
The RISC ProgramExplorer:
Reasoning about Programs as State Relations

(Extended Abstract)
Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner@risc.jku.at

1 Introduction

We report on the formal framework underlying the RISC ProgramExplorer [12], a program reasoning
environment which is under development at the Research Institute for Symbolic Computation (RISC)
and which integrates the previously developed RISC ProofNavigator [14] as an interactive proving assis-
tant. The current release of the software is a first demonstrator that incorporates the overall technological
framework (including an elaborated graphical user interface) and language processors (for a simple sub-
set of Java as a programming language and a formal specification language). Work is going on to provide
this skeleton with the envisioned program reasoning capabilities. The goal of this presentation is to out-
line the formal basis underlying these capabilities and to explain the rationale for its particular design.

In the “Hoare Calculus” [5], a program command x=x*x is specified by a triple {x = a}x=x*x{x =
a2} with two logical formulas x = a and x = a2 evaluated on the pre-state and on the post-state of the
command. Here a “fresh” logical constant a is “pulled out of the hat” to let the post-condition refer
to the value of the program variable x in the pre-state. In “Dynamic Logic” [3], the same command
is specified by the formula ∀a : x = a⇒ [x=x*x]x = a2 where a becomes a bound logical variable and
the two formulas x = a and x = a2 separated by the modality [x=x*x] have to be interpreted over two
different states, the pre-state of x=x*x and its post-state. Both formalisms suffer from the fact that they
squeeze the formulation of a binary state relation (the relation between the pre- and the post-state of
a command) into two unary state conditions and thus need logical constants/variables to “glue” them
together. In both formalisms a layer of reasoning with unfamiliar rules (on Hoare triples respectively
formulas with modalities) is required before ultimately the well-known layer of classical predicate logic
is reached.

We have chosen another possibility described in [13], the relational view of program commands.
This allows us to write a specification of form x=x*x : x′ = x2 which associates to a program command
x=x*x a single formula x′ = x2 in classical logic (the actual syntax described later is slightly different).
This formula expresses a state relation with the unprimed variable x denoting the value of the correspond-
ing program variable in the pre-state and the primed version x′ its value in the post-state. A judgment
C : S can now be read as “program command C implements the specification S”; this also gives immedi-
ately rise to a notion of refinement, since C : S′ and S′⇒ S implies C : S. For verification, this calculus
can be exploited in the following way: given a command C specified by state relation S, we first derive a
judgment C : S′, i.e. we translate the command C into a logical formula S′, and then prove S′⇒ S using
the rules of classical logic.

However, to translate a program command to a state relation alone is not sufficient, because it only
describes which state transitions are allowed but does not require that any state transition actually takes
place. Thus for example the judgment while(true){} : S is trivially satisfied for any specification S,
since the non-terminating loop implements the empty state relation. Our solution to this problem is
straight-forward: we complement the specification of a command by a judgment C ↓ T where T is a

1

Wolfgang.Schreiner@risc.jku.at

RISC ProgramExplorer: Programs as State Relations Wolfgang Schreiner

logical formula that describes a state condition, namely a condition for the pre-state of C under which
the command must terminate and produce a post-state. Here the refinement works in the other direction:
C ↓ T ′ and T ⇒ T ′ implies C ↓ T . Both kinds of judgments C : S and C ↓ T allow to specify a program
command’s safety (partial correctness) and liveness (total correctness).

Actually, a specification x=x*x : x′ = x2 is too weak since it does not state that every variable y

different from x has the same value in the pre- and in the post-state (assuming that program variables are
not aliased); also it does not allow to specify the effect of commands like continue, break, return E

or throw E which change the state of a program, not by the modification of a user-visible variable, but
by altering the flow of control. Our calculus is therefore based on a more general notion of state which
also includes the current execution mode (executing normally, continuing a loop iteration, breaking from
a loop, returning from a method, throwing an exception). Furthermore, it considers the frame of a
command execution, i.e. the set of variables that may be modified. Judgments are thus actually of the
form C : [S]Vm where V is the set of variables that may be modified by C and m constrains the execution
mode of the post-state of C. We can thus write a specification x=x*x : [x′ = x2]{x}me where me encodes the
mode “normally executing”; another specification is return x : [value(next) = x]{}mr where ‘next’ is a
logical constant representing the post-state and ‘value’ is a logical function that extracts the return value
from the state.

The derivation of judgments is compositional such that e.g. the judgment x=x+1;x=x*x : [S]{x}me with
S ≡ ∃x0 : x0 = x + 1∧ x′ = x2

0 can be derived from the individual judgments for x=x+1 and x=x*x.
Further on the formula S can be logically simplified to x′ = (x + 1)2 which concisely describes the
semantic essence of command x=x+1;x=x*x. A core goal of the RISC ProgramExplorer is to make
this computation of a program’s semantic essence transparent to the programmer as a means to better
understand the meaning of a program: program code is translated to a logical formula in a format that
makes the relationship to the code explicit; after suitable simplification, the formula displays the code’s
semantic essence. Thus e.g. the RISC ProgramExplorer will be able to illustrate the relationship between
the states at two control points in a declarative way.

Still there is a strong relation to the classical calculus, e.g. from a pre/post-condition pair x = a and
x = a2, a state relation ∀a : x = a⇒ x′ = a2 can be derived (which can then be further simplified to
x′ = x2); a state relation x′ = x2 for command C can be immediately translated to a weakest precondition
wp(C,Q) ≡ ∀b : b = x2 ⇒ Q[b/x] (which can be simplified to Q[x2/x]) or to a strongest postcondition
sp(C,P)≡∃a : P[a/x]∧x = a2. The RISC ProgramExplorer will provide these translations and make use
of them, e.g. to describe the information known about the state at a particular control point or to derive
the condition required to reach a subsequent control point.

In this extended abstract, we present only a simplified version of the calculus that does not include
the execution modes sketched above and does correspondingly not handle statements that interrupt the
control flow; also we do not discuss the treatment of global program variables, program methods, and
recursion. See [13] for a treatment of these aspects. The organization of the presentation is as follows:
in Section 2 we discuss the core calculus for deriving judgments C : [F]V ; in Section 3 we introduce
auxiliary judgments for deriving pre- and post-conditions; in Section 4 we describe the judgment C ↓ T .
Section 5 discusses related work and Section 6 concludes.

2 The Core Calculus

Let State be the set of program states (to be defined below) and let StateRelation := P(State×State) be
the set of binary relations on states. We interpret a state relation R ∈ StateRelation as a set of possible
state transitions: a pair of states 〈s,s′〉 ∈ R (i.e. two states s,s′ such that the relation R(s,s′) holds) is
considered as a transition from pre-state s to post-state s′ that is possible according to R.

2

RISC ProgramExplorer: Programs as State Relations Wolfgang Schreiner

We are now going to introduce a domain of (essentially classical) logical formulas such that every
formula F is translated to a state relation [F] ∈ StateRelation, i.e. as the set of transitions that are
allowed by F . The formula domain is equipped with a (essentially classical) logical calculus such that,
if the formula F1 ⇒ F2 can be proved, then [F1] ⊆ [F2] holds, i.e. F1 only allows those transitions
that are also allowed by F2. Likewise, we are going to introduce a domain of program commands and
translate every command C to a state relation [C]∈ StateRelation, i.e. as the set of transitions that can be
performed by the command (the relation [C] need not be a function, since C may be non-deterministic,
or at least non-deterministically specified). The core of the calculus is a judgment C : F that translates
every command C to some formula F such that the soundness condition [C] ⊆ [F] holds, i.e. every
transition that can be performed by C is also allowed by F .

The domain of commands is defined by the grammar

C := I=E | {var I;C} | C1;C2 | if (E) C1 else C2 | while (E) CF,T

where E is an unspecified domain of program expressions denoting values. The programming language
thus supports variable assignments, local variable declarations, command sequences, conditional com-
mands, and loops (annotated with invariance formulas and termination terms). An invariance formula F
describes not a condition on a single state but a relation between two states, the pre-state of the loop
and the state before/after every loop iteration. On the other hand, the value of the termination term T is
determined by a single state; this value must become smaller by every iteration according according to
some well-founded ordering. The phrases F and T do not influence the execution of the program but aid
reasoning about the execution.

For the semantic interpretation of this language, let State := Identifier→ Value be the set of program
states where Identifier = {I1, . . . , In} is a finite set of identifiers and Value is a set of values; every state
thus is just a mapping of program variables to values. For every command C, we are now going to define
the semantics [C] by writing [C](s,s′) :⇔ . . . to denote [C] := {〈s,s′〉 : . . .}.

[I=E](s,s′) :⇔
∀J ∈ Identifier : IF J = I THEN s′(I) = [E](s) ELSE s′(I) = s(I)

[{var I;C}](s,s′) :⇔
∃t, t ′ ∈ State : [C](t, t ′)∧∀J ∈ Variable : J 6= I⇒ s(J) = t(J)∧ t ′(J) = s′(J)

[C1;C2](s,s′) :⇔
∃t ∈ State : [C1](s, t)∧ [C2](t,s′)

[if (E) C1 else C2](s,s′) :⇔
IF [E](s) = TRUE THEN [C1](s,s′) ELSE [C2](s,s′)

[while (E) CF,T](s,s′) :⇔
∃n ∈ N, t ∈ State∗ :

t(0) = s∧ t(n) = s′∧ [E](s′) = FALSE ∧
∀i ∈ N : i < n−1⇒ [E](s) = TRUE ∧ [C](t(i), t(i+1))

Most cases are self-evident; the semantics of a while loop is specified by the sequence t of states arising
from the iteration of the loop. With the help of some auxiliary functions, the last three cases can be
also written more concisely. Let R1 ◦R2 := {〈s,s′〉 : ∃t ∈ State : 〈s, t〉 ∈ R1 ∧ 〈t,s′〉 ∈ R2} denote the
composition of state relations R1 and R2. Let R∗ :=

⋃
i∈N Ri with R0 := {〈s,s〉 : s ∈ State} and Ri+1 :=

Ri ∪Ri ◦R denote the reflexive transitive closure of state relation R. Let S � R := {〈s,s′〉 ∈ R : s ∈ S}
denote the restriction of the domain of state relation R to state set (condition) S and let R�S := {〈s,s′〉 ∈
R : s′ ∈ R} denote the restriction of the range of R to S. Let f T := {s ∈ dom(f) : [f](s) = TRUE} denote
that subset of the domain of function f for which the value is TRUE, and let f F := dom(f)\ f T denote
the complement of that set. Then we have

3

RISC ProgramExplorer: Programs as State Relations Wolfgang Schreiner

[C1;C2] = [C1]◦ [C2]
[if (E) C1 else C2] = ([E]T � [C1])∪ ([E]F � [C2])
[while (E) CF,T] = ([E]T � [C])∗� [E]F

While this “point-free” algebraic definition style has some appeal, the verbose original one makes the
logic underlying the command semantics more explicit. In particular, for the more general notion of
states described in [13] which supports commands that interrupt the control-flow, the underlying logic is
considerably more complicated such that an algebraic definition would not really give more insight than
the explicit logical characterization.

Next, we define the domain of formulas by the grammar

F := pn(T1, . . . ,Tn) | !F | F1 and F2 | F1 or F2 | F1 => F2 | . . . | forall I: F | exists I: F
T := I | var I | old I | fn(T1, . . . ,Tn)

where pn stands for a family of n-ary predicate constants and fn for a family of n-ary function con-
stants. Let Environment := Identifier→ Value be the set of formula environments that map logical vari-
ables to values. Then the formula semantics is defined as [F](s,s′) :⇔ ∀e ∈ Environment : [F]e(s,s′)
where [F]e(s,s′) is essentially the classical interpretation of formula F in environment e and [T]e(s,s′)
is essentially the classical interpretation of term T in environment e. The only places where s and s′

matter are in the rules

[var I]e(s,s′) := s′(I)
[old I]e(s,s′) := s(I)

i.e. var I denotes the value of the program-variable I in the post-state and old I denotes its value in
the pre-state (we use this syntax rather than the syntax I′ and I indicated in the introduction in order
to differentiate between a reference var I respectively old I to a program variable I in a state and a
reference I to a logical variable I in the environment). Furthermore, we define the the evaluation of a
term [T]e(s) := [T]e(s,s) respectively a formula [F](s) := [F](s,s) on a single state (such that var I
and old I have the same value) which will become handy later. Given a formula F and a set of program
variables Is⊆ Identifier we also define a syntactic abbreviation

[F]Is ≡ F and var I1 = old I1 and . . . and var In = old In

where {I1, . . . , In} = Identifier\Is. In a formula [F]Is, the set Is defines the “frame” of formula F , i.e.
the set of variables that may possibly be changed by a transition and whose values must therefore be
described by F ; all other variables remain unchanged.

The rules for deriving judgments of the form C : [F]Is are given in Figure 1.

• Rule weaken allows to weaken the formula derived from a judgment by logical implication. This
rule makes use of a judgment of form which |=Is F which derives the classical validity of formula F
where all occurrences of terms var I and old I are considered as (different) logical variables but an
axiom var I = old I is added for every variable I 6∈ Is.

• Rule frame describes how to extend the frame of a rule by a new variable which has the same value
in the pre-state as in the post-state.

• Rule assign defines the value of variable I in the post-state by a term T derived from the expression
E by a judgment E ' T which is sound if and only if ∀s ∈ State : e ∈ Environmente : [E](s) =
[T]e(s), i.e. T is interpreted over a single state and has the same value as E. To simplify further
substitutions, we assume that all references to program variables in T are of the form old I (not of
the form var I).

4

RISC ProgramExplorer: Programs as State Relations Wolfgang Schreiner

(weaken)
C : [F1]Is

|=Is F1⇒ F2

C : [F2]Is

(frame)
C : [F]Is

C : [F and var I = old I]Is∪{I}

(assign)
E ' T
I=E : [var I = T]I

(var)
C : [F]Is

Io, Iv do not occur as terms in F
{var I;C} : [exists Io, Iv: F [Io/old I, Iv/var I]]Is\{I}

(seq)

C1 : [F1]{I1,...,In}

C2 : [F2]{I1,...,In}

J1, . . . ,Jn do not occur as terms in F
C1;C2 : [exists J1, . . . ,Jn : F1[J1/var I1, . . . ,Jn/var In] ∧

F2[J1/old I1, . . . ,Jn/old In]]{I1,...,In}

(if)

E ' F
C1 : [F1]Is

C2 : [F2]Is

if (E) C1 else C2 : [if F then F1 else F2]Is

(while)

E ' FE

C : [FC]I1,...,In

Invariant(F,FE ,FC){I1,...,In}

J1, . . . ,Jn do not occur as terms in F,FE ,FC

while (E) CF,T :
[!FE [var I1/old I1, . . . ,var In/old In] and

(F [old I1/var I1, . . . ,old In/var In] => F)]I1,...,In

Invariant(F,FE ,FC){I1,...,In} ≡
|={I1,...,In}

forall J1, . . . ,Jn:
(F [J1/var I1, . . . ,Jn/var In] and
FE [J1/old I1, . . . ,Jn/old In] and FC[J1/old I1, . . . ,Jn/old In]) => F

Figure 1: Judgment C : F

5

RISC ProgramExplorer: Programs as State Relations Wolfgang Schreiner

if (n < 0)

s = -1; F1
else {

var i;

s = 0; F2
i = 1; F3

}
Fs

while (i <= n) {

s = s+i; F4
i = i+1; F5

}
Fb

}F,T

Fw


Fv

}


Fe



Fc

F :⇔ 1 <= var i <= var n+1 and var s = ∑
var i-1
j=1 j

T := var n - var i + 1

Figure 2: A Sample Program

• Rule var constructs from the formula F describing the behavior of the body of a block C the
behavior of the block by existentially quantifying the value of the variable in the pre-state and in
the post-state (the phrase P[V/U] is identical to P except that V replaces every occurrence of U).

• Rule seq constructs the formula for a command sequence from the formulas of the individual
commands with common frame by existentially quantifying the values of the variables in the in-
termediate state of the sequence (with the help of rule frame formulas can be always be extended
to a common frame).

• Rule if constructs the formula for a conditional statement from the formulas of the individual
statements with a common frame. The judgment E 'F is sound if and only if ∀s∈ State : [E](s) =
TRUE⇔ [F](s), i.e. F is interpreted over a single state only. To simplify further substitutions, we
assume that all references to program variables in F are of form old I (not of form var I).

• Rule while constructs the formula for a loop from the formulas FE and FC derived from the loop
condition E and body C, respectively, and from a given loop invariant F . The proof obligation
Invariant(. . .) states that F indeed remains invariant the execution of the loop body. The derived
state relation formula expresses the fact that FE does not hold in the post-state s′ of the loop and
that the invariant F holds on the post-state of the loop, provided that it also holds on the pre-state s
(i.e. [F](s,s′) holds, provided that [F](s,s) holds).

The rules satisfy the following theorem.

Theorem 1 (Soundness of Core Judgment). For every command C and formula F, if a judgment C : F
can be derived, then we have

∀s,s′ ∈ State : [C](s,s′)⇒ [F](s,s′)

In the following, we illustrate the derivation of a judgment C : FC for the program fragment C given
in Figure 2 which sums the values from 1 to n. The core of the program is a while loop annotated by an
invariant F and a termination term T . For the moment, only F is used, which constrains the state/before
after every loop iteration (by references to program variables of the form var I); in general it may also

6

RISC ProgramExplorer: Programs as State Relations Wolfgang Schreiner

refer to the pre-state of the loop (by references of the form old I). We assume that Value = Z, i.e. all
variables denote integer numbers.

First we derive the formulas for the assignment statements:

F1 ⇔ [var s = -1]{s}

F2 ⇔ [var s = 0]{s}

F3 ⇔ [var i = 1]{i}

F4 ⇔ [var s = old s+old i]{s}

F5 ⇔ [var i = old i+1]{i}

Next we extend F2 and F3 to a common frame and derive a judgment Fs for the sequence of the two
assignment statements before the loop which is simplified to a logically equivalent formula:

F2 ⇔ [var s = 0 and var i = old i]{s,i}

F3 ⇔ [var i = 1 and var s = old s]{s,i}

Fs ⇔ [exists vs,vi : vs = 0 and vi = old i and var i = 1 and var s = vs]{s,i}

⇔ [var i = 1 and var s = 0]{s,i}

We do the same to derive a formula Fb for the sequence of assignment statements that represent the body
of the loop.

F4 ⇔ [var s = old s+old i and var i = old i]{s,i}

F5 ⇔ [var i = old i+1 and var s = old s]{s,i}

Fb ⇔ [exists vs,vi : vs = old s+old i and vi = old i and var i = vi +1 and var s = vs]{s,i}

⇔ [var i = old i +1 and var s = old s+old i]{s,i}

From the loop invariant F , we construct the formula Fw for the while loop and simplify it logically:

Fw ⇔ [!(var i <= var n) and

((1 <= old i <= old n+1 and old s = ∑
old i-1
j=1 j) =>

(1 <= var i <= var n+1 and var s = ∑
var i-1
j=1 j))]{s,i}

⇔ [(old n < var i) and

((1 <= old i <= old n+1 and old s = ∑
old i-1
j=1 j) =>

(1 <= var i <= old n+1 and var s = ∑
var i-1
j=1 j))]{s,i}

⇔ [(old n < var i) and

(1 <= old i <= old n+1 and old s = ∑
old i-1
j=1 j) =>

(var i = old n+1 and var s = ∑
old n
j=1 j)]{s,i}

To prove the invariance of F , we generate the following proof obligation

|={s,i}
forall vs,vi:

1 <= vi <= var n+1 and vs = ∑
vi-1
j=1 j and

vi <= var n and var i = vi +1 and var s = vs + vi =>

1 <= var i <= var n+1 and var s = ∑
var i-1
j=1 j

whose correctness can be easily established.
The formula Fw derived above contains contains an implication which expresses the truth of the

invariant only under a condition on the range of the program variable i and the value of s in the pre-state
of the loop. By combining this condition with the formula Fs that establishes the pre-state of the loop,
the precondition is logically simplified to the condition that program variable n is not negative:

7

RISC ProgramExplorer: Programs as State Relations Wolfgang Schreiner

Fv ⇔ [exists vs,vi : vs = 0 and vi = 1 and
old n < var i and

(1 <= vi <= old n+1 and vs = ∑
vi -1
j=1 j =>

var i = old n+1 and var s = ∑
old n
j=1 j)]{s,i}

⇔ [old n < var i and

(0 <= old n => var i = old n+1 and var s = ∑
old n
j=1 j)]{s,i}

The program variable i is local to the else-branch of the conditional statement: its effect is thus captured
by existential quantification; by logical simplification, the variable is removed from the formula Fe for
this branch:

Fe ⇔ [exists vi : old n < vi and (0 <= old n => vi = old n+1 and var s = ∑
old n
j=1 j)]{s}

⇔ [0 <= old n => var s = ∑
old n
j=1 j]{s}

Finally, we combine the effect of both branches of the conditional statement and derive the formula for
the whole command:

Fc ⇔ [if old n < 0 then var s = -1 else 0 <= old n => var s = ∑
old n
j=1 j]{s}

⇔ [if old n < 0 then var s = -1 else var s = ∑
old n
j=1 j]{s}

We note that Fc describes the “semantic essence” of the program fragment: if the program variable n
is initially negative, the program variable s has finally the value −1, and else the sum of all values
from 1 to n. The calculation of this semantic essence is the core of the calculus: it proceeds “inside-
out” from atomic commands to composed commands and may apply logic to simplify formulas; its
soundness depends on the generated proof obligation that the formula annotating the loop is indeed
invariant invariant with respect to the execution of the loop body.

3 Pre- and Post-Conditions

From the judgment of the previous section, the auxiliary judgments presented in Figure 3 can be derived:

• PRE(C,Q) = P: Given a state formula Q and a command C, this judgment determines a state
formula P, such that if P holds in the state in which C is executed, Q holds afterward. P is thus a
pre-condition of C with respect to post-condition Q.

• POST(C,P) = Q: Given a state formula P and a command C, this judgment determines a state
formula Q, such that if P holds in the state in which C is executed, Q holds afterwords. Q is thus a
post-condition of C with respect to pre-condition P.

Formulas P and Q represent state conditions, i.e. are evaluated over single states; to simplify further
substitutions, we assume that they refer to program variables in the form old I (and not var I); the
generated pre-/post-conditions preserve this property.

In general, the judgments do not always determine the weakest pre- respectively strongest post-
condition, because the reasoning about loops is based on externally provided invariants, which are not
necessarily the strongest possible ones. Still they preserve the following constraint.

Theorem 2 (Soundness of Pre/Post-Conditions). For all commands C and state formulas P,Q, if the
judgment PRE(C,Q) = P or the judgment PRE(C,P) = Q can be derived, we have:

∀s,s′ ∈ State : [P](s)∧ [C](s,s′)⇒ [Q](s′)

8

RISC ProgramExplorer: Programs as State Relations Wolfgang Schreiner

(pre)

C : [F]{I1,...,In}

var does not occur in Q
J1, . . . ,Jn do not occur as terms in F,Q
PRE(C,Q) =

forall J1, . . . ,Jn: F [J1/var I1, . . . ,Jn/var In] =>
Q[J1/old I1, . . . ,Jn/old In]

(pre)

C : [F]{I1,...,In}

var does not occur in P
J1, . . . ,Jn do not occur as terms in F,P
POST(C,P) =

exists J1, . . . ,Jn: P[J1/old I1, . . . ,Jn/old In] and
F [J1/old I1, . . . ,Jn/old In,old I1/var I1, . . . ,old In/var In]

Figure 3: Judgments PRE(C,Q) = P and POST(C,P) = Q

As an example, for command C = x=x+1 with state relation [var x = old x + 1]{x}, we get

PRE(C,Q) = forall vx: vx = old x + 1 =>Q[vx/old x]
= Q[old x + 1/old x]

POST(C,P) = exists vx: P[vx/old x] and old x = vx + 1

The computation of pre- and post-conditions has various applications; one of them is in the termina-
tion calculus presented in the following section.

4 Termination

The judgments presented up to now are only concerned with the partial correctness of a command:
they constrain which transitions may take place but do not demand that any transition actually must
take place, i.e. a command may also block respectively not terminate. To support also total correctness
arguments, we are now going to capture the termination of a command C by an interpretation 〈〈C〉〉 ∈
StateCondition := P(State) such that 〈〈C〉〉(s) (i.e. s∈ 〈〈C〉〉) holds if the execution of C in state s terminates.
For our programming language, the definition of 〈〈C〉〉 is as follows:

〈〈I=E〉〉(s) :⇔ TRUE

〈〈{var I;C}〉〉(s) :⇔∀s′ ∈ State : (∀J ∈ Identifier : J 6= I⇒ s(J) = s′(J))⇒ 〈〈C〉〉(s′)
〈〈C1;C2〉〉(s) :⇔ 〈〈C1〉〉(s)∧∀s′ ∈ State : [C](s,s′)⇒ 〈〈C2〉〉(s)
〈〈if (E) C1 else C2〉〉(s) :⇔

IF [E](s) = TRUE THEN 〈〈C1〉〉(s) ELSE 〈〈C2〉〉(s)
〈〈while (E) CF,T〉〉(s) :⇔

(∀n ∈ N, t ∈ State∗ :
t(0) = s∧ (∀i ∈ N : i < n−1⇒ [E](s) = TRUE ∧ [C](t(i), t(i+1)))⇒ 〈〈C〉〉(t(n))) ∧

(¬∃t ∈ Stateω :
t(0) = s∧∀i ∈ N : [E](s) = TRUE ∧ [C](t(i), t(i+1)))

Most cases are self-evident; the termination semantics for while loops demands that the execution of
each loop iteration must terminate and that there are not infinitely many such iterations. The relationship
between both semantic interpretations of commands is determined by the following constraint.

9

RISC ProgramExplorer: Programs as State Relations Wolfgang Schreiner

(strengthenT)
C ↓ F1
|= /0 F2⇒ F1

C ↓ F2

(assignT) I=E ↓ true

(varT)
C ↓ F
J does not occur as a term in F
{var I;C} ↓ forall J: F [J/old I]

(seqT)

C1 ↓ F1
C2 ↓ F2
PRE(C1,F2) = F3

C1;C2 ↓ F1 and F3

(ifT)

E ' F
C1 ↓ F1
C2 ↓ F2

if (E) C1 else C2 ↓ if F then F1 else F2

(whileT)

E ' FE

C : [FC]I1,...,In

Invariant(F,FE ,FC){I1,...,In}

C ↓ FT

J1, . . . ,Jn do not occur as terms in F,FE ,FC,FT ,T
|={I1,...,In}

forall J1, . . . ,Jn:
F [J1/old I1, . . . ,Jn/old In,old I1/var I1, . . . ,old In/var In] and
FE and FC =>

FT and T < T [var I1/old I1, . . . ,var In/old_In]
< represents a well-founded ordering
while (E) CF,T ↓ F [old I1/var I1, . . . ,old In/var In]

Figure 4: Judgment C ↓ F

Theorem 3 (Termination Semantics). For every command C, we have

∀s ∈ State : 〈〈C〉〉(s)⇒∃s′ ∈ State : [C](s,s′)

i.e. the state condition 〈〈C〉〉 represents a (possibly proper) subset of the domain of the state relation [C].

In the following, we derive judgments of the form C ↓ F where F is represents a state condition
(i.e. F is a formula evaluated over a single state) such that [F] describes those pre-states for which the
execution of command C must terminate; F is thus called a termination condition of C. Figure 4 gives
the rules for deriving termination conditions. Rule strengthenT shows that a termination condition can
be strengthened by logical implication. Most other rules are pretty self-evident, with the exception of
(whileT): this rule claims the termination of a loop in a state in which the loop invariant F holds provided
that it can be proved that F is indeed an invariant and that in every iteration the execution of the loop

10

RISC ProgramExplorer: Programs as State Relations Wolfgang Schreiner

body terminates and the termination term decreases according to some well-founded ordering <. For this
proof, the pre-state of the loop iteration may be assumed to satisfy the invariant and the loop condition.

The termination calculus meets the following soundness constraint.

Theorem 4 (Soundness of Termination Judgment). For all commands C and state formulas F, if the
judgment C ↓ F can be derived, we have

∀s ∈ State : [F](s)⇒ 〈〈C〉〉(s)

As an example, for the sample program C given in Figure 2, we can derive C ↓ true where, in addi-
tion to the obligation of proving the correctness of the loop invariant, the following proof obligation is
generated (after some logical simplification):

|=s,i

forall vs,vi :
1 <= old i <= old n+1 and old s = ∑

old i-1
j=1 j and

old i <= old n and var s = old s + old i and var i = old i + 1 =>
old n - old i + 1 <= var n - var i + 1

From the last two lines and the fact that in frame {s, i} we have axiom var n = old n, this condition is
clearly valid.

5 Related Work

The idea of “programs as state relations” is not new; it has been variously advocated, e.g. in Lamport’s
“Temporal Logic of Actions” [7], Boute’s “Calculational Semantics” [2], Hehner’s “Practical Theory
of Programming” [4], Hoare and Jifeng’s “Unifying Theory of Programming” [6], Morgan’s calculus
for “Programming from Specifications” [9], and the “Refinement Calculus” of Back and von Wright [1]
respectively Morris [10]. Still most program reasoning texts and tools are due to historical reasons
dominated by the pre/post-condition view; this has been criticized in [11].

As a concrete example, the recent calculus of Mili et al [8] describes a loop by a reflexive and transi-
tive state relation that is determined by the loop invariant; if the relation (that characterizes the relation-
ship between two states that are separated by an arbitrary number of loop iterations) is also symmetric, (a
lower bound approximation of) the state function implemented by the loop can be automatically derived.
This relational framework differs from our in various respects:

• The interpretation of a relation R ⊆ State× State as a program specification is that, for every
pre-state s ∈ dom(R), a program described by R must terminate with some post-state s′ such that
〈s,s′〉 ∈ R. This gives rise to the notion that a relation R1 refines a relation R2 if and only if
(R1 ◦S)∩ (R2 ◦S)∩ (R1∪R2) = R2 where S := State×State is the universal relation.

In our framework, a program is characterized by a pair of a state relation R ⊆ State×State and a
termination condition T ⊆ State such that T ⊆ dom(R); here R describes only the space of possible
transitions while T describes those pre-states for which a transition must take place. A specification
〈R1,T1〉 = 〈[F1], [G1]〉 refines a specification 〈R2,T2〉 = 〈[F1], [G1]〉 if and only if R1 ⊆ R2 and
T2 ⊆ T 1, i.e. if F1⇒ F2 and G2⇒ G1 are valid formulas. Our framework thus provides a simple
logical characterization of the semantics of a program and the notions of program specification
and specification refinement.

11

RISC ProgramExplorer: Programs as State Relations Wolfgang Schreiner

• An invariant F is required to be a reflexive and transitive state relation, i.e. [F](s,s) must hold for
every state s independently of the program context into which the loop is embedded, i.e., whether s
is a possible pre-state of the loop or not.

In our framework, F is need not be reflexive. The relation [F](s,s) must only hold for every state s
that is a possible pre-state for the context in which the loop is embedded (the relation derived from
the loop has a corresponding pre-state condition as the antecedent of an implication that has the
invariant as its consequent). The proof of invariance also does not establish general transitivity
of the relation but only that the invariance (with respect to the pre-state of the loop) is preserved
by every iteration. While it would be also possible to strengthen the proof obligation for loops to
check the reflexivity and transitivity of F , our framework thus allows to describe the invariance of
a loop with respect to the actual context in which it is executed.

• Our framework uses a more general notion of state than described in this extended abstract. A
state not only contains the values of program variables but also execution modes that arise from
executing statements that interrupt the control-flow (loop continuations and breaks, function re-
turns, exception throws). These extensions give a rise to an essentially more complex execution
behavior, in particular with respect to loops, that can be nevertheless characterized in a relational
framework and handled by the judgments introduced in the previous sections. The framework also
considers global program variables, modular reasoning about methods specified by contracts, and
(direct and indirect) recursive method invocations. Details can be found in [13].

Similar differences hold for most of the calculi cited above.

6 Conclusions

The “state relation” view by itself does not give rise to bigger automation, in particular the derivation
of a loop’s state relation still depends on an externally provided invariant. Nevertheless, we believe that
switching from state conditions to state relations substantially alters one’s mind set and is useful beyond
the mere purpose of verification: with appropriate tool support (automatic derivation and simplification
of formulas characterizing commands and program fragments) it is ultimately able to give humans insight
into the programs they write.

References
[1] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction. Springer, New York, 1998.
[2] Raymond T. Boute. Calculational Semantics: Deriving Programming Theories from Equations by Functional

Predicate Calculus. ACM Transactions on Programming Languages and Systems, 28(4):747–793, July 2006.
[3] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, Cambridge, MA, USA, 2000.
[4] Eric C.R. Hehner. A Practical Theory of Programming. Springer, New York, 2006. http://www.cs.

utoronto.ca/~hehner/aPToP.
[5] C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM, 12(10):576–

580, 1969.
[6] C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall, London, UK, 1998. http:

//www.unifyingtheories.org.
[7] Leslie Lamport. Specifying Systems; The TLA+ Language and Tools for Hardware and Software Engineers.

Addison-Wesley, 2002. http://research.microsoft.com/users/lamport/tla/book.html.
[8] Ali Mili, Shir Aharon, Chaitanya Nadkarni, Lamia Labed Jilani, Asma Louhichi, and Olfa Mraihi. Reflexive

transitive invariant relations: A basis for computing loop functions. Journal of Symbolic Computation, in
press:DOI: 10.1016/j.jsc.2008.11.007, 2010.

12

http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/aPToP
http://www.unifyingtheories.org
http://www.unifyingtheories.org
http:// research.microsoft.com/users/lamport/tla/book.html

RISC ProgramExplorer: Programs as State Relations Wolfgang Schreiner

[9] Carroll Morgan. Programming from Specifications. Prentice Hall, London, UK, 2nd edition, 1998. http:

//web2.comlab.ox.ac.uk/oucl/publications/books/PfS.
[10] J. M. Morris. A Theoretical Basis for Stepwise Refinement and the Programming Calculus. Science of

Computer Programming, 9(3):287–306, December 1987.
[11] David Lorge Parnas. Really Rethinking ‘Formal Methods’. Computer, 43(1):28–34, 2010.
[12] The RISC ProgramExplorer, 2010. Research Institute for Symbolic Computation (RISC), Jo-

hannes Kepler University, Linz, Austria, http://www.risc.jku.at/research/formal/software/

ProgramExplorer.
[13] Wolfgang Schreiner. A Program Calculus. Technical report, Research Institute for Symbolic Computation

(RISC), Johannes Kepler University, Linz, Austria, September 2008. http://www.risc.jku.at/people/
schreine/papers/ProgramCalculus2008.pdf.

[14] Wolfgang Schreiner. The RISC ProofNavigator: A Proving Assistant for Program Verification in the Class-
room. Formal Aspects of Computing, 21(3):277–291, 2009.

13

http://web2.comlab.ox.ac.uk/oucl/publications/books/PfS
http://web2.comlab.ox.ac.uk/oucl/publications/books/PfS
http://www.risc.jku.at/research/formal/software/ProgramExplorer
http://www.risc.jku.at/research/formal/software/ProgramExplorer
http://www.risc.jku.at/people/schreine/papers/ProgramCalculus2008.pdf
http://www.risc.jku.at/people/schreine/papers/ProgramCalculus2008.pdf

	Introduction
	The Core Calculus
	Pre- and Post-Conditions
	Termination
	Related Work
	Conclusions

