the following subsections, we will
give a short account on the rationale behind this algorithm.

The core idea is that, if the monitor has a limit on the size of its runtime
representation, it has also a limit on the number of instances stored in that rep-
resentation. This limit will be reached in a finite number A of steps determined
by the maximum distance that any subformula of the monitor will “look for-
ward” in the stream in relation to the position of the message that is currently
being processed. It then suffices, for every distance i in the interval [0, A − 1],

Algorithm 1 Space Requirements of an Annotated Quantifier Tree

1: function SR(aqt) . aqt is an annotated quantifier tree (A, a, b, qt′)
2: if A =∞ then
3: return ∞
4: else
5: return

∑A−1
i=0 SR(aqt, i)

6: end if
7: end function
8:
9: function SR(aqt,i) . aqt is an annotated quantifier tree (A, a, b,Q), i < A

10: cil← 1 + min {i, b} − a
11: if cil ≤ 0 & b ≥ a then
12: return 1
13: else
14: return 0
15: end if
16: if i ≥ b then
17: inst ← 0
18: else
19: inst ← 1
20: end if
21: for all aqt′ = (A′, a′, b′, Q′) ∈ Q do
22: if i < A′ then
23: inst ← inst + cil · SR(aqt′, i)
24: end if
25: end for
26: return inst
27: end function

to determine the number N(i) of instances that are created by the monitor in-
stance M(p) at position p + i; every monitor instance M(p + A) then behaves
identical to M(p). In particular, if p ≥ A and the upper limit of the number of
instances is reached, for every new instance added to some instance set another
instance is removed. Thus it suffices to compute the sum of all N(i) to determine
the maximum space requirements of the monitor, which in essence explains the
top-level function SR(aqt) in the algorithm.

In the auxiliary function SR(aqt , i) of the algorithm, we first determine the
“current interval length” cil which essentially denotes the number of steps that
have already been performed for the monitoring of the currently considered
quantified formula. If cil < 0, the monitoring has not yet started, and the space
requirements are 0. Otherwise, if i is less than the upper bound b of the quantifier
interval, one more instance of the formula may be created at position i and stored
for processing in future steps. Anyway, for every quantified subformula aqt ′, the
number of instances SR(aqt ′, i) has to be determined and multiplied with cil ,
since for every previous position that number of instances has been created.

After this short exposition, the following sections will elaborate the formal
details of the analysis and also justify its soundness.

4 Dominating Monitor Transformation

A concept introduced in [4], the Monitor formula, allows us to restrict our analy-
sis to quantified formulas whose variable intervals only depend on the outermost
monitor variable, i.e. the size of every interval is the same for every value of the
monitor variable.

Definition 3 (Dominating Monitor/Formula Transformation). Let A =
V→part. N be the domain of assignments that map variables to natural numbers.
Then the dominating monitor transformation D : M → M respectively formula
transformation D′ : F×A×A→ F are defined as follows:

D(∀0≤V : F) = ∀0≤V : D′(F, [V 7→ 0], [V 7→ 0])

D′(@V, al, ah) = @V

D′(¬F, al, ah) = ¬D′(F, al, ah)

D′(F1 &F2, al, ah) = D′(F1, al, ah) &D′(F2, al, ah)

D′(F1 ∧ F2, al, ah) = D′(F1, al, ah) ∧D′(F2, al, ah)

D′(∀V ∈[B1,B2]: F, al, ah) = ∀V ∈[hL(B1),hH(B2)]: D
′(F, a′l, a

′
h)

In the last equation we have a′l = al[V 7→ hL(B1)], a′h = ah[V 7→ hH(B2)],
hL(B1) = min {[B1]al , [B1]ah}, hH(B2) = max {[B2]al , [B2]ah} and [B]a

denotes the result n of the evaluation of bound expression B for assignment a;
actually, if B contains the monitor variable x, the result shall be the expression
x + n (we omit the formal details, see the example below).

The relationship, in terms of the maximum size of instance sets, between a mon-
itor M and its dominating form D(M) is summarized in the following theorem.

Theorem 1. Let M ∈ M. Then for all p, n, S, S′ ∈ N and s ∈ {>,⊥}ω such
that T (M) (p,s,n S and T (D(M)) (p,s,n S′, we have S ≤ S′.

The correctness of this theorem follows from Def. 2 and 3. Clearly, if M = D(M),
i.e., the monitor is already in its dominating form, then we have S = S′.

Example 2. Consider the following monitor M :

∀0≤x: ∀y∈[x+1,x+5]: ((∀z∈[y,x+3]: ¬@z & @z) &G(x, y))

G(x, y) = ∀w∈[x+2,y+2]: (¬@y & (∀m∈[y,w]: ¬@x& @m))

The dominating form D(M) of M is the following:

∀0≤x: ∀y∈[x+1,x+5]: ((∀z∈[x+1,x+3]: ¬@z & @z) &G(x, y))

G(x, y) = ∀w∈[x+2,x+7]: (¬@y & (∀m∈[x+1,x+7]: ¬@x& @m))

Notice that additional instances are needed for the evaluation of D(M).

Dominating monitors are used in the construction of annotated quantifier trees
Which allow for a simpler space analysis of the core language. Thm. 1 makes
it clear that space complexity results derived for dominating monitor provide
upper bounds for the space complexity of general monitors.

5 Quantifier Trees

In this section we introduce the concept of quantifier trees. A quantifier tree
represents the skeleton of a monitor that only describes its quantifier structure
without the propositional connectives.

Definition 4 (Quantifier Trees). A quantifier tree is inductively defined to
be either ∅ or a tuple of the form (y, b1, b2, Q) where y ∈ V , b1, b2 ∈ B and Q is
a set of quantifier trees. Let QT be the set of all quantifier trees.

Definition 5 (Quantifier Tree Transformation). We define the quantifier
tree transformation QT : M → QT, respectively QT : F → QT, recursively as
follows:

QT (∀0≤V : F) = (V, 0, 0, {QT (F)}) QT (F&G) = QT (F) ∪QT (G)
QT (F ∧G) = QT (F) ∪QT (G) QT (¬F) = QT (F)
QT (∀V ∈[B1,B2]: F) = (V,B1, B2, {QT (F)}) QT (@V) = ∅

By this transformation, every node of a quantifier tree consists of the variable
bound by a quantifier, the interval bounds of the variable, and a set of nodes
that represent the quantified subformulas. Thus a quantifier tree describes that
internal structure of a monitor which essentially influences its space complexity.

In our analysis, we take a monitor M ∈ M and compute the quantifier
tree QT (D(M)) of its dominating form D(M). Every interval bound in a node
of that tree can be only ∞, a constant c, or a term x + c where x denotes the
monitor variable. We may thus annotate each node of the tree with the maximum
constant occurring in the bounds of the subtree rooted at that node (except in
the cases of lower bound being infinity or lower bound constant and upper bound
variable). The following definition formalizes this annotation.

Definition 6 (Size Annotation). We define the size annotation A : QT→part.

Z∪{∞} (whose domain is the set of quantifier trees resulting from the dominat-
ing form of a monitor) recursively as follows:

A((V,∞, B, qt)) = 0

A((V, c1, x + c2, qt)) =

{
max {c1, c2} , if ∀q ∈ qt. A(q) ≤ 0

∞, otherwise

A((V, x + c1, c2, qt)) = max {c1, c2,maxq∈qt {A(q)}}
A((V, x + c1, x + c2, qt)) = max {c1, c2,maxq∈qt {A(q)}}
A((V, c1, c2, qt)) = max {c1, c2,maxq∈qt {A(q)}}
A((V, x + c1,∞, qt)) =∞
A((V, c1,∞, qt)) =∞

Notice that the annotation takes care of the cases when the evaluation of a
formula requires an infinite amount of memory. There are three such cases, the
most complex one being (V, c1, x + c2, qt): here the amount of memory needed
increases over time if qt requires a positive amount of memory, because every
time we generate a new monitor instance the interval increases. This occurs while
we are still evaluating the previous instances. These two factors together result
in an unbounded number of instances.

The point of this annotation is to indicate at what position a monitor in-
stance’s runtime representation will have size zero. Assume we are dealing with
monitor instance x = m, when this instance is evaluated at position A + n for
m ≤ n, the runtime representation is of size zero. When m ≥ n the runtime
representation will have a size greater than zero. When m > A+n, the monitor
instance cannot be evaluated at all and we end up with a runtime representation
with size one. Our Alg. 1 considers monitor instance such that n < m ≤ A + n.

Definition 7 (Annotated Quantifier Trees). An annotated quantifier tree
is inductively defined to be either ∅ or a tuple of the form (a, b1, b2, Q) where
a ∈ Z ∪ {∞}, b1, b2 ∈ Z ∪ {∞} and Q is a set of annotated quantifier trees. Let
AQT be the set of all annotated quantifier trees.

Definition 8 (Annotated Quantifier Tree Transformation). We define
AQT : QT →part. AQT (whose domain is the set of quantifier trees where only
the monitor variable x occurs in bounds) recursively as follows:

AQT ((V, x + c1, x + c2, qt)) = (A((V, x + c1, x + c2, qt)), c1, c2,∪q∈qtAQT (q))
AQT ((V, c1, c2, qt)) = (A((V, c1, c2, qt)), c1, c2,∪q∈qtAQT (q))
AQT ((V, x + c1, c2, qt)) = (A((V, x + c1, c2, qt)), c1, c2,∪q∈qtAQT (q))
AQT ((V, x + c1,∞, qt)) = (A((V, x + c1,∞, qt)), c1,∞,∪q∈qtAQT (q))
AQT ((V, c1,∞, qt)) = (A((V, c1,∞, qt)), c1,∞,∪q∈qtAQT (q))
AQT ((V,∞, x + c1, qt)) = (A((V,∞, x + c1, qt)),∞, c1,∪q∈qtAQT (q))
AQT ((V,∞, c1, qt)) = (A((V,∞, c1, qt)),∞, c1,∪q∈qtAQT (q))
AQT ((V, c1, x + c2, qt)) = (A((V, c1, x + c2, qt)), c1, c2,∪q∈qtAQT (q))
AQT ((V, c1, c2, qt)) = (A((V, c1, c2, qt)), c1, c2,∪q∈qtAQT (q))

Notice that if any subtree of an annotated quantifier tree requires infinite
memory, then the uppermost node of the tree, i.e. the root, will have an anno-
tation of ∞. Also, if the monitor represented by the annotated quantifier tree is
completely backwards looking, then the annotation at the root will be 0. Thus,
in these two cases no further computation is necessary to compute the space
complexity of the monitor. This can be seen in function SR(·) of Alg. 1. Also
note that we drop the monitor variable from the bounds. This means that the
bounds c1 and x + c1 are treated the same. This is not problematic being that
our algorithm only considers the case when x maps to zero. To deal with cases
x ≥ 0, we consider the state of the instance of the monitor created at x = 0 at
various future positions.

Example 3. Let us consider the monitor specification M from Ex. 2. Then QT (M)
and AQT (QT (D(M))) are as depicted in Figure 3.

QT (M):

(x,0,0,{A})

(y,x+1,x+5,{B,C})

(z,y,x+3,∅) (w,x+2,y+2,{D})

(m,y,w,∅)

A

B C

D

AQT (QT (D(M))):

(7,0,0,{A})

(7,1,5,{B,C})

(3,1,3,∅) (7,2,7,{D})

(7,1,7,∅)

A

B C

D

Fig. 3. (Annotated) Quantifier Trees

We are now ready to formally state the soundness of our analysis.

Theorem 2. Let M ∈M and aqt = AQT (QT (D(M))). Then for all n, p, S ∈ N
and s ∈ {>,⊥}ω such that T (M) (p,s,n S, we have S ≤ SR(aqt).

We informally sketch the argument for the correctness of this theorem.
Ignoring the special cases that the algorithm considers, for example the an-

notation of infinite memory, or subtrees which evaluate instantly, the heart of
the algorithm is the observation that the quantifiers in dominating monitors can
be treated the same independently of their position in the formula. This is not
the case for non-dominating monitors because there is dependence between the
quantifier intervals.

A second important observation is that the evaluation of the runtime mon-
itors is independent of the position of the stream. Thus, we can take a single
monitor instance and evaluate it as different positions to understand how all in-
stances of the monitor will evaluate. This observation is explained in more detail
in Section 3.

Going back to the first observation and Def. 1 & 2, we can consider the
evaluation of a monitor M with a single quantifier whose interval is [x + a, x + b],
where a ≤ b and a, b ∈ N. For n ≥ b it is easy to compute that T (M) (p,s,n

(b − a) + 1. However, at positions a ≤ n < b, T (M) (p,s,n (n − a) + 1. These
results can already be found in [4]. Since the instance production of quantifiers
is independent of their location in a formula, we can use these two basic results
to compute the number of instances of the quantified formula produced. An
elementary but tedious inductive argument leads to a soundness result and proof
of Thm. 2. The argument would be, take a monitor with m quantifiers and
construct a new monitor such that the monitor’s formula has an additional
quantifier added on top. The rest of the proof is just checking cases.

We now give an asymptotic bound on the space complexity.

Theorem 3. Let aqt = (A, b1, b2, aqt
′) ∈ AQT. Then SR(aqt) = O (An) where

n = d(aqt) is the quantifier depth of aqt inductively defined by d(∅) = 0 and
d(a, b1, b2, Q) = 1 + maxaqt∈Q d(aqt).

Proof (sketch.). It is well known that
∑A−1

i=0 in = O(An). If every quantifier in
aqt has an interval [0, A], then this summation accurately represents the com-
putation of this algorithm: the outer SR(·) function represents the summation
and the inner function SR(·, ·) computes the nth degree polynomial.

This result improves the O
(
A2n

)
space complexity bound presented in [4].

6 Experimental Results

We have experimentally validated the predictions of our analysis for the following
monitors where (1a) and (2a) represent the dominating forms of the monitors
(1b) and (2b), respectively:

∀0≤x: ∀y∈[x,x+80]: ∀z∈[x,x+80]: @z (1a) ∀0≤x: ∀y∈[x,x+40]: ∀z∈[x,x+80]: @z (2a)
∀0≤x: ∀y∈[x,x+80]: ∀z∈[x,y]: @z (1b) ∀0≤x: ∀y∈[x,x+40]: ∀z∈[x,y+40]: @z (2b)

The diagram in Figure 4 displays on the vertical axis the number of formula
instances reported by the LogicGuard runtime system for corresponding moni-
tors in the real specification language; the horizontal axis displays the number
of messages observed so far on the stream. The monitors are defined such that
the body of the innermost quantifier always evaluates to true and thus always
the full quantifier range is monitored and the worst-case space complexity is ex-
hibited. One should note that the runtime system reports the number of formula
instances while our analysis determines a measure for the size of the monitor’s
runtime representation (which is difficult to determine in the real system); how-
ever, for monitors with at less than three nested quantifiers, such as the ones
given above, the results coincide (the z-quantifier does not store any instances,
since its body is propositional; the y quantifier contains instances of size 1; the
runtime system reports the number of these instances which is identical to the
total size of these instances determined by our analysis).

As expected, we can observe that the number of instances eventually reaches,
after the startup phase, an upper bound. For the dominating monitors 1a and 2a,
the predictions 1 (3320) and 2 (2459) reported by the analysis accurately match
the observations. As also expected, however, these predictions overestimate the
number of instances observed for the non-dominating monitors 1b (160) and
2b (1659), from which the dominating monitors were derived. Interestingly, the
overapproximation for monitor 2b (by a factor of 1.5) is much less than for mon-
itor 1b (by a factor of 21). It seems that our analysis is better at predicting the
number of instances for certain quantifier configurations. This would imply that
quantifier configurations which we cannot predict well (i.e., where the difference
between the actual space requirements and that of the dominating form is large)
may have better performance in real-world scenarios. This is a topic that we are
going to investigate further in future work.

Fig. 4. Experimental results versus predictions

7 Conclusions

In this paper we studied the space complexity of runtime monitor execution.
The monitors are written in the core version of the LogicGuard specification
language. For this purpose, we abstracted every monitor formula into a tree
structure which contains only those aspects of a the formula influences the size
of the runtime representation, which is influenced by the number of instances.
Using this structure, we developed an algorithm determining an upper bound
for the number of formula instances that a monitor stores during execution. An
essential part of this algorithm is the dominating monitor transformation, which
over-approximates the actual number of instances stored. In our experimental
results, it was shown that there are monitors whose instance number is accu-
rately approximated by the algorithm’s upper bound and monitors where the
upper bound is far too conservative. In future work, we will investigate these
approximation properties, categorize these types of monitors, and investigate
possible optimizations based on the results. Optimizations based on quantifier
ordering are suggested by results in a technical report [2].

Another point we would like to address in future work is the variety of ways
one can calculate the space complexity of a monitor specification. In Section 6,
we brought up the subtle differences between our space calculation and the one
used in the actual runtime system. The two measures diverge for quantifier depth
three or greater. We plan to perform a similar analysis using this alternative
approach to space complexity measures. On a similar note, both measures so
far mentioned are closely related to possible time complexity measures. In the
case of time complexity, we would count each individual step of the operational
semantics. We want to develop a time complexity measure baed on the space
complexity measure devised here.

References

1. Julius Richard Büchi. Weak Second-Order Arithmetic and Finite Automata.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 6:66–92,
1960.

2. David Cerna. Space Complexity of LogicGuard Revisited. Technical report, Re-
search Institute for Symbolic Computation (RISC), Johannes Kepler University,
Linz, Austria, October 2015.

3. David Cerna. Space Complexity of Operational Semantics for the LogicGuard Core
Language. Technical report, Research Institute for Symbolic Computation (RISC),
Johannes Kepler University Linz, May 2015.

4. David M. Cerna, Wolfgang Schreiner, and Temur Kutsia. Space analysis of a predi-
cate logic fragment for the specification of stream monitors. In James H. Davenport
and Fadoua Ghourabi, editors, 7th International Symposium on Symbolic Compu-
tation in Software Science, volume 39 of EPiC Series in Computing, pages 29–41,
2016.

5. Bernd Finkbeiner and Lars Kuhtz. Monitor Circuits for LTL with Bounded and
Unbounded Future. In Runtime Verification, 9th International Workshop, RV
2009, volume 5779 of Lecture Notes in Computer Science, pages 60–75, Grenoble,
France, June 26–28, 2009. Springer, Berlin.

6. Markus Frick and Martin Grohe. The Complexity of First-Order and Monadic
Second-Order Logic Revisited. Annals of Pure and Applied Logic, 130(1–3):3–31,
2004.

7. IEEE Std 1850-2007: Standard for Property Specification Language (PSL)., 2007.
8. Orna Kupferman, Yoad Lustig, and Moshe Y. Vardi. On Locally Checkable Prop-

erties. In Logic for Programming, Artificial Intelligence, and Reasoning, 13th Inter-
national Conference, LPAR 2006, volume 5779 of Lecture Notes in Artificial Intel-
ligence, pages 302–316, Phnom Penh, Cambodia, November 13–17, 2006. Springer,
Berlin, Germany.

9. Temur Kutsia and Wolfgang Schreiner. Verifying the Soundness of Resource Analy-
sis for LogicGuard Monitors (Revised Version). Technical Report 14-08, Research
Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz,
Austria, 2014.

10. LogicGuard II, November 2015. http://www.risc.jku.at/projects/

LogicGuard2/.
11. Oded Maler, Dejan Nickovic, and Amir Pnueli. Real Time Temporal Logic: Past,

Present, Future. In Paul Pettersson and Wang Yi, editors, Formal Modeling and
Analysis of Timed Systems, Third International Conference (FORMATS), volume
3829 of Lecture Notes in Computer Science, pages 2–16, Uppsala, Sweden, Septem-
ber 26–28, 2005. Springer, Berlin, Germany.

12. Robert McNaughton and Seymour Papert. Counter-Free Automata, volume 65 of
Research Monograph. MIT Press, Cambridge, MA, USA, 1971.

13. Wolfgang Schreiner, Temur Kutsia, David Cerna, Michael Krieger, Bashar Ahmad,
Helmut Otto, Martin Rummerstorfer, and Thomas Gössl. The LogicGuard Stream
Monitor Specification Language (Version 1.01). Tutorial and reference manual,
Research Institute for Symbolic Computation (RISC), Johannes Kepler University,
Linz, Austria, November 2015.

14. Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic Approach to Au-
tomatic Program Verification (Preliminary Report). In Symposium on Logic in
Computer Science (LICS ’86), Cambridge, Massachusetts, USA, June 16-18, pages
332–344. IEEE Computer Society, 1986.

http://www.risc.jku.at/projects/LogicGuard2/
http://www.risc.jku.at/projects/LogicGuard2/

	Predicting Space Requirements for a Stream Monitor Specification Language

